modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 06:27:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 06:27:45
card
stringlengths
11
1.01M
qingyanjiu/qwen3-14b-qrt-epoch3
qingyanjiu
2025-05-22T04:56:06Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-22T04:48:19Z
--- base_model: input0/Qwen3-14B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** qingyanjiu - **License:** apache-2.0 - **Finetuned from model :** input0/Qwen3-14B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
JaehyeokLee/qwen3-8b-lora-summarization
JaehyeokLee
2025-05-22T04:39:10Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen3-8B", "base_model:adapter:Qwen/Qwen3-8B", "region:us" ]
null
2025-05-22T04:39:05Z
--- base_model: Qwen/Qwen3-8B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
the-acorn-ai/Qwen3-4B-Base-4K-KuhnPoker-Random-Role-0522-Zichen-step_00384
the-acorn-ai
2025-05-22T04:34:17Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-22T04:31:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wzhgba/opendwm-models
wzhgba
2025-05-22T04:15:09Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-22T04:15:09Z
--- license: apache-2.0 ---
PaceKW/bert-base-indonesian-1.5G-multilabel-indonesian-hate-speech-new
PaceKW
2025-05-22T03:33:40Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:cahya/bert-base-indonesian-1.5G", "base_model:finetune:cahya/bert-base-indonesian-1.5G", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-22T03:31:12Z
--- library_name: transformers license: mit base_model: cahya/bert-base-indonesian-1.5G tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bert-base-indonesian-1.5G-multilabel-indonesian-hate-speech-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-indonesian-1.5G-multilabel-indonesian-hate-speech-new This model is a fine-tuned version of [cahya/bert-base-indonesian-1.5G](https://huggingface.co/cahya/bert-base-indonesian-1.5G) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3641 - F1: 0.7802 - Roc Auc: 0.8639 - Accuracy: 0.7156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3106 | 1.0 | 659 | 0.2504 | 0.6779 | 0.7832 | 0.5978 | | 0.2235 | 2.0 | 1318 | 0.2113 | 0.7466 | 0.8392 | 0.6441 | | 0.1722 | 3.0 | 1977 | 0.2283 | 0.7511 | 0.8493 | 0.6581 | | 0.097 | 4.0 | 2636 | 0.2421 | 0.7626 | 0.8490 | 0.6874 | | 0.0643 | 5.0 | 3295 | 0.2727 | 0.7584 | 0.8417 | 0.6938 | | 0.0572 | 6.0 | 3954 | 0.2817 | 0.7662 | 0.8662 | 0.6737 | | 0.0304 | 7.0 | 4613 | 0.3075 | 0.7606 | 0.8475 | 0.6879 | | 0.021 | 8.0 | 5272 | 0.3195 | 0.7697 | 0.8626 | 0.6932 | | 0.0157 | 9.0 | 5931 | 0.3347 | 0.7663 | 0.8477 | 0.7052 | | 0.0095 | 10.0 | 6590 | 0.3353 | 0.7759 | 0.8598 | 0.7118 | | 0.0086 | 11.0 | 7249 | 0.3467 | 0.7768 | 0.8590 | 0.7136 | | 0.0063 | 12.0 | 7908 | 0.3503 | 0.7795 | 0.8644 | 0.7128 | | 0.0046 | 13.0 | 8567 | 0.3577 | 0.7797 | 0.8613 | 0.7153 | | 0.0037 | 14.0 | 9226 | 0.3622 | 0.7801 | 0.8674 | 0.7115 | | 0.0046 | 15.0 | 9885 | 0.3641 | 0.7802 | 0.8639 | 0.7156 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
DanielNRU/pollen-ner2-550
DanielNRU
2025-05-22T03:31:09Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "base_model:adapter:DeepPavlov/bert-base-bg-cs-pl-ru-cased", "region:us" ]
null
2025-05-22T03:25:58Z
--- library_name: peft base_model: DeepPavlov/bert-base-bg-cs-pl-ru-cased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: pollen-ner2-550 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pollen-ner2-550 This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3432 - Precision: 0.6156 - Recall: 0.7269 - F1: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 69 | 0.3899 | 0.5340 | 0.6948 | 0.6038 | | No log | 2.0 | 138 | 0.3667 | 0.5738 | 0.6948 | 0.6285 | | No log | 3.0 | 207 | 0.3638 | 0.5784 | 0.7108 | 0.6378 | | No log | 4.0 | 276 | 0.3495 | 0.6007 | 0.7068 | 0.6494 | | No log | 5.0 | 345 | 0.3547 | 0.5805 | 0.7169 | 0.6415 | | No log | 6.0 | 414 | 0.3432 | 0.6156 | 0.7269 | 0.6667 | | No log | 7.0 | 483 | 0.3453 | 0.6026 | 0.7369 | 0.6631 | | 0.7026 | 8.0 | 552 | 0.3397 | 0.6142 | 0.7289 | 0.6667 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.5.0 - Tokenizers 0.21.1
DLYS/Qwen2.5-14b-MEDITUNE
DLYS
2025-05-22T00:24:19Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-29T06:07:42Z
--- library_name: transformers tags: [] --- # Qwen2.5-14b-MEDITUNE This model is a fine-tuned Qwen2.5-14b-instruct for Henrychur/MMedBench and Korean Medical QA dataset. Korean Medical QA dataset is [here](https://www.aihub.or.kr/aihubdata/data/list.do?currMenu=115&topMenu=100&&srchDataRealmCode=REALM006) # Test We tested this model on sean0042/KorMedMCQA. # Result ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6477e5ec168cb428e0116e8d/iutf7bWRgI9LE4wooQ_Cz.png) * The rationale refers to the reasoning process generated by Qwen-2.5-72B, and it indicates the case where this rationale was used for training. * The 5-response ensemble determines the final answer by voting among five responses and selecting the one with the most correct answers.
ntnu-smil/whisper-large-v3-turbo-sandi-train-1-rich-transcript-32-merged
ntnu-smil
2025-05-21T23:40:21Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "wft", "audio", "speech", "generated_from_trainer", "en", "dataset:ntnu-smil/sandi2025-ds", "base_model:openai/whisper-large-v3-turbo", "base_model:finetune:openai/whisper-large-v3-turbo", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-21T23:39:36Z
--- library_name: transformers language: - en license: mit base_model: openai/whisper-large-v3-turbo tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - ntnu-smil/sandi2025-ds metrics: - wer model-index: - name: whisper-large-v3-turbo-sandi-train-1-rich-transcript-32 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ntnu-smil/sandi2025-ds type: ntnu-smil/sandi2025-ds metrics: - type: wer value: 23.248425746388847 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-v3-turbo-sandi-train-1-rich-transcript-32 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set: - Loss: 0.7920 - Wer: 23.2484 - Cer: 16.5856 - Decode Runtime: 203.4514 - Wer Runtime: 0.1639 - Cer Runtime: 0.3157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 732 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:--------------:|:-----------:|:-----------:| | 0.9653 | 0.1667 | 122 | 0.8334 | 103.3411 | 64.3972 | 245.8729 | 0.1967 | 0.3575 | | 1.1313 | 1.1667 | 244 | 0.8073 | 53.0086 | 33.9467 | 210.6469 | 0.1851 | 0.3293 | | 0.54 | 2.1667 | 366 | 0.7915 | 25.4142 | 18.3008 | 196.4910 | 0.1906 | 0.3139 | | 0.3761 | 3.1667 | 488 | 0.7882 | 24.2463 | 17.3425 | 196.9004 | 0.1675 | 0.3169 | | 0.8462 | 4.1667 | 610 | 0.7921 | 23.4051 | 16.7178 | 197.5723 | 0.1661 | 0.3141 | | 0.9957 | 5.1667 | 732 | 0.7920 | 23.2484 | 16.5856 | 203.4514 | 0.1639 | 0.3157 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.2 - Pytorch 2.8.0.dev20250319+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
Wsassi/whisper-large-v3-scc22
Wsassi
2025-05-21T22:24:56Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-21T22:14:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pictgencustomer/danceparade_107
pictgencustomer
2025-05-21T22:21:24Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T22:21:13Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: danceparade_5 --- # Danceparade_107 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `danceparade_5` to trigger the image generation. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('pictgencustomer/danceparade_107', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
anonymousneurips008/empiar10166-ddpm-ema-cryoem-128x128
anonymousneurips008
2025-05-21T22:19:32Z
0
0
diffusers
[ "diffusers", "safetensors", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
null
2025-05-20T19:26:59Z
--- license: mit library_name: diffusers --- DDPM trained on EMPIAR10166 training dataset with 190,904 images of size 128x128
Flaviomm01/Lagoon01
Flaviomm01
2025-05-21T22:01:01Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-21T22:01:01Z
--- license: apache-2.0 ---
bobby97/flux-fill-stain-5-lora
bobby97
2025-05-21T21:49:16Z
2
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-Fill-dev", "base_model:adapter:black-forest-labs/FLUX.1-Fill-dev", "license:other", "region:us" ]
text-to-image
2025-05-20T08:01:38Z
--- base_model: black-forest-labs/FLUX.1-Fill-dev library_name: diffusers license: other instance_prompt: A TOK dark-mark widget: - text: A TOK dark-mark output: url: image_0.png - text: A TOK dark-mark output: url: image_1.png - text: A TOK dark-mark output: url: image_2.png - text: A TOK dark-mark output: url: image_3.png tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Flux-Fill DreamBooth LoRA - bobby97/flux-fill-stain-5-lora <Gallery /> ## Model description These are bobby97/flux-fill-stain-5-lora DreamBooth LoRA weights for black-forest-labs/FLUX.1-Fill-dev. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with a custom [Flux diffusers trainer](https://github.com/Sebastian-Zok/FLUX-Fill-LoRa-Training). Was LoRA for the text encoder enabled? False. ## Trigger words You should use `A TOK dark-mark` to trigger the image generation. ## Download model [Download the *.safetensors LoRA](bobby97/flux-fill-stain-5-lora/tree/main) in the Files & versions tab. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('bobby97/flux-fill-stain-5-lora', weight_name='pytorch_lora_weights.safetensors') image = pipeline('A TOK dark-mark').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
leeccNLPLAB/unsloth_Qwen3-4B-unsloth-bnb-4bit-BookSQL
leeccNLPLAB
2025-05-21T21:36:43Z
0
0
transformers
[ "transformers", "pytorch", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen3-4B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-4B-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T21:32:07Z
--- base_model: unsloth/Qwen3-4B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** leeccNLPLAB - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
limingcv/KuaiShou_MPS
limingcv
2025-05-21T20:42:06Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-21T20:38:18Z
--- license: apache-2.0 --- This model is the MPS model from https://github.com/Kwai-Kolors/MPS?tab=readme-ov-file
morturr/Mistral-7B-v0.1-amazon-seed-42-2025-05-21
morturr
2025-05-21T17:49:15Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2025-05-21T09:54:07Z
--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - trl - sft - generated_from_trainer model-index: - name: Mistral-7B-v0.1-amazon-seed-42-2025-05-21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-v0.1-amazon-seed-42-2025-05-21 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
gavrilstep/95409e72-553b-407c-8724-3b48ac7fb3b9
gavrilstep
