modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 06:27:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 06:27:45
card
stringlengths
11
1.01M
wangguan/ppo-LunarLander-v2
wangguan
2023-02-09T09:16:30Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T09:15:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 28.48 +/- 127.04 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
swl-models/bailocat
swl-models
2023-02-09T09:08:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T08:43:09Z
--- license: creativeml-openrail-m ---
reemalyami/AraRoBERTa-EGY
reemalyami
2023-02-09T08:58:21Z
9
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ar --- The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/). The following are the AraRoBERTa seven dialectal variations: * [AraRoBERTa-SA](https://huggingface.co/reemalyami/AraRoBERTa-SA): Saudi Arabia (SA) dialect. * [AraRoBERTa-EGY](https://huggingface.co/reemalyami/AraRoBERTa-EGY): Egypt (EGY) dialect. * [AraRoBERTa-KU](https://huggingface.co/reemalyami/AraRoBERTa-KU): Kuwait (KU) dialect. * [AraRoBERTa-OM](https://huggingface.co/reemalyami/AraRoBERTa-OM): Oman (OM) dialect. * [AraRoBERTa-LB](https://huggingface.co/reemalyami/AraRoBERTa-LB): Lebanon (LB) dialect. * [AraRoBERTa-JO](https://huggingface.co/reemalyami/AraRoBERTa-JO): Jordan (JO) dialect. * [AraRoBERTa-DZ](https://huggingface.co/reemalyami/AraRoBERTa-DZ): Algeria (DZ) dialect # When using the model, please cite our paper: ```python @inproceedings{alyami-al-zaidy-2022-weakly, title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models", author = "AlYami, Reem and Al-Zaidy, Rabah", booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wanlp-1.24", pages = "260--272", } ``` # Contact **Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <[email protected]> | <[email protected]>
reemalyami/AraRoBERTa-OM
reemalyami
2023-02-09T08:58:02Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ar --- The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/). The following are the AraRoBERTa seven dialectal variations: * AraRoBERTa-SA: Saudi Arabia (SA) dialect. * AraRoBERTa-EGY: Egypt (EGY) dialect. * AraRoBERTa-KU: Kuwait (KU) dialect. * AraRoBERTa-OM: Oman (OM) dialect. * AraRoBERTa-LB: Lebanon (LB) dialect. * AraRoBERTa-JO: Jordan (JO) dialect. * AraRoBERTa-DZ: Algeria (DZ) dialect # When using the model, please cite our paper: ```python @inproceedings{alyami-al-zaidy-2022-weakly, title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models", author = "AlYami, Reem and Al-Zaidy, Rabah", booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wanlp-1.24", pages = "260--272", } ``` # Contact **Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <[email protected]> | <[email protected]>
reemalyami/AraRoBERTa-KU
reemalyami
2023-02-09T08:57:45Z
32
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ar --- The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/). The following are the AraRoBERTa seven dialectal variations: * [AraRoBERTa-SA](https://huggingface.co/reemalyami/AraRoBERTa-SA): Saudi Arabia (SA) dialect. * [AraRoBERTa-EGY](https://huggingface.co/reemalyami/AraRoBERTa-EGY): Egypt (EGY) dialect. * [AraRoBERTa-KU](https://huggingface.co/reemalyami/AraRoBERTa-KU): Kuwait (KU) dialect. * [AraRoBERTa-OM](https://huggingface.co/reemalyami/AraRoBERTa-OM): Oman (OM) dialect. * [AraRoBERTa-LB](https://huggingface.co/reemalyami/AraRoBERTa-LB): Lebanon (LB) dialect. * [AraRoBERTa-JO](https://huggingface.co/reemalyami/AraRoBERTa-JO): Jordan (JO) dialect. * [AraRoBERTa-DZ](https://huggingface.co/reemalyami/AraRoBERTa-DZ): Algeria (DZ) dialect # When using the model, please cite our paper: ```python @inproceedings{alyami-al-zaidy-2022-weakly, title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models", author = "AlYami, Reem and Al-Zaidy, Rabah", booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wanlp-1.24", pages = "260--272", } ``` # Contact **Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <[email protected]> | <[email protected]>
reemalyami/AraRoBERTa-SA
reemalyami
2023-02-09T08:57:22Z
38
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ar --- The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/). The following are the AraRoBERTa seven dialectal variations: * [AraRoBERTa-SA](https://huggingface.co/reemalyami/AraRoBERTa-SA): Saudi Arabia (SA) dialect. * [AraRoBERTa-EGY](https://huggingface.co/reemalyami/AraRoBERTa-EGY): Egypt (EGY) dialect. * [AraRoBERTa-KU](https://huggingface.co/reemalyami/AraRoBERTa-KU): Kuwait (KU) dialect. * [AraRoBERTa-OM](https://huggingface.co/reemalyami/AraRoBERTa-OM): Oman (OM) dialect. * [AraRoBERTa-LB](https://huggingface.co/reemalyami/AraRoBERTa-LB): Lebanon (LB) dialect. * [AraRoBERTa-JO](https://huggingface.co/reemalyami/AraRoBERTa-JO): Jordan (JO) dialect. * [AraRoBERTa-DZ](https://huggingface.co/reemalyami/AraRoBERTa-DZ): Algeria (DZ) dialect # When using the model, please cite our paper: ```python @inproceedings{alyami-al-zaidy-2022-weakly, title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models", author = "AlYami, Reem and Al-Zaidy, Rabah", booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wanlp-1.24", pages = "260--272", } ``` # Contact **Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <[email protected]> | <[email protected]>
Anjoe/poetry-gpt2-large-no-hoel_2
Anjoe
2023-02-09T08:56:20Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-06T20:25:45Z
--- license: mit tags: - generated_from_trainer model-index: - name: poetry-gpt2-large-no-hoel_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poetry-gpt2-large-no-hoel_2 This model is a fine-tuned version of [benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.6683 | 1.0 | 19927 | 3.7260 | | 3.3474 | 2.0 | 39854 | 3.7067 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Anjoe/poetry-gpt2-large-no_schiller_3
Anjoe
2023-02-09T08:56:06Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-08T20:37:21Z
--- license: mit tags: - generated_from_trainer model-index: - name: poetry-gpt2-large-no_schiller_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poetry-gpt2-large-no_schiller_3 This model is a fine-tuned version of [benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.6925 | 1.0 | 20041 | 3.7494 | | 3.3496 | 2.0 | 40082 | 3.7301 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Anjoe/poetry-gpt2-large-complete_3
Anjoe
2023-02-09T08:55:34Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-08T20:37:36Z
--- license: mit tags: - generated_from_trainer model-index: - name: poetry-gpt2-large-complete_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poetry-gpt2-large-complete_3 This model is a fine-tuned version of [benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.6838 | 1.0 | 20371 | 3.7627 | | 3.3382 | 2.0 | 40742 | 3.7483 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
muhtasham/santacoder-finetuned-the-stack-assembly
muhtasham
2023-02-09T08:49:00Z
49
