File size: 6,098 Bytes
2116a66
79cd26d
 
 
2116a66
 
 
 
79cd26d
 
 
2116a66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79cd26d
2116a66
79cd26d
2116a66
 
 
 
 
 
 
 
79cd26d
 
 
2116a66
79cd26d
 
 
 
 
 
 
 
 
2116a66
79cd26d
 
 
 
 
 
 
 
05e9cff
 
 
 
79cd26d
05e9cff
 
79cd26d
 
 
 
 
83e4be4
79cd26d
 
 
 
 
 
 
 
 
 
8b884e6
79cd26d
 
 
 
 
 
 
 
05e9cff
79cd26d
 
 
05e9cff
79cd26d
 
05e9cff
79cd26d
 
 
05e9cff
79cd26d
 
 
05e9cff
79cd26d
 
 
83e4be4
79cd26d
 
 
77af281
79cd26d
 
 
05e9cff
79cd26d
 
05e9cff
79cd26d
 
 
 
05e9cff
79cd26d
 
68d5b48
 
1f0eeb1
 
79cd26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68d5b48
79cd26d
 
 
 
68d5b48
 
79cd26d
68d5b48
 
a2718c9
68d5b48
 
79cd26d
 
 
8b884e6
79cd26d
c0cb430
6d21ad0
8b884e6
bf81dde
 
 
79cd26d
bf81dde
 
 
 
 
 
a2718c9
68d5b48
8e0a53d
 
 
5f80dfa
79cd26d
a2718c9
79cd26d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import zipfile
import gdown
import pathlib
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import matplotlib.pyplot as plt
import gradio as gr
import numpy as np

# Define the Google Drive shareable link
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'

# Extract the file ID from the URL
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
direct_download_url = f'https://drive.google.com/uc?id={file_id}'

# Define the local filename to save the ZIP file
local_zip_file = 'file.zip'

# Download the ZIP file
gdown.download(direct_download_url, local_zip_file, quiet=False)

# Directory to extract files
extracted_path = 'extracted_files'

# Verify if the downloaded file is a ZIP file and extract it
try:
    with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
        zip_ref.extractall(extracted_path)
    print("Extraction successful!")
except zipfile.BadZipFile:
    print("Error: The downloaded file is not a valid ZIP file.")

# Optionally, you can delete the ZIP file after extraction
os.remove(local_zip_file)

# Convert the extracted directory path to a pathlib.Path object
data_dir = pathlib.Path('extracted_files/Pest_Dataset')

# Verify the directory structure
for root, dirs, files in os.walk(extracted_path):
    level = root.replace(extracted_path, '').count(os.sep)
    indent = ' ' * 4 * (level)
    print(f"{indent}{os.path.basename(root)}/")
    subindent = ' ' * 4 * (level + 1)
    for f in files:
        print(f"{subindent}{f}")

# Set image dimensions and batch size
img_height, img_width = 180, 180
batch_size = 32

# Create training and validation datasets
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size
)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size
)

class_names = train_ds.class_names
print(class_names)

# Display some sample images
plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
    for i in range(9):
        ax = plt.subplot(3, 3, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")

# Enhanced data augmentation
data_augmentation = keras.Sequential(
    [
        layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
        layers.RandomRotation(0.2),
        layers.RandomZoom(0.2),
        layers.RandomContrast(0.2),
        layers.RandomBrightness(0.2),
    ]
)

# Display augmented images
plt.figure(figsize=(10, 10))
for images, _ in train_ds.take(1):
    for i in range(9):
        augmented_images = data_augmentation(images)
        ax = plt.subplot(3, 3, i + 1)
        plt.imshow(augmented_images[0].numpy().astype("uint8"))
        plt.axis("off")

# Define a deeper CNN model with more regularization techniques
num_classes = len(class_names)
model = Sequential()

model.add(data_augmentation)
model.add(layers.Rescaling(1./255))

model.add(layers.Conv2D(32, 3, padding='same', activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D())

model.add(layers.Conv2D(64, 3, padding='same', activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D())

model.add(layers.Conv2D(128, 3, padding='same', activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D())

model.add(layers.Conv2D(256, 3, padding='same', activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D())

model.add(layers.Conv2D(512, 3, padding='same', activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D())

model.add(layers.Dropout(0.5))
model.add(layers.Flatten())

model.add(layers.Dense(256, activation='relu'))
model.add(layers.Dropout(0.5))

model.add(layers.Dense(num_classes, activation='softmax', name="outputs"))

model.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-4),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['accuracy'])

model.summary()

# Implement early stopping
from tensorflow.keras.callbacks import EarlyStopping

early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)

# Learning rate scheduler
def scheduler(epoch, lr):
    if epoch < 10:
        return lr
    else:
        return lr * tf.math.exp(-0.1)

lr_scheduler = keras.callbacks.LearningRateScheduler(scheduler)

# Train the model
epochs = 30
history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs,
    callbacks=[early_stopping, lr_scheduler]
)

# Define the prediction function
def predict_image(img):
    img = np.array(img)
    img_resized = tf.image.resize(img, (180, 180))
    img_4d = tf.expand_dims(img_resized, axis=0)
    prediction = model.predict(img_4d)[0]
    predicted_class = np.argmax(prediction)
    predicted_label = class_names[predicted_class]
    return {predicted_label: f"{float(prediction[predicted_class]):.2f}"}

# Set up Gradio interface
image = gr.Image()
label = gr.Label(num_top_classes=1)

# Define custom CSS for background image
custom_css = """
body {
    background-image: url('extracted_files/Pest_Dataset/bees/bees (444).jpg');
    background-size: cover;
    background-repeat: no-repeat;
    background-attachment: fixed;
    color: white;
}
"""

gr.Interface(
    fn=predict_image,
    inputs=image,
    outputs=label,
    title="Welcome to Agricultural Pest Image Classification",
    description="The image data set used was obtained from Kaggle and has a collection of 12 different types of agricultural pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
    css=custom_css
).launch(debug=True)