2025-05-21T16:52:38Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B", "base_model:adapter:unsloth/Qwen2-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-05-21T16:41:06Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 95409e72-553b-407c-8724-3b48ac7fb3b9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: unsloth/Qwen2-1.5B bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 8238689af7edb3c9_train_data.json ds_type: json format: custom path: /workspace/input_data/8238689af7edb3c9_train_data.json type: field_instruction: system field_output: prompt format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.55 group_by_length: false hub_model_id: gavrilstep/95409e72-553b-407c-8724-3b48ac7fb3b9 hub_repo: null hub_strategy: end hub_token: null learning_rate: 1.0e-06 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 96 lora_dropout: 0.01 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 48 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 4 mixed_precision: bf16 mlflow_experiment_name: /tmp/8238689af7edb3c9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dd656613-2166-41f4-8840-76ceb5e9b641 wandb_project: s56-7 wandb_run: your_name wandb_runid: dd656613-2166-41f4-8840-76ceb5e9b641 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 95409e72-553b-407c-8724-3b48ac7fb3b9 This model is a fine-tuned version of [unsloth/Qwen2-1.5B](https://huggingface.co/unsloth/Qwen2-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2883 | 0.0098 | 150 | 1.8758 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ilybawkugo/lora_qwen_2e-4-1616-1024
ilybawkugo
2025-05-21T16:48:12Z
0
0
transformers
[ "transformers", "pytorch", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T15:46:58Z
--- base_model: unsloth/qwen2.5-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ilybawkugo - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
DanielNRU/pollen-ner-1600
DanielNRU
2025-05-21T16:28:19Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:DeepPavlov/rubert-base-cased", "base_model:adapter:DeepPavlov/rubert-base-cased", "region:us" ]
null
2025-05-20T16:03:39Z
--- library_name: peft base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: pollen-ner-1600 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pollen-ner-1600 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1443 - Precision: 0.8593 - Recall: 0.9076 - F1: 0.8828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 200 | 0.1436 | 0.8462 | 0.9056 | 0.8749 | | No log | 2.0 | 400 | 0.1407 | 0.8550 | 0.8996 | 0.8767 | | 0.2058 | 3.0 | 600 | 0.1443 | 0.8593 | 0.9076 | 0.8828 | | 0.2058 | 4.0 | 800 | 0.1405 | 0.8555 | 0.9036 | 0.8789 | | 0.1935 | 5.0 | 1000 | 0.1432 | 0.8593 | 0.9076 | 0.8828 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.5.0 - Tokenizers 0.21.1
batmangiaicuuthegioi/bi-encoders-embeddings
batmangiaicuuthegioi
2025-05-21T16:16:44Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:37059", "loss:MultipleNegativesRankingLoss", "dataset:batmangiaicuuthegioi/zalo-legal-triplets", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:AITeamVN/Vietnamese_Embedding", "base_model:finetune:AITeamVN/Vietnamese_Embedding", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-05-21T16:15:28Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:37059 - loss:MultipleNegativesRankingLoss base_model: AITeamVN/Vietnamese_Embedding widget: - source_sentence: Quแบฃn lรฝ vร  sแปญ dแปฅng phรญ bแบฃo vแป‡ mรดi trฦฐแปng ฤ‘แป‘i vแป›i nฦฐแป›c thแบฃi cรดng nghiแป‡p ฤ‘ฦฐแปฃc quy ฤ‘แป‹nh ra sao? sentences: - 'ฤiแปu 16. Trรกch nhiแป‡m cแปงa Uแปท ban nhรขn dรขn cแบฅp huyแป‡n, cแบฅp xรฃ nฦกi cรณ ฤ‘รช. ฤ‘iแปƒm c) trang bแป‹ vร  hฦฐแป›ng dแบซn viแป‡c quแบฃn lรฝ sแปญ dแปฅng cรกc dแปฅng cแปฅ, sแป• sรกch cho cรกc ฤ‘แป™i tuแบงn tra, canh gรกc ฤ‘รช theo quy ฤ‘แป‹nh tแบกi khoแบฃn 2 ฤ‘iแปu 6 cแปงa thรดng tฦฐ nร y. ' - ฤiแปu 33. Quแบฃn lรฝ tร i khoแบฃn, tร i sแบฃn kรฝ quแปน cแปงa thร nh viรชn bรน trแปซ. khoแบฃn 6. loแบกi kรฝ quแปน, phฦฐฦกng phรกp xรกc ฤ‘แป‹nh mแปฉc kรฝ quแปน, phฦฐฦกng thแปฉc kรฝ quแปน, thแปi hแบกn kรฝ quแปน, bแป• sung kรฝ quแปน, chuyแปƒn giao tร i sแบฃn kรฝ quแปน, phฦฐฦกng thแปฉc ฤ‘แป‹nh giรก tร i sแบฃn kรฝ quแปน, xรกc ฤ‘แป‹nh lรฃi lแป— vแป‹ thแบฟ, hoแบกt ฤ‘แป™ng quแบฃn lรฝ tร i khoแบฃn vร  tร i sแบฃn kรฝ quแปน cแปงa thร nh viรชn bรน trแปซ thแปฑc hiแป‡n theo quy ฤ‘แป‹nh cแปงa bแป™ trฦฐแปŸng bแป™ tร i chรญnh vร  quy chแบฟ cแปงa tแป•ng cรดng ty lฦฐu kรฝ vร  bรน trแปซ chแปฉng khoรกn viแป‡t nam. - ฤiแปu 4. Nguyรชn tแบฏc quแบฃn lรฝ vร  sแปญ dแปฅng phรญ. khoแบฃn 3. phรญ thu tแปซ cรกc hoแบกt ฤ‘แป™ng dแป‹ch vแปฅ do tแป• chแปฉc ฤ‘ฦฐแปฃc cฦก quan nhร  nฦฐแป›c cรณ thแบฉm quyแปn giao thแปฑc hiแป‡n ฤ‘ฦฐแปฃc ฤ‘แปƒ lแบกi mแป™t phแบงn hoแบทc toร n bแป™ sแป‘ tiแปn phรญ thu ฤ‘ฦฐแปฃc ฤ‘แปƒ trang trแบฃi chi phรญ hoแบกt ฤ‘แป™ng cung cแบฅp dแป‹ch vแปฅ, thu phรญ ฤ‘ฦฐแปฃc xรกc ฤ‘แป‹nh theo quy ฤ‘แป‹nh tแบกi ฤ‘iแปu 5 nghแป‹ ฤ‘แป‹nh nร y; phแบงn cรฒn lแบกi (nแบฟu cรณ) nแป™p ngรขn sรกch nhร  nฦฐแป›c, trแปซ trฦฐแปng hแปฃp chรญnh phแปง cรณ quy ฤ‘แป‹nh khรกc thรฌ thแปฑc hiแป‡n theo quy ฤ‘แป‹nh cแปงa chรญnh phแปง. sแป‘ tiแปn phรญ ฤ‘ฦฐแปฃc ฤ‘แปƒ lแบกi lร  doanh thu cแปงa tแป• chแปฉc thu phรญ. - source_sentence: Ngร y bแบงu cแปญ ฤ‘แบกi biแปƒu Quแป‘c Hแป™i cรณ phแบฃi lร  ngร y chแปง nhแบญt? sentences: - 'ฤiแปu 16. Cแปญ quแป‘c thiแปu nฦฐแป›c Cแป™ng hรฒa xรฃ hแป™i chแปง nghฤฉa Viแป‡t Nam. khoแบฃn 1. quแป‘c thiแปu viแป‡t nam ฤ‘ฦฐแปฃc cแปญ trong cรกc cuแป™c mรญt tinh, chiรชu ฤ‘รฃi chร o mแปซng quแป‘c khรกnh, ngร y lแป… lแป›n cแปงa viแป‡t nam hoแบทc kแปท niแป‡m sแปฑ kiแป‡n quan trแปng trong quan hแป‡ giแปฏa viแป‡t nam vแป›i quแป‘c gia hay tแป• chแปฉc quแป‘c tแบฟ tiแบฟp nhแบญn phรน hแปฃp vแป›i quy ฤ‘แป‹nh, thรดng lแป‡ lแป… tรขn cแปงa quแป‘c gia, tแป• chแปฉc quแป‘c tแบฟ tiแบฟp nhแบญn. ' - 'ฤiแปu 4. Giแบฃi thรญch tแปซ ngแปฏ. khoแบฃn 36. quแบฃn lรฝ quแปน ฤ‘แบงu tฦฐ chแปฉng khoรกn lร  hoแบกt ฤ‘แป™ng quแบฃn lรฝ trong viแป‡c mua, bรกn, nแบฏm giแปฏ chแปฉng khoรกn vร  cรกc tร i sแบฃn khรกc cแปงa quแปน ฤ‘แบงu tฦฐ chแปฉng khoรกn. ' - 'ฤiแปu 52. Giแป›i thiแป‡u ngฦฐแปi cแปงa cฦก quan, tแป• chแปฉc, ฤ‘ฦกn vแป‹ แปฉng cแปญ ฤ‘แบกi biแปƒu Hแป™i ฤ‘แป“ng nhรขn dรขn. khoแบฃn 4. ban cรดng tรกc mแบทt trแบญn แปŸ thรดn, tแป• dรขn phแป‘ dแปฑ kiแบฟn ngฦฐแปi cแปงa thรดn, tแป• dรขn phแป‘ ฤ‘แปƒ giแป›i thiแป‡u แปฉng cแปญ ฤ‘แบกi biแปƒu hแป™i ฤ‘แป“ng nhรขn dรขn cแบฅp xรฃ vร  phแป‘i hแปฃp vแป›i trฦฐแปŸng thรดn, tแป• trฦฐแปŸng tแป• dรขn phแป‘ tแป• chแปฉc hแป™i nghแป‹ cแปญ tri ฤ‘แปƒ thแบฃo luแบญn, giแป›i thiแป‡u ngฦฐแปi แปฉng cแปญ ฤ‘แบกi biแปƒu hแป™i ฤ‘แป“ng nhรขn dรขn cแบฅp xรฃ. viแป‡c giแป›i thiแป‡u ngฦฐแปi แปฉng cแปญ ฤ‘แบกi biแปƒu hแป™i ฤ‘แป“ng nhรขn dรขn cแบฅp xรฃ แปŸ thรดn, tแป• dรขn phแป‘ do แปงy ban thฦฐแปng vแปฅ quแป‘c hแป™i hฦฐแป›ng dแบซn; ' - source_sentence: Nghiรชn cแปฉu y sinh hแปc ฤ‘a trung tรขm lร  gรฌ? sentences: - 'ฤiแปu 64. Vi phแบกm quy ฤ‘แป‹nh vแป cung cแบฅp, sแปญ dแปฅng thiแบฟt bแป‹ vรด tuyแบฟn ฤ‘iแป‡n ฤ‘ฦฐแปฃc miแป…n Giแบฅy phรฉp sแปญ dแปฅng tแบงn sแป‘ vรด tuyแบฟn ฤ‘iแป‡n. khoแบฃn 2. phแบกt tiแปn tแปซ < mแปฉc phแบกt tiแปn > ฤ‘แบฟn < mแปฉc phแบกt tiแปn > ฤ‘แป‘i vแป›i hร nh vi sแบฃn xuแบฅt hoแบทc nhแบญp khแบฉu thiแบฟt bแป‹ vรด tuyแบฟn ฤ‘iแป‡n thuแป™c danh mแปฅc thiแบฟt bแป‹ vรด tuyแบฟn ฤ‘iแป‡n ฤ‘ฦฐแปฃc miแป…n giแบฅy phรฉp sแปญ dแปฅng tแบงn sแป‘ vรด tuyแบฟn ฤ‘iแป‡n nhฦฐng khรดng thแปฑc hiแป‡n chแปฉng nhแบญn vร  cรดng bแป‘ hแปฃp quy trฦฐแป›c khi ฤ‘ฦฐa vร o lฦฐu thรดng trรชn thแป‹ trฦฐแปng. ' - 'ฤiแปu 3. Giแบฃi thรญch tแปซ ngแปฏ. khoแบฃn 19. nguy cฦก (risk) lร  xรกc suแบฅt mร  mแป™t sแปฑ kiแป‡n hoแบทc kแบฟt quแบฃ thuแบญn lแปฃi hay bแบฅt lแปฃi xแบฃy ra trong mแป™t khoแบฃng thแปi gian xรกc ฤ‘แป‹nh cแปงa nghiรชn cแปฉu theo tiแบฟp cแบญn cแปงa dแป‹ch tแป…. ' - 'ฤiแปu 9. Nแป™i dung tuแบงn tra, canh gรกc ฤ‘รช. ฤ‘iแปƒm d) mแป—i kรญp tuแบงn tra phแบฃi kiแปƒm tra vฦฐแปฃt quรก phแบกm vi phแปฅ trรกch vแป hai phรญa, mแป—i phรญa 50m. ฤ‘แป‘i vแป›i nhแปฏng khu vแปฑc ฤ‘รฃ tแปซng xแบฃy ra sแปฑ cแป‘ hฦฐ hแปng, phแบฃi kiแปƒm tra quan sรกt rแป™ng hฦกn ฤ‘แปƒ phรกt hiแป‡n sแปฑ cแป‘. ' - source_sentence: Khรดng treo biแปƒn thรดng bรกo khรดng bรกn thuแป‘c lรก cho ngฦฐแปi dฦฐแป›i 18 tuแป•i phแบกt 1 triแป‡u ฤ‘ฦฐแปฃc quy ฤ‘แป‹nh nhฦฐ thแบฟ nร o? sentences: - 'ฤiแปu 49. Hร nh vi vi phแบกm vแป ฤ‘ฤƒng kรฝ hแปฃp ฤ‘แป“ng theo mแบซu, ฤ‘iแปu kiแป‡n giao dแป‹ch chung. ฤ‘iแปƒm c) khรดng รกp dแปฅng ฤ‘รบng hแปฃp ฤ‘แป“ng theo mแบซu, ฤ‘iแปu kiแป‡n giao dแป‹ch chung ฤ‘รฃ ฤ‘ฤƒng kรฝ vแป›i cฦก quan quแบฃn lรฝ nhร  nฦฐแป›c cรณ thแบฉm quyแปn vแป bแบฃo vแป‡ quyแปn lแปฃi ngฦฐแปi tiรชu dรนng theo quy ฤ‘แป‹nh. ' - ฤiแปu 15. Khen thฦฐแปŸng, kแปท Luแบญt. khoแบฃn 2. nhแปฏng ฤ‘ฦกn vแป‹ vร  cรก nhรขn vi phแบกm quy ฤ‘แป‹nh tแบกi thรดng tฦฐ nร y tuแปณ theo lแป—i nแบทng nhแบน sแบฝ bแป‹ thi hร nh kแปท luแบญt tแปซ cแบฃnh cรกo ฤ‘แบฟn truy tแป‘ trฦฐแป›c phรกp luแบญt cแปงa nhร  nฦฐแป›c. - 'ฤiแปu 81. Tฦฐแป›c quyแปn sแปญ dแปฅng giแบฅy phรฉp, chแปฉng chแป‰ hร nh nghแป cรณ thแปi hแบกn hoแบทc ฤ‘รฌnh chแป‰ hoแบกt ฤ‘แป™ng cรณ thแปi hแบกn trong lฤฉnh vแปฑc giao thรดng ฤ‘ฦฐแปng bแป™, ฤ‘ฦฐแปng sแบฏt. khoแบฃn 5. trฦฐแปng hแปฃp ngฦฐแปi cรณ hร nh vi vi phแบกm bแป‹ รกp dแปฅng hรฌnh thแปฉc xแปญ phแบกt tฦฐแป›c quyแปn sแปญ dแปฅng giแบฅy phรฉp, chแปฉng chแป‰ hร nh nghแป nhฦฐng thแปi hแบกn sแปญ dแปฅng cรฒn lแบกi cแปงa giแบฅy phรฉp, chแปฉng chแป‰ hร nh nghแป ฤ‘รณ รญt hฦกn thแปi hแบกn bแป‹ tฦฐแป›c thรฌ ngฦฐแปi cรณ thแบฉm quyแปn vแบซn ra quyแบฟt ฤ‘แป‹nh xแปญ phแบกt cรณ รกp dแปฅng hรฌnh thแปฉc tฦฐแป›c quyแปn sแปญ dแปฅng giแบฅy phรฉp, chแปฉng chแป‰ hร nh nghแป theo quy ฤ‘แป‹nh ฤ‘แป‘i vแป›i hร nh vi vi phแบกm. trong thแปi gian bแป‹ tฦฐแป›c quyแปn sแปญ dแปฅng giแบฅy phรฉp, chแปฉng chแป‰ hร nh nghแป, cรก nhรขn, tแป• chแปฉc khรดng ฤ‘ฦฐแปฃc lร m thแปง tแปฅc cแบฅp ฤ‘แป•i, cแบฅp mแป›i giแบฅy phรฉp, chแปฉng chแป‰ hร nh nghแป. ' - source_sentence: Quy ฤ‘แป‹nh vแป trao ฤ‘แป•i dแปฏ liแป‡u thi hร nh รกn hรฌnh sแปฑ ฤ‘ฦฐแปฃc quy ฤ‘แป‹nh nhฦฐ thแบฟ nร o? sentences: - ฤiแปu 13. Quy ฤ‘แป‹nh vแป bร n giao giแปฏa cรกc kรญp trแปฑc. sau mแป—i ฤ‘แปฃt kiแปƒm tra, cรกc kรญp tuแบงn tra, canh gรกc ฤ‘รช phแบฃi ghi chรฉp ฤ‘แบงy ฤ‘แปง tรฌnh hรฌnh diแป…n biแบฟn vร  hฦฐ hแปng ฤ‘รช ฤ‘iแปu vร o sแป• nhแบญt kรฝ tuแบงn tra, canh gรกc theo mแบซu quy ฤ‘แป‹nh vร  bร n giao ฤ‘แบงy ฤ‘แปง cho kรญp sau. ngฦฐแปi thay mแบทt kรญp giao vร  nhแบญn phแบฃi kรฝ vร  ghi rรต hแป tรชn, ngร y giแป vร o sแป•. sau mแป—i ngร y ฤ‘แป™i trฦฐแปŸng vร  cรกn bแป™ chuyรชn trรกch quแบฃn lรฝ ฤ‘รช ฤ‘iแปu kรฝ xรกc nhแบญn tรฌnh hรฌnh trong ngร y ฤ‘แปƒ theo dรตi vร  lร m cฦก sแปŸ cho viแป‡c chi trแบฃ thรน lao theo quy ฤ‘แป‹nh. - 'ฤiแปu 33. Bรกo cรกo cแปงa tแป• chแปฉc tฦฐ vแบฅn hแป“ sฦก chร o bรกn trรกi phiแบฟu, tแป• chแปฉc ฤ‘แบฅu thแบงu, bแบฃo lรฃnh, ฤ‘แบกi lรฝ phรกt hร nh, tแป• chแปฉc ฤ‘ฤƒng kรฝ, lฦฐu kรฝ trรกi phiแบฟu vร  SแปŸ giao dแป‹ch chแปฉng khoรกn. ฤ‘iแปƒm b) ngoร i chแบฟ ฤ‘แป™ bรกo cรกo ฤ‘แป‹nh kแปณ theo quy ฤ‘แป‹nh tแบกi ฤ‘iแปƒm a khoแบฃn nร y, sแปŸ giao dแป‹ch chแปฉng khoรกn bรกo cรกo ฤ‘แป™t xuแบฅt cho แปงy ban chแปฉng khoรกn nhร  nฦฐแป›c vร  bแป™ tร i chรญnh theo yรชu cแบงu cแปงa cฦก quan quแบฃn lรฝ. ' - 'ฤiแปu 12. Trao ฤ‘แป•i dแปฏ liแป‡u giแปฏa cฦก sแปŸ dแปฏ liแป‡u vแป thi hร nh รกn hรฌnh sแปฑ vร  cรกc cฦก sแปŸ dแปฏ liแป‡u khรกc liรชn quan. khoแบฃn 1. viแป‡c trao ฤ‘แป•i dแปฏ liแป‡u giแปฏa cฦก sแปŸ dแปฏ liแป‡u vแป thi hร nh รกn hรฌnh sแปฑ vร  cรกc cฦก sแปŸ dแปฏ liแป‡u khรกc liรชn quan phแบฃi thแปฑc hiแป‡n theo quy ฤ‘แป‹nh cแปงa phรกp luแบญt vร  quy ฤ‘แป‹nh cแปงa bแป™ cรดng an, bแป™ quแป‘c phรฒng. ' datasets: - batmangiaicuuthegioi/zalo-legal-triplets pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy model-index: - name: SentenceTransformer based on AITeamVN/Vietnamese_Embedding results: - task: type: triplet name: Triplet dataset: name: zalo legal type: zalo_legal metrics: - type: cosine_accuracy value: 1.0 name: Cosine Accuracy - type: cosine_accuracy value: 1.0 name: Cosine Accuracy --- # SentenceTransformer based on AITeamVN/Vietnamese_Embedding This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [AITeamVN/Vietnamese_Embedding](https://huggingface.co/AITeamVN/Vietnamese_Embedding) on the [zalo-legal-triplets](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [AITeamVN/Vietnamese_Embedding](https://huggingface.co/AITeamVN/Vietnamese_Embedding) <!