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "code", "codegen", "assembly", "custom_code", "dataset:bigcode/the-stack-dedup", "arxiv:1911.02150", "arxiv:2207.14255", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-05T21:56:44Z
--- license: openrail tags: - generated_from_trainer - code - codegen - assembly model-index: - name: santacoder-finetuned-the-stack-assembly results: [] datasets: - bigcode/the-stack-dedup language: - code pipeline_tag: text-generation library_name: transformers --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # santacoder-finetuned-the-stack-assembly This model is a fine-tuned version of [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) on an on The Stack [assembly](https://huggingface.co/datasets/bigcode/the-stack-dedup) dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7423 - eval_runtime: 14042.2321 - eval_samples_per_second: 6.116 - eval_steps_per_second: 3.058 - epoch: 0.3 - step: 1500 ## Model description The [SantaCoder](https://huggingface.co/bigcode/santacoder) models are a series of 1.1B parameter models trained on the Python, Java, and JavaScript subset of [The Stack (v1.1)](https://huggingface.co/datasets/bigcode/the-stack) (which excluded opt-out requests). The main model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150), was trained using near-deduplication and comment-to-code ratio as filtering criteria and using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255). In addition, there are several models that were trained on datasets with different filter parameters and with architecture and objective variations. ## Intended uses & limitations The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. ## Training and evaluation data The Stack contains over 6TB of permissively-licensed source code files covering 358 programming languages. The dataset was created as part of the [BigCode Project](https://www.bigcode-project.org/), an open scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs). The Stack serves as a pre-training dataset for Code LLMs, i.e., code-generating AI systems which enable the synthesis of programs from natural language descriptions as well as other from code snippets. **This is the near-deduplicated version with 3TB data.** ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
marcosgg/bert-small-gl-cased
marcosgg
2023-02-09T08:33:05Z
20
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "gl", "pt", "arxiv:2106.13553", "license:agpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - gl - pt widget: - text: A mesa estaba feita de [MASK]. license: agpl-3.0 --- # BERT for Galician (Small) This is a small pre-trained BERT model (6 layers, cased) for Galician (ILG/RAG spelling). It was evaluated on lexical semantics tasks, using a [dataset to identify homonymy and synonymy in context](https://github.com/marcospln/homonymy_acl21), and presented at ACL 2021. There is also a base version (12 layers, cased): `marcosgg/bert-base-gl-cased` ## Citation If you use this model, please cite the following [paper](https://arxiv.org/abs/2106.13553): ``` @inproceedings{garcia-2021-exploring, title = "Exploring the Representation of Word Meanings in Context: {A} Case Study on Homonymy and Synonymy", author = "Garcia, Marcos", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.281", doi = "10.18653/v1/2021.acl-long.281", pages = "3625--3640" } ```
Asiri123/spotter
Asiri123
2023-02-09T08:19:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T08:19:47Z
--- license: creativeml-openrail-m ---
swl-models/zoirun-plus
swl-models
2023-02-09T08:15:32Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T07:03:26Z
--- license: creativeml-openrail-m ---
espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp
espnet
2023-02-09T08:01:30Z
2
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librimix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2023-02-09T08:00:31Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librimix license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp` This model was trained by Pengcheng Guo using librimix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout fe824770250485b77c68e8ca041922b8779b5c94 pip install -e . cd egs2/librimix/sot_asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/pengcheng_librimix_asr_train_sot_asr_conformer_raw_en_char_sp ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Feb 6 12:15:26 CST 2023` - python version: `3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0]` - espnet version: `espnet 202211` - pytorch version: `pytorch 1.12.1` - Git hash: `` - Commit date: `` ## asr_train_sot_conformer_raw_en_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|123853|78.3|19.1|2.6|3.0|24.7|99.3| |decode_sot_asr_model_valid.acc.ave/test|3000|111243|79.6|17.7|2.6|3.0|23.3|98.7| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|670222|90.1|6.3|3.6|3.5|13.4|99.3| |decode_sot_asr_model_valid.acc.ave/test|3000|605408|90.7|5.7|3.6|3.3|12.6|98.7| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_sot_asr_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_sot_asr_conformer_raw_en_char_sp ngpu: 1 seed: 0 num_workers: 8 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 38867 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 60 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 8000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_char_sp/train/speech_shape - exp/asr_stats_raw_en_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_en_char_sp/valid/speech_shape - exp/asr_stats_raw_en_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.0005 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 20000 token_list: - <blank> - <unk> - <sc> - <space> - E - T - A - O - N - I - H - S - R - D - L - U - M - C - W - F - G - Y - P - B - V - K - '''' - X - J - Q - Z - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 aux_ctc_tasks: [] frontend: default frontend_conf: fs: 16k specaug: null specaug_conf: {} normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_char_sp/train/feats_stats.npz model: espnet model_conf: ctc_weight: 0.0 lsm_weight: 0.1 length_normalized_loss: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 preprocessor: multi preprocessor_conf: speaker_change_symbol: - <sc> required: - output_dir - token_list version: '202211' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
imjunaidafzal/saqib-t600-u3000-photoreal-9-feb
imjunaidafzal
2023-02-09T07:58:53Z
2
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-09T07:55:29Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Fine tune the ### concept name: saqib-t600-u3000-photoreal-9-FEB ### Training steps: 1500 ### Text encoder steps: 350% of Training steps Sample pictures of this concept:
kkh4162/xlm-roberta-base-finetuned-panx-de
kkh4162
2023-02-09T07:52:57Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T06:50:32Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8638300289723342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
sunwooooong/klue-bert-finetuned-klue-ner
sunwooooong
