Spaces:
Runtime error
Runtime error
NORLIE JHON MALAGDAO
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,36 @@
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import gdown
|
4 |
-
import pathlib
|
5 |
import tensorflow as tf
|
6 |
from tensorflow import keras
|
7 |
from tensorflow.keras import layers
|
8 |
from tensorflow.keras.models import Sequential
|
9 |
-
|
10 |
-
import
|
11 |
-
import
|
|
|
12 |
|
13 |
-
#
|
14 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
15 |
-
|
16 |
-
# Extract the file ID from the URL
|
17 |
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
|
18 |
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
|
19 |
-
|
20 |
-
# Define the local filename to save the ZIP file
|
21 |
local_zip_file = 'file.zip'
|
22 |
-
|
23 |
-
# Download the ZIP file
|
24 |
gdown.download(direct_download_url, local_zip_file, quiet=False)
|
25 |
-
|
26 |
-
# Directory to extract files
|
27 |
extracted_path = 'extracted_files'
|
28 |
-
|
29 |
-
# Verify if the downloaded file is a ZIP file and extract it
|
30 |
try:
|
31 |
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
|
32 |
zip_ref.extractall(extracted_path)
|
33 |
print("Extraction successful!")
|
34 |
except zipfile.BadZipFile:
|
35 |
print("Error: The downloaded file is not a valid ZIP file.")
|
36 |
-
|
37 |
-
# Optionally, you can delete the ZIP file after extraction
|
38 |
os.remove(local_zip_file)
|
|
|
39 |
|
40 |
-
#
|
41 |
-
data_dir = pathlib.Path('extracted_files/Pest_Dataset')
|
42 |
-
|
43 |
-
# Verify the directory structure
|
44 |
-
for root, dirs, files in os.walk(extracted_path):
|
45 |
-
level = root.replace(extracted_path, '').count(os.sep)
|
46 |
-
indent = ' ' * 4 * (level)
|
47 |
-
print(f"{indent}{os.path.basename(root)}/")
|
48 |
-
subindent = ' ' * 4 * (level + 1)
|
49 |
-
for f in files:
|
50 |
-
print(f"{subindent}{f}")
|
51 |
-
|
52 |
-
# Set image dimensions and batch size
|
53 |
img_height, img_width = 180, 180
|
54 |
batch_size = 32
|
55 |
-
|
56 |
-
# Create training and validation datasets
|
57 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
58 |
data_dir,
|
59 |
validation_split=0.2,
|
@@ -62,7 +39,6 @@ train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
|
62 |
image_size=(img_height, img_width),
|
63 |
batch_size=batch_size
|
64 |
)
|
65 |
-
|
66 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
67 |
data_dir,
|
68 |
validation_split=0.2,
|
@@ -71,92 +47,55 @@ val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
|
71 |
image_size=(img_height, img_width),
|
72 |
batch_size=batch_size
|
73 |
)
|
74 |
-
|
75 |
class_names = train_ds.class_names
|
76 |
-
print(class_names)
|
77 |
-
|
78 |
-
# Display some sample images
|
79 |
-
plt.figure(figsize=(10, 10))
|
80 |
-
for images, labels in train_ds.take(1):
|
81 |
-
for i in range(9):
|
82 |
-
ax = plt.subplot(3, 3, i + 1)
|
83 |
-
plt.imshow(images[i].numpy().astype("uint8"))
|
84 |
-
plt.title(class_names[labels[i]])
|
85 |
-
plt.axis("off")
|
86 |
|
87 |
-
#
|
88 |
data_augmentation = keras.Sequential(
|
89 |
[
|
90 |
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
91 |
-
layers.RandomRotation(0.
|
92 |
-
layers.RandomZoom(0.
|
93 |
-
layers.RandomContrast(0.2),
|
94 |
layers.RandomBrightness(0.2),
|
|
|
95 |
]
|
96 |
)
|
97 |
|
98 |
-
#
|
99 |
-
plt.figure(figsize=(10, 10))
|
100 |
-
for images, _ in train_ds.take(1):
|
101 |
-
for i in range(9):
|
102 |
-
augmented_images = data_augmentation(images)
|
103 |
-
ax = plt.subplot(3, 3, i + 1)
|
104 |
-
plt.imshow(augmented_images[0].numpy().astype("uint8"))
|
105 |
-
plt.axis("off")
|
106 |
-
|
107 |
-
# Define a deeper CNN model with more regularization techniques
|
108 |
num_classes = len(class_names)
|
109 |
-
model = Sequential(
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
model.