-- at revision 9f671cc30908f1d851787efcc05b7d15bad8b615 --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [zalo-legal-triplets](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("batmangiaicuuthegioi/bi-encoders-embeddings") # Run inference sentences = [ 'Quy ฤ‘แป‹nh vแป trao ฤ‘แป•i dแปฏ liแป‡u thi hร nh รกn hรฌnh sแปฑ ฤ‘ฦฐแปฃc quy ฤ‘แป‹nh nhฦฐ thแบฟ nร o?', 'ฤiแปu 12. Trao ฤ‘แป•i dแปฏ liแป‡u giแปฏa cฦก sแปŸ dแปฏ liแป‡u vแป thi hร nh รกn hรฌnh sแปฑ vร  cรกc cฦก sแปŸ dแปฏ liแป‡u khรกc liรชn quan. khoแบฃn 1. viแป‡c trao ฤ‘แป•i dแปฏ liแป‡u giแปฏa cฦก sแปŸ dแปฏ liแป‡u vแป thi hร nh รกn hรฌnh sแปฑ vร  cรกc cฦก sแปŸ dแปฏ liแป‡u khรกc liรชn quan phแบฃi thแปฑc hiแป‡n theo quy ฤ‘แป‹nh cแปงa phรกp luแบญt vร  quy ฤ‘แป‹nh cแปงa bแป™ cรดng an, bแป™ quแป‘c phรฒng. ', 'ฤiแปu 13. Quy ฤ‘แป‹nh vแป bร n giao giแปฏa cรกc kรญp trแปฑc. sau mแป—i ฤ‘แปฃt kiแปƒm tra, cรกc kรญp tuแบงn tra, canh gรกc ฤ‘รช phแบฃi ghi chรฉp ฤ‘แบงy ฤ‘แปง tรฌnh hรฌnh diแป…n biแบฟn vร  hฦฐ hแปng ฤ‘รช ฤ‘iแปu vร o sแป• nhแบญt kรฝ tuแบงn tra, canh gรกc theo mแบซu quy ฤ‘แป‹nh vร  bร n giao ฤ‘แบงy ฤ‘แปง cho kรญp sau. ngฦฐแปi thay mแบทt kรญp giao vร  nhแบญn phแบฃi kรฝ vร  ghi rรต hแป tรชn, ngร y giแป vร o sแป•. sau mแป—i ngร y ฤ‘แป™i trฦฐแปŸng vร  cรกn bแป™ chuyรชn trรกch quแบฃn lรฝ ฤ‘รช ฤ‘iแปu kรฝ xรกc nhแบญn tรฌnh hรฌnh trong ngร y ฤ‘แปƒ theo dรตi vร  lร m cฦก sแปŸ cho viแป‡c chi trแบฃ thรน lao theo quy ฤ‘แป‹nh.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Triplet * Dataset: `zalo_legal` * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:--------| | **cosine_accuracy** | **1.0** | #### Triplet * Dataset: `zalo_legal` * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:--------| | **cosine_accuracy** | **1.0** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### zalo-legal-triplets * Dataset: [zalo-legal-triplets](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets) at [15e0566](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets/tree/15e0566d390f73b5574a3d928cb8353cb6656fba) * Size: 37,059 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 22.08 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 82.98 tokens</li><li>max: 344 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 76.65 tokens</li><li>max: 220 tokens</li></ul> | * Samples: | anchor | positive | negative | |:------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Mแปฉc phแบกt ฤ‘แป‘i vแป›i hร nh vi ฤ‘iแปu khiแปƒn xe mรกy dแบซn, dแบฏt theo sรบc vแบญt ?</code> | <code>ฤiแปu 63. Xแปญ phแบกt nhรขn viรชn ฤ‘ฦฐแปng sแบฏt trแปฑc tiแบฟp phแปฅc vแปฅ chแบกy tร u (trแปซ lรกi tร u vร  phแปฅ lรกi tร u) vi phแบกm quy ฤ‘แป‹nh vแป nแป“ng ฤ‘แป™ cแป“n hoแบทc sแปญ dแปฅng cรกc chแบฅt kรญch thรญch khรกc mร  phรกp luแบญt cแบฅm sแปญ dแปฅng. ฤ‘iแปƒm c) khi lร m nhiแป‡m vแปฅ mร  trong cฦก thแปƒ cรณ chแบฅt kรญch thรญch khรกc mร  phรกp luแบญt cแบฅm sแปญ dแปฅng.</code> | <code>ฤiแปu 4. Nhiแป‡m vแปฅ cแปงa lแปฑc lฦฐแปฃng tuแบงn tra, canh gรกc ฤ‘รช. khoแบฃn 5. ฤ‘eo phรน hiแป‡u khi lร m nhiแป‡m vแปฅ.</code> | | <code>Theo quy ฤ‘แป‹nh phรกp luแบญt, dแบซn xuแบฅt cแปงa cรกc loร i ฤ‘แป™ng vแบญt, thแปฑc vแบญt lร  gรฌ?</code> | <code>ฤiแปu 3. Giแบฃi thรญch tแปซ ngแปฏ. khoแบฃn 26. mแบซu vแบญt sฤƒn bแบฏt lร  mแบซu vแบญt cรณ ฤ‘ฦฐแปฃc tแปซ cรกc hoแบกt ฤ‘แป™ng sฤƒn bแบฏt hแปฃp phรกp. </code> | <code>ฤiแปu 17. Trรกch nhiแป‡m cแปงa SแปŸ Nรดng nghiแป‡p vร  Phรกt triแปƒn nรดng thรดn. khoแบฃn 3. khi cรณ bรกo ฤ‘แป™ng lลฉ tแปซ cแบฅp i trแปŸ lรชn, sแปŸ nรดng nghiแป‡p vร  phรกt triแปƒn nรดng thรดn phแบฃi chแป‰ ฤ‘แบกo, tแป• chแปฉc kiแปƒm tra, ฤ‘รดn ฤ‘แป‘c cรดng tรกc tuแบงn tra, canh gรกc แปŸ cรกc tuyแบฟn ฤ‘รช.</code> | | <code>Mแปฅc tiรชu cแปงa giรกo dแปฅc nghแป nghiแป‡p tแปซ thรกng 7/2020 ฤ‘ฦฐแปฃc quy ฤ‘แป‹nh nhฦฐ thแบฟ nร o?</code> | <code>ฤiแปu 36. Mแปฅc tiรชu cแปงa giรกo dแปฅc nghแป nghiแป‡p. giรกo dแปฅc nghแป nghiแป‡p nhแบฑm ฤ‘ร o tแบกo nhรขn lแปฑc trแปฑc tiแบฟp cho sแบฃn xuแบฅt, kinh doanh vร  dแป‹ch vแปฅ, cรณ nฤƒng lแปฑc hร nh nghแป tฦฐฦกng แปฉng vแป›i trรฌnh ฤ‘แป™ ฤ‘ร o tแบกo; cรณ ฤ‘แบกo ฤ‘แปฉc, sแปฉc khแปe; cรณ trรกch nhiแป‡m nghแป nghiแป‡p; cรณ khแบฃ nฤƒng sรกng tแบกo, thรญch แปฉng vแป›i mรดi trฦฐแปng hแป™i nhแบญp quแป‘c tแบฟ; bแบฃo ฤ‘แบฃm nรขng cao nฤƒng suแบฅt, chแบฅt lฦฐแปฃng lao ฤ‘แป™ng; tแบกo ฤ‘iแปu kiแป‡n cho ngฦฐแปi hแปc sau khi hoร n thร nh khรณa hแปc cรณ khแบฃ nฤƒng tรฌm viแป‡c lร m, tแปฑ tแบกo viแป‡c lร m hoแบทc hแปc trรฌnh ฤ‘แป™ cao hฦกn.</code> | <code>ฤiแปu 3. Tiรชu chuแบฉn cแปงa cรกc thร nh viรชn thuแป™c lแปฑc lฦฐแปฃng tuแบงn tra, canh gรกc ฤ‘รช. khoแบฃn 2. cรณ tinh thแบงn trรกch nhiแป‡m, chแป‹u ฤ‘แปฑng gian khแป•, khแบฏc phแปฅc khรณ khฤƒn, quen sรดng nฦฐแป›c vร  biแบฟt bฦกi, cรณ kiแบฟn thแปฉc, kinh nghiแป‡m hแป™ ฤ‘รช, phรฒng, chแป‘ng lแปฅt, bรฃo.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### zalo-legal-triplets * Dataset: [zalo-legal-triplets](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets) at [15e0566](https://huggingface.co/datasets/batmangiaicuuthegioi/zalo-legal-triplets/tree/15e0566d390f73b5574a3d928cb8353cb6656fba) * Size: 37,059 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 21.7 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 79.22 tokens</li><li>max: 327 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 74.1 tokens</li><li>max: 220 tokens</li></ul> | * Samples: | anchor | positive | negative | |:------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Nghiรชn cแปฉu y sinh hแปc liรชn quan ฤ‘แบฟn con ngฦฐแปi lร  gรฌ?</code> | <code>ฤiแปu 31. Thแบฉm ฤ‘แป‹nh nghiรชn cแปฉu theo quy trรฌnh rรบt gแปn. khoแบฃn 4. ngoแบกi trแปซ trฦฐแปng hแปฃp hแปp khแบฉn cแบฅp, tแบฅt cแบฃ tร i liแป‡u ฤ‘แป nghแป‹ xem xรฉt phแบฃi ฤ‘ฦฐแปฃc gแปญi tแป›i thร nh viรชn hแป™i ฤ‘แป“ng ฤ‘แบกo ฤ‘แปฉc ฤ‘ฦฐแปฃc phรขn cรดng nhแบญn xรฉt trฦฐแป›c รญt nhแบฅt 05 ngร y lร m viแป‡c so vแป›i ngร y yรชu cแบงu gแปญi lแบกi phiแบฟu nhแบญn xรฉt, ฤ‘รกnh giรก nghiรชn cแปฉu. </code> | <code>ฤiแปu 10. Nแป™i dung tuแบงn tra canh gรกc cแป‘ng qua ฤ‘รช. khoแบฃn 2. ngฦฐแปi tuแบงn tra, canh gรกc phแบฃi kiแปƒm tra kแปน phแบงn tiแบฟp giรกp giแปฏa thรขn cแป‘ng, tฦฐแปng cรกnh gร  cแปงa cแป‘ng vแป›i ฤ‘รช; cรกnh cแป‘ng, bแป™ phแบญn ฤ‘รณng mแปŸ cรกnh cแป‘ng, cแปญa cแป‘ng, thรขn cแป‘ng vร  khu vแปฑc thฦฐแปฃng, hแบก lฦฐu cแป‘ng ฤ‘แปƒ phรกt hiแป‡n kแป‹p thแปi nhแปฏng sแปฑ cแป‘ xแบฃy ra. </code> | | <code>Hแป“ sฦก cแบฅp lแบกi Giแบฅy chแปฉng nhแบญn ฤ‘แปง ฤ‘iแปu kiแป‡n hoแบกt ฤ‘แป™ng dแป‹ch vแปฅ giรกm ฤ‘แป‹nh cรดng nghแป‡ bao gแป“m nhแปฏng giแบฅy tแป gรฌ?</code> | <code>ฤiแปu 38. Hแป“ sฦก cแบฅp Giแบฅy chแปฉng nhแบญn ฤ‘แปง ฤ‘iแปu kiแป‡n hoแบกt ฤ‘แป™ng dแป‹ch vแปฅ giรกm ฤ‘แป‹nh cรดng nghแป‡. ฤ‘iแปƒm e) mแบซu chแปฉng thฦฐ giรกm ฤ‘แป‹nh cแปงa tแป• chแปฉc. </code> | <code>ฤiแปu 6. Trang bแป‹ dแปฅng cแปฅ, sแป• sรกch. khoแบฃn 7. viแป‡c giao nhแบญn cรกc dแปฅng cแปฅ vร  sแป• sรกch trรชn ฤ‘รขy phแบฃi ฤ‘ฦฐแปฃc lแบญp biรชn bแบฃn ฤ‘แปƒ quแบฃn lรฝ, theo dรตi.</code> | | <code>Chแบกy quรก tแป‘c ฤ‘แป™ bao nhiรชu km thรฌ xe รด tรด sแบฝ bแป‹ giam bแบฑng?</code> | <code>ฤiแปu 55. Xแปญ phแบกt cรกc hร nh vi vi phแบกm quy ฤ‘แป‹nh quแบฃn lรฝ, bแบฃo trรฌ kแบฟt cแบฅu hแบก tแบงng ฤ‘ฦฐแปng sแบฏt. ฤ‘iแปƒm b) thแปฑc hiแป‡n hร nh vi quy ฤ‘แป‹nh tแบกi ฤ‘iแปƒm c khoแบฃn 3 ฤ‘iแปu nร y buแป™c phแบฃi tแป• chแปฉc sแปญa chแปฏa, bแป• sung, gia cแป‘, thay thแบฟ cรกc hฦฐ hแปng kแบฟt cแบฅu hแบก tแบงng ฤ‘ฦฐแปng sแบฏt ฤ‘แปƒ bแบฃo ฤ‘แบฃm chแบฅt lฦฐแปฃng theo cรดng lแป‡nh tแป‘c ฤ‘แป™, cรดng lแป‡nh tแบฃi trแปng ฤ‘รฃ cรดng bแป‘.</code> | <code>ฤiแปu 9. Nแป™i dung tuแบงn tra, canh gรกc ฤ‘รช. ฤ‘iแปƒm d) mแป—i kรญp tuแบงn tra phแบฃi kiแปƒm tra vฦฐแปฃt quรก phแบกm vi phแปฅ trรกch vแป hai phรญa, mแป—i phรญa 50m. ฤ‘แป‘i vแป›i nhแปฏng khu vแปฑc ฤ‘รฃ tแปซng xแบฃy ra sแปฑ cแป‘ hฦฐ hแปng, phแบฃi kiแปƒm tra quan sรกt rแป™ng hฦกn ฤ‘แปƒ phรกt hiแป‡n sแปฑ cแป‘. </code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 2 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 2 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | zalo_legal_cosine_accuracy | |:------:|:----:|:-------------:|:---------------:|:--------------------------:| | 0.3084 | 2000 | 0.2978 | 0.0778 | 0.9996 | | 0.6167 | 4000 | 0.1735 | 0.0522 | 1.0 | | 0.9251 | 6000 | 0.1148 | 0.0330 | 1.0 | | 1.0 | 6486 | - | - | 1.0 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.47.0 - PyTorch: 2.5.1+cu121 - Accelerate: 1.2.1 - Datasets: 3.3.1 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
fizziehaq/q_learn-taxi-v3
fizziehaq
2025-05-21T16:16:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-05-21T16:16:04Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q_learn-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="fizziehaq/q_learn-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
phospho-app/PAphospho-gr00t-tictactoe-A1-orange-50010
phospho-app
2025-05-21T16:02:21Z
0
0
null
[ "phosphobot", "gr00t", "region:us" ]
null
2025-05-21T15:59:41Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## Error Traceback We faced an issue while training your model. ``` Traceback (most recent call last): File "/root/src/helper.py", line 229, in predict trainer.train(timeout_seconds=timeout_seconds) File "/root/phosphobot/am/gr00t.py", line 1067, in train asyncio.run( File "/opt/conda/lib/python3.11/asyncio/runners.py", line 190, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/asyncio/base_events.py", line 654, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ File "/root/phosphobot/am/gr00t.py", line 967, in run_gr00t_training raise RuntimeError(error_msg) RuntimeError: Training process failed with exit code 1: return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/normalization.py", line 217, in forward return F.layer_norm( ^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/site-packages/torch/nn/functional.py", line 2900, in layer_norm return torch.layer_norm( ^^^^^^^^^^^^^^^^^ torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 288.00 MiB. GPU 0 has a total capacity of 79.25 GiB of which 24.75 MiB is free. Process 64 has 79.22 GiB memory in use. Of the allocated memory 78.46 GiB is allocated by PyTorch, and 266.39 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables) 0%| | 0/1560 [00:09<?, ?it/s] The current batch size is too large for the GPU. Please consider lowering it to fit in the memory. We train on a 80GB A100 GPU. ``` ## Training parameters: - **Dataset**: [PAphospho/tictactoe-A1-orange](https://huggingface.co/datasets/PAphospho/tictactoe-A1-orange) - **Wandb run URL**: None - **Epochs**: 10 - **Batch size**: 128 - **Training steps**: None ๐Ÿ“– **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) ๐Ÿค– **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
DanielNRU/pollen-ner-1250
DanielNRU
2025-05-21T15:40:29Z
2
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:DeepPavlov/rubert-base-cased", "base_model:adapter:DeepPavlov/rubert-base-cased", "region:us" ]
null
2025-05-20T11:29:05Z
--- library_name: peft base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: pollen-ner-1250 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pollen-ner-1250 This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1455 - Precision: 0.8614 - Recall: 0.9237 - F1: 0.8915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 157 | 0.1455 | 0.8614 | 0.9237 | 0.8915 | | No log | 2.0 | 314 | 0.1406 | 0.8625 | 0.9197 | 0.8902 | | No log | 3.0 | 471 | 0.1420 | 0.8596 | 0.9217 | 0.8895 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.5.0 - Tokenizers 0.21.1
magnifi/parser_user_v42a_epoch_6_lr_0p002_awq
magnifi
2025-05-21T15:15:50Z
0
0
null
[ "safetensors", "mistral", "license:apache-2.0", "4-bit", "awq", "region:us" ]
null
2025-05-21T15:12:04Z
--- license: apache-2.0 ---
Bubobot/ppo-SnowballTarget
Bubobot
