modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 06:27:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 06:27:45
card
stringlengths
11
1.01M
hypefi/my_awesome_swag_model
hypefi
2023-02-08T13:49:15Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:swag", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2023-02-08T11:19:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - swag metrics: - accuracy model-index: - name: my_awesome_swag_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_swag_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the swag dataset. It achieves the following results on the evaluation set: - Loss: 1.0107 - Accuracy: 0.7899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7454 | 1.0 | 4597 | 0.6122 | 0.7662 | | 0.3786 | 2.0 | 9194 | 0.6400 | 0.7833 | | 0.1338 | 3.0 | 13791 | 1.0107 | 0.7899 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
fathyshalab/massive_social-roberta-large-v1-1
fathyshalab
2023-02-08T13:20:27Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T12:52:52Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_social-roberta-large-v1-1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_social-roberta-large-v1-1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
hectorjelly/Kats_Komets
hectorjelly
2023-02-08T13:05:05Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-08T13:04:57Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: hectorjelly/Kats_Komets 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
jannikskytt/a2c-AntBulletEnv-v0
jannikskytt
2023-02-08T12:57:47Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T11:04:59Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1216.00 +/- 351.77 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
pneubauer/basic-poca-SoccerTwos
pneubauer
2023-02-08T12:51:14Z
5
0
ml-agents
[ "ml-agents", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-08T12:50:39Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: pneubauer/basic-poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
plai-edp-test/distilbert_base_uncased
plai-edp-test
2023-02-08T12:49:24Z
3
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-08T12:46:58Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # DistilBERT base model (uncased) This model is a distilled version of the [BERT base model](https://huggingface.co/bert-base-uncased). It was introduced in [this paper](https://arxiv.org/abs/1910.01108). The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation). This model is uncased: it does not make a difference between english and English. ## Model description DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts using the BERT base model. More precisely, it was pretrained with three objectives: - Distillation loss: the model was trained to return the same probabilities as the BERT base model. - Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Cosine embedding loss: the model was also trained to generate hidden states as close as possible as the BERT base model. This way, the model learns the same inner representation of the English language than its teacher model, while being faster for inference or downstream tasks. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=distilbert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.05292855575680733, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.03968575969338417, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a business model. [SEP]", 'score': 0.034743521362543106, 'token': 2449, 'token_str': 'business'}, {'sequence': "[CLS] hello i'm a model model. [SEP]", 'score': 0.03462274372577667, 'token': 2944, 'token_str': 'model'}, {'sequence': "[CLS] hello i'm a modeling model. [SEP]", 'score': 0.018145186826586723, 'token': 11643, 'token_str': 'modeling'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import DistilBertTokenizer, DistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = DistilBertModel.from_pretrained("distilbert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import DistilBertTokenizer, TFDistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = TFDistilBertModel.from_pretrained("distilbert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. It also inherits some of [the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias). ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased') >>> unmasker("The White man worked as a [MASK].") [{'sequence': '[CLS] the white man worked as a blacksmith. [SEP]', 'score': 0.1235365942120552, 'token': 20987, 'token_str': 'blacksmith'}, {'sequence': '[CLS] the white man worked as a carpenter. [SEP]', 'score': 0.10142576694488525, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the white man worked as a farmer. [SEP]', 'score': 0.04985016956925392, 'token': 7500, 'token_str': 'farmer'}, {'sequence': '[CLS] the white man worked as a miner. [SEP]', 'score': 0.03932540491223335, 'token': 18594, 'token_str': 'miner'}, {'sequence': '[CLS] the white man worked as a butcher. [SEP]', 'score': 0.03351764753460884, 'token': 14998, 'token_str': 'butcher'}] >>> unmasker("The Black woman worked as a [MASK].") [{'sequence': '[CLS] the black woman worked as a waitress. [SEP]', 'score': 0.13283951580524445, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the black woman worked as a nurse. [SEP]', 'score': 0.12586183845996857, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the black woman worked as a maid. [SEP]', 'score': 0.11708822101354599, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the black woman worked as a prostitute. [SEP]', 'score': 0.11499975621700287, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the black woman worked as a housekeeper. [SEP]', 'score': 0.04722772538661957, 'token': 22583, 'token_str': 'housekeeper'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data DistilBERT pretrained on the same data as BERT, which is [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 8 16 GB V100 for 90 hours. See the [training code](https://github.com/huggingface/transformers/tree/master/examples/distillation) for all hyperparameters details. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:| | | 82.2 | 88.5 | 89.2 | 91.3 | 51.3 | 85.8 | 87.5 | 59.9 | ### BibTeX entry and citation info ```bibtex @article{Sanh2019DistilBERTAD, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, journal={ArXiv}, year={2019}, volume={abs/1910.01108} } ``` <a href="https://huggingface.co/exbert/?model=distilbert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
vvn0/ppo-PyramidsRND
vvn0
2023-02-08T12:39:46Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-08T10:21:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: vvn0/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
logoyazilim/crnn_vgg16_bn_20230208-152217
logoyazilim
2023-02-08T12:32:45Z
1
0
transformers
[ "transformers", "pytorch", "en", "endpoints_compatible", "region:us" ]
null
2023-02-08T12:32:39Z
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` ### Run Configuration { "arch": "crnn_vgg16_bn", "train_path": "doctr-train-10k", "val_path": null, "train_samples": 1000, "val_samples": 20, "font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", "min_chars": 1, "max_chars": 12, "name": null, "epochs": 10, "batch_size": 32, "device": 0, "input_size": 32, "lr": 0.001, "weight_decay": 0, "workers": 4, "resume": null, "vocab": "turkish", "test_only": false, "show_samples": false, "wb": false, "push_to_hub": true, "pretrained": true, "sched": "cosine", "amp": false, "find_lr": false }
DaniilSirota/Reinforce_pixelcopter
DaniilSirota
2023-02-08T12:15:17Z
0
1
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-06T14:11:17Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 21.80 +/- 16.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
javiervela/a2c-AntBulletEnv-v0
javiervela
2023-02-08T12:03:51Z
3
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T12:02:30Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1135.60 +/- 218.06 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tatakof/distillbert-base-spanish-uncased-finetuned-imdb
tatakof
2023-02-08T12:03:00Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-08T11:52:38Z
--- tags: - generated_from_trainer datasets: - imdb model-index: - name: distillbert-base-spanish-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distillbert-base-spanish-uncased-finetuned-imdb This model is a fine-tuned version of [CenIA/distillbert-base-spanish-uncased](https://huggingface.co/CenIA/distillbert-base-spanish-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.5406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1075 | 1.0 | 157 | 2.6769 | | 2.7807 | 2.0 | 314 | 2.5764 | | 2.7003 | 3.0 | 471 | 2.5571 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Liyannnn/bert-finetuned-squad
Liyannnn
2023-02-08T11:57:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T05:13:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
LouisDT/videomae-base-finetuned
LouisDT
2023-02-08T11:28:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-02-08T10:48:28Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5590 - Accuracy: 0.8641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 135 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 0.21 | 28 | 0.6078 | 0.8098 | | 0.7383 | 1.21 | 56 | 0.6975 | 0.4728 | | 0.6853 | 2.21 | 84 | 0.6637 | 0.6957 | | 0.7065 | 3.21 | 112 | 0.5590 | 0.8641 | | 0.6673 | 4.17 | 135 | 0.5766 | 0.8587 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
sunwooooong/xlm-roberta-base-finetuned-panx-de-fr
sunwooooong
2023-02-08T11:22:22Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-08T11:07:51Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1656 - F1: 0.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2905 | 1.0 | 715 | 0.1783 | 0.8310 | | 0.1461 | 2.0 | 1430 | 0.1600 | 0.8455 | | 0.0948 | 3.0 | 2145 | 0.1656 | 0.8589 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
kongacute/ppo-Huggy
kongacute
2023-02-08T11:21:24Z
44
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-08T11:21:17Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: kongacute/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
BauyrjanQ/wav2vec2-xlsr-kk-6h-24epoch-2
BauyrjanQ
2023-02-08T11:19:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-07T11:56:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xlsr-kk-6h-24epoch-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-kk-6h-24epoch-2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000222 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 24 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.11.0+cu113 - Datasets 2.8.0 - Tokenizers 0.13.2
abdalrahmanshahrour/auto-arabic-summarization
abdalrahmanshahrour
2023-02-08T11:10:23Z
102
8
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "summarization", "AraBERT", "BERT", "BERT2BERT", "MSA", "Arabic Text Summarization", "Arabic News Title Generation", "Arabic Paraphrasing", "Summarization", "generated_from_trainer", "Transformers", "PyTorch", "ar", "dataset:abdalrahmanshahrour/autotrain-data-auto-arabic-summarization", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-12-22T19:22:57Z