|
131 |
-
model.add(layers.BatchNormalization())
|
132 |
-
model.add(layers.MaxPooling2D())
|
133 |
-
|
134 |
-
model.add(layers.Dropout(0.5))
|
135 |
-
model.add(layers.Flatten())
|
136 |
-
|
137 |
-
model.add(layers.Dense(256, activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)))
|
138 |
-
model.add(layers.Dropout(0.5))
|
139 |
-
|
140 |
-
model.add(layers.Dense(num_classes, activation='softmax', name="outputs"))
|
141 |
-
|
142 |
-
model.compile(optimizer=keras.optimizers.Adam(learning_rate=1e-4),
|
143 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
144 |
metrics=['accuracy'])
|
145 |
|
146 |
model.summary()
|
147 |
|
148 |
-
# Implement early stopping
|
149 |
-
from tensorflow.keras.callbacks import EarlyStopping
|
150 |
-
|
151 |
-
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
152 |
-
|
153 |
# Train the model
|
154 |
-
epochs =
|
155 |
history = model.fit(
|
156 |
train_ds,
|
157 |
validation_data=val_ds,
|
158 |
epochs=epochs,
|
159 |
-
callbacks=[early_stopping]
|
160 |
)
|
161 |
|
162 |
# Define category descriptions
|
@@ -175,37 +114,32 @@ category_descriptions = {
|
|
175 |
"Weevils": "Weevils are a type of beetle with a long snout, known for being pests to crops and stored grains."
|
176 |
}
|
177 |
|
178 |
-
#
|
179 |
def predict_image(img):
|
180 |
img = np.array(img)
|
181 |
img_resized = tf.image.resize(img, (180, 180))
|
182 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
183 |
prediction = model.predict(img_4d)[0]
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
190 |
image = gr.Image()
|
191 |
-
label = gr.Label(num_top_classes=
|
192 |
-
|
193 |
-
# Define custom CSS for background image
|
194 |
custom_css = """
|
195 |
-
body {
|
196 |
-
|
197 |
-
background-size: cover;
|
198 |
-
background-repeat: no-repeat;
|
199 |
-
background-attachment: fixed;
|
200 |
-
color: white;
|
201 |
-
}
|
202 |
"""
|
203 |
|
204 |
gr.Interface(
|
205 |
fn=predict_image,
|
206 |
inputs=image,
|
207 |
outputs=label,
|
208 |
-
title="
|
209 |
-
description="
|
210 |
css=custom_css
|
211 |
).launch(debug=True)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
import os
|
5 |
+
import PIL
|
|
|
|
|
6 |
import tensorflow as tf
|
7 |
from tensorflow import keras
|
8 |
from tensorflow.keras import layers
|
9 |
from tensorflow.keras.models import Sequential
|
10 |
+
from PIL import Image
|
11 |
+
import gdown
|
12 |
+
import zipfile
|
13 |
+
import pathlib
|
14 |
|
15 |
+
# Download and extract dataset
|
16 |
gdrive_url = 'https://drive.google.com/file/d/1HjHYlQyRz5oWt8kehkt1TiOGRRlKFsv8/view?usp=drive_link'
|
|
|
|
|
17 |
file_id = gdrive_url.split('/d/')[1].split('/view')[0]
|
18 |
direct_download_url = f'https://drive.google.com/uc?id={file_id}'
|
|
|
|
|
19 |
local_zip_file = 'file.zip'
|
|
|
|
|
20 |
gdown.download(direct_download_url, local_zip_file, quiet=False)
|
|
|
|
|
21 |
extracted_path = 'extracted_files'
|
|
|
|
|
22 |
try:
|
23 |
with zipfile.ZipFile(local_zip_file, 'r') as zip_ref:
|
24 |
zip_ref.extractall(extracted_path)
|
25 |
print("Extraction successful!")
|
26 |
except zipfile.BadZipFile:
|
27 |
print("Error: The downloaded file is not a valid ZIP file.")