2023-02-09T07:47:31Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:klue", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T07:19:36Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: klue-bert-finetuned-klue-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # klue-bert-finetuned-klue-ner This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3741 - F1: 0.3930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5313 | 1.0 | 876 | 0.5225 | 0.2331 | | 0.3884 | 2.0 | 1752 | 0.4197 | 0.3350 | | 0.3136 | 3.0 | 2628 | 0.3741 | 0.3930 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
atorre/poca-SoccerTwos-10M
atorre
2023-02-09T07:47:23Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T07:47:15Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: atorre/poca-SoccerTwos-10M 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ZoeScralet/Zoe_LOL_LoraModel
ZoeScralet
2023-02-09T06:55:21Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T06:47:48Z
--- license: creativeml-openrail-m ---
kellyxuanlin/bert-finetuned-squad
kellyxuanlin
2023-02-09T06:52:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-09T00:03:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
jannikskytt/poca-SoccerTwos
jannikskytt
2023-02-09T06:50:28Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T06:50:13Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: jannikskytt/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
thanat/mt5-small-finetuned-amazon-en-es
thanat
2023-02-09T06:42:12Z
3
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-09T05:12:02Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: thanat/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # thanat/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [amazon_reviews_multi](https://huggingface.co/datasets/amazon_reviews_multi) dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0061 - Validation Loss: 3.3257 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.6013 | 4.2024 | 0 | | 5.8556 | 3.7335 | 1 | | 5.0930 | 3.5494 | 2 | | 4.6610 | 3.4502 | 3 | | 4.3874 | 3.4030 | 4 | | 4.2103 | 3.3568 | 5 | | 4.0930 | 3.3311 | 6 | | 4.0061 | 3.3257 | 7 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
TkskKurumi/KurumiMix
TkskKurumi
2023-02-09T06:12:07Z
2
1
diffusers
[ "diffusers", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T02:26:32Z
# KurumiMix ## Composition ### unet weights The model weights are interpolated with same composition in all UNet blocks. |Model|Contribution| |-|-| |[PastelMix](https://huggingface.co/andite/pastel-mix)|40%| |[Counterfeit V2.5](https://huggingface.co/gsdf/Counterfeit-V2.5)|20%| |Counterfeit V2.2|20%| |[EimisAnimeDiffusion](https://huggingface.co/eimiss/EimisAnimeDiffusion_1.0v)|10%| |[BasilMix](https://huggingface.co/nuigurumi/basil_mix)|5%| |[AbyssOrangeMix2](https://huggingface.co/WarriorMama777/OrangeMixs)|5%| ### vae weights Pastel mix's vae is colorful and beautiful, but a bit over-saturated in my view. Mix a little bit other vae. |Model|Contribution| |-|-| |[orangemix.vae.pt](https://huggingface.co/WarriorMama777/OrangeMixs)|10%| |[pastel-waifu-diffusion.vae.pt](https://huggingface.co/andite/pastel-mix)|90%| ## samples ![](https://huggingface.co/TkskKurumi/KurumiMix/resolve/main/gallery/005.jpg) ![](https://huggingface.co/TkskKurumi/KurumiMix/resolve/main/gallery/001.jpg) ![](https://huggingface.co/TkskKurumi/KurumiMix/resolve/main/gallery/003.png) ![](https://huggingface.co/TkskKurumi/KurumiMix/resolve/main/gallery/004.jpg)
Toying/distilbert-base-uncased-finetuned-emotion
Toying
2023-02-09T06:06:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-09T05:44:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9264887378942147 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2107 - Accuracy: 0.9265 - F1: 0.9265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.811 | 1.0 | 250 | 0.3073 | 0.905 | 0.9023 | | 0.2402 | 2.0 | 500 | 0.2107 | 0.9265 | 0.9265 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
shaoyu17/my_awesome_model
shaoyu17
2023-02-09T06:03:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T05:49:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - precision - recall - accuracy model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8597 - F1: 0.5171 - Precision: 0.5205 - Recall: 0.52 - Accuracy: 0.52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| | 0.6451 | 1.0 | 752 | 0.7708 | 0.4699 | 0.5047 | 0.5035 | 0.5035 | | 0.5828 | 2.0 | 1504 | 0.7702 | 0.5101 | 0.5106 | 0.5106 | 0.5106 | | 0.5139 | 3.0 | 2256 | 0.8597 | 0.5171 | 0.5205 | 0.52 | 0.52 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
dfm794/poca-SoccerTwos-2-l
dfm794
2023-02-09T05:50:03Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T05:49:55Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: dfm794/poca-SoccerTwos-2-l 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
SandyML/ddpm-celebahq-finetuned-butterflies-2epochs
SandyML
2023-02-09T05:35:07Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-02-09T05:34:23Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('SandyML/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
Dainong2/bert-finetuned-squad
Dainong2
2023-02-09T05:13:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-09T03:53:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
rishabhjain16/whisper_base_to_pf10h
rishabhjain16
2023-02-09T05:03:28Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-08T15:16:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1929 - Wer: 4.3549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0326 | 10.0 | 500 | 0.1670 | 5.0398 | | 0.0019 | 20.0 | 1000 | 0.1728 | 4.5113 | | 0.0008 | 30.01 | 1500 | 0.1820 | 4.4071 | | 0.0005 | 40.01 | 2000 | 0.1847 | 4.3773 | | 0.0004 | 51.0 | 2500 | 0.1886 | 4.3549 | | 0.0003 | 61.0 | 3000 | 0.1910 | 4.3475 | | 0.0003 | 71.01 | 3500 | 0.1925 | 4.3549 | | 0.0002 | 81.01 | 4000 | 0.1929 | 4.3549 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
rishabhjain16/whisper_base_en_to_pf10h
rishabhjain16
2023-02-09T05:00:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-08T15:18:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-base.en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-base.en This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1913 - Wer: 3.9530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0489 | 10.0 | 500 | 0.1624 | 8.5536 | | 0.0019 | 20.0 | 1000 | 0.1682 | 4.0051 | | 0.0007 | 30.01 | 1500 | 0.1782 | 4.1167 | | 0.0004 | 40.01 | 2000 | 0.1823 | 4.0497 | | 0.0003 | 51.0 | 2500 | 0.1861 | 3.9827 | | 0.0002 | 61.0 | 3000 | 0.1888 | 3.9753 | | 0.0002 | 71.01 | 3500 | 0.1907 | 3.9678 | | 0.0002 | 81.01 | 4000 | 0.1913 | 3.9530 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
PecanPi/q-taxi-v3-v2
PecanPi
2023-02-09T04:43:15Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:41:55Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="PecanPi/q-taxi-v3-v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
pfunk/Pong-v4-DQPN_p50_e0.50-seed1
pfunk