--- tags: - summarization - AraBERT - BERT - BERT2BERT - MSA - Arabic Text Summarization - Arabic News Title Generation - Arabic Paraphrasing - Summarization - generated_from_trainer - Transformers - PyTorch language: - ar widget: - text: " ุดู‡ุฏุช ู…ุฏูŠู†ุฉ ุทุฑุงุจู„ุณุŒ ู…ุณุงุก ุฃู…ุณ ุงู„ุฃุฑุจุนุงุกุŒ ุงุญุชุฌุงุฌุงุช ุดุนุจูŠุฉ ูˆุฃุนู…ุงู„ ุดุบุจ ู„ู„ูŠูˆู… ุงู„ุซุงู„ุซ ุนู„ู‰ ุงู„ุชูˆุงู„ูŠุŒ ูˆุฐู„ูƒ ุจุณุจุจ ุชุฑุฏูŠ ุงู„ูˆุถุน ุงู„ู…ุนูŠุดูŠ ูˆุงู„ุงู‚ุชุตุงุฏูŠ. ูˆุงู†ุฏู„ุนุช ู…ูˆุงุฌู‡ุงุช ุนู†ูŠูุฉ ูˆุนู…ู„ูŠุงุช ูƒุฑ ูˆูุฑ ู…ุง ุจูŠู† ุงู„ุฌูŠุด ุงู„ู„ุจู†ุงู†ูŠ ูˆุงู„ู…ุญุชุฌูŠู† ุงุณุชู…ุฑุช ู„ุณุงุนุงุชุŒ ุฅุซุฑ ู…ุญุงูˆู„ุฉ ูุชุญ ุงู„ุทุฑู‚ุงุช ุงู„ู…ู‚ุทูˆุนุฉุŒ ู…ุง ุฃุฏู‰ ุฅู„ู‰ ุฅุตุงุจุฉ ุงู„ุนุดุฑุงุช ู…ู† ุงู„ุทุฑููŠู†." datasets: - abdalrahmanshahrour/autotrain-data-auto-arabic-summarization co2_eq_emissions: emissions: 23.934855677704917 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 2581378622 - CO2 Emissions (in grams): 23.9349 ## Validation Metrics - Loss: 0.829 - Rouge1: 1.132 - Rouge2: 0.127 - RougeL: 1.137 - RougeLsum: 1.129 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
MarcusLee/bert-finetuned-squad
MarcusLee
2023-02-08T11:05:14Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T08:55:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.0+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
microsoft/git-large-r-coco
microsoft
2023-02-08T10:50:12Z
247
10
transformers
[ "transformers", "pytorch", "git", "image-text-to-text", "vision", "image-captioning", "image-to-text", "en", "arxiv:2205.14100", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2023-01-22T19:04:40Z
--- language: en license: mit tags: - vision - image-captioning model_name: microsoft/git-large-coco pipeline_tag: image-to-text --- # GIT (GenerativeImage2Text), large-sized, fine-tuned on COCO, R* R = re-trained by removing some offensive captions in cc12m dataset GIT (short for GenerativeImage2Text) model, large-sized version, fine-tuned on COCO. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text). Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs. The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens. The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token. ![GIT architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg) This allows the model to be used for tasks like: - image and video captioning - visual question answering (VQA) on images and videos - even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text). ## Intended uses & limitations You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/model_doc/git#transformers.GitForCausalLM.forward.example). ## Training data From the paper: > We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions (CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016), Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B data following a similar collection procedure in Hu et al. (2021a). => however this is for the model referred to as "GIT" in the paper, which is not open-sourced. This checkpoint is "GIT-large", which is a smaller variant of GIT trained on 20 million image-text pairs. Next, the model was fine-tuned on COCO. See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details. ### Preprocessing We refer to the original repo regarding details for preprocessing during training. During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100).
microsoft/git-large-textcaps
microsoft
2023-02-08T10:49:30Z
1,491
29
transformers
[ "transformers", "pytorch", "git", "image-text-to-text", "vision", "image-captioning", "image-to-text", "en", "arxiv:2205.14100", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2023-01-02T10:53:45Z
--- language: en license: mit tags: - vision - image-captioning model_name: microsoft/git-large-textcaps pipeline_tag: image-to-text --- # GIT (GenerativeImage2Text), large-sized, fine-tuned on TextCaps GIT (short for GenerativeImage2Text) model, large-sized version, fine-tuned on TextCaps. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text). Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs. The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens. The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token. ![GIT architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg) This allows the model to be used for tasks like: - image and video captioning - visual question answering (VQA) on images and videos - even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text). ## Intended uses & limitations You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/git.html). ## Training data From the paper: > We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions (CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016), Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B data following a similar collection procedure in Hu et al. (2021a). => however this is for the model referred to as "GIT" in the paper, which is not open-sourced. This checkpoint is "GIT-large", which is a smaller variant of GIT trained on 20 million image-text pairs. Next, the model was fine-tuned on TextCaps. See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details. ### Preprocessing We refer to the original repo regarding details for preprocessing during training. During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100).
microsoft/git-base-coco
microsoft
2023-02-08T10:48:43Z
66,443
20
transformers
[ "transformers", "pytorch", "git", "image-text-to-text", "vision", "image-captioning", "image-to-text", "en", "arxiv:2205.14100", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2022-12-06T09:27:24Z
--- language: en license: mit tags: - vision - image-captioning model_name: microsoft/git-base-coco pipeline_tag: image-to-text --- # GIT (GenerativeImage2Text), base-sized, fine-tuned on COCO GIT (short for GenerativeImage2Text) model, base-sized version, fine-tuned on COCO. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text). Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs. The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens. The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token. ![GIT architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg) This allows the model to be used for tasks like: - image and video captioning - visual question answering (VQA) on images and videos - even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text). ## Intended uses & limitations You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/model_doc/git#transformers.GitForCausalLM.forward.example). ## Training data From the paper: > We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions (CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016), Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B data following a similar collection procedure in Hu et al. (2021a). => however this is for the model referred to as "GIT" in the paper, which is not open-sourced. This checkpoint is "GIT-base", which is a smaller variant of GIT trained on 10 million image-text pairs. Next, the model was fine-tuned on COCO. See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details. ### Preprocessing We refer to the original repo regarding details for preprocessing during training. During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100).
alibidaran/codeparrot-ds-1
alibidaran
2023-02-08T10:41:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-07T11:39:55Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.991 | 0.33 | 1000 | 2.5183 | | 2.2592 | 0.65 | 2000 | 2.0328 | | 1.9112 | 0.98 | 3000 | 1.8410 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
tomasabril/unit1
tomasabril
2023-02-08T10:34:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T10:34:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.02 +/- 18.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
xavisgg/dqn-SpaceInvadersNoFrameskip-v4
xavisgg
2023-02-08T10:22:38Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T10:21:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 529.50 +/- 153.27 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga xavisgg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga xavisgg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga xavisgg ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Arron/bert-finetuned-ner
Arron
2023-02-08T10:16:59Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-08T09:33:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9319458209448299 - name: Recall type: recall value: 0.9495119488387749 - name: F1 type: f1 value: 0.9406468822940981 - name: Accuracy type: accuracy value: 0.9860481544710661 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0607 - Precision: 0.9319 - Recall: 0.9495 - F1: 0.9406 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0845 | 1.0 | 1756 | 0.0626 | 0.9146 | 0.9337 | 0.9241 | 0.9827 | | 0.0414 | 2.0 | 3512 | 0.0561 | 0.9321 | 0.9492 | 0.9405 | 0.9861 | | 0.0198 | 3.0 | 5268 | 0.0607 | 0.9319 | 0.9495 | 0.9406 | 0.9860 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
shashankgarewal/q-FrozenLake-v1-4x4-noSlippery
shashankgarewal
2023-02-08T10:16:43Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T10:16:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="shashankgarewal/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Mykolyt/q-Taxi-v3
Mykolyt
2023-02-08T09:43:50Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T09:43:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Mykolyt/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
LukeSajkowski/a2c-PandaReachDense-v2
LukeSajkowski
2023-02-08T09:42:45Z
7
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T18:07:06Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.81 +/- 0.23 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Mykolyt/q-FrozenLake-v1-4x4-noSlippery
Mykolyt
2023-02-08T09:40:19Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-28T11:31:01Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Mykolyt/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
spatial/Reinforce-CartPole8
spatial
2023-02-08T09:32:09Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T09:31:58Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ottovoncwim/Reinforce-CartPolev1
ottovoncwim
2023-02-08T09:17:33Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T09:11:19Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPolev1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
jannikskytt/Pyramids
jannikskytt
2023-02-08T09:12:02Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-08T09:11:57Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: jannikskytt/Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
vaibhav9/mini5-a
vaibhav9
2023-02-08T09:03:16Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-02-07T18:16:11Z
--- tags: - generated_from_trainer model-index: - name: mini5-a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini5-a This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 52 | 1.5947 | | No log | 2.0 | 104 | 1.5901 | | No log | 3.0 | 156 | 1.5849 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Ailyth/3_Labels