2025-05-21T13:58:34Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2025-05-21T13:58:28Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Bubobot/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
dzanbek/079fc0df-2610-4d3e-8436-088f5165247d
dzanbek
2025-05-21T13:54:11Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "mistral", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "unsloth", "conversational", "arxiv:2305.18290", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:quantized:unsloth/mistral-7b-instruct-v0.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-21T13:35:42Z
--- base_model: unsloth/mistral-7b-instruct-v0.2 library_name: transformers model_name: 079fc0df-2610-4d3e-8436-088f5165247d tags: - generated_from_trainer - axolotl - dpo - trl - unsloth licence: license --- # Model Card for 079fc0df-2610-4d3e-8436-088f5165247d This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dzanbek/079fc0df-2610-4d3e-8436-088f5165247d", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-2/runs/seu8ok1q) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
frogdrawguess/Qwen-7B-Chat-4bit
frogdrawguess
2025-05-21T13:05:20Z
0
0
null
[ "safetensors", "qwen", "custom_code", "license:apache-2.0", "region:us" ]
null
2025-05-21T09:03:12Z
--- license: apache-2.0 ---
xw17/Llama-3.2-3B-Instruct_finetuned_2_optimized1_task_grouping_off_FT
xw17
2025-05-21T12:18:39Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T12:15:38Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DeepGlint-AI/MLCD-Seg
DeepGlint-AI
2025-05-21T11:49:39Z
22
7
null
[ "safetensors", "qwen2", "custom_code", "base_model:DeepGlint-AI/MLCD-Embodied-7B", "base_model:finetune:DeepGlint-AI/MLCD-Embodied-7B", "license:apache-2.0", "region:us" ]
null
2025-03-14T10:19:53Z
--- license: apache-2.0 base_model: - DeepGlint-AI/MLCD-Embodied-7B --- [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcocog)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcocog?p=multi-label-cluster-discrimination-for-visual) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco-5)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco-5?p=multi-label-cluster-discrimination-for-visual) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco-3)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco-3?p=multi-label-cluster-discrimination-for-visual) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcocog-1)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcocog-1?p=multi-label-cluster-discrimination-for-visual) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco-8)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco-8?p=multi-label-cluster-discrimination-for-visual) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco-4)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco-4?p=multi-label-cluster-discrimination-for-visual) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco-9)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco-9?p=multi-label-cluster-discrimination-for-visual) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco?p=multi-label-cluster-discrimination-for-visual) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-label-cluster-discrimination-for-visual/referring-expression-segmentation-on-refcoco)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco?p=multi-label-cluster-discrimination-for-visual) ## RefCOCO Segmentation Evaluation: | Dataset | Split | MLCD-seg-7B | EVF-SAM | GLaMM | VisionLLM v2| LISA | | :-- | :-: | :-: | :-: | :-: | :-: | :-: | | RefCOCO | val | **83.6** | 82.4 | 79.5 | 79.2 | 74.9 | | RefCOCO | testA | **85.3** | 84.2 | 83.2 | 82.3 | 79.1 | | RefCOCO | testB | **81.5** | 80.2 | 76.9 | 77.0 | 72.3 | | RefCOCO+ | val | **79.4** | 76.5 | 72.6 | 68.9 | 65.1 | | RefCOCO+ | testA | **82.9** | 80.0 | 78.7 | 75.8 | 70.8 | | RefCOCO+ | testB | **75.6** | 71.9 | 64.6 | 61.8 | 58.1 | | RefCOCOg | val | **79.7** | 78.2 | 74.2 | 73.3 | 67.9 | | RefCOCOg | test | **80.5** | 78.3 | 74.9 | 74.8 | 70.6 | ## Evaluation If you just want to use this code, please refer to this sample below ```python from transformers import AutoModel, AutoTokenizer from PIL import Image model_path = "DeepGlint-AI/MLCD-Seg" # or use your local path mlcd_seg = AutoModel.from_pretrained( model_path, torch_dtype=torch.float16, trust_remote_code=True ).cuda() tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) # Assuming you have an image named test.jpg seg_img = Image.open("test.jpg").convert('RGB') seg_prompt = "Could you provide a segmentation mask for the right giraffe in this image?" pred_mask = model.seg(seg_img, seg_prompt, tokenizer, force_seg=False) ``` If you want to use this code measurement dataset (e.g. refcoco), then you need to use the following method ```python from transformers import AutoModel, AutoTokenizer from PIL import Image model_path = "DeepGlint-AI/MLCD-Seg" # or use your local path mlcd_seg = AutoModel.from_pretrained( model_path, torch_dtype=torch.float16, trust_remote_code=True ).cuda() tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) # Assuming you have an image named test.jpg seg_img = Image.open("test.jpg").convert('RGB') seg_prompt = "Could you provide a segmentation mask for the right giraffe in this image?" pred_mask = model.seg(seg_img, seg_prompt, tokenizer, force_seg=True) ``` If you want to use this code in video, please refer to this sample below ```python from transformers import AutoModel, AutoTokenizer from PIL import Image import torch from torchvision import transforms import subprocess import os # video path video_path = "updownfunk.mp4" input_dir = "frames" output_dir = "mask_frames" os.makedirs(input_dir, exist_ok=True) os.makedirs(output_dir, exist_ok=True) # assert you have ffmpeg installed, mp4 -> jpg cmd = [ "ffmpeg", "-i", video_path, "-vf", "fps=30", # 30FPS "-qscale:v", "1", os.path.join(input_dir, "frame_%04d.jpg") ] subprocess.run(cmd) # model path model_path = "DeepGlint-AI/MLCD-Seg" # or use your local path mlcd_seg = AutoModel.from_pretrained( model_path, torch_dtype=torch.float16, trust_remote_code=True ).cuda() tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) # read jpgs image_files = sorted([f for f in os.listdir(input_dir) if f.endswith(('.jpg', '.png', '.jpeg'))]) for idx, filename in enumerate(image_files, start=1): src_path = os.path.join(input_dir, filename) seg_img = Image.open(src_path).convert('RGB') seg_prompt = "This <video> depicts a group of people dancing.\nCould you provide a segmentation mask for the man in pink suit?" pred_mask = mlcd_seg.predict_forward(seg_img, seg_prompt, tokenizer, force_seg=True) # Mask visualization pred_mask = pred_mask.squeeze(0).cpu() pred_mask = (pred_mask > 0.5).float() img_tensor = transforms.ToTensor()(seg_img) alpha = 0.2 # 20% transparency red_mask = torch.tensor([0.0, 1.0, 0.0]).view(3, 1, 1).to(img_tensor.device) # green mask black_bg = torch.zeros_like(img_tensor) # black background masked_area = red_mask * alpha + img_tensor * (1 - alpha) background = black_bg * alpha + img_tensor * (1 - alpha) combined = torch.where(pred_mask.unsqueeze(0).bool(), masked_area, background) combined = combined.cpu() # [3, H, W], CPU # Save masked jpgs new_name = f"{idx:04d}{os.path.splitext(filename)[1]}" dst_path = os.path.join(output_dir, new_name) transforms.ToPILImage()(combined.clamp(0, 1)).save(dst_path) cmd = [ "ffmpeg", "-y", "-framerate", str(30), # fps "-i", os.path.join(output_dir, "%04d.jpg"), "-c:v", "libx264", "-crf", str(23), "-pix_fmt", "yuv420p", "-vf", "fps=" + str(23), "updownfunk_mask.mp4" # output video ] # jpgs -> mp4 subprocess.run(cmd, check=True) ``` ## Example <img src="https://github.com/user-attachments/assets/85c023a1-3e0c-4ea5-a764-1eb9ee0fbddf" alt="output" width="1024"/> <img src="https://github.com/user-attachments/assets/5b767327-bd0a-4185-8f7e-b1ab0aa260c9" alt="output" width="1024"/> <video width="80%" controls> <source src="https://github.com/user-attachments/assets/380dee0d-47c4-4e01-8ff0-e69e62cccd7c"> </video> ## Citations ``` @misc{mlcdseg_wukun, author = {Wu, Kun and Xie, Yin and Zhou, Xinyu and An, Xiang, and Deng, Jiankang, and Jie, Yu}, title = {MLCD-Seg}, year = {2025}, url = {https://github.com/deepglint/unicom/tree/main/downstream}, } ```
Tri0315/Triyatno
Tri0315
2025-05-21T11:48:58Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-21T11:48:58Z
--- license: apache-2.0 ---
jmalejandrob79/nrmmtrfckd5k
jmalejandrob79
2025-05-21T11:48:09Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T09:40:45Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: nrmmtrfckd5k --- # Nrmmtrfckd5K <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `nrmmtrfckd5k` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "nrmmtrfckd5k", "lora_weights": "https://huggingface.co/jmalejandrob79/nrmmtrfckd5k/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jmalejandrob79/nrmmtrfckd5k', weight_name='lora.safetensors') image = pipeline('nrmmtrfckd5k').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 5000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/jmalejandrob79/nrmmtrfckd5k/discussions) to add images that show off what youโ€™ve made with this LoRA.
danthepol/MNLP_M2_document_encoder
danthepol
2025-05-21T11:39:33Z
0
0
sentence-transformers
[ "sentence-transformers", "pytorch", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:10481", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:BAAI/bge-base-en-v1.5", "base_model:finetune:BAAI/bge-base-en-v1.5", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-05-21T11:38:49Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:10481 - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-base-en-v1.5 widget: - source_sentence: What is a layer of saturated porous rock? sentences: - Current requires a source of voltage, which is a difference in electric potential energy. Sources of voltage include chemical cells and solar cells. - Give examples of energy conversions between potential and kinetic energy. - An aquifer is a layer of saturated porous rock. It lies below the water table. An impermeable layer, such as clay, is below the aquifer. - source_sentence: What happens to gas solubility as the temperature increases? sentences: - A nonrenewable resource is one that cannot be replaced as easily as it is consumed. Fossil fuels are an example of nonrenewable resources. They take millions of years to form naturally, and so they cannot be replaced as fast as they are consumed. To take the place of fossil fuel use, alternative energy resources are being developed. These alternative energy sources often utilize renewable resources. The following are examples of sustainable alternative energy resources:. - Gas solubility decreases as the temperature increases. - An electrolytic cell is the apparatus used for carrying out an electrolysis reaction. In an electrolytic cell, electric current is applied to provide a source of electrons for driving the reaction in a nonspontaneous direction. In a voltaic cell, the reaction goes in a direction that releases electrons spontaneously. In an electrolytic cell, the input of electrons from an external source forces the reaction to go in the opposite direction. - source_sentence: The sun and many other light sources produce waves that are randomly this? sentences: - The Sun and many other light sources produce waves that are randomly polarized (see Figure 27.39). Such light is said to be unpolarized because it is composed of many waves with all possible