2023-02-09T04:41:31Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:41:12Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 7.20 +/- 4.85 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.50.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p50_e0.50]" python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.50 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p50_e0.50 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.50 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.5, 'exp_name': 'DQPN_p50_e0.50', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 50000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
PecanPi/q-taxi-v3
PecanPi
2023-02-09T04:34:24Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:34:20Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="PecanPi/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sweaterr/pegasus-samsum
sweaterr
2023-02-09T04:34:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-09T03:33:08Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6928 | 0.54 | 500 | 1.4812 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
PecanPi/q-FrozenLake-v1-4x4-noSlippery
PecanPi
2023-02-09T04:31:28Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:31:23Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="PecanPi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
UtopiansRareTruth/poca-SoccerTwos
UtopiansRareTruth
2023-02-09T04:03:42Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-08T08:25:46Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: UtopiansRareTruth/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mindspore-ai/LeNet
mindspore-ai
2023-02-09T03:26:50Z
77
8
mindspore
[ "mindspore", "image-classification", "dataset:mnist", "license:apache-2.0", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 library_name: mindspore tags: - image-classification datasets: - mnist --- ## MindSpore Image Classification models with MNIST on the 🤗Hub! This repository contains the model from [this notebook on image classification with MNIST dataset using LeNet architecture](https://gitee.com/mindspore/mindspore/blob/r1.2/model_zoo/official/cv/lenet/README.md#). ## LeNet Description Lenet-5 is one of the earliest pre-trained models proposed by Yann LeCun and others in the year 1998, in the research paper Gradient-Based Learning Applied to Document Recognition. They used this architecture for recognizing the handwritten and machine-printed characters. The main reason behind the popularity of this model was its simple and straightforward architecture. It is a multi-layer convolution neural network for image classification. ![LeNet Architecture](./lenetarchitecture.jpeg) [source](https://www.analyticsvidhya.com/blog/2021/03/the-architecture-of-lenet-5/)
espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp
espnet
2023-02-09T03:21:16Z
5
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librimix", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2023-02-09T03:19:33Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librimix license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp` This model was trained by Pengcheng Guo using librimix recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout fe824770250485b77c68e8ca041922b8779b5c94 pip install -e . cd egs2/librimix/sot_asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/pengcheng_librimix_asr_train_sot_asr_conformer_wavlm_raw_en_char_sp ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Dec 29 13:36:46 CST 2022` - python version: `3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0]` - espnet version: `espnet 202211` - pytorch version: `pytorch 1.12.1` - Git hash: `` - Commit date: `` ## asr_train_sot_asr_conformer_wavlm_raw_en_char_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|123853|82.9|15.1|2.0|2.4|19.4|97.1| |decode_sot_asr_model_valid.acc.ave/test|3000|111243|85.1|13.0|1.9|2.1|17.1|96.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_sot_asr_model_valid.acc.ave/dev|3000|670222|92.2|4.9|2.9|2.7|10.6|97.1| decode_sot_asr_model_valid.acc.ave/test|3000|605408|93.2|4.1|2.6|2.3|9.1|96.1| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tunining/train_sot_asr_conformer_wavlm.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_sot_asr_conformer_wavlm_raw_en_char_sp ngpu: 1 seed: 0 num_workers: 8 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: 2 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 38431 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 60 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 6000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_char_sp/train/speech_shape - exp/asr_stats_raw_en_char_sp/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_en_char_sp/valid/speech_shape - exp/asr_stats_raw_en_char_sp/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 weight_decay: 1.0e-06 scheduler: warmuplr scheduler_conf: warmup_steps: 20000 token_list: - <blank> - <unk> - <sc> - <space> - E - T - A - O - N - I - H - S - R - D - L - U - M - C - W - F - G - Y - P - B - V - K - '''' - X - J - Q - Z - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: s3prl frontend_conf: frontend_conf: upstream: wavlm_local path_or_url: /home/work_nfs6/pcguo/asr/librimix/hub/wavlm_large.pt download_dir: ./hub multilayer_feature: true fs: 16k specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 0.0 lsm_weight: 0.1 length_normalized_loss: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 128 encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d2 normalize_before: true macaron_style: true rel_pos_type: latest pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 preprocessor: multi preprocessor_conf: speaker_change_symbol: - <sc> required: - output_dir - token_list version: '202211' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
pozman/distilbert-base-uncased-finetuned-squad
pozman
2023-02-09T03:17:55Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-09T01:52:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2224 | 1.0 | 5533 | 1.1604 | | 0.9577 | 2.0 | 11066 | 1.1244 | | 0.7436 | 3.0 | 16599 | 1.1519 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
nolanaatama/hyprbrsts
nolanaatama
2023-02-09T03:11:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T03:08:05Z
--- license: creativeml-openrail-m ---
Tune-A-Video-library/redshift-man-skiing
Tune-A-Video-library
2023-02-09T03:06:45Z
26
14
diffusers
[ "diffusers", "tune-a-video", "text-to-video", "arxiv:2212.11565", "arxiv:2112.10752", "base_model:nitrosocke/redshift-diffusion", "base_model:finetune:nitrosocke/redshift-diffusion", "license:creativeml-openrail-m", "diffusers:TuneAVideoPipeline", "region:us" ]
text-to-video
2023-02-07T03:09:46Z