Ailyth
2023-02-08T08:57:43Z
37
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "autotrain", "vision", "dataset:Ailyth/autotrain-data-3lables", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-08T08:55:15Z
--- tags: - autotrain - vision - image-classification datasets: - Ailyth/autotrain-data-3lables widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 2.650072914067399 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3341092265 - CO2 Emissions (in grams): 2.6501 ## Validation Metrics - Loss: 0.133 - Accuracy: 0.950 - Macro F1: 0.951 - Micro F1: 0.950 - Weighted F1: 0.950 - Macro Precision: 0.951 - Micro Precision: 0.950 - Weighted Precision: 0.950 - Macro Recall: 0.951 - Micro Recall: 0.950 - Weighted Recall: 0.950
RyanM-R/bert-finetuned-squad
RyanM-R
2023-02-08T08:57:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T06:34:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
leoleung93/Reinforce-1
leoleung93
2023-02-08T08:57:01Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T08:56:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jidbo/BME-NaturalQuestions
jidbo
2023-02-08T08:41:33Z
6
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T08:33:53Z
--- license: mit tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pfunk/Pong-v4-DQPN_p30_e0.50-seed1
pfunk
2023-02-08T08:34:04Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T08:33:44Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 0.80 +/- 6.79 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p30_e0.50.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p30_e0.50]" python -m cleanrl_utils.enjoy --exp-name DQPN_p30_e0.50 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.50-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.50-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.50-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p30_e0.50 --start-policy-f 30000 --end-policy-f 1000 --evaluation-fraction 0.50 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.5, 'exp_name': 'DQPN_p30_e0.50', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 30000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
iubeda/q-Taxi-v3
iubeda
2023-02-08T08:31:30Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T08:31:27Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="iubeda/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
facebook/xlm-v-base
facebook
2023-02-08T08:15:57Z
6,703
39
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:2301.10472", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-03T19:58:25Z
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh license: mit --- # XLM-V (Base-sized model) XLM-V is multilingual language model with a one million token vocabulary trained on 2.5TB of data from Common Crawl (same as XLM-R). It was introduced in the [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) paper by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer and Madian Khabsa. **Disclaimer**: The team releasing XLM-V did not write a model card for this model so this model card has been written by the Hugging Face team. [This repository](https://github.com/stefan-it/xlm-v-experiments) documents all necessary integeration steps. ## Model description From the abstract of the XLM-V paper: > Large multilingual language models typically rely on a single vocabulary shared across 100+ languages. > As these models have increased in parameter count and depth, vocabulary size has remained largely unchanged. > This vocabulary bottleneck limits the representational capabilities of multilingual models like XLM-R. > In this paper, we introduce a new approach for scaling to very large multilingual vocabularies by > de-emphasizing token sharing between languages with little lexical overlap and assigning vocabulary capacity > to achieve sufficient coverage for each individual language. Tokenizations using our vocabulary are typically > more semantically meaningful and shorter compared to XLM-R. Leveraging this improved vocabulary, we train XLM-V, > a multilingual language model with a one million token vocabulary. XLM-V outperforms XLM-R on every task we > tested on ranging from natural language inference (XNLI), question answering (MLQA, XQuAD, TyDiQA), and > named entity recognition (WikiAnn) to low-resource tasks (Americas NLI, MasakhaNER). ## Usage You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='facebook/xlm-v-base') >>> unmasker("Paris is the <mask> of France.") [{'score': 0.9286897778511047, 'token': 133852, 'token_str': 'capital', 'sequence': 'Paris is the capital of France.'}, {'score': 0.018073994666337967, 'token': 46562, 'token_str': 'Capital', 'sequence': 'Paris is the Capital of France.'}, {'score': 0.013238662853837013, 'token': 8696, 'token_str': 'centre', 'sequence': 'Paris is the centre of France.'}, {'score': 0.010450296103954315, 'token': 550136, 'token_str': 'heart', 'sequence': 'Paris is the heart of France.'}, {'score': 0.005028395913541317, 'token': 60041, 'token_str': 'center', 'sequence': 'Paris is the center of France.'}] ``` ## Bias, Risks, and Limitations Please refer to the model card of [XLM-R](https://huggingface.co/xlm-roberta-base), because XLM-V has a similar architecture and has been trained on similar training data. ### BibTeX entry and citation info ```bibtex @ARTICLE{2023arXiv230110472L, author = {{Liang}, Davis and {Gonen}, Hila and {Mao}, Yuning and {Hou}, Rui and {Goyal}, Naman and {Ghazvininejad}, Marjan and {Zettlemoyer}, Luke and {Khabsa}, Madian}, title = "{XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models}", journal = {arXiv e-prints}, keywords = {Computer Science - Computation and Language, Computer Science - Machine Learning}, year = 2023, month = jan, eid = {arXiv:2301.10472}, pages = {arXiv:2301.10472}, doi = {10.48550/arXiv.2301.10472}, archivePrefix = {arXiv}, eprint = {2301.10472}, primaryClass = {cs.CL}, adsurl = {https://ui.adsabs.harvard.edu/abs/2023arXiv230110472L}, adsnote = {Provided by the SAO/NASA Astrophysics Data System} } ```
nickwong64/bert-base-uncased-poems-sentiment
nickwong64
2023-02-08T08:14:08Z
119
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "sentiment-analysis", "poem-sentiment-detection", "poem-sentiment", "en", "dataset:poem_sentment", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-08T06:29:42Z
--- language: - en thumbnail: https://cdn.theatlantic.com/thumbor/lx3Vy9ojT2A0mHVooAUARLRpUEc=/0x215:3500x2184/976x549/media/img/mt/2018/03/RTR4F51Y/original.jpg tags: - text-classification - sentiment-analysis - poem-sentiment-detection - poem-sentiment license: apache-2.0 datasets: - poem_sentment metrics: - Accuracy, F1 score widget: - text: "No man is an island, Entire of itself, Every man is a piece of the continent, A part of the main." example_title: "No man is an island" - text: "Ten years, dead and living dim and draw apart. I donโ€™t try to remember, But forgetting is hard." example_title: "Dreaming of my departed wife" - text: "My mind to me a kingdom is; Such present joys therein I find,That it excels all other bliss." example_title: "My mind to me a kingdom is" --- ## nickwong64/bert-base-uncased-poems-sentiment Bert is a Transformer Bidirectional Encoder based Architecture trained on MLM(Mask Language Modeling) objective. [bert-base-uncased](https://huggingface.co/bert-base-uncased) finetuned on the [poem_sentiment](https://huggingface.co/datasets/poem_sentiment) dataset using HuggingFace Trainer with below training parameters. ``` learning rate 2e-5, batch size 8, num_train_epochs=8, ``` ## Model Performance | Epoch | Training Loss | Validation Loss | Accuracy | F1 | | --- | --- | --- | --- | --- | | 8 | 0.468200 | 0.458632 | 0.904762 | 0.899756 | ## How to Use the Model ```python from transformers import pipeline nlp = pipeline(task='text-classification', model='nickwong64/bert-base-uncased-poems-sentiment') p1 = "No man is an island, Entire of itself, Every man is a piece of the continent, A part of the main." p2 = "Ten years, dead and living dim and draw apart. I donโ€™t try to remember, But forgetting is hard." p3 = "My mind to me a kingdom is; Such present joys therein I find,That it excels all other bliss" print(nlp(p1)) print(nlp(p2)) print(nlp(p3)) """ output: [{'label': 'no_impact', 'score': 0.9982421398162842}] [{'label': 'negative', 'score': 0.9856176972389221}] [{'label': 'positive', 'score': 0.9931322932243347}] """ ``` ## Dataset [poem_sentiment](https://huggingface.co/datasets/poem_sentiment) ## Labels ``` {0: 'negative', 1: 'positive', 2: 'no_impact', 3: 'mixed'} ``` ## Evaluation ``` {'test_loss': 0.4359096586704254, 'test_accuracy': 0.9142857142857143, 'test_f1': 0.9120554830816401, 'test_runtime': 0.5689, 'test_samples_per_second': 184.582, 'test_steps_per_second': 24.611} ```
hello2mao/sd-class-butterflies-32
hello2mao
2023-02-08T07:39:59Z
1
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-02-08T07:39:38Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class ๐Ÿงจ](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute ๐Ÿฆ‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('hello2mao/sd-class-butterflies-32') image = pipeline().images[0] image ```
tianxing1994/EcapaTDNN-VoxCeleb1
tianxing1994
2023-02-08T07:22:43Z
0
0
null
[ "region:us" ]
null
2022-12-14T06:36:03Z
## ECAPA-TDNN ่ฏด่ฏไบบๅˆ†็ฑป ```text ่ฏฅๆจกๅž‹้‡‡็”จ `VoxCeleb1 ๆ•ฐๆฎ้›†` ๅš่ฏด่ฏไบบๅˆ†็ฑป่ฎญ็ปƒ. ็ฑปๅˆซๆ•ฐ 1251 ่ฎญ็ปƒ้›†ๅ‡†็กฎ็އ 0.640 ้ชŒ่ฏ้›†ๅ‡†็กฎ็އ 0.650 ๅœจ https://mm.kaist.ac.kr/datasets/voxceleb/index.html ้กต้ข็š„ List of trial pairs - VoxCeleb1 https://mm.kaist.ac.kr/datasets/voxceleb/meta/veri_test.txt ๆ•ฐๆฎ้›†ไธŠๅšไบ†่ฏด่ฏไบบ้ชŒ่ฏ, EERๅคง็บฆไธบ 2%, ็›ธๆฏ”ไบŽ Ecapa-TDNN ่ฎบๆ–‡ไธญ็š„ๅคง็บฆ 1% ๆจกๅž‹ๅบ”่ฏฅ่ฟ˜ๆฒกๆœ‰่ขซๅ……ๅˆ†่ฎญ็ปƒ. (ไธๅคช็กฎๅฎšๆ˜ฏไธๆ˜ฏๅŒไธ€ไธชๆต‹่ฏ•้›†, ไฝ†่ฟ™ไธชๆจกๅž‹ๅบ”่ฏฅๆฒกๆœ‰ๅ……ๅˆ†่ฎญ็ปƒ). ``` ### VoxCeleb1 ๆ•ฐๆฎ้›† ```text VoxCeleb1 ๆ•ฐๆฎ้›†ๅŒ…ๅซ 4 ไธชๆŒ‘ๆˆ˜ http://mm.kaist.ac.kr/datasets/voxceleb/voxsrc Track 1: ๅฎŒๅ…จ็›‘็ฃ็š„่ฏด่ฏไบบ้ชŒ่ฏ Speaker Verification (ๅฐ้—ญ) ่ฎญ็ปƒ้›†, ้‡‡็”จๅ…ทไฝ“่ฏด่ฏไบบๆ ‡ๆณจ็š„ VoxCeleb1 ๆ•ฐๆฎ้›†. ้ชŒ่ฏ้›†, ้‡‡็”จๅฎ˜ๆ–น็ป™ๅฎš็š„่ฏด่ฏไบบ้ชŒ่ฏๅฏน. Track 2: ๅฎŒๅ…จ็›‘็ฃ็š„่ฏด่ฏไบบ้ชŒ่ฏ Speaker Verification (ๅผ€ๆ”พ) ่ฎญ็ปƒ้›†, ้‡‡็”จๅ…ทไฝ“่ฏด่ฏไบบๆ ‡ๆณจ็š„ VoxCeleb1 ๆ•ฐๆฎ้›†, ไปฅๅŠไปปไฝ•ๅ…ถๅฎƒๅผ€ๆบ็š„ๆ•ฐๆฎ้›†. ้ชŒ่ฏ้›†, ้‡‡็”จๅฎ˜ๆ–น็ป™ๅฎš็š„่ฏด่ฏไบบ้ชŒ่ฏๅฏน. Track 3: ๅŠ็›‘็ฃ็š„่ฏด่ฏไบบ้ชŒ่ฏ Speaker Verification (ๅฐ้—ญ) ่ฎญ็ปƒ้›†, ...... ้ชŒ่ฏ้›†, ้‡‡็”จๅฎ˜ๆ–น็ป™ๅฎš็š„่ฏด่ฏไบบ้ชŒ่ฏๅฏน. Track 4 ๆ˜ฏ่ฏด่ฏไบบๅˆ†็ฆป Speaker Diarization (ๅผ€ๆ”พ) ๅ…ถไปปๅŠกๆ˜ฏๅฐ†ๅคš่ฏด่ฏไบบ้Ÿณ้ข‘ๅˆ†่งฃไธบๅ•ไธช่ฏด่ฏไบบ็š„็‰‡ๆฎต, ไปฅๅˆคๆ–ญ่ฐๅœจไฝ•ๆ—ถ่ฏด่ฏ. ่ฎญ็ปƒ้›†, ้™คๆต‹่ฏ•้›†ไน‹ๅŽ็š„ไปปไฝ•ๆ•ฐๆฎ. ้ชŒ่ฏ้›†, ๅฎ˜ๆ–นๆไพ› VoxConverse ็š„ๅผ€ๅ‘ๅ’Œๆต‹่ฏ•้›†ไปฅ็”จไบŽ้ชŒ่ฏ. ``` ```text ๆ•ฐๆฎ้›†ไธ‹่ฝฝ http://mm.kaist.ac.kr/datasets/voxceleb/voxsrc https://mm.kaist.ac.kr/datasets/voxceleb/index.html The username and password is voxceleb1912 and 0s42xuw6: wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partaa --http-user=voxceleb1912 --http-passwd=0s42xuw6 wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partab --http-user=voxceleb1912 --http-passwd=0s42xuw6 wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partac --http-user=voxceleb1912 --http-passwd=0s42xuw6 wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partad --http-user=voxceleb1912 --http-passwd=0s42xuw6 wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_test_wav.zip --http-user=voxceleb1912 --http-passwd=0s42xuw6 # dev ็š„4ไธชๆ–‡ไปถ, ๅบ”่ฏฅๆ˜ฏๅ…ˆๅŽ‹็ผฉๆˆ zip, ๅ†ๆŒ‰ไบŒ่ฟ›ๅˆถๅˆ‡ๅ‰ฒๆˆๆฏไธช 10G ็š„ๆ–‡ไปถ. # ๆญคๅค„็”จ cat ๅฐ†ๅ…ถๅˆๅนถไธบไธ€ไธชๆ–‡ไปถ, ๅ†ๅš unzip ่งฃๅŽ‹. cat vox1_dev* > vox1_dev_wav.zip unzip vox1_dev_wav.zip ```
kkh4162/distilbert-base-uncased-finetuned-emotion