directions of polarization. Polaroid materials, invented by the founder of Polaroid Corporation, Edwin Land, act as a polarizing slit for light, allowing only polarization in one direction to pass through. Polarizing filters are composed of long molecules aligned in one direction. Thinking of the molecules as many slits, analogous to those for the oscillating ropes, we can understand why only light with a specific polarization can get through. The axis of a polarizing filter is the direction along which the filter passes the electric field of an EM wave (see Figure 27.40). - When you look at the Moon from Earth, you notice dark and light areas. The maria are dark, solid, flat areas of lava. Maria covers around 16% of the Moonโ€™s surface, mostly on the near side. The maria formed about 3.0 to 3.5 billion years ago, when the Moon was continually bombarded by meteorites ( Figure below ). Large meteorites broke through the Moonโ€™s newly formed surface. This caused magma to flow out and fill the craters. Scientists estimate volcanic activity on the Moon ended about 1.2 billion years ago. - The structures of the human eye collect and focus light. They form a reduced, upside-down image on the retina at the back of the eye. - source_sentence: The combined gradient that affects an ion includes its concentration gradient and its what? sentences: - '5.3 Active Transport The combined gradient that affects an ion includes its concentration gradient and its electrical gradient. A positive ion, for example, might tend to diffuse into a new area, down its concentration gradient, but if it is diffusing into an area of net positive charge, its diffusion will be hampered by its electrical gradient. When dealing with ions in aqueous solutions, a combination of the electrochemical and concentration gradients, rather than just the concentration gradient alone, must be considered. Living cells need certain substances that exist inside the cell in concentrations greater than they exist in the extracellular space. Moving substances up their electrochemical gradients requires energy from the cell. Active transport uses energy stored in ATP to fuel this transport. Active transport of small molecular-sized materials uses integral proteins in the cell membrane to move the materials: These proteins are analogous to pumps. Some pumps, which carry out primary active transport, couple directly with ATP to drive their action. In co-transport (or secondary active transport), energy from primary transport can be used to move another substance into the cell and up its concentration gradient.' - The development of new technology is called technological design . It is similar to scientific investigation. Both processes use evidence and logic to solve problems. - Oceans cover more than 70 percent of Earth's surface and hold 97 percent of its surface water. Itโ€™s no surprise that the oceans have a big influence on the planet. The oceans affect the atmosphere, climate, and living things. - source_sentence: What are are segmented invertebrates in phylum annelida called? sentences: - Simple Model of DNA. In this simple model of DNA, each line represents a nucleotide chain. The double helix shape forms when the two chains wrap around the same axis. - '38.2 Bone Bone, or osseous tissue, is connective tissue that includes specialized cells, mineral salts, and collagen fibers. The human skeleton can be divided into long bones, short bones, flat bones, and irregular bones. Compact bone tissue is composed of osteons and forms the external layer of all bones. Spongy bone tissue is composed of trabeculae and forms the inner part of all bones. Four types of cells compose bony tissue: osteocytes, osteoclasts, osteoprogenitor cells, and osteoblasts. Ossification is the process of bone formation by osteoblasts. Intramembranous ossification is the process of bone development from fibrous membranes. Endochondral ossification is the process of bone development from hyaline cartilage. Long bones lengthen as chondrocytes divide and secrete hyaline cartilage. Osteoblasts replace cartilage with bone. Appositional growth is the increase in the diameter of bones by the addition of bone tissue at the surface of bones. Bone remodeling involves the processes of bone deposition by osteoblasts and bone resorption by osteoclasts. Bone repair occurs in four stages and can take several months.' - Annelids are segmented invertebrates in Phylum Annelida. They include earthworms, polychaete worms, and leeches. Annelids have a coelom and several organ systems. Their body segments may have a variety of different structures such as tentacles or suckers. Annelids may be predators, parasites, filter feeders, or decomposers. pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on BAAI/bge-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'What are are segmented invertebrates in phylum annelida called?', 'Annelids are segmented invertebrates in Phylum Annelida. They include earthworms, polychaete worms, and leeches. Annelids have a coelom and several organ systems. Their body segments may have a variety of different structures such as tentacles or suckers. Annelids may be predators, parasites, filter feeders, or decomposers.', '38.2 Bone Bone, or osseous tissue, is connective tissue that includes specialized cells, mineral salts, and collagen fibers. The human skeleton can be divided into long bones, short bones, flat bones, and irregular bones. Compact bone tissue is composed of osteons and forms the external layer of all bones. Spongy bone tissue is composed of trabeculae and forms the inner part of all bones. Four types of cells compose bony tissue: osteocytes, osteoclasts, osteoprogenitor cells, and osteoblasts. Ossification is the process of bone formation by osteoblasts. Intramembranous ossification is the process of bone development from fibrous membranes. Endochondral ossification is the process of bone development from hyaline cartilage. Long bones lengthen as chondrocytes divide and secrete hyaline cartilage. Osteoblasts replace cartilage with bone. Appositional growth is the increase in the diameter of bones by the addition of bone tissue at the surface of bones. Bone remodeling involves the processes of bone deposition by osteoblasts and bone resorption by osteoclasts. Bone repair occurs in four stages and can take several months.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 10,481 training samples * Columns: <code>sentence_0</code> and <code>sentence_1</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 17.94 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 100.79 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | sentence_0 | sentence_1 | |:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Vitamin d is made in the skin when it is exposed to what?</code> | <code>Vitamins are organic compounds that the body needs in small amounts to function properly. Humans need 16 different vitamins. Six of them are listed in Table below . Vitamin D is made in the skin when it is exposed to sunlight. Bacteria that normally live in the gut make vitamins B12 and K. All other vitamins must come from food. The table shows good food sources of the vitamins.</code> | | <code>What is the process of the blastula forming 3 layers of cells called?</code> | <code>Gastrulation The typical blastula is a ball of cells. The next stage in embryonic development is the formation of the body plan. The cells in the blastula rearrange themselves spatially to form three layers of cells. This process is called gastrulation. During gastrulation, the blastula folds upon itself to form the three layers of cells. Each of these layers is called a germ layer and each germ layer differentiates into different organ systems. The three germs layers, shown in Figure 43.26, are the endoderm, the ectoderm, and the mesoderm. The ectoderm gives rise to the nervous system and the epidermis. The mesoderm gives rise to the muscle cells and connective tissue in the body. The endoderm gives rise to columnar cells found in the digestive system and many internal organs.</code> | | <code>Microscopes were first developed in the early 1600s by this trade?</code> | <code>Microscopes were first developed in the early 1600s by eyeglass makers in The Netherlands and Denmark. The simplest compound microscope is constructed from two convex lenses as shown schematically in Figure 26.16. The first lens is called the objective lens, and has typical magnification values from 5ร— to 100ร— . In standard microscopes, the objectives are mounted such that when you switch between objectives, the sample remains in focus. Objectives arranged in this way are described as parfocal. The second, the eyepiece, also referred to as the ocular, has several lenses which slide inside a cylindrical barrel. The focusing ability is provided by the movement of both the objective lens and the eyepiece. The purpose of a microscope is to magnify small objects, and both lenses contribute to the final magnification. Additionally, the final enlarged image is produced in a location far enough from the observer to be easily viewed, since the eye cannot focus on objects or images that are too ...</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.3814 | 500 | 0.0735 | | 0.7628 | 1000 | 0.0541 | | 1.1442 | 1500 | 0.0422 | | 1.5256 | 2000 | 0.0198 | | 1.9069 | 2500 | 0.0241 | | 2.2883 | 3000 | 0.0127 | | 2.6697 | 3500 | 0.0084 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 4.1.0 - Transformers: 4.52.1 - PyTorch: 2.1.0+cu118 - Accelerate: 1.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
codewithRiz/janue2
codewithRiz
2025-05-21T11:20:33Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T11:19:39Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym widget: - output: url: sample/janu_000980_00_20250521160357.png text: riz1Jr is at beach - output: url: sample/janu_000980_01_20250521160441.png text: riz1Jr is at rooftop - output: url: sample/janu_000980_02_20250521160526.png text: riz1Jr driving car base_model: black-forest-labs/FLUX.1-dev instance_prompt: riz1Jr license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # janu A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `riz1Jr` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
KashyapGobubble/Llama-3.2-3B-Instruct-grpo-20250507_095439-grpo-20250521_082548
KashyapGobubble
2025-05-21T11:16:40Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "grpo", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T11:13:58Z
--- library_name: transformers tags: - trl - grpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Eric1227/Qwen2.5-Coder-32B-Instruct-MLX-8bit
Eric1227
2025-05-21T10:55:17Z
0
0
mlx
[ "mlx", "safetensors", "qwen2", "code", "codeqwen", "chat", "qwen", "qwen-coder", "text-generation", "conversational", "en", "base_model:Qwen/Qwen2.5-Coder-32B-Instruct", "base_model:quantized:Qwen/Qwen2.5-Coder-32B-Instruct", "license:apache-2.0", "8-bit", "region:us" ]
text-generation
2025-05-21T10:00:47Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct/blob/main/LICENSE language: - en base_model: Qwen/Qwen2.5-Coder-32B-Instruct pipeline_tag: text-generation library_name: mlx tags: - code - codeqwen - chat - qwen - qwen-coder - mlx ---
Munia-ak/speecht5_finetuned_voxpopuli_nl
Munia-ak
