Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,12 @@ from flask import Flask, request, jsonify
|
|
2 |
import requests
|
3 |
import torch
|
4 |
import librosa
|
|
|
5 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
|
|
|
|
|
|
|
7 |
app = Flask(__name__)
|
8 |
|
9 |
model_id = "openai/whisper-base"
|
@@ -15,42 +19,4 @@ model.to(device)
|
|
15 |
|
16 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="he", task="transcribe")
|
17 |
|
18 |
-
|
19 |
-
response = requests.get(audio_url)
|
20 |
-
audio_path = "/tmp/temp_audio.wav"
|
21 |
-
with open(audio_path, "wb") as f:
|
22 |
-
f.write(response.content)
|
23 |
-
|
24 |
-
waveform, sr = librosa.load(audio_path, sr=16000)
|
25 |
-
max_duration_sec = 3600
|
26 |
-
waveform = waveform[:sr * max_duration_sec]
|
27 |
-
|
28 |
-
chunk_duration_sec = 25
|
29 |
-
chunk_size = sr * chunk_duration_sec
|
30 |
-
chunks = [waveform[i:i + chunk_size] for i in range(0, len(waveform), chunk_size)]
|
31 |
-
|
32 |
-
partial_text = ""
|
33 |
-
for chunk in chunks:
|
34 |
-
inputs = processor(chunk, sampling_rate=16000, return_tensors="pt", padding=True)
|
35 |
-
input_features = inputs.input_features.to(device)
|
36 |
-
|
37 |
-
with torch.no_grad():
|
38 |
-
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
39 |
-
|
40 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
41 |
-
partial_text += transcription + "\n"
|
42 |
-
|
43 |
-
return partial_text.strip()
|
44 |
-
|
45 |
-
@app.route('/transcribe', methods=['POST'])
|
46 |
-
def transcribe_endpoint():
|
47 |
-
data = request.get_json()
|
48 |
-
audio_url = data.get('audio_url')
|
49 |
-
if not audio_url:
|
50 |
-
return jsonify({"error": "Missing 'audio_url' in request"}), 400
|
51 |
-
|
52 |
-
transcription = transcribe_audio(audio_url)
|
53 |
-
return jsonify({"transcription": transcription})
|
54 |
-
|
55 |
-
if __name__ == '__main__':
|
56 |
-
app.run(host="0.0.0.0", port=7860)
|
|
|
2 |
import requests
|
3 |
import torch
|
4 |
import librosa
|
5 |
+
import os
|
6 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
7 |
|
8 |
+
# Set Hugging Face cache directory explicitly
|
9 |
+
os.environ["HF_HOME"] = "/tmp/hf_cache"
|
10 |
+
|
11 |
app = Flask(__name__)
|
12 |
|
13 |
model_id = "openai/whisper-base"
|
|
|
19 |
|
20 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="he", task="transcribe")
|
21 |
|
22 |
+
# rest of the code remains unchanged...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|