Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,12 @@ import librosa
|
|
5 |
import os
|
6 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
7 |
|
8 |
-
#
|
9 |
-
os.environ[
|
10 |
|
11 |
app = Flask(__name__)
|
12 |
|
|
|
13 |
model_id = "openai/whisper-base"
|
14 |
processor = WhisperProcessor.from_pretrained(model_id)
|
15 |
model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
@@ -19,4 +20,43 @@ model.to(device)
|
|
19 |
|
20 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="he", task="transcribe")
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import os
|
6 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
7 |
|
8 |
+
# Explicitly set writable cache directory
|
9 |
+
os.environ['HF_HOME'] = '/tmp/hf_cache'
|
10 |
|
11 |
app = Flask(__name__)
|
12 |
|
13 |
+
# Temporarily using smaller model for faster testing
|
14 |
model_id = "openai/whisper-base"
|
15 |
processor = WhisperProcessor.from_pretrained(model_id)
|
16 |
model = WhisperForConditionalGeneration.from_pretrained(model_id)
|
|
|
20 |
|
21 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="he", task="transcribe")
|
22 |
|
23 |
+
def transcribe_audio(audio_url):
|
24 |
+
response = requests.get(audio_url)
|
25 |
+
audio_path = "/tmp/temp_audio.wav"
|
26 |
+
with open(audio_path, "wb") as f:
|
27 |
+
f.write(response.content)
|
28 |
+
|
29 |
+
waveform, sr = librosa.load(audio_path, sr=16000)
|
30 |
+
max_duration_sec = 3600
|
31 |
+
waveform = waveform[:sr * max_duration_sec]
|
32 |
+
|
33 |
+
chunk_duration_sec = 25
|
34 |
+
chunk_size = sr * chunk_duration_sec
|
35 |
+
chunks = [waveform[i:i + chunk_size] for i in range(0, len(waveform), chunk_size)]
|
36 |
+
|
37 |
+
partial_text = ""
|
38 |
+
for chunk in chunks:
|
39 |
+
inputs = processor(chunk, sampling_rate=16000, return_tensors="pt", padding=True)
|
40 |
+
input_features = inputs.input_features.to(device)
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
44 |
+
|
45 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
46 |
+
partial_text += transcription + "\n"
|
47 |
+
|
48 |
+
return partial_text.strip()
|
49 |
+
|
50 |
+
@app.route('/transcribe', methods=['POST'])
|
51 |
+
def transcribe_endpoint():
|
52 |
+
data = request.get_json()
|
53 |
+
audio_url = data.get('audio_url')
|
54 |
+
if not audio_url:
|
55 |
+
return jsonify({"error": "Missing 'audio_url' in request"}), 400
|
56 |
+
|
57 |
+
transcription = transcribe_audio(audio_url)
|
58 |
+
|
59 |
+
return jsonify({"transcription": transcription})
|
60 |
+
|
61 |
+
if __name__ == '__main__':
|
62 |
+
app.run(host="0.0.0.0", port=7860)
|