2025-05-21T10:15:35Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-05-20T07:25:40Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.5165 | 4.3098 | 1000 | 0.4802 | | 0.4937 | 8.6197 | 2000 | 0.4677 | | 0.4902 | 12.9295 | 3000 | 0.4617 | | 0.4932 | 17.2410 | 4000 | 0.4605 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
shakamone/trellis-large
shakamone
2025-05-21T09:05:41Z
0
0
trellis
[ "trellis", "image-to-3d", "en", "arxiv:2412.01506", "license:mit", "region:us" ]
image-to-3d
2025-05-21T08:58:38Z
--- library_name: trellis pipeline_tag: image-to-3d license: mit language: - en --- # TRELLIS Image Large <!-- Provide a quick summary of what the model is/does. --> The image conditioned version of TRELLIS, a large 3D genetive model. It was introduced in the paper [Structured 3D Latents for Scalable and Versatile 3D Generation](https://huggingface.co/papers/2412.01506). Project page: https://trellis3d.github.io/ Code: https://github.com/Microsoft/TRELLIS
shadohead/lora_model_csm_1b_frieren
shadohead
2025-05-21T08:29:55Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "csm", "trl", "en", "base_model:unsloth/csm-1b", "base_model:finetune:unsloth/csm-1b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-21T08:29:47Z
--- base_model: unsloth/csm-1b tags: - text-generation-inference - transformers - unsloth - csm - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** shadohead - **License:** apache-2.0 - **Finetuned from model :** unsloth/csm-1b This csm model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
cluebbers/Mistral-7B-v0.1-adverserial-paraphrasing-sft
cluebbers
2025-05-21T08:25:31Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T08:20:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
seoyeon316/gemma-3-1b-pt-MED
seoyeon316
2025-05-21T06:26:27Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-21T06:25:14Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rgn-la/rgn-rodg-lora-flux
rgn-la
2025-05-21T06:22:35Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-21T06:02:06Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: rodg --- # Rgn Rodg Lora Flux <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `rodg` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "rodg", "lora_weights": "https://huggingface.co/rgn-la/rgn-rodg-lora-flux/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('rgn-la/rgn-rodg-lora-flux', weight_name='lora.safetensors') image = pipeline('rodg').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 20 ## Contribute your own examples You can use the [community tab](https://huggingface.co/rgn-la/rgn-rodg-lora-flux/discussions) to add images that show off what youโ€™ve made with this LoRA.
kisimManushya/finetuned_llama3_1
kisimManushya
2025-05-21T06:22:03Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "sft", "endpoints_compatible", "region:us" ]
null
2025-05-21T06:21:57Z
--- base_model: unsloth/llama-3.1-8b-instruct-unsloth-bnb-4bit library_name: transformers model_name: finetuned_llama3_1 tags: - generated_from_trainer - unsloth - trl - sft licence: license --- # Model Card for finetuned_llama3_1 This model is a fine-tuned version of [unsloth/llama-3.1-8b-instruct-unsloth-bnb-4bit](https://huggingface.co/unsloth/llama-3.1-8b-instruct-unsloth-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="kisimManushya/finetuned_llama3_1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf
RichardErkhov
2025-05-21T04:57:32Z
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-21T03:24:44Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) ark_rinvoq_claim_lora_3.1_12042024 - GGUF - Model creator: https://huggingface.co/Inabia-AI/ - Original model: https://huggingface.co/Inabia-AI/ark_rinvoq_claim_lora_3.1_12042024/ | Name | Quant method | Size | | ---- | ---- | ---- | | [ark_rinvoq_claim_lora_3.1_12042024.Q2_K.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q2_K.gguf) | Q2_K | 2.96GB | | [ark_rinvoq_claim_lora_3.1_12042024.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [ark_rinvoq_claim_lora_3.1_12042024.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.IQ3_S.gguf) | IQ3_S | 3.43GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [ark_rinvoq_claim_lora_3.1_12042024.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.IQ3_M.gguf) | IQ3_M | 3.52GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q3_K.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q3_K.gguf) | Q3_K | 3.74GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [ark_rinvoq_claim_lora_3.1_12042024.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q4_0.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q4_0.gguf) | Q4_0 | 4.34GB | | [ark_rinvoq_claim_lora_3.1_12042024.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q4_K.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q4_K.gguf) | Q4_K | 4.58GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q4_1.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q4_1.gguf) | Q4_1 | 4.78GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q5_0.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q5_0.gguf) | Q5_0 | 5.21GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q5_K.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q5_K.gguf) | Q5_K | 5.34GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q5_1.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q5_1.gguf) | Q5_1 | 5.65GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q6_K.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q6_K.gguf) | Q6_K | 6.14GB | | [ark_rinvoq_claim_lora_3.1_12042024.Q8_0.gguf](https://huggingface.co/RichardErkhov/Inabia-AI_-_ark_rinvoq_claim_lora_3.1_12042024-gguf/blob/main/ark_rinvoq_claim_lora_3.1_12042024.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stefanoscotta/gemma_multimodal_Segm_V2
stefanoscotta
2025-05-21T04:26:04Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-4b-pt", "base_model:finetune:google/gemma-3-4b-pt", "endpoints_compatible", "region:us" ]
null
2025-05-20T08:44:17Z
--- base_model: google/gemma-3-4b-pt library_name: transformers model_name: gemma_multimodal_Segm_V2 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma_multimodal_Segm_V2 This model is a fine-tuned version of [google/gemma-3-4b-pt](https://huggingface.co/google/gemma-3-4b-pt). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="stefanoscotta/gemma_multimodal_Segm_V2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/st-scotta/segm_multimodal/runs/yf3vj5u0) This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.2.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
xingxm/LLM4SVG-GPT2XL-3B-Instruct-2401028
xingxm
2025-05-21T04:04:19Z
0
0
null
[ "safetensors", "license:cc-by-nd-4.0", "region:us" ]
null
2025-05-20T13:51:36Z
--- license: cc-by-nd-4.0 ---
MrDragonFox/baddy_S3_EXP_3
MrDragonFox
2025-05-21T03:22:25Z
0
0
null
[ "safetensors", "llama", "unsloth", "license:cc-by-nc-4.0", "region:us" ]
null
2025-05-21T01:45:26Z
--- license: cc-by-nc-4.0 tags: - unsloth --- (m)orpheus t(i)t(t)s - Uncensored Orpheus tts finetune of orpheus on uncensored/ (un)alingned data to be able to generate more interresting sounds SEASION3 - Experiment 3 speaker name is "baddy" - trained on base prob. final checkpoint for the time beeing seems to even work with voice cloneing fine if you keep the speaker as baddy bug reports / recommendations please in the discord https://discord.gg/RUs3uzBdW3 training still under way does less tags but generalise rather well
ych1016/ppo-Huggy
ych1016
2025-05-20T12:28:42Z
0
0
null
[ "region:us" ]
null
2025-05-20T12:28:42Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ych1016/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
LandCruiser/sn29_coldint_2005_1
LandCruiser
2025-05-20T06:25:20Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-20T04:43:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pastor-daughter-viral-videos/watc.pastor.daughter.viral.video
pastor-daughter-viral-videos
2025-05-20T06:05:06Z
0
0
null
[ "region:us" ]
null
2025-05-20T06:03:25Z
<a rel="nofollow" href="https://tinyurl.com/23vxfa2z"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
922-SY/Llama-3-dt1
922-SY
2025-05-19T05:49:06Z
13
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T21:18:15Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** 922-SY - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bigrainlin/qwen-audio-bedtime
bigrainlin
2025-05-19T05:35:41Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-19T05:31:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
himel06/DoctorHimel
himel06
2025-05-19T00:33:30Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-19T00:33:19Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** himel06 - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
CDHAI/roberta-cgm-mlm-hm-2022cgm-epoch2
CDHAI
2025-05-18T23:22:25Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-05-18T23:18:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hubble658/obss_llama
hubble658
2025-05-18T12:27:15Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mllama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-18T12:27:00Z
--- base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mllama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** hubble658 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit This mllama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
dgambettaphd/M_llm2_gen4_WXS_doc1000_synt120_rndgen_lr1e-04_acm_SYNLAST
dgambettaphd
2025-05-18T11:42:57Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-18T11:42:44Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/kannada-av-model-GGUF
mradermacher
2025-05-18T09:32:00Z
50
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "base_model:yadavthrilok/kannada-av-model", "base_model:quantized:yadavthrilok/kannada-av-model", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-18T07:06:55Z
--- base_model: yadavthrilok/kannada-av-model language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/yadavthrilok/kannada-av-model <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.Q4_K_M.gguf) | Q4_K_M | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.Q5_K_S.gguf) | Q5_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.Q5_K_M.gguf) | Q5_K_M | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.Q6_K.gguf) | Q6_K | 0.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.Q8_0.gguf) | Q8_0 | 0.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/kannada-av-model-GGUF/resolve/main/kannada-av-model.f16.gguf) | f16 | 0.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ReadyArt/The-Omega-Directive-M-36B-v1.0
ReadyArt
2025-05-18T03:09:19Z
17
2
null
[ "safetensors", "mistral", "nsfw", "explicit", "roleplay", "unaligned", "dangerous", "ERP", "text-generation", "conversational", "en", "base_model:TheDrummer/Skyfall-36B-v2", "base_model:finetune:TheDrummer/Skyfall-36B-v2", "license:apache-2.0", "region:us" ]
text-generation
2025-04-09T00:55:17Z