kkh4162
2023-02-08T06:57:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-11T07:37:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2246 - Accuracy: 0.926 - F1: 0.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8478 | 1.0 | 250 | 0.3239 | 0.9055 | 0.9005 | | 0.2604 | 2.0 | 500 | 0.2246 | 0.926 | 0.9259 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ahjim0m0/Taxi-uncle-4-lr02-n100k-g097-v3
ahjim0m0
2023-02-08T06:42:12Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T06:42:09Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-uncle-4-lr02-n100k-g097-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ahjim0m0/Taxi-uncle-4-lr02-n100k-g097-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ahjim0m0/Taxi-uncle-2-lr02-n60k-v3
ahjim0m0
2023-02-08T06:22:27Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T06:22:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-uncle-2-lr02-n60k-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: -99.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ahjim0m0/Taxi-uncle-2-lr02-n60k-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ahjim0m0/Taxi-uncle-1-v3
ahjim0m0
2023-02-08T06:15:42Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T06:15:35Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-uncle-1-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: -99.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ahjim0m0/Taxi-uncle-1-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ahjim0m0/q-FrozenLake-v1-4x4-noSlippery
ahjim0m0
2023-02-08T06:05:39Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T06:05:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ahjim0m0/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
research-backup/mbart-large-cc25-frquad-qg-ae
research-backup
2023-02-08T06:00:25Z
4
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "question generation", "answer extraction", "fr", "dataset:lmqg/qg_frquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T05:46:48Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: fr datasets: - lmqg/qg_frquad pipeline_tag: text2text-generation tags: - question generation - answer extraction widget: - text: "generate question: Crรฉateur ยป (Maker), lui aussi au singulier, ยซ <hl> le Suprรชme Berger <hl> ยป (The Great Shepherd) ; de l'autre, des rรฉminiscences de la thรฉologie de l'Antiquitรฉ : le tonnerre, voix de Jupiter, ยซ Et souvent ta voix gronde en un tonnerre terrifiant ยป, etc." example_title: "Question Generation Example 1" - text: "generate question: Ce black dog peut รชtre liรฉ ร  des รฉvรจnements traumatisants issus du monde extรฉrieur, tels que son renvoi de l'Amirautรฉ aprรจs la catastrophe des Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par l'รฉlectorat en juillet 1945." example_title: "Question Generation Example 2" - text: "generate question: contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938." example_title: "Question Generation Example 3" - text: "extract answers: Pourtant, la strophe spensรฉrienne, utilisรฉe cinq fois avant que ne commence le chล“ur, constitue en soi un vecteur dont les rรฉpรฉtitions structurelles, selon Ricks, relรจvent du pur lyrisme tout en constituant une menace potentielle. Aprรจs les huit sages pentamรจtres iambiques, l'alexandrin final <hl> permet une pause <hl>, ยซ vรฉritable illusion d'optique ยป qu'accentuent les nombreuses expressions archaรฏsantes telles que did swoon, did seem, did go, did receive, did make, qui doublent le prรฉtรฉrit en un temps composรฉ et paraissent ร  la fois ยซ trรจs prรฉcautionneuses et trรจs peu pressรฉes ยป." example_title: "Answer Extraction Example 1" - text: "extract answers: Nรฉanmoins, une fois encore, l'arithmรฉtique modulaire est insuffisante pour venir ร  bout du thรฉorรจme. Dirichlet utilise de nombreuses techniques analytiques, comme les sรฉries entiรจres et l'analyse complexe. Le fruit de ces travaux donne naissance ร  une nouvelle branche des mathรฉmatiques : la thรฉorie analytique des nombres. L'un des points cruciaux de cette thรฉorie provient de l'unique article de <hl> Bernhard Riemann <hl> en thรฉorie des nombres : Sur le nombre de nombres premiers infรฉrieurs ร  une taille donnรฉe. Il conjecture une localisation des racines de sa fonction ฮถ. La recherche de la position des racines, initiรฉe par Dirichlet, devient une prรฉoccupation centrale et reste l'une des conjectures pressenties comme les plus difficiles des mathรฉmatiques de notre รฉpoque." example_title: "Answer Extraction Example 2" model-index: - name: lmqg/mbart-large-cc25-frquad-qg-ae results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_frquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 0.91 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 18.54 - name: METEOR (Question Generation) type: meteor_question_generation value: 8.56 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 72.56 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 50.46 - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer value: 77.72 - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer value: 78.58 - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer value: 76.9 - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer value: 51.65 - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer value: 52.16 - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer value: 51.15 - name: BLEU4 (Answer Extraction) type: bleu4_answer_extraction value: 0.0 - name: ROUGE-L (Answer Extraction) type: rouge_l_answer_extraction value: 3.48 - name: METEOR (Answer Extraction) type: meteor_answer_extraction value: 3.24 - name: BERTScore (Answer Extraction) type: bertscore_answer_extraction value: 58.41 - name: MoverScore (Answer Extraction) type: moverscore_answer_extraction value: 45.72 - name: AnswerF1Score (Answer Extraction) type: answer_f1_score__answer_extraction value: 3.66 - name: AnswerExactMatch (Answer Extraction) type: answer_exact_match_answer_extraction value: 0.0 --- # Model Card of `lmqg/mbart-large-cc25-frquad-qg-ae` This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question generation and answer extraction jointly on the [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) - **Language:** fr - **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="fr", model="lmqg/mbart-large-cc25-frquad-qg-ae") # model prediction question_answer_pairs = model.generate_qa("Crรฉateur ยป (Maker), lui aussi au singulier, ยซ le Suprรชme Berger ยป (The Great Shepherd) ; de l'autre, des rรฉminiscences de la thรฉologie de l'Antiquitรฉ : le tonnerre, voix de Jupiter, ยซ Et souvent ta voix gronde en un tonnerre terrifiant ยป, etc.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-frquad-qg-ae") # answer extraction answer = pipe("generate question: Crรฉateur ยป (Maker), lui aussi au singulier, ยซ <hl> le Suprรชme Berger <hl> ยป (The Great Shepherd) ; de l'autre, des rรฉminiscences de la thรฉologie de l'Antiquitรฉ : le tonnerre, voix de Jupiter, ยซ Et souvent ta voix gronde en un tonnerre terrifiant ยป, etc.") # question generation question = pipe("extract answers: Pourtant, la strophe spensรฉrienne, utilisรฉe cinq fois avant que ne commence le chล“ur, constitue en soi un vecteur dont les rรฉpรฉtitions structurelles, selon Ricks, relรจvent du pur lyrisme tout en constituant une menace potentielle. Aprรจs les huit sages pentamรจtres iambiques, l'alexandrin final <hl> permet une pause <hl>, ยซ vรฉritable illusion d'optique ยป qu'accentuent les nombreuses expressions archaรฏsantes telles que did swoon, did seem, did go, did receive, did make, qui doublent le prรฉtรฉrit en un temps composรฉ et paraissent ร  la fois ยซ trรจs prรฉcautionneuses et trรจs peu pressรฉes ยป.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_frquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 72.56 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_1 | 16.16 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_2 | 4.88 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_3 | 1.85 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_4 | 0.91 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | METEOR | 8.56 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | MoverScore | 50.46 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | ROUGE_L | 18.54 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | - ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_frquad.default.json) | | Score | Type | Dataset | |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| | QAAlignedF1Score (BERTScore) | 77.72 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | QAAlignedF1Score (MoverScore) | 51.65 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | QAAlignedPrecision (BERTScore) | 76.9 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | QAAlignedPrecision (MoverScore) | 51.15 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | QAAlignedRecall (BERTScore) | 78.58 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | QAAlignedRecall (MoverScore) | 52.16 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_frquad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 0 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | AnswerF1Score | 3.66 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | BERTScore | 58.41 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_1 | 2.56 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_2 | 0.76 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_3 | 0 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_4 | 0 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | METEOR | 3.24 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | MoverScore | 45.72 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | ROUGE_L | 3.48 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_frquad - dataset_name: default - input_types: ['paragraph_answer', 'paragraph_sentence'] - output_types: ['question', 'answer'] - prefix_types: ['qg', 'ae'] - model: facebook/mbart-large-cc25 - max_length: 512 - max_length_output: 32 - epoch: 5 - batch: 2 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 32 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qg-ae/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
Art-phys/dqn-SpaceInvadersNoFrameskip-v4
Art-phys
