File size: 3,664 Bytes
05e9cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b5b7e
83e4be4
05e9cff
 
 
 
 
 
 
83e4be4
8b884e6
05e9cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83e4be4
 
05e9cff
 
 
 
 
 
 
 
83e4be4
77af281
05e9cff
 
 
 
 
 
 
 
 
 
 
e5b5b7e
05e9cff
 
 
 
 
 
 
 
 
 
 
 
e5b5b7e
 
a2718c9
05e9cff
68d5b48
 
1f0eeb1
 
77af281
68d5b48
05e9cff
 
 
68d5b48
 
05e9cff
 
 
8e0a53d
68d5b48
 
a2718c9
68d5b48
 
05e9cff
 
8b884e6
c0cb430
05e9cff
8b884e6
bf81dde
 
 
05e9cff
bf81dde
 
 
 
 
 
a2718c9
68d5b48
8e0a53d
 
 
5f80dfa
 
a2718c9
05e9cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
batch_size = 32
img_height = 180
img_width = 180

train_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="training",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)

val_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="validation",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)

class_names = train_ds.class_names
print(class_names)

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
  for i in range(9):
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(images[i].numpy().astype("uint8"))
    plt.title(class_names[labels[i]])
    plt.axis("off")


for image_batch, labels_batch in train_ds:
  print(image_batch.shape)
  print(labels_batch.shape)
  break


AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

normalization_layer = layers.Rescaling(1./255)

normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(normalized_ds))
first_image = image_batch[0]
# Notice the pixel values are now in `[0,1]`.
print(np.min(first_image), np.max(first_image))

data_augmentation = keras.Sequential(
  [
    layers.RandomFlip("horizontal",
                      input_shape=(img_height,
                                  img_width,
                                  3)),
    layers.RandomRotation(0.1),
    layers.RandomZoom(0.1),
  ]
)


plt.figure(figsize=(10, 10))
for images, _ in train_ds.take(1):
  for i in range(9):
    augmented_images = data_augmentation(images)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_images[0].numpy().astype("uint8"))
    plt.axis("off")

num_classes = len(class_names)

model = Sequential([
  data_augmentation,
  layers.Rescaling(1./255),
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Dropout(0.2),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(num_classes, name="outputs")
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.summary()

epochs = 15
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

import gradio as gr
import numpy as np
import tensorflow as tf

def predict_image(img):
    img = np.array(img)
    img_resized = tf.image.resize(img, (180, 180))
    img_4d = tf.expand_dims(img_resized, axis=0)
    prediction = model.predict(img_4d)[0]
    return {class_names[i]: float(prediction[i]) for i in range(len(class_names))}


image = gr.Image()
label = gr.Label(num_top_classes=12)

# Define custom CSS for background image
custom_css = """
body {
    background-image: url('\extracted_files\Pest_Dataset\bees\bees (444).jpg');
    background-size: cover;
    background-repeat: no-repeat;
    background-attachment: fixed;
    color: white;
}
"""

gr.Interface(
    fn=predict_image,
    inputs=image,
    outputs=label,
    title="Welcome to Agricultural Pest Image Classification",
    description="The image data set used was obtaied from Kaggle and has a collection of 12 different types of agricultral pests: Ants, Bees, Beetles, Caterpillars, Earthworms, Earwigs, Grasshoppers, Moths, Slugs, Snails, Wasps, and Weevils",
    css=custom_css
).launch(debug=True)