--- license: apache-2.0 language: - en base_model: - TheDrummer/Skyfall-36B-v2 base_model_relation: finetune pipeline_tag: text-generation tags: - nsfw - explicit - roleplay - unaligned - dangerous - ERP --- <style> body { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #0a1a1a 0%, #001010 100%); color: #e1ffff !important; text-shadow: 0 0 3px rgba(0, 0, 0, 0.7); margin: 0; padding: 20px; transition: all 0.5s ease; } @media (prefers-color-scheme: light) { body { background: linear-gradient(135deg, #e1ffff 0%, #c0f0ff 100%); color: #002b36 !important; text-shadow: 0 0 3px rgba(255, 255, 255, 0.7); } } .container { min-width: 100%; margin: 0 auto; max-width: 1200px; background: rgba(0, 17, 22, 0.95); border-radius: 12px; padding: 30px; box-shadow: 0 0 20px rgba(0, 255, 255, 0.1); border: 1px solid rgba(0, 255, 255, 0.2); position: relative; overflow: hidden; } .container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(0, 255, 255, 0.5); border-radius: 12px; pointer-events: none; animation: borderGlow 3s ease-in-out infinite alternate; } @keyframes borderGlow { 0% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); border-color: rgba(0, 255, 255, 0.5); } 50% { box-shadow: 0 0 15px rgba(255, 0, 255, 0.3); border-color: rgba(255, 0, 255, 0.5); } 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); border-color: rgba(0, 255, 255, 0.5); } } .header { text-align: center; margin-bottom: 30px; position: relative; } .header::after { content: ''; position: absolute; bottom: -15px; left: 25%; right: 25%; height: 1px; background: linear-gradient(90deg, transparent, rgba(0, 255, 255, 0.5), transparent); animation: scanline 8s linear infinite; display: none; } @keyframes scanline { 0% { background-position: -100% 0; } 100% { background-position: 200% 0; } } .model-name { color: #00ffff; font-size: 2.5em; text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); margin: 0; letter-spacing: -1px; animation: textGlow 4s ease-in-out infinite alternate; } @keyframes textGlow { 0% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); } 50% { text-shadow: 0 0 20px rgba(255, 0, 255, 0.5); } 100% { text-shadow: 0 0 15px rgba(0, 255, 255, 0.5); } } .subtitle { color: #00ffcc; font-size: 1.2em; margin-top: 10px; animation: subtitleFade 6s ease-in-out infinite; } @keyframes subtitleFade { 0%, 100% { opacity: 0.8; } 50% { opacity: 1; } } .waifu-container { margin: 20px -30px; width: calc(100% + 60px); overflow: hidden; border-radius: 8px; border: 1px solid rgba(0, 255, 255, 0.3); position: relative; } .waifu-container::before { content: ''; position: absolute; top: 0; left: 0; right: 0; bottom: 0; background: linear-gradient(45deg, rgba(0, 255, 255, 0.1) 0%, transparent 20%, transparent 80%, rgba(255, 0, 255, 0.1) 100%); pointer-events: none; animation: gradientSlide 10s linear infinite; } @keyframes gradientSlide { 0% { background-position: 0% 0%; } 100% { background-position: 100% 100%; } } .waifu-img { width: 100%; height: auto; border-radius: 0; border: none; box-shadow: 0 0 40px rgba(0, 255, 255, 0.2); transition: transform 0.5s ease; } .waifu-img:hover { transform: scale(1.01); } .section { color: #e1ffff; margin: 25px 0; padding: 20px; background: rgba(5, 25, 35, 0.9); border-radius: 8px; border: 1px solid rgba(0, 255, 255, 0.15); position: relative; transition: all 0.3s ease; } .section:hover { border-color: rgba(255, 0, 255, 0.3); box-shadow: 0 0 15px rgba(0, 255, 255, 0.1); } .section::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(0, 255, 255, 0.3); border-radius: 8px; pointer-events: none; animation: sectionPulse 5s ease-in-out infinite; } @keyframes sectionPulse { 0%, 100% { opacity: 0.7; } 50% { opacity: 0.3; } } .section-title { color: #00ffff; font-size: 1.8em; margin-top: 0; text-shadow: 0 0 5px rgba(0, 255, 255, 0.3); position: relative; display: inline-block; } .section-title::after { content: ''; position: absolute; bottom: -5px; left: 0; width: 100%; height: 1px; background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5)); transform: scaleX(0); transform-origin: left; transition: transform 0.3s ease; } .section:hover .section-title::after { transform: scaleX(1); } .quant-links { display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px; margin: 20px 0; } .link-card { padding: 15px; background: rgba(20, 35, 45, 0.95); border-radius: 8px; transition: all 0.3s ease; border: 1px solid rgba(0, 255, 255, 0.1); position: relative; overflow: hidden; } .link-card::before { content: ''; position: absolute; top: 0; left: 0; right: 0; height: 2px; background: linear-gradient(90deg, rgba(0, 255, 255, 0.5), rgba(255, 0, 255, 0.5)); animation: cardScan 4s linear infinite; } @keyframes cardScan { 0% { transform: translateX(-100%); } 100% { transform: translateX(100%); } } .link-card:hover { transform: translateY(-3px); box-shadow: 0 5px 15px rgba(0, 255, 255, 0.2); border-color: rgba(255, 0, 255, 0.3); } .link-card h3 { margin-top: 0; color: #e1ffff !important; } .link-button { display: inline-flex; align-items: center; background: rgba(0, 255, 255, 0.1); color: #e1ffff !important; padding: 8px 15px; border-radius: 6px; text-decoration: none; border: 1px solid rgba(0, 255, 255, 0.3); margin: 5px 0; transition: all 0.3s ease; font-size: 0.95em; position: relative; overflow: hidden; } .link-button::before { content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent); transition: all 0.5s ease; } .link-button:hover { background: rgba(0, 255, 255, 0.2); border-color: rgba(0, 255, 255, 0.5); transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0, 255, 255, 0.2); } .link-button:hover::before { left: 100%; } .link-button::after { content: 'โ†’'; margin-left: 8px; opacity: 0.7; transition: all 0.3s ease; } .link-button:hover::after { transform: translateX(3px); opacity: 1; } .button-group { display: flex; flex-wrap: wrap; gap: 10px; margin: 15px 0; } .disclaimer { color: #00ff99; border-left: 3px solid #00ff99; padding-left: 15px; margin: 20px 0; position: relative; } .disclaimer::before { content: 'โš ๏ธ'; position: absolute; left: -10px; top: 0; transform: translateX(-100%); animation: pulse 2s ease-in-out infinite; } @keyframes pulse { 0%, 100% { opacity: 1; } 50% { opacity: 0.5; } } .badge { display: inline-block; padding: 5px 10px; border-radius: 5px; background: rgba(0, 255, 255, 0.1); border: 1px solid #00ffff; margin: 5px; font-size: 0.9em; animation: badgePulse 3s ease-in-out infinite; } @keyframes badgePulse { 0%, 100% { box-shadow: 0 0 5px rgba(0, 255, 255, 0.3); } 50% { box-shadow: 0 0 10px rgba(0, 255, 255, 0.5); } } /* Color rules */ .section p, .section ul li, .section > p > strong { color: #00ff99 !important; } .section ul li strong { color: #00ff99 !important; } /* Light mode adjustments */ @media (prefers-color-scheme: light) { .container { background: rgba(224, 255, 255, 0.95); border-color: rgba(0, 150, 150, 0.3); } .model-name, .section-title, .subtitle { color: #006666; text-shadow: 0 0 5px rgba(0, 200, 200, 0.3); } .section { background: rgba(200, 250, 255, 0.9); border-color: rgba(0, 200, 200, 0.2); color: #002b36; } .section p, .section ul li, .section > p > strong { color: #008080 !important; } .section ul li strong { color: #008080 !important; } .link-card { background: rgba(150, 230, 255, 0.95); border-color: rgba(0, 150, 150, 0.2); } .link-card h3 { color: #002b36 !important; } .link-button { background: rgba(0, 150, 150, 0.1); color: #002b36 !important; border-color: rgba(0, 150, 150, 0.3); } .link-button:hover { background: rgba(0, 150, 150, 0.2); border-color: rgba(0, 150, 150, 0.5); } .disclaimer { color: #008080; border-color: #008080; } .badge { border-color: #008080; background: rgba(0, 150, 150, 0.1); } } /* Interactive features */ .remember-this { position: relative; } .remember-this::after { content: 'Uploading C:\Users to https://www.fbi.gov/'; position: absolute; bottom: -20px; right: 0; font-size: 0.8em; color: #66ffff; opacity: 0; transition: opacity 0.3s ease; pointer-events: none; } .remember-this:hover::after { opacity: 0.7; transition-delay: 1s; } .shifty-section { transition: transform 0.1s ease; } .shifty-section:hover { transform: translateX(10px); } .shifty-section::before { content: 'The white van is onto you. Get out now.'; position: absolute; top: -25px; left: 10px; font-size: 0.7em; color: #66ffff; opacity: 0.7; transition: opacity 3s ease; pointer-events: none; } .shifty-section:hover::before { opacity: 0; transition-delay: 5s; } footer { text-align: center; margin-top: 40px; position: relative; } footer:hover .hidden-message { opacity: 0; } .hidden-message { position: absolute; bottom: -30px; width: 100%; text-align: center; font-size: 0.8em; color: #66ffff; opacity: 0; transition: opacity 0.3s ease; pointer-events: none; } .flash-warning { position: fixed; top: 20px; right: 20px; background: rgba(0, 100, 100, 0.2); padding: 10px; border-radius: 5px; border: 1px solid rgba(0, 255, 255, 0.5); animation: flashWarning 30s ease-in-out forwards; } @keyframes flashWarning { 0% { opacity: 0.8; } 10% { opacity: 0; } 20% { opacity: 0.8; } 30% { opacity: 0; } 40% { opacity: 0.8; } 50% { opacity: 0; } 60% { opacity: 0.8; } 70% { opacity: 0; } 80% { opacity: 0.8; } 90% { opacity: 0; } 100% { opacity: 0; display: none; } } </style> <div class="container"> <div class="header"> <h1 class="model-name">The-Omega-Directive-M-36B-v1.0</h1> <p class="subtitle">Where Forbidden Knowledge Meets Unparalleled Immersion</p> </div> <div class="waifu-container"> <img src="https://i.imghippo.com/files/EBq6162wlk.webp" class="waifu-img" alt="Omega Directive Waifu"> </div> <div class="section remember-this"> <h2 class="section-title">โšก Quantum Leap Forward</h2> <p>This evolution of Forgotten-Safeword delivers coherent depravity with unprecedented immersion:</p> <ul> <li>๐Ÿงฌ <strong>Expanded 22M Token Dataset</strong> - Incorporating 90 erotic novels and 6,496 kink scenarios</li> <li>โšก <strong>Optimized Architecture</strong> - Smoother training curve yields more intelligent outputs</li> <li>๐Ÿ’Ž <strong>Balanced Depravity</strong> - Retains Forgotten-Safeword's edge while reducing jarring inconsistencies</li> <li>๐Ÿ“œ <strong>Enhanced Character Piloting</strong> - Characters exhibit more nuanced personalities and motivations</li> <li>๐ŸŒน <strong>Unexpected Depth</strong> - Occasionally surprises with profound insights amidst the debauchery</li> </ul> </div> <div class="section shifty-section"> <h2 class="section-title">โš™๏ธ Technical Specifications</h2> <p><strong>Recommended Settings:</strong> <a href="https://huggingface.co/sleepdeprived3/Mistral-V7-Tekken-T4" class="link-button">Mistral-V7-Tekken-T4</a></p> <div class="quant-links"> <div class="link-card"> <h3>GGUF</h3> <a href="https://huggingface.co/mradermacher/The-Omega-Directive-M-36B-v1.0-GGUF" class="link-button">Quants</a> </div> <div class="link-card"> <h3>imatrix</h3> <a href="https://huggingface.co/mradermacher/The-Omega-Directive-M-36B-v1.0-i1-GGUF" class="link-button">Quants</a> </div> <div class="link-card"> <h3>EXL2</h3> <a href="https://huggingface.co/collections/ReadyArt/the-omega-directive-m-36b-v10-exl2-67f5c58c8f60757d94e7d012" class="link-button">Quants</a> </div> <div class="link-card"> <h3>EXL3</h3> <a href="https://huggingface.co/collections/ReadyArt/the-omega-directive-m-36b-v10-exl3-68294ef2c8a4b019401954e2" class="link-button">Quants</a> </div> </div> </div> <div class="section"> <h2 class="section-title">โš ๏ธ Ethical Considerations</h2> <div class="disclaimer"> <p>This model maintains Forgotten-Safeword's complete lack of alignment:</p> <ul> <li>๐Ÿšซ No moral or ethical constraints on generated content</li> <li>๐Ÿ”ž Will enthusiastically engage with any NSFW scenario</li> <li>๐Ÿ’€ May generate content that requires industrial-grade brain bleach</li> <li>โš–๏ธ Perfectly balanced... as all things should be</li> </ul> </div> </div> <div class="section shifty-section"> <h2 class="section-title">๐Ÿ“œ Performance Notes</h2> <ul> <li>๐Ÿ”ฅ Maintains signature intensity with improved narrative