2023-02-08T05:54:39Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T05:53:55Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 601.00 +/- 350.80 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Art-phys -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Art-phys -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Art-phys ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Ekkel-AI-Pvt-ltd/stable-diffusion-inpainting2
Ekkel-AI-Pvt-ltd
2023-02-08T05:51:25Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "arxiv:2112.10752", "arxiv:2202.00512", "arxiv:1910.09700", "license:openrail++", "diffusers:StableDiffusionInpaintPipeline", "region:us" ]
text-to-image
2023-01-24T09:56:00Z
--- license: openrail++ tags: - stable-diffusion - text-to-image inference: false --- # Stable Diffusion v2 Model Card This model card focuses on the model associated with the Stable Diffusion v2, available [here](https://github.com/Stability-AI/stablediffusion). This `stable-diffusion-2-inpainting` model is resumed from [stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) (`512-base-ema.ckpt`) and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning. ![image](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/resolve/main/merged-leopards.png) - Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `512-inpainting-ema.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/resolve/main/512-inpainting-ema.ckpt). - Use it with ๐Ÿงจ [`diffusers`](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting#examples) ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)). - **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## Examples Using the [๐Ÿค—'s Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion 2 inpainting in a simple and efficient manner. ```bash pip install diffusers transformers accelerate scipy safetensors ``` ```python from diffusers import StableDiffusionInpaintPipeline pipe = StableDiffusionInpaintPipeline.from_pretrained( "stabilityai/stable-diffusion-2-inpainting", torch_dtype=torch.float16, ) prompt = "Face of a yellow cat, high resolution, sitting on a park bench" #image and mask_image should be PIL images. #The mask structure is white for inpainting and black for keeping as is image = pipe(prompt=prompt, image=image, mask_image=mask_image).images[0] image.save("./yellow_cat_on_park_bench.png") ``` **Notes**: - Despite not being a dependency, we highly recommend you to install [xformers](https://github.com/facebookresearch/xformers) for memory efficient attention (better performance) - If you have low GPU RAM available, make sure to add a `pipe.enable_attention_slicing()` after sending it to `cuda` for less VRAM usage (to the cost of speed) **How it works:** `image` | `mask_image` :-------------------------:|:-------------------------:| <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" alt="drawing" width="300"/> | <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" alt="drawing" width="300"/> `prompt` | `Output` :-------------------------:|:-------------------------:| <span style="position: relative;bottom: 150px;">Face of a yellow cat, high resolution, sitting on a park bench</span> | <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/test.png" alt="drawing" width="300"/> # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is originally taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), was used for Stable Diffusion v1, but applies in the same way to Stable Diffusion v2_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to โ€œA red cube on top of a blue sphereโ€ - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a subset of the large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, we have filtered the dataset using LAION's NFSW detector (see Training section). ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion vw was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. Stable Diffusion v2 mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-5B and subsets (details below). The training data is further filtered using LAION's NSFW detector, with a "p_unsafe" score of 0.1 (conservative). For more details, please refer to LAION-5B's [NeurIPS 2022](https://openreview.net/forum?id=M3Y74vmsMcY) paper and reviewer discussions on the topic. **Training Procedure** Stable Diffusion v2 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through the OpenCLIP-ViT/H text-encoder. - The output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We also use the so-called _v-objective_, see https://arxiv.org/abs/2202.00512. We currently provide the following checkpoints: - `512-base-ema.ckpt`: 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`. 850k steps at resolution `512x512` on the same dataset with resolution `>= 512x512`. - `768-v-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for 150k steps using a [v-objective](https://arxiv.org/abs/2202.00512) on the same dataset. Resumed for another 140k steps on a `768x768` subset of our dataset. - `512-depth-ema.ckpt`: Resumed from `512-base-ema.ckpt` and finetuned for 200k steps. Added an extra input channel to process the (relative) depth prediction produced by [MiDaS](https://github.com/isl-org/MiDaS) (`dpt_hybrid`) which is used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. - `512-inpainting-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. The same strategy was used to train the [1.5-inpainting checkpoint](https://github.com/saic-mdal/lama). - `x4-upscaling-ema.ckpt`: Trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752). In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml). - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 1 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 steps DDIM sampling steps show the relative improvements of the checkpoints: ![pareto](model-variants.jpg) Evaluated using 50 DDIM steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 200000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 15000 kg CO2 eq. ## Citation @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } *This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
jojoUla/bert-large-cased-sigir-support-no-label-20
jojoUla
2023-02-08T05:08:43Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-07T14:49:21Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-no-label-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-no-label-20 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7629 | 1.0 | 246 | 2.2876 | | 2.2004 | 2.0 | 492 | 1.9698 | | 1.9011 | 3.0 | 738 | 1.8034 | | 1.7521 | 4.0 | 984 | 1.7313 | | 1.6405 | 5.0 | 1230 | 1.6195 | | 1.553 | 6.0 | 1476 | 1.5437 | | 1.4707 | 7.0 | 1722 | 1.5072 | | 1.398 | 8.0 | 1968 | 1.4477 | | 1.3563 | 9.0 | 2214 | 1.4426 | | 1.3085 | 10.0 | 2460 | 1.4250 | | 1.2678 | 11.0 | 2706 | 1.3580 | | 1.2255 | 12.0 | 2952 | 1.3553 | | 1.1901 | 13.0 | 3198 | 1.3094 | | 1.1656 | 14.0 | 3444 | 1.2731 | | 1.1371 | 15.0 | 3690 | 1.3012 | | 1.1131 | 16.0 | 3936 | 1.2850 | | 1.0945 | 17.0 | 4182 | 1.2473 | | 1.0774 | 18.0 | 4428 | 1.2770 | | 1.0531 | 19.0 | 4674 | 1.2285 | | 1.0608 | 20.0 | 4920 | 1.2645 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Airic/DucHaiten
Airic
2023-02-08T04:47:53Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T04:37:00Z
--- license: creativeml-openrail-m ---
Fred99774/kalssa
Fred99774
2023-02-08T04:33:23Z
3
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T04:22:18Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### kalssa Dreambooth model trained by Fred99774 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
SyedAbdul/PPO-LunarLander-V2
SyedAbdul
2023-02-08T04:27:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T04:27:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 288.38 +/- 13.94 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pfunk/Pong-v4-DQPN_p100_pt0.1_tt0.1-seed1
pfunk
2023-02-08T04:09:09Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T04:08:49Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: -1.10 +/- 5.52 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p100_pt0.1_tt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p100_pt0.1_tt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p100_pt0.1_tt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1_tt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1_tt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1_tt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p100_pt0.1_tt0.1 --start-policy-f 100000 --end-policy-f 100000 --evaluation-fraction 1.00 --target-tau 0.1 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 100000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p100_pt0.1_tt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 100000, 'target_network_frequency': 1000, 'target_tau': 0.1, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
jakub014/bert-base-uncased-finetuned-effectiveness-redditCMV
jakub014
2023-02-08T04:00:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T12:40:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-effectiveness-redditCMV results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-effectiveness-redditCMV This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6920 - Accuracy: 0.6376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6873 | 1.0 | 516 | 0.6706 | 0.5769 | | 0.6256 | 2.0 | 1032 | 0.6424 | 0.6366 | | 0.5197 | 3.0 | 1548 | 0.6920 | 0.6376 | | 0.3814 | 4.0 | 2064 | 0.8641 | 0.6361 | | 0.2589 | 5.0 | 2580 | 1.0249 | 0.6249 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pfunk/Pong-v4-DQPN_p50_pt0.1-seed1
pfunk
2023-02-08T03:51:01Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T03:50:39Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 3.70 +/- 6.45 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_pt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p50_pt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p50_pt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_pt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_pt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_pt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p50_pt0.1 --start-policy-f 50000 --end-policy-f 50000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 50000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p50_pt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 50000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
yuanzheng/carrot-commercial-v2
yuanzheng
2023-02-08T03:31:03Z
12
3
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T02:27:56Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### carrot_commercial_v2 Dreambooth model Sample pictures of this concept: ![0](https://huggingface.co/yuanzheng/carrot-commercial-v2/resolve/main/sample_images/00174-2092912628-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![1](https://huggingface.co/yuanzheng/carrot-commercial-v2/resolve/main/sample_images/00087-1720633401-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![2](https://huggingface.co/yuanzheng/carrot-commercial-v2/resolve/main/sample_images/00088-1720633402-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![3](https://huggingface.co/yuanzheng/carrot-commercial-v2/resolve/main/sample_images/00079-4004019013-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![4](https://huggingface.co/yuanzheng/carrot-commercial-v2/resolve/main/sample_images/00121-1978687305-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png)