|
|
|
|
|
28 |
os.remove(local_zip_file)
|
29 |
+
data_dir = pathlib.Path(extracted_path) / 'Pest_Dataset'
|
30 |
|
31 |
+
# Data loading and preprocessing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
img_height, img_width = 180, 180
|
33 |
batch_size = 32
|
|
|
|
|
34 |
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
35 |
data_dir,
|
36 |
validation_split=0.2,
|
|
|
39 |
image_size=(img_height, img_width),
|
40 |
batch_size=batch_size
|
41 |
)
|
|
|
42 |
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
|
43 |
data_dir,
|
44 |
validation_split=0.2,
|
|
|
47 |
image_size=(img_height, img_width),
|
48 |
batch_size=batch_size
|
49 |
)
|
|
|
50 |
class_names = train_ds.class_names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Data augmentation
|
53 |
data_augmentation = keras.Sequential(
|
54 |
[
|
55 |
layers.RandomFlip("horizontal", input_shape=(img_height, img_width, 3)),
|
56 |
+
layers.RandomRotation(0.1),
|
57 |
+
layers.RandomZoom(0.1),
|
|
|
58 |
layers.RandomBrightness(0.2),
|
59 |
+
layers.RandomContrast(0.2),
|
60 |
]
|
61 |
)
|
62 |
|
63 |
+
# Model definition
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
num_classes = len(class_names)
|
65 |
+
model = Sequential([
|
66 |
+
data_augmentation,
|
67 |
+
layers.Rescaling(1./255),
|
68 |
+
layers.Conv2D(16, 3, padding='same', activation='relu'),
|
69 |
+
layers.MaxPooling2D(),
|
70 |
+
layers.Conv2D(32, 3, padding='same', activation='relu'),
|
71 |
+
layers.MaxPooling2D(),
|
72 |
+
layers.Conv2D(64, 3, padding='same', activation='relu'),
|
73 |
+
layers.MaxPooling2D(),
|
74 |
+
layers.Conv2D(128, 3, padding='same', activation='relu'),
|
75 |
+
layers.MaxPooling2D(),
|
76 |
+
layers.Dropout(0.5),
|
77 |
+
layers.Flatten(),
|
78 |
+
layers.Dense(256, activation='relu'),
|
79 |
+
layers.Dense(num_classes, activation='softmax', name="outputs")
|
80 |
+
])
|
81 |
+
|
82 |
+
optimizer = keras.optimizers.Adam(learning_rate=0.001)
|
83 |
+
lr_scheduler = keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3)
|
84 |
+
early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
85 |
+
|
86 |
+
model.compile(optimizer=optimizer,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
|
88 |
metrics=['accuracy'])
|
89 |
|
90 |
model.summary()
|
91 |
|
|
|
|
|
|
|
|
|
|
|
92 |
# Train the model
|
93 |
+
epochs = 15
|
94 |
history = model.fit(
|
95 |
train_ds,
|
96 |
validation_data=val_ds,
|
97 |
epochs=epochs,
|
98 |
+
callbacks=[lr_scheduler, early_stopping]
|
99 |
)
|
100 |
|
101 |
# Define category descriptions
|
|
|
114 |
"Weevils": "Weevils are a type of beetle with a long snout, known for being pests to crops and stored grains."
|
115 |
}
|
116 |
|
117 |
+
# Prediction function
|
118 |
def predict_image(img):
|
119 |
img = np.array(img)
|
120 |
img_resized = tf.image.resize(img, (180, 180))
|
121 |
img_4d = tf.expand_dims(img_resized, axis=0)
|
122 |
prediction = model.predict(img_4d)[0]
|
123 |
+
top_3_indices = prediction.argsort()[-3:][::-1]
|
124 |
+
results = {}
|
125 |
+
for i in top_3_indices:
|
126 |
+
class_name = class_names[i]
|
127 |
+
results[class_name] = f"{float(prediction[i]):.2f} - {category_descriptions[class_name]}"
|
128 |
+
return results
|
129 |
+
|
130 |
+
# Gradio interface setup
|
131 |
image = gr.Image()
|
132 |
+
label = gr.Label(num_top_classes=3)
|
|
|
|
|
133 |
custom_css = """
|
134 |
+
body {background-color: #f5f5f5;}
|
135 |
+
.gradio-container {border: 1px solid #ccc; border-radius: 10px; padding: 20px;}
|
|
|
|
|
|
|
|
|
|
|
136 |
"""
|
137 |
|
138 |
gr.Interface(
|
139 |
fn=predict_image,
|
140 |
inputs=image,
|
141 |
outputs=label,
|
142 |
+
title="Agricultural Pest Image Classification",
|
143 |
+
description="Identify 12 types of agricultural pests from images. This model was trained on a dataset from Kaggle.",
|
144 |
css=custom_css
|
145 |
).launch(debug=True)
|