--- license: creativeml-openrail-m base_model: nitrosocke/redshift-diffusion training_prompt: A man is skiing. tags: - tune-a-video - text-to-video - diffusers inference: false --- # Tune-A-Video - Redshift ## Model Description - Base model: [nitrosocke/redshift-diffusion](https://huggingface.co/nitrosocke/redshift-diffusion) - Training prompt: a man is skiing. ![sample-train](samples/train.gif) ## Samples ![sample-500](samples/sample-500.gif) Test prompt: (redshift style) [spider man/black widow/batman/hulk] is skiing. ## Usage Clone the [github repo](https://github.com/showlab/Tune-A-Video) ```bash git clone https://github.com/showlab/Tune-A-Video.git ``` Run inference code ```python from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline from tuneavideo.models.unet import UNet3DConditionModel from tuneavideo.util import save_videos_grid import torch pretrained_model_path = "nitrosocke/redshift-diffusion" unet_model_path = "Tune-A-Video-library/redshift-man-skiing" unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda') pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda") pipe.enable_xformers_memory_efficient_attention() prompt = "(redshift style) spider man is skiing" video = pipe(prompt, video_length=8, height=512, width=512, num_inference_steps=50, guidance_scale=7.5).videos save_videos_grid(video, f"./{prompt}.gif") ``` ## Related Papers: - [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation - [Stable Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
Isaacp/Reinforce-pixelcopter
Isaacp
2023-02-09T02:34:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T02:34:20Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 39.90 +/- 33.12 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bbbbearczx/bert-finetuned-squad
bbbbearczx
2023-02-09T01:46:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T05:13:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
hectorjelly/ppo-SnowballTarge2
hectorjelly
2023-02-09T01:20:34Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-09T01:20:29Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: hectorjelly/ppo-SnowballTarge2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cosc/sketchstyle-cutesexyrobutts
cosc
2023-02-09T00:15:16Z
502
48
diffusers
[ "diffusers", "stable-diffusion", "art", "cutesexyrobutts", "style", "dreambooth", "text-to-image", "en", "dataset:Cosk/cutesexyrobutts", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-19T22:52:59Z
--- license: creativeml-openrail-m language: - en pipeline_tag: text-to-image tags: - stable-diffusion - art - cutesexyrobutts - style - dreambooth datasets: - Cosk/cutesexyrobutts library_name: diffusers widget: - text: portrait of a beautiful girl - text: beautiful girl, playboy bunny, dark skin, black hair, blunt bangs, ponytail --- # 'Sketchstyle' (cutesexyrobutts style) Base model: https://huggingface.co/Linaqruf/anything-v3.0.</br> Used 'fast-DreamBooth' on Google Colab and 768x768 images for all versions. ## NEW: Merges *Merging sketchstyle models with other models will help to improve anatomy and other elements while also trying to keep the intended style as much as possible.</br> I will upload from time to time new merges, if any of those improves on the previous ones. </br> A 'weak' model means there is more weight to cutesexyrobutts style and a 'strong' model means there is a little more focus on the other model/models.</br> Weak models might mantain a little more of the style but could have some anatomy problems, while strong models keep better anatomy though the style might become a little affected. Low CFG Scale (5-9) and using the "sketchstyle" token in the prompts might help with keeping the style on strong models.</br>* **List of merges:** - Pastelmix 0.2 + sketchstyle_v4-42k 0.8 weak (weighted sum, fp16) - Pastelmix 0.4 + sketchstyle_v4-42k 0.6 strong (weighted sum, fp16) **Versions:** - V1: Trained with around 1300 images (from danbooru), automatically cropped. - V2: Trained with 400 handpicked and handcropped images. - V3: Trained with the same images as V2, but with 'style training' enabled. - V4: Trained with 407 images, including 'captions' for each image. **Recommended to use:** - V4-42k (pretty good style and decent anatomy, might be the best) - V3-40k (decent style and anatomy) - V4-10k (best anatomy, meh style) - V4-100k (good style, bad anatomy/hard to use, useful with img2img) **Usage recommendations:** - For V4, don't use CFG Scale over 11-12, as it will generate an overcooked image. Try between 6 to 9 at first. 9 seems to be the best if you're using the 'sketchstyle' in the prompt, if not, lower - Generating specific characters might be hard, result in bad anatomy or not even work at all. If you want an specific character, the best is to use img2img with an image generated with another model - Going over a certain resolution will generate incoherent results, so try staying close to 768x768 (examples: 640x896, 768x960, 640x1024, 832x640, and similar). Maybe Hires fix could help. - Make sure to add nsfw/nipples/huge or large breasts in the negative prompts if you don't want any of those. - Skin tone tends to be 'tan', use dark skin/tan on the negative prompts if its the case, and/or pale skin in the prompts. - Using img2img to change the style of another image generally gives the best results, examples below. Pay attention to this number. Normally going below 75 generates bad results, specially with models with high steps like V4-100k. Best with 100+ ![Screenshot_1.png](https://s3.amazonaws.com/moonup/production/uploads/1671505643175-633520c031a2be3938c9f8f5.png) Token: 'sketchstyle' (if used, anatomy may get affected, but it can be useful for models with low steps to get a better style)<br /> **Limitations and known errors:** - Not very good anatomy - Sometimes it generates artifacts, specially on the eyes and lips - Tends to generate skimpy clothes, open clothes, cutouts, and similar - Might generate unclear outlines Try using inpainting and/or img2img to fix these. # Comparison between different versions and models As you can see, robutts tends to give less coherent results and might need more prompting/steps to get good results (tried on other things aswell with similar results) ![comparison.jpg](https://s3.amazonaws.com/moonup/production/uploads/1671502776323-633520c031a2be3938c9f8f5.jpeg) V2 with 10k steps or lower tends to give better anatomy results, and over that the style appears more apparent, so 10k is the 'sweet spot'. ![comparison2.jpg](https://s3.amazonaws.com/moonup/production/uploads/1671504780023-633520c031a2be3938c9f8f5.jpeg) Around 40 steps seems to be the best, but you should use 20 steps and, if you get an image you like, you increase the step count to 40 or 50. ![comparison3.jpg](https://s3.amazonaws.com/moonup/production/uploads/1671509387599-633520c031a2be3938c9f8f5.jpeg) Comparison between not completing that negative prompt and increasing the strength too much. ![comparison4.jpg](https://s3.amazonaws.com/moonup/production/uploads/1671568686470-633520c031a2be3938c9f8f5.jpeg) Comparison (using V3-5k) of token strength. ![comparison5.jpg](https://s3.amazonaws.com/moonup/production/uploads/1671571773116-633520c031a2be3938c9f8f5.jpeg) Another comparison of token strength using V3-15k. ![comparison6.jpg](https://s3.amazonaws.com/moonup/production/uploads/1671734192353-633520c031a2be3938c9f8f5.jpeg) Comparison, from 1 to 30 steps, between NovelAI - Sketchstyle V3-27500 (img2img with NovelAI image) - Sketchstyle V3-27500. Using Euler sampler. ![comparison.gif](https://s3.amazonaws.com/moonup/production/uploads/1672115659361-633520c031a2be3938c9f8f5.gif) # Examples: ![05144-1365838486-(masterpiece,best quality,ultra-detailed),((((face close-up)))),((profile)),((lips,pink_eyes)),((pink_hair,hair_slicked_back,hai.png](https://s3.amazonaws.com/moonup/production/uploads/1671513540474-633520c031a2be3938c9f8f5.png) ```bibtex Prompt: (masterpiece,best quality,ultra-detailed),((((face close-up)))),((profile)),((lips,pink_eyes)),((pink_hair,hair_slicked_back,hair_strand)),(serious),portrait,frown,arms_up,adjusting_hair,eyelashes,parted_lips,(sportswear,crop_top),toned,collarbone,ponytail,1girl,solo,highres<br /> Negative prompt: (deformed,disfigured),(sitting,fat,thick,thick_thighs,nsfw),open_clothes,open_shirt,(jewelry,earrings,hair_ornament),((sagging_breasts,huge_breasts,shiny,shiny_hair,shiny_skin,realistic,3D,3D game)),((extra_limbs,extra_arms)),(loli,shota),(giant nipples),long body,(lowres),(((poorly drawn fingers, poorly drawn hands))),((anatomic nonsense)),(extra fingers),(fused fingers),(((one hand with more than 5 fingers))),(((one hand with less than 5 fingers))),(bad eyes),(separated eyes),(long neck),((bad proportions)),long body,((poorly drawn eyes)),((poorly drawn)),((bad drawing)),blurry,((mutation)),((bad anatomy)),(multiple arms),((bad face)),((bad eyes)),bad tail,((more than 2 ears)),((poorly drawn face)), (extra limb), ((deformed hands)), (poorly drawn feet), (mutated hands and fingers), extra legs, extra ears, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face maskissing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face mask<br /> Steps: 70, Sampler: Euler, CFG scale: 12, Seed: 1365838486, Size: 768x768, Model: Sketchstyle V3-5k ``` _Eyes fixed with inpainting_: ![00609-996011741-(masterpiece,best quality,ultra-detailed),((((face close-up)))),((profile)),((lips,pink_eyes)),((pink_hair,hair_slicked_back,hai.png](https://s3.amazonaws.com/moonup/production/uploads/1671515050937-633520c031a2be3938c9f8f5.png) ```bibtex Prompt: (masterpiece,best quality,ultra-detailed),((((face close-up)))),((profile)),((lips,pink_eyes)),((pink_hair,hair_slicked_back,hair_strand)),(serious),portrait,frown,arms_up,adjusting_hair,eyelashes,parted_lips,(sportswear,crop_top),toned,collarbone,ponytail,1girl,solo,highres<br /> Negative prompt: (deformed,disfigured),(sitting,fat,thick,thick_thighs,nsfw),open_clothes,open_shirt,(jewelry,earrings,hair_ornament),((sagging_breasts,huge_breasts,shiny,shiny_hair,shiny_skin,realistic,3D,3D game)),((extra_limbs,extra_arms)),(loli,shota),(giant nipples),long body,(lowres),(((poorly drawn fingers, poorly drawn hands))),((anatomic nonsense)),(extra fingers),(fused fingers),(((one hand with more than 5 fingers))),(((one hand with less than 5 fingers))),(bad eyes),(separated eyes),(long neck),((bad proportions)),long body,((poorly drawn eyes)),((poorly drawn)),((bad drawing)),blurry,((mutation)),((bad anatomy)),(multiple arms),((bad face)),((bad eyes)),bad tail,((more than 2 ears)),((poorly drawn face)), (extra limb), ((deformed hands)), (poorly drawn feet), (mutated hands and fingers), extra legs, extra ears, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face maskissing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face mask<br /> Steps: 34, Sampler: Euler, CFG scale: 12, Seed: 996011741, Size: 768x768, Denoising strength: 0.6, Mask blur: 8, Model: Sketchstyle V2-10k ``` ![05152-4172541433-sketchstyle,(masterpiece, best quality,beautiful lighting,stunning,ultra-detailed),(portrait,upper_body,parted_lips),1girl, (nip.png](https://s3.amazonaws.com/moonup/production/uploads/1671517158965-633520c031a2be3938c9f8f5.png) ```bibtex Prompt: sketchstyle,(masterpiece, best quality,beautiful lighting,stunning,ultra-detailed),(portrait,upper_body,parted_lips),1girl, (nipples), (fox ears,animal_ear_fluff), (bare_shoulders,eyelashes,lips,orange eyes,blush),orange_hair,((onsen,indoors)),(toned),medium_breasts,navel,cleavage,looking at viewer,collarbone,hair bun, solo, highres,(nsfw)<br /> Negative prompt: (dark-skin,dark_nipples,extra_nipples),deformed,disfigured,(sitting,fat,thick,thick_thighs,nsfw),open_clothes,open_shirt,(jewelry,earrings,hair_ornament),((sagging_breasts,huge_breasts,shiny,shiny_hair,shiny_skin,realistic,3D,3D game)),((extra_limbs,extra_arms)),(loli,shota),(giant nipples),long body,(lowres),(((poorly drawn fingers, poorly drawn hands))),((anatomic nonsense)),(extra fingers),(fused fingers),(((one hand with more than 5 fingers))),(((one hand with less than 5 fingers))),(bad eyes),(separated eyes),(long neck),((bad proportions)),long body,((poorly drawn eyes)),((poorly drawn)),((bad drawing)),blurry,((mutation)),((bad anatomy)),(multiple arms),((bad face)),((bad eyes)),bad tail,((more than 2 ears)),((poorly drawn face)), (extra limb), ((deformed hands)), (poorly drawn feet), (mutated hands and fingers), extra legs, extra ears, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face maskissing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face mask<br /> Steps: 30, Sampler: Euler, CFG scale: 12, Seed: 4172541433, Size: 640x832, Model: Sketchstyle V3-5k ``` ![05111-4268937236-sketchstyle,(masterpiece, best quality,beautiful lighting,stunning,ultra-detailed),(portrait,upper_body),1girl, (nipples), (fox.png](https://s3.amazonaws.com/moonup/production/uploads/1671517508531-633520c031a2be3938c9f8f5.png) ```bibtex Prompt: sketchstyle,(masterpiece, best quality,beautiful lighting,stunning,ultra-detailed),(portrait,upper_body),1girl, (nipples), (fox ears,animal_ear_fluff), (bare_shoulders,eyelashes,lips,orange eyes,ringed_eyes,shy,blush),onsen,indoors,medium_breasts, cleavage,looking at viewer,collarbone,hair bun, solo, highres,(nsfw)<br /> Negative prompt: Negative prompt: (huge_breasts,large_breasts),realistic,3D,3D Game,nsfw,lowres, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, bad mouth<br /> Steps: 40, Sampler: Euler, CFG scale: 14, Seed: 4268937236, Size: 704x896, Model: Sketchstyle V3-5k ``` ![05159-3765393440-(masterpiece,best quality,ultra detailed),(((facing_away,sitting,arm_support,thighs,legs))),(((from_behind,toned,ass,bare back,b.png](https://s3.amazonaws.com/moonup/production/uploads/1671519173074-633520c031a2be3938c9f8f5.png) ```bibtex Prompt: (masterpiece,best quality,ultra detailed),(((facing_away,sitting,arm_support,thighs,legs))),(((from_behind,toned,ass,bare back,breasts))),((thong,garter_belt,garter_straps,lingerie)),(hair_flower,bed_sheet),(black_hair,braid,braided_ponytail,long_hair),1girl,grey_background,thighs,solo,highres<br /> Negative prompt: ((deformed)),((looking_back,looking_at_viewer,face)),((out_of_frame,cropped)),(fat,thick,thick_thighs),((sagging_breasts,huge_breasts,shiny,shiny_hair,shiny_skin,3D,3D game)),((extra_limbs,extra_arms)),(loli,shota),(giant nipples),long body,(lowres),(((poorly drawn fingers, poorly drawn hands))),((anatomic nonsense)),(extra fingers),(fused fingers),(((one hand with more than 5 fingers))),(((one hand with less than 5 fingers))),(bad eyes),(separated eyes),(long neck),((bad proportions)),long body,((poorly drawn eyes)),((poorly drawn)),((bad drawing)),blurry,((mutation)),((bad