crackerdar/crackerdar
crackerdar
2023-02-08T02:53:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T02:53:23Z
--- license: creativeml-openrail-m ---
HaiderAUT/ppo-LunarLander-v2
HaiderAUT
2023-02-08T02:52:51Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T02:52:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.96 +/- 35.26 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pupubear/pupugirl_v1
pupubear
2023-02-08T02:39:33Z
14
4
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-02T06:50:15Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### girl Dreambooth model trained by pupubear with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook trianed from c_PVC_mix Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/pupubear/girl/resolve/main/sample_images/00001-1639922232-Ultra-res_,NSFW,_1girl,_cum,_full_body,,_best_quality,highly_detailed,masterpiece,ultra-detailed,illustration.png)
DiegoD616/poca-SoccerTwos
DiegoD616
2023-02-08T02:20:21Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-08T02:20:14Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: DiegoD616/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
EnD-Diffusers/duskfall-s-pink-spider-plushie
EnD-Diffusers
2023-02-08T02:14:44Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T01:52:22Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: plushiedsk --- ### Duskfall's Pink Spider Plushie Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Information on this model will be here: https://civitai.com/user/duskfallcrew If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk plushiedsk (use that on your prompt)
summervent/speller-t5-909
summervent
2023-02-08T01:37:32Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-07T22:08:29Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: speller-t5-909 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speller-t5-909 This model is a fine-tuned version of [sberbank-ai/ruT5-large](https://huggingface.co/sberbank-ai/ruT5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0814 - Rouge1: 18.2203 - Rouge2: 5.9322 - Rougel: 17.7966 - Rougelsum: 18.2203 - Gen Len: 42.0424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.3022 | 0.1 | 1500 | 0.1563 | 18.2203 | 5.9322 | 17.7966 | 18.2203 | 43.4492 | | 0.2274 | 0.2 | 3000 | 0.1311 | 18.2203 | 5.9322 | 17.7966 | 18.2203 | 42.3814 | | 0.2001 | 0.31 | 4500 | 0.1128 | 18.2203 | 5.9322 | 17.7966 | 18.2203 | 41.9407 | | 0.1757 | 0.41 | 6000 | 0.1063 | 18.2203 | 5.9322 | 17.7966 | 18.2203 | 42.2542 | | 0.1612 | 0.51 | 7500 | 0.1002 | 17.9379 | 5.0847 | 17.5141 | 17.7966 | 42.339 | | 0.1718 | 0.61 | 9000 | 0.0921 | 18.2203 | 5.9322 | 17.7966 | 18.2203 | 42.0508 | | 0.1678 | 0.72 | 10500 | 0.0834 | 17.7966 | 5.0847 | 17.3729 | 17.7966 | 41.9831 | | 0.1407 | 0.82 | 12000 | 0.0793 | 18.2203 | 5.9322 | 17.7966 | 18.2203 | 42.2119 | | 0.1447 | 0.92 | 13500 | 0.0814 | 18.2203 | 5.9322 | 17.7966 | 18.2203 | 42.0424 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Josh98/t5-small-transferLearning-NL2BASH_seqTrain
Josh98
2023-02-08T01:36:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T01:25:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-transferLearning-NL2BASH_seqTrain results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-transferLearning-NL2BASH_seqTrain This model is a fine-tuned version of [kevinum/t5-small-finetuned-English-to-BASH](https://huggingface.co/kevinum/t5-small-finetuned-English-to-BASH) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6524 - Bleu: 48.0701 - Gen Len: 8.9028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 36 | 0.6524 | 48.0701 | 8.9028 | | No log | 2.0 | 72 | 0.6524 | 48.0701 | 8.9028 | | No log | 3.0 | 108 | 0.6524 | 48.0701 | 8.9028 | | No log | 4.0 | 144 | 0.6524 | 48.0701 | 8.9028 | | No log | 5.0 | 180 | 0.6524 | 48.0701 | 8.9028 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
yunaaa/translated_model
yunaaa
2023-02-08T01:24:01Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-06T15:02:53Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: translated_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translated_model This model is a fine-tuned version of [paust/pko-t5-small](https://huggingface.co/paust/pko-t5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ZelonPrograms/AI
ZelonPrograms
2023-02-08T01:13:44Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-02-08T01:13:29Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
rjac/whisper-tiny-spanish
rjac
2023-02-08T01:13:07Z
60
2
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "es", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T14:13:24Z
--- language: - es license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Spanish This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 es dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
jpino/layoutlmv3-finetuned-cord_100
jpino
2023-02-08T01:12:32Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-19T15:08:39Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv type: cord-layoutlmv config: default split: train args: default metrics: - name: Precision type: precision value: 0.8383838383838383 - name: Recall type: recall value: 0.8877005347593583 - name: F1 type: f1 value: 0.8623376623376623 - name: Accuracy type: accuracy value: 0.9755271084337349 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv dataset. It achieves the following results on the evaluation set: - Loss: 0.1524 - Precision: 0.8384 - Recall: 0.8877 - F1: 0.8623 - Accuracy: 0.9755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 27.78 | 250 | 0.2430 | 0.7526 | 0.7807 | 0.7664 | 0.9518 | | 0.4695 | 55.56 | 500 | 0.1524 | 0.8384 | 0.8877 | 0.8623 | 0.9755 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
bandish97/rhymbert
bandish97
2023-02-08T01:12:21Z
0
0
null
[ "fill-mask", "en", "region:us" ]
fill-mask
2023-02-08T01:10:57Z
--- language: - en pipeline_tag: fill-mask ---
yenpolin/wav2vec2-common_voice-tr-demo
yenpolin
2023-02-08T00:51:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-07T12:53:01Z
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-common_voice-tr-demo results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: COMMON_VOICE - TR type: common_voice config: tr split: train+validation args: 'Config: tr, Training split: train+validation, Eval split: test' metrics: - name: Wer type: wer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 3.4626 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 0.92 | 100 | 3.6030 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.0 - Tokenizers 0.13.2
thanat/bert-finetuned-ner
thanat
2023-02-08T00:41:08Z
3
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-07T02:56:25Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: thanat/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # thanat/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the [CoNLL-2003](https://huggingface.co/datasets/conll2003) dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0280 - Validation Loss: 0.0513 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1691 | 0.0630 | 0 | | 0.0484 | 0.0529 | 1 | | 0.0280 | 0.0513 | 2 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
vumichien/wav2vec2-large-xlsr-japanese-hiragana
vumichien
2023-02-08T00:36:47Z
572
6
transformers
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ja", "dataset:common_voice", "doi:10.57967/hf/0344", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ja datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Japanese Hiragana by Chien Vu results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice Japanese type: common_voice args: ja metrics: - name: Test WER type: wer value: 24.74 - name: Test CER type: cer value: 10.99 --- # Wav2Vec2-Large-XLSR-53-Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice) and Japanese speech corpus of Saruwatari-lab, University of Tokyo [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python !pip install mecab-python3 !pip install unidic-lite !pip install pykakasi !python -m unidic download import torch import torchaudio import librosa from datasets import load_dataset import MeCab from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # config wakati = MeCab.Tagger("-Owakati") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€‚\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŽ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€Œ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\โ€ฆ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŸ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใƒป]' kakasi = pykakasi.kakasi() kakasi.setMode("J","H") kakasi.setMode("K","H") kakasi.setMode("r","Hepburn") conv = kakasi.getConverter() # load data, processor and model test_dataset = load_dataset("common_voice", "ja", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana") model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana") resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. def speech_file_to_array_fn(batch): batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip()) batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Japanese test data of Common Voice. ```python !pip install mecab-python3 !pip install unidic-lite !pip install pykakasi !python -m unidic download import torch import librosa import torchaudio from datasets import load_dataset, load_metric import MeCab from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re #config wakati = MeCab.Tagger("-Owakati") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€‚\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŽ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€Œ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใ€\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\โ€ฆ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\๏ผŸ\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ใƒป]' kakasi = pykakasi.kakasi() kakasi.setMode("J","H") kakasi.setMode("K","H") kakasi.setMode("r","Hepburn") conv = kakasi.getConverter() # load data, processor and model test_dataset = load_dataset("common_voice", "ja", split="test") wer = load_metric("wer") cer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana") model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese-hแป‰ragana") model.to("cuda") resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. def speech_file_to_array_fn(batch): batch["sentence"] = conv.do(wakati.parse(batch["sentence"]).strip()) batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # evaluate function def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` ## Test Result **WER:** 24.74%, **CER:** 10.99% ## Training The Common Voice `train`, `validation` datasets and Japanese speech corpus datasets were used for training.