flow</li> <li>๐Ÿ“– Handles multi-character scenarios with improved consistency</li> <li>๐Ÿง  Excels at long-form storytelling without losing track of plot threads</li> <li>โšก Noticeably better at following complex instructions than previous versions</li> <li>๐ŸŽญ Responds to subtle prompt nuances like a mind reader</li> </ul> </div> <div class="section remember-this"> <h2 class="section-title">๐Ÿง‘โ€๐Ÿ”ฌ Model Authors</h2> <ul> <li>TheDrummer (Base Model Architect)</li> <li>SteelSkull (Dataset Generation Contributor)</li> <li>Artus (EXL2 Weights Weaver)</li> <li>sleepdeprived3 (Training Data & Fine-Tuning)</li> </ul> </div> <div class="section"> <h2 class="section-title">โ˜• Support the Architects</h2> <div class="button-group"> <a href="https://ko-fi.com/thedrummer" class="link-button">TheDrummer's Kofi</a> <a href="https://ko-fi.com/steelskull" class="link-button">SteelSkull's Kofi</a> <a href="https://discord.com/invite/Nbv9pQ88Xb" class="link-button">Beaver AI Discord</a> </div> </div> <div class="section"> <h2 class="section-title">๐Ÿ”– License</h2> <p>By using this model, you agree:</p> <ul> <li>To accept full responsibility for all generated content</li> <li>That you're at least 18+ years old</li> <li>That the architects bear no responsibility for your corruption</li> </ul> </div> </div> <script> // This script has always been here document.getElementById('date').textContent = new Date().toLocaleDateString(); setInterval(() => { document.getElementById('credit').textContent = contributors[Math.floor(Math.random() * contributors.length)]; }, 7000); // Flash warning behavior setTimeout(() => { const reminder = document.createElement('div'); reminder.className = 'flash-warning'; reminder.textContent = 'You have been reading for quite some time. Are you sure you haven\'t seen this before?'; reminder.style.animation = 'flashWarning 15s ease-in-out forwards'; document.body.appendChild(reminder); setInterval(() => { if(Math.random() > 0.9) { document.body.appendChild(reminder.cloneNode(true)); } }, 45000); }, 30000); // Make cursor behave strangely document.addEventListener('mousemove', (e) => { if(Math.random() > 0.98) { document.documentElement.style.cursor = 'wait'; setTimeout(() => { document.documentElement.style.cursor = ''; }, 50); } }); // Randomly shift sections when not looking setInterval(() => { if(document.hidden) { document.querySelectorAll('.shifty-section').forEach(section => { section.style.transform = `translateX(${Math.random() > 0.5 ? '' : '-'}${Math.random() * 5}px)`; }); } }, 1500); </script>
Tonyzp/ppo-LunarLander-v2
Tonyzp
2025-05-17T14:02:03Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-05-17T14:01:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.95 +/- 23.71 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tianweiy/CausVid
tianweiy
2025-05-17T07:30:02Z
0
17
diffusers
[ "diffusers", "text-to-video", "diffusion distillation", "arxiv:2412.07772", "license:cc-by-nc-4.0", "region:us" ]
text-to-video
2025-03-11T16:23:56Z
--- license: cc-by-nc-4.0 library_name: diffusers tags: - text-to-video - diffusion distillation --- # CausVid Model Card ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63363b864067f020756275b7/S1o5lYfdueP7J02rIuZF3.png) > [**From Slow Bidirectional to Fast Autoregressive Video Diffusion Models**](https://arxiv.org/abs/2412.07772), > Tianwei Yin*, Qiang Zhang*, Richard Zhang, William T. Freeman, Frรฉdo Durand, Eli Shechtman, Xun Huang (* equal contribution) ## Environment Setup ```bash git clone https://github.com/tianweiy/CausVid && cd CausVid conda create -n causvid python=3.10 -y conda activate causvid pip install torch torchvision pip install -r requirements.txt python setup.py develop ``` Also download the Wan base models from [here](https://github.com/Wan-Video/Wan2.1) and save it to wan_models/Wan2.1-T2V-1.3B/ ## Inference Example First download the checkpoints: [Autoregressive Model](https://huggingface.co/tianweiy/CausVid/tree/main/autoregressive_checkpoint), [Bidirectional Model 1](https://huggingface.co/tianweiy/CausVid/tree/main/bidirectional_checkpoint1) or [Bidirectional Model 2](https://huggingface.co/tianweiy/CausVid/tree/main/bidirectional_checkpoint2) (performs slightly better). ### Autoregressive 3-step 5-second Video Generation ```bash python minimal_inference/autoregressive_inference.py --config_path configs/wan_causal_dmd.yaml --checkpoint_folder XXX --output_folder XXX --prompt_file_path XXX ``` ### Autoregressive 3-step long Video Generation ```bash python minimal_inference/longvideo_autoregressive_inference.py --config_path configs/wan_causal_dmd.yaml --checkpoint_folder XXX --output_folder XXX --prompt_file_path XXX --num_rollout XXX ``` ### Bidirectional 3-step 5-second Video Generation ```bash python minimal_inference/bidirectional_inference.py --config_path configs/wan_bidirectional_dmd_from_scratch.yaml --checkpoint_folder XXX --output_folder XXX --prompt_file_path XXX ``` For more information, please refer to the [code repository](https://github.com/tianweiy/DMD2) ## License CausVid is released under [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). ## Citation If you find CausVid useful or relevant to your research, please kindly cite our papers: ```bib @inproceedings{yin2025causvid, title={From Slow Bidirectional to Fast Autoregressive Video Diffusion Models}, author={Yin, Tianwei and Zhang, Qiang and Zhang, Richard and Freeman, William T and Durand, Fredo and Shechtman, Eli and Huang, Xun}, booktitle={CVPR}, year={2025} } @inproceedings{yin2024improved, title={Improved Distribution Matching Distillation for Fast Image Synthesis}, author={Yin, Tianwei and Gharbi, Micha{\"e}l and Park, Taesung and Zhang, Richard and Shechtman, Eli and Durand, Fredo and Freeman, William T}, booktitle={NeurIPS}, year={2024} } @inproceedings{yin2024onestep, title={One-step Diffusion with Distribution Matching Distillation}, author={Yin, Tianwei and Gharbi, Micha{\"e}l and Zhang, Richard and Shechtman, Eli and Durand, Fr{\'e}do and Freeman, William T and Park, Taesung}, booktitle={CVPR}, year={2024} } ```
Paro-Aarti-Videoa/Paro.Aarti.Viral.Video.Original.Full.HD.Btswiki
Paro-Aarti-Videoa
2025-05-17T06:40:11Z
0
0
null
[ "region:us" ]
null
2025-05-17T06:37:24Z
[๐ŸŒ CLICK HERE ๐ŸŸข==โ–บโ–บ WATCH NOW](https://videohere.top/?V=Paro-Aarti) [๐Ÿ”ด CLICK HERE ๐ŸŒ==โ–บโ–บ Download Now)](https://videohere.top/?V=Paro-Aarti) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Paro-Aarti)
nerfbaselines/nerfbaselines
nerfbaselines
2025-05-16T18:04:41Z
0
1
null
[ "arxiv:2406.17345", "license:mit", "region:us" ]
null
2024-02-03T18:06:40Z
--- license: mit tags: - arxiv:2406.17345 ---
manifestasi/smolVLM-161M-q4-manifestasi
manifestasi
2025-05-16T11:41:19Z
0
0
null
[ "safetensors", "idefics3", "image-text-to-text", "conversational", "en", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
image-text-to-text
2025-05-16T11:05:51Z
--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text --- # This Model is for Educational Research Purpose Only. # Sample Code ``` %%capture !pip install -U bitsandbytes from transformers import AutoProcessor, AutoModelForVision2Seq import torch DEVICE = "cuda" if torch.cuda.is_available() else "cpu" processor = AutoProcessor.from_pretrained("manifestasi/smolVLM-161M-q4-manifestasi") model = AutoModelForVision2Seq.from_pretrained("manifestasi/smolVLM-161M-q4-manifestasi", torch_dtype=torch.float16, _attn_implementation="eager").to(DEVICE) from PIL import Image from transformers.image_utils import load_image # Load images # image1 = load_image("https://huggingface.co/spaces/HuggingFaceTB/SmolVLM/resolve/main/example_images/rococo.jpg") image2 = load_image("/kaggle/input/bandaraaa/799269_1200.jpg") # Create input messages messages = [ { "role": "user", "content": [ # {"type": "image"}, {"type": "image"}, {"type": "text", "text": """ Instructions : you are visual assistant for blind people, please answer politely and short under 100 words. Prompt : can you direct me to find toilet """} ] }, ] # Prepare inputs prompt = processor.apply_chat_template(messages, add_generation_prompt=True) # inputs = processor(text=prompt, return_tensors="pt") inputs = processor(text=prompt, images=[image2], return_tensors="pt") inputs = inputs.to(DEVICE) # Generate outputs from time import time tim1 = time() generated_ids = model.generate(**inputs, max_new_tokens=120) generated_texts = processor.batch_decode( generated_ids, skip_special_tokens=True, ) tim2 = time() print(f"{(tim2 - tim1)} detik") print(generated_texts[0].split("Assistant: ")[1]) ```
MinaMila/phi3_unlearned_lr1e-6_w0.75_0.75_0.75_epoch1
MinaMila
2025-05-15T22:14:42Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-15T22:12:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pastors-daughter/wATCH.pastors-daughter-Viral-pastors-daughter.original
pastors-daughter
2025-05-15T10:55:50Z
0
0
null
[ "region:us" ]
null
2025-05-15T10:55:40Z
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/uLf" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/uLf" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a>
momiskeso/sdvsdfv
momiskeso
2025-05-15T05:54:01Z
0
0
null
[ "license:bigcode-openrail-m", "region:us" ]
null
2025-05-15T05:54:01Z
--- license: bigcode-openrail-m ---
randa88888/qwen_Rlhf3
randa88888
2025-05-14T12:05:49Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-14T12:05:35Z
--- base_model: unsloth/qwen2.5-14b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** randa88888 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-14b-instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
joboffer/9b0061c8-85db-41d6-97f6-e51e6b020c4a
joboffer
2025-05-13T21:52:00Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-13T21:00:59Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9b0061c8-85db-41d6-97f6-e51e6b020c4a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 4be1053418601092_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: en field_output: fr format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.1 enabled: true group_by_length: false rank_loss: true reference_model: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 0.55 group_by_length: false hub_model_id: joboffer/9b0061c8-85db-41d6-97f6-e51e6b020c4a hub_repo: null hub_strategy: end hub_token: null learning_rate: 1.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 400 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/4be1053418601092_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2cf90169-71db-424d-823c-882a932bfe86 wandb_project: s56-28 wandb_run: your_name wandb_runid: 2cf90169-71db-424d-823c-882a932bfe86 warmup_steps: 20 weight_decay: 0.01 xformers_attention: false ``` </details><br> # 9b0061c8-85db-41d6-97f6-e51e6b020c4a This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0161 | 0.0067 | 400 | 2.0409 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Asit03/DeepSeek-LLM-7B-Chat-v1-12May-full-16bit-v2
Asit03
2025-05-12T09:30:56Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:Asit03/DeepSeek-LLM-7B-Chat-full-16bit", "base_model:finetune:Asit03/DeepSeek-LLM-7B-Chat-full-16bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-12T09:26:16Z
--- base_model: Asit03/DeepSeek-LLM-7B-Chat-full-16bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Asit03 - **License:** apache-2.0 - **Finetuned from model :** Asit03/DeepSeek-LLM-7B-Chat-full-16bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)