anatomy)),(multiple arms),((bad face)),((bad eyes)),bad tail,((more than 2 ears)),((poorly drawn face)), (extra limb), ((deformed hands)), (poorly drawn feet), (mutated hands and fingers), extra legs, extra ears, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, patreon_logo, patreon_username, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face maskissing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face mask<br /> Steps: 50, Sampler: Euler, CFG scale: 12, Seed: 3765393440, Size: 640x832, Model: Sketchstyle V3-5k ``` ![05195-2346086519-(masterpiece,best quality,ultra detailed),(((facing_away,sitting,arm_support,thighs,legs))),(((from_behind,toned,ass,bare back)).png](https://s3.amazonaws.com/moonup/production/uploads/1671561192018-633520c031a2be3938c9f8f5.png) ```bibtex Prompt: (masterpiece,best quality,ultra detailed),(((facing_away,sitting,arm_support,thighs,legs))),(((from_behind,toned,ass,bare back))),((thong,garter_belt,garter_straps,lingerie)),(hair_flower,bed_sheet),(black_hair,braid,braided_ponytail,long_hair),1girl,grey_background,thighs,solo,highres<br /> Negative prompt: backboob,((deformed)),((looking_back,looking_at_viewer,face)),((out_of_frame,cropped)),(fat,thick,thick_thighs),((sagging_breasts,huge_breasts,shiny,shiny_hair,shiny_skin,3D,3D game)),((extra_limbs,extra_arms)),(loli,shota),(giant nipples),long body,(lowres),(((poorly drawn fingers, poorly drawn hands))),((anatomic nonsense)),(extra fingers),(fused fingers),(((one hand with more than 5 fingers))),(((one hand with less than 5 fingers))),(bad eyes),(separated eyes),(long neck),((bad proportions)),long body,((poorly drawn eyes)),((poorly drawn)),((bad drawing)),blurry,((mutation)),((bad anatomy)),(multiple arms),((bad face)),((bad eyes)),bad tail,((more than 2 ears)),((poorly drawn face)), (extra limb), ((deformed hands)), (poorly drawn feet), (mutated hands and fingers), extra legs, extra ears, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, patreon_logo, patreon_username, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face maskissing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face mask<br /> Steps: 50, Sampler: Euler, CFG scale: 12, Seed: 2346086519, Size: 640x832, Model: Sketchstyle V3-5k ``` ![05170-4024165718-(masterpiece,best quality,ultra-detailed),(sketchstyle),(arms_up,tying_hair),(large_breasts,nipples),(long_hair,blonde_hair,tied.png](https://s3.amazonaws.com/moonup/production/uploads/1671521055006-633520c031a2be3938c9f8f5.png) ```bibtex Prompt: (masterpiece,best quality,ultra-detailed),(sketchstyle),(arms_up,tying_hair),(large_breasts,nipples),(long_hair,blonde_hair,tied_hair,ponytail,collarbone,navel,stomach,midriff,completely_nude,nude,toned),((cleft_of_venus,pussy)),cloudy_sky,1girl,solo,highres,(nsfw)<br /> Negative prompt: (deformed,disfigured,bad proportions,exaggerated),from_behind,(jewelry,earrings,hair_ornament),((sagging_breasts,huge_breasts,shiny,shiny_hair,shiny_skin,realistic,3D,3D game)),((extra_limbs,extra_arms)),(loli,shota),(giant nipples),((fat,thick,thick_thighs)),long body,(lowres),(((poorly drawn fingers, poorly drawn hands))),((anatomic nonsense)),(extra fingers),(fused fingers),(((one hand with more than 5 fingers))),(((one hand with less than 5 fingers))),(bad eyes),(separated eyes),(long neck),((bad proportions)),long body,((poorly drawn eyes)),((poorly drawn)),((bad drawing)),blurry,((mutation)),((bad anatomy)),(multiple arms),((bad face)),((bad eyes)),bad tail,((more than 2 ears)),((poorly drawn face)), (extra limb), ((deformed hands)), (poorly drawn feet), (mutated hands and fingers), extra legs, extra ears, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face maskissing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face mask<br /> Steps: 40, Sampler: Euler, CFG scale: 12, Seed: 4024165718, Size: 704x960, Model: Sketchstyle V3-5k ``` ![05177-4166887955-(masterpiece,best quality),(sketchstyle),((1boy,male_focus)),((close-up,portrait)),((black_shirt)),((((red collared_coat)))),((d.png](https://s3.amazonaws.com/moonup/production/uploads/1671522588038-633520c031a2be3938c9f8f5.png) ```bibtex Prompt: (masterpiece,best quality),(sketchstyle),((1boy,male_focus)),((close-up,portrait)),((black_shirt)),((((red collared_coat)))),((dante_\(devil_may_cry\),devil may cry)),((medium_hair,parted_hair,parted_bangs,forehead,white_hair)),((stubble)),(facial_hair),(popped_collar,open_coat),(closed_mouth,smile),blue_eyes,looking_at_viewer,solo,highres<br /> Negative prompt: ((deformed)),(nsfw),(long_hair,short_hair,young,genderswap,1girl,female,breasts,androgynous),((choker)),(shiny,shiny_hair,shiny_skin,3D,3D game),((extra_limbs,extra_arms)),(loli,shota),(giant nipples),((fat,thick,thick_thighs)),long body,(lowres),(((poorly drawn fingers, poorly drawn hands))),((anatomic nonsense)),(extra fingers),(fused fingers),(((one hand with more than 5 fingers))),(((one hand with less than 5 fingers))),(bad eyes),(separated eyes),(long neck),((bad proportions)),long body,((poorly drawn eyes)),((poorly drawn)),((bad drawing)),blurry,((mutation)),((bad anatomy)),(multiple arms),((bad face)),((bad eyes)),bad tail,((more than 2 ears)),((poorly drawn face)), (extra limb), ((deformed hands)), (poorly drawn feet), (mutated hands and fingers), extra legs, extra ears, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face maskissing fingers, bad hands, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled,monochrome, greyscale,face mask<br /> Steps: 50, Sampler: Euler, CFG scale: 12, Seed: 4166887955, Size: 768x768, Model: Sketchstyle V3-5k ``` # img2img style change examples: ![img2img-1.png](https://s3.amazonaws.com/moonup/production/uploads/1671510649616-633520c031a2be3938c9f8f5.png) ```bibtex Original settings: Model: NovelAI, Steps: 30, Sampler: Euler a, CFG scale: 16, Seed: 3633297035, Size: 640x960<br /> Original prompt: masterpiece, best quality, 1girl, naked towel, fox ears, orange eyes, wet, ringed eyes, shy, medium breasts, cleavage, looking at viewer, hair bun, blush, solo, highres<br /> Original negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, bad mouth<br /> New settings: Model: Sketchstyle V3 5k steps, Steps: 33, CFG scale: 12, Seed: 3311014108, Size: 640x960, Denoising strength: 0.6, Mask blur: 4<br /> New prompt: ((sketchstyle)),(masterpiece, best quality,beautiful lighting,stunning,ultra-detailed),(portrait,upper_body),1girl, (((naked_towel,towel))), (fox ears,animal_ear_fluff), (bare_shoulders,eyelashes,lips,orange eyes,ringed_eyes,shy,blush),onsen,indoors,medium_breasts, cleavage,looking at viewer,collarbone,hair bun, solo, highres<br /> New negative prompt: (nipples,huge_breasts,large_breasts),realistic,3D,3D Game,nsfw,lowres, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, bad mouth<br /> ``` ![img2img-2.png](https://s3.amazonaws.com/moonup/production/uploads/1671523242721-633520c031a2be3938c9f8f5.png) ```bibtex Original settings: Model: NovelAI, Steps: 30, Sampler: Euler a, CFG scale: 16, Seed: 764529639, Size: 640x960<br /> Prompt: masterpiece, highest quality, (1girl), (looking