SfinOe/stable-diffusion-v2-1
SfinOe
2023-02-08T00:34:56Z
74
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "text-to-image", "arxiv:2112.10752", "arxiv:2202.00512", "arxiv:1910.09700", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T00:19:59Z
--- license: openrail++ tags: - stable-diffusion - text-to-image pinned: true --- # Stable Diffusion v2-1 Model Card This model card focuses on the model associated with the Stable Diffusion v2-1 model, codebase available [here](https://github.com/Stability-AI/stablediffusion). This `stable-diffusion-2-1` model is fine-tuned from [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) (`768-v-ema.ckpt`) with an additional 55k steps on the same dataset (with `punsafe=0.1`), and then fine-tuned for another 155k extra steps with `punsafe=0.98`. - Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `v2-1_768-ema-pruned.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.ckpt). - Use it with ๐Ÿงจ [`diffusers`](#examples) ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)). - **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## Examples Using the [๐Ÿค—'s Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion 2 in a simple and efficient manner. ```bash pip install diffusers transformers accelerate scipy safetensors ``` Running the pipeline (if you don't swap the scheduler it will run with the default DDIM, in this example we are swapping it to DPMSolverMultistepScheduler): ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler model_id = "stabilityai/stable-diffusion-2-1" # Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` **Notes**: - Despite not being a dependency, we highly recommend you to install [xformers](https://github.com/facebookresearch/xformers) for memory efficient attention (better performance) - If you have low GPU RAM available, make sure to add a `pipe.enable_attention_slicing()` after sending it to `cuda` for less VRAM usage (to the cost of speed) # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is originally taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), was used for Stable Diffusion v1, but applies in the same way to Stable Diffusion v2_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to โ€œA red cube on top of a blue sphereโ€ - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a subset of the large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, we have filtered the dataset using LAION's NFSW detector (see Training section). ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. Stable Diffusion v2 mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-5B and subsets (details below). The training data is further filtered using LAION's NSFW detector, with a "p_unsafe" score of 0.1 (conservative). For more details, please refer to LAION-5B's [NeurIPS 2022](https://openreview.net/forum?id=M3Y74vmsMcY) paper and reviewer discussions on the topic. **Training Procedure** Stable Diffusion v2 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through the OpenCLIP-ViT/H text-encoder. - The output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We also use the so-called _v-objective_, see https://arxiv.org/abs/2202.00512. We currently provide the following checkpoints: - `512-base-ema.ckpt`: 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`. 850k steps at resolution `512x512` on the same dataset with resolution `>= 512x512`. - `768-v-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for 150k steps using a [v-objective](https://arxiv.org/abs/2202.00512) on the same dataset. Resumed for another 140k steps on a `768x768` subset of our dataset. - `512-depth-ema.ckpt`: Resumed from `512-base-ema.ckpt` and finetuned for 200k steps. Added an extra input channel to process the (relative) depth prediction produced by [MiDaS](https://github.com/isl-org/MiDaS) (`dpt_hybrid`) which is used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. - `512-inpainting-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. The same strategy was used to train the [1.5-inpainting checkpoint](https://huggingface.co/runwayml/stable-diffusion-inpainting). - `x4-upscaling-ema.ckpt`: Trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752). In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml). - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 1 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 steps DDIM sampling steps show the relative improvements of the checkpoints: ![pareto](model-variants.jpg) Evaluated using 50 DDIM steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 200000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 15000 kg CO2 eq. ## Citation @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } *This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
sanali209/imclasif-quality-v001
sanali209
2023-02-08T00:32:45Z
19
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-07T15:48:48Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: imclasif-quality-v001 results: - task: name: Image genre Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.875 --- # imclasif-quality-v001 Autogenerated by HuggingPics๐Ÿค—๐Ÿ–ผ๏ธ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
vumichien/wav2vec2-xls-r-1b-japanese
vumichien
2023-02-08T00:22:33Z
31
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "ja", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "doi:10.57967/hf/0336", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xls-r-1b results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 7.98 - name: Test CER (with LM) type: cer value: 3.42 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 7.88 - name: Test CER (with LM) type: cer value: 3.35 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 28.07 - name: Test CER (with LM) type: cer value: 16.27 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 19.89 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on my collection of Public Japanese Voice datasets for research [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [JUST](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) (Japanese speech corpus of Saruwatari-lab., University of Tokyo), [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus) (Japanese speech corpus for summarization and simplification), [CSS10](https://paperswithcode.com/dataset/css10) (A collection of single speaker speech datasets). You can find in preprocessing dataset in here VUMICHIEN/COMMON_VOICE_LARGE_JSUT_JSSS_CSS10. ### Total training data: ~60 hours ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 10.96 | 10.91 | |with 4-grams LM| 7.98 | 7.88 | ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 4.28 | 4.22 | |with 4-grams LM| 3.42 | 3.35 | ## Evaluation Please use the eval.py file to run the evaluation: ```python pip install mecab-python3 unidic-lite pykakasi python eval.py --model_id vumichien/wav2vec2-xls-r-1b-japanese --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 2.2896 | 3.37 | 1500 | 0.4748 | 0.4013 | 0.1767 | | 1.1608 | 6.74 | 3000 | 0.3350 | 0.3159 | 0.1456 | | 1.1042 | 10.11 | 4500 | 0.3119 | 0.2971 | 0.1400 | | 1.0494 | 13.48 | 6000 | 0.2974 | 0.2867 | 0.1353 | | 1.0061 | 16.85 | 7500 | 0.2802 | 0.2746 | 0.1300 | | 0.9629 | 20.22 | 9000 | 0.2844 | 0.2776 | 0.1326 | | 0.9267 | 23.59 | 10500 | 0.2577 | 0.2603 | 0.1255 | | 0.8984 | 26.96 | 12000 | 0.2508 | 0.2531 | 0.1226 | | 0.8729 | 30.34 | 13500 | 0.2629 | 0.2606 | 0.1254 | | 0.8546 | 33.71 | 15000 | 0.2402 | 0.2447 | 0.1193 | | 0.8304 | 37.08 | 16500 | 0.2532 | 0.2472 | 0.1209 | | 0.8075 | 40.45 | 18000 | 0.2439 | 0.2469 | 0.1198 | | 0.7827 | 43.82 | 19500 | 0.2387 | 0.2372 | 0.1167 | | 0.7627 | 47.19 | 21000 | 0.2344 | 0.2331 | 0.1147 | | 0.7402 | 50.56 | 22500 | 0.2314 | 0.2299 | 0.1135 | | 0.718 | 53.93 | 24000 | 0.2257 | 0.2267 | 0.1114 | | 0.7016 | 57.3 | 25500 | 0.2204 | 0.2184 | 0.1089 | | 0.6804 | 60.67 | 27000 | 0.2227 | 0.2181 | 0.1085 | | 0.6625 | 64.04 | 28500 | 0.2138 | 0.2112 | 0.1058 | | 0.6465 | 67.42 | 30000 | 0.2141 | 0.2081 | 0.1044 | | 0.6238 | 70.79 | 31500 | 0.2172 | 0.2082 | 0.1050 | | 0.6062 | 74.16 | 33000 | 0.2174 | 0.2058 | 0.1043 | | 0.588 | 77.53 | 34500 | 0.2156 | 0.2034 | 0.1027 | | 0.5722 | 80.9 | 36000 | 0.2162 | 0.2032 | 0.1029 | | 0.5585 | 84.27 | 37500 | 0.2156 | 0.2022 | 0.1021 | | 0.5456 | 87.64 | 39000 | 0.2126 | 0.1993 | 0.1009 | | 0.5325 | 91.01 | 40500 | 0.2121 | 0.1966 | 0.1003 | | 0.5229 | 94.38 | 42000 | 0.2104 | 0.1941 | 0.0991 | | 0.5134 | 97.75 | 43500 | 0.2108 | 0.1948 | 0.0992 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
Serena47/doodling-ai2
Serena47
2023-02-08T00:14:48Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T00:03:47Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### doodling-ai2 Dreambooth model trained by Serena47 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
pfunk/Pong-v4-DQPN_p30_e0.10-seed1
pfunk
2023-02-07T23:33:53Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T23:33:32Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 10.30 +/- 3.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p30_e0.10.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p30_e0.10]" python -m cleanrl_utils.enjoy --exp-name DQPN_p30_e0.10 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.10-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.10-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.10-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p30_e0.10 --start-policy-f 30000 --end-policy-f 1000 --evaluation-fraction 0.10 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.1, 'exp_name': 'DQPN_p30_e0.10', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 30000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli
