EladSpamson commited on
Commit
0348b75
·
verified ·
1 Parent(s): 67f033c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -10
app.py CHANGED
@@ -13,12 +13,23 @@ model = WhisperForConditionalGeneration.from_pretrained(model_id)
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
  model.to(device)
15
 
16
- # Function to process long audio in ~3-5 min chunks
 
 
 
 
 
 
 
 
17
  def transcribe(audio):
 
 
 
18
  # Load the audio file and convert to 16kHz
19
  waveform, sr = librosa.load(audio, sr=16000)
20
 
21
- # Set chunk size (~3-5 minutes per chunk)
22
  chunk_duration = 4 * 60 # 4 minutes (240 seconds)
23
  max_audio_length = 60 * 60 # 60 minutes
24
  chunks = []
@@ -29,6 +40,9 @@ def transcribe(audio):
29
 
30
  # Split audio into ~4-minute chunks
31
  for i in range(0, len(waveform), sr * chunk_duration):
 
 
 
32
  chunk = waveform[i : i + sr * chunk_duration]
33
  if len(chunk) < sr * 2: # Skip chunks shorter than 2 seconds
34
  continue
@@ -37,8 +51,11 @@ def transcribe(audio):
37
  # Process each chunk and transcribe
38
  transcriptions = []
39
  for chunk in chunks:
 
 
 
40
  input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
41
-
42
  with torch.no_grad():
43
  predicted_ids = model.generate(
44
  input_features,
@@ -57,13 +74,17 @@ def transcribe(audio):
57
  return full_transcription
58
 
59
  # Create the Gradio Interface
60
- iface = gr.Interface(
61
- fn=transcribe,
62
- inputs=gr.Audio(type="filepath"), # Fixed input format
63
- outputs="text",
64
- title="Hebrew Speech-to-Text (Whisper)",
65
- description="Upload a Hebrew audio file (up to 60 minutes) for full transcription.",
66
- )
 
 
 
 
67
 
68
  # Launch the Gradio app
69
  iface.launch()
 
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
  model.to(device)
15
 
16
+ # Global variable to control stopping
17
+ stop_processing = False
18
+
19
+ # Function to stop transcription
20
+ def stop():
21
+ global stop_processing
22
+ stop_processing = True # This will break transcription
23
+
24
+ # Function to process long audio in chunks
25
  def transcribe(audio):
26
+ global stop_processing
27
+ stop_processing = False # Reset stop flag when new transcription starts
28
+
29
  # Load the audio file and convert to 16kHz
30
  waveform, sr = librosa.load(audio, sr=16000)
31
 
32
+ # Set chunk size (~4 min per chunk)
33
  chunk_duration = 4 * 60 # 4 minutes (240 seconds)
34
  max_audio_length = 60 * 60 # 60 minutes
35
  chunks = []
 
40
 
41
  # Split audio into ~4-minute chunks
42
  for i in range(0, len(waveform), sr * chunk_duration):
43
+ if stop_processing:
44
+ return "⚠️ Transcription Stopped by User ⚠️"
45
+
46
  chunk = waveform[i : i + sr * chunk_duration]
47
  if len(chunk) < sr * 2: # Skip chunks shorter than 2 seconds
48
  continue
 
51
  # Process each chunk and transcribe
52
  transcriptions = []
53
  for chunk in chunks:
54
+ if stop_processing:
55
+ return "⚠️ Transcription Stopped by User ⚠️"
56
+
57
  input_features = processor(chunk, sampling_rate=16000, return_tensors="pt").input_features.to(device)
58
+
59
  with torch.no_grad():
60
  predicted_ids = model.generate(
61
  input_features,
 
74
  return full_transcription
75
 
76
  # Create the Gradio Interface
77
+ with gr.Blocks() as iface:
78
+ gr.Markdown("# Hebrew Speech-to-Text (Whisper)")
79
+
80
+ audio_input = gr.Audio(type="filepath", label="Upload Hebrew Audio")
81
+ output_text = gr.Textbox(label="Transcription Output")
82
+
83
+ start_btn = gr.Button("Start Transcription")
84
+ stop_btn = gr.Button("Stop Processing", variant="stop")
85
+
86
+ start_btn.click(transcribe, inputs=audio_input, outputs=output_text)
87
+ stop_btn.click(stop) # Calls the stop function when clicked
88
 
89
  # Launch the Gradio app
90
  iface.launch()