at viewer), ((pov)), fox ears, ((leaning forward)), [light smile], ((camisole)), short shorts, (cleavage), (((medium breasts))), blonde, (high ponytail), (highres)<br /> Negative prompt: ((deformed)), (duplicated), lowres, ((missing animal ears)), ((poorly drawn face)), ((poorly drawn eyes)), (extra limb), (mutation), ((deformed hands)), (((poorly drawn hands))), (poorly drawn feet), (fused toes), (fused fingers), (mutated hands and fingers), (one hand with more than 5 fingers), (one hand with less than 5 fingers), extra toes, missing toes, extra feet, extra legs, extra ears, missing ear, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled, huge breasts, black and white, monochrome, 3D Game, 3D, realistic, realism, huge breasts<br /> New settings: Model: Sketchstyle V3 5k steps, Steps: 28, CFG scale: 12, Seed: 1866024520, Size: 640x960, Denoising strength: 0.7, Mask blur: 8 ``` ![img2img-3.png](https://s3.amazonaws.com/moonup/production/uploads/1671524129672-633520c031a2be3938c9f8f5.png) ```bibtex Original settings: Model: NovelAI, Steps: 25, Sampler: Euler a, CFG scale: 11, Seed: 2604970030, Size: 640x896<br /> Original prompt: (masterpiece),(best quality),((sketch)),(ultra detailed),(1girl, teenage),((white hair, messy hair)),((expressionless)),(black jacket, long sleeves),((grey scarf)),((squatting)), (hands on own knees),((plaid_skirt, pleated skirt, miniskirt)),(fox ears, extra ears, white fox tail, fox girl, animal ear fluff),black ((boots)),full body,bangs,ahoge,(grey eyes),solo,absurdres<br /> Negative prompt: ((deformed)),((loli, young)),(kneehighs,thighhighs),long body, long legs),lowres,((((poorly drawn fingers, poorly drawn hands)))),((anatomic nonsense)),(extra fingers),((fused fingers)),(plaid scarf),(spread legs),((one hand with more than 5 fingers)), ((one hand with less than 5 fingers)),((bad eyes)),(twin, multiple girls, 2girls),(separated eyes),(long neck),((bad proportions)),(bad lips),((thick lips)),loli,long body,(((poorly drawn eyes))),((poorly drawn)),((bad drawing)),(blurry),(((mutation))),(((bad anatomy))),(((multiple arms))),(((bad face))),(((bad eyes))),bad tail,(((more than 2 ears)), (((poorly drawn face))), (extra limb), ((deformed hands)), (poorly drawn feet), (fused toes), (mutated hands and fingers), extra toes, missing toes, extra feet, extra legs, extra ears, missing ear, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled, huge breasts, black and white, monochrome, 3D Game, 3D, (realistic), face mask<br /> New settings: Model: Sketchstyle V3 5k steps, Steps: 45, CFG scale: 12, Seed: 1073378414, Size: 640x896, Denoising strength: 0.6, Mask blur: 8<br /> New prompt: (masterpiece),(best quality),(sketchstyle),(ultra detailed),(1girl, teenage),((white hair, messy hair)),((expressionless)),(black jacket, long sleeves),((grey scarf)),((squatting)), (hands on own knees),((plaid_skirt, pleated skirt, miniskirt)),(fox ears, extra ears, white fox tail, fox girl, animal ear fluff),black ((boots)),full body,bangs,ahoge,(grey eyes),solo,absurdres<br /> ``` ![img2img-4.png](https://s3.amazonaws.com/moonup/production/uploads/1672003898152-633520c031a2be3938c9f8f5.png) ```bibtex Original settings: Model: NovelAI, Steps: 30, Sampler: Euler a, CFG scale: 12, Seed: 3659534337, Size: 768x832<br /> Original prompt: ((masterpiece)), ((highest quality)),(((ultra-detailed))),(illustration),(1girl), portrait,((wolf ears)),(beautiful eyes),looking at viewer,dress shirt,shadows,((ponytail)), (white hair), ((sidelocks)),outdoors,bangs, solo, highres<br /> Original negative prompt: ((deformed)), lowres,loli,((monochrome)),(black and white),((lips)),long body,(((poorly drawn eyes))),((out of frame)),((poorly drawn)),((bad drawing)),(blurry),depth of field,(fused fingers),(((mutation))),((bad anatomy)),(((multiple arms))),(((bad face))),(((bad eyes))),bad tail,(((more than 2 ears)), (((poorly drawn face))), (extra limb), ((deformed hands)), (((poorly drawn hands))), (poorly drawn feet), (fused toes), (mutated hands and fingers), (one hand with more than 5 fingers), (one hand with less than 5 fingers), extra toes, missing toes, extra feet, extra legs, extra ears, missing ear, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled, huge breasts, black and white, monochrome, 3D Game, 3D, realism, face mask<br /> New settings: Model: Sketchstyle V3-20k 2000steps text encoder, Steps: 80, CFG scale: 12, Seed: 3001145714, Size: 768x832, Denoising strength: 0.5, Mask blur: 4<br /> New prompt: ((sketchstyle)),(masterpiece,best quality,highest quality,illustration),((ultra-detailed)),1girl,(portrait,close-up),((wolf_girl,wolf_ears)),(eyelashes,detailed eyes,beautiful eyes),looking at viewer,(collared-shirt,white_shirt),((ponytail)), (white hair), ((sidelocks)),(blue eyes),closed_mouth,(shadows,outdoors,sunlight,grass,trees),hair_between_eyes,bangs,solo,highres<br /> New negative prompt: ((deformed)),(less than 5 fingers, more than 5 fingers,bad hands,bad hand anatomy,missing fingers, extra fingers, mutated hands, disfigured hands, deformed hands),lowres,loli,((monochrome)),(black and white),((lips)),long body,(((poorly drawn eyes))),((out of frame)),((poorly drawn)),((bad drawing)),(blurry),depth of field,(fused fingers),(((mutation))),((bad anatomy)),(((multiple arms))),(((bad face))),(((bad eyes))),bad tail,(((more than 2 ears)), (((poorly drawn face))), (extra limb), ((deformed hands)), (((poorly drawn hands))), (poorly drawn feet), (fused toes), (mutated hands and fingers), (one hand with more than 5 fingers), (one hand with less than 5 fingers), extra toes, missing toes, extra feet, extra legs, extra ears, missing ear, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, bad mouth, animal hands, censored, blurry lines, wacky outlines, unclear outlines, doubled, huge breasts, black and white, monochrome, 3D Game, 3D, realism, face mask<br /> ``` ![img2img-5.png](https://s3.amazonaws.com/moonup/production/uploads/1672122599787-633520c031a2be3938c9f8f5.png) ```bibtex Original settings: Model: NovelAI, Steps: 20, Sampler: Euler, CFG scale: 11, Seed: 2413712316, Size: 768x768<br /> Original prompt: (masterpiece,best quality,ultra-detailed,detailed_eyes),(sketch),((portrait,face focus)),(((shaded eyes))),(wavy hair),(((ringed eyes,red_hair))),((black hair ribbon)),((hair behind ear)),(((short ponytail))),(blush lines),(good anatomy),(((hair strands))),(bangs),((lips)),[teeth, tongue],yellow eyes,(eyelashes),shirt, v-neck,collarbone,cleavage,breasts,(medium hair),(sidelocks),looking at viewer,(shiny hair),1girl,solo,highres<br /> Original negative prompt: ((deformed)),lowres,(black hair),(formal),earrings,(twin, multiple girls, 2girls),(braided bangs),((big eyes)),((close up, eye focus)),(separated eyes),(multiple eyebrows),((eyebrows visible through hair)),(long neck),(bad lips),(tongue out),((thick lips)),(from below),loli,long body,(((poorly drawn eyes))),((poorly drawn)),((bad drawing)),((blurry)),depth of field,(fused fingers),(((mutation))),(((bad anatomy))),(((multiple arms))),(((bad face))),(((bad eyes))),bad tail,(((more than 2 