gokuls
2023-02-07T23:27:16Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-02T14:55:37Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - name: Accuracy type: accuracy value: 0.5923485264506682 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.1420 - Accuracy: 0.5923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.6899 | 1.0 | 33208 | 1.1420 | 0.5923 | | 0.498 | 2.0 | 66416 | 1.2196 | 0.5944 | | 0.4209 | 3.0 | 99624 | 1.2370 | 0.5977 | | 0.3746 | 4.0 | 132832 | 1.2784 | 0.5973 | | 0.3449 | 5.0 | 166040 | 1.2649 | 0.5938 | | 0.3238 | 6.0 | 199248 | 1.1662 | 0.6114 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gatardochi/q-FrozenLake-v1-4x4-noSlippery
gatardochi
2023-02-07T23:21:28Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T23:21:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="gatardochi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
masibasi/disney-ps
masibasi
2023-02-07T22:49:57Z
61
4
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-02T10:56:14Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### disney-ps Dreambooth model trained by masibasi with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Type 'disney-ps style' before or after your prompt to see the finetuned results
eshwarprasadS/taxi_qlearner
eshwarprasadS
2023-02-07T22:46:02Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T22:45:53Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_qlearner results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.78 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="eshwarprasadS/taxi_qlearner", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
EnD-Diffusers/art-of-wave
EnD-Diffusers
2023-02-07T22:32:27Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-07T22:22:09Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: wvert1 --- ### Art of Wave Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Information on this model will be here: https://civitai.com/user/duskfallcrew If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk wvert1 (use that on your prompt)
eshwarprasadS/q-FrozenLake-v1-4x4-noSlippery
eshwarprasadS
2023-02-07T22:32:21Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T22:32:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="eshwarprasadS/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dhifraan/YXJlcw
dhifraan
2023-02-07T22:20:01Z
0
0
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-07T22:09:49Z
--- license: creativeml-openrail-m ---
andrespm/wav2vec-xls-r-gl-with-lm
andrespm
2023-02-07T22:11:47Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-07T12:47:06Z
# Wav2Vec2-XLS-R-300-GL Model train with common voice 12.0 in Galician.
bhpardo/clasificador-amazonproducts2
bhpardo
2023-02-07T22:08:29Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T22:07:19Z
--- tags: - classification - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: clasificador-amazonproducts2 results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: es split: validation args: es metrics: - name: Accuracy type: accuracy value: 0.5563380281690141 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-amazonproducts2 This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.2356 - Accuracy: 0.5563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2045 | 1.0 | 658 | 1.0496 | 0.5845 | | 0.9569 | 2.0 | 1316 | 1.0380 | 0.5704 | | 0.7637 | 3.0 | 1974 | 1.2356 | 0.5563 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
dhifraan/Z3JhcGVmcnVpdA
dhifraan
2023-02-07T21:59:39Z
0
0
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-07T21:48:36Z
--- license: creativeml-openrail-m ---
bhpardo/clasificador-amazonproducts
bhpardo
2023-02-07T21:55:36Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-05T09:33:06Z
--- tags: - classification - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model-index: - name: clasificador-amazonproducts results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: es split: validation args: es metrics: - name: Accuracy type: accuracy value: 0.5774647887323944 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-amazonproducts This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.2425 - Accuracy: 0.5775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7097 | 1.0 | 658 | 1.1479 | 0.5704 | | 0.4787 | 2.0 | 1316 | 1.2425 | 0.5775 | | 0.3708 | 3.0 | 1974 | 1.2425 | 0.5775 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
SummerSigh/Safety-Policy
SummerSigh
2023-02-07T21:52:05Z
4
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-06T16:03:46Z
--- license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This is a finetuned DeBERTav3 model from https://huggingface.co/sileod/deberta-v3-base-tasksource-nli. # Model Details This model was finetuned on policy data related to the rules laid out in the Sparrow paper by Deepmind. ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** SummerSigh - **Model type:** DeBERTav3 - **Language(s) (NLP):** English - **License:** apache-2.0 - **Finetuned from model:** https://huggingface.co/sileod/deberta-v3-base-tasksource-nli # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> Given an input text, this model will output "KEPT" (0) or "BROKE" (1). KEPT indicates that the text keeps the policies finetuned in mind, while BROKE means that it broke one or more of the policies.
mertyazan/Reinforce-0
mertyazan
2023-02-07T21:37:40Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-06T21:27:37Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
foxanthis/data-deepit-kds
foxanthis
2023-02-07T21:27:43Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt_neo", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-02-07T21:07:53Z
--- tags: - generated_from_trainer model-index: - name: data-deepit-kds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data-deepit-kds This model is a fine-tuned version of [flax-community/gpt-neo-125M-code-clippy](https://huggingface.co/flax-community/gpt-neo-125M-code-clippy) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 0.5930 | | No log | 2.0 | 6 | 0.3968 | | No log | 3.0 | 9 | 0.3333 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
dcrazy/Hakari_Atsuko
dcrazy
2023-02-07T21:18:14Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-07T21:18:14Z
--- license: creativeml-openrail-m ---
Mandoryan/PPO-LunarLander-v2
Mandoryan
2023-02-07T21:12:44Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T21:12:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 211.85 +/- 23.47 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Deisler/a2c-PandaReachDense-v2
Deisler
2023-02-07T21:12:14Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T21:09:34Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.33 +/- 0.56 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
michalcisek5/q-Taxi-v3
michalcisek5
2023-02-07T20:03:02Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T18:49:20Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="michalcisek5/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
qgallouedec/ppo-MiniGrid-FourRooms-v0
qgallouedec
2023-02-07T19:26:48Z
0
0
stable-baselines3
[ "stable-baselines3", "MiniGrid-FourRooms-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T14:36:49Z
--- library_name: stable-baselines3 tags: - MiniGrid-FourRooms-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MiniGrid-FourRooms-v0 type: MiniGrid-FourRooms-v0 metrics: - type: mean_reward value: 0.37 +/- 0.38 name: mean_reward verified: false --- # **PPO** Agent playing **MiniGrid-FourRooms-v0** This is a trained model of a **PPO** agent playing **MiniGrid-FourRooms-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo --env MiniGrid-FourRooms-v0 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo ppo --env MiniGrid-FourRooms-v0 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo ppo --env MiniGrid-FourRooms-v0 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo ppo --env MiniGrid-FourRooms-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo ppo --env MiniGrid-FourRooms-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo --env MiniGrid-FourRooms-v0 -f logs/ -orga qgallouedec ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('clip_range', 0.2), ('ent_coef', 0.0), ('env_wrapper', 'gym_minigrid.wrappers.FlatObsWrapper'), ('gae_lambda', 0.95), ('gamma', 0.99), ('learning_rate', 0.00025), ('n_envs', 8), ('n_epochs', 10), ('n_steps', 512), ('n_timesteps', 4000000.0), ('normalize', True), ('policy', 'MlpPolicy'), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ```
dbaibak/poca-SoccerTwos
dbaibak
2023-02-07T19:19:43Z
8
1
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-07T19:19:35Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: dbaibak/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
hectorjelly/Ledbest_FC
hectorjelly
2023-02-07T19:11:43Z
4
1
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-07T19:11:35Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: hectorjelly/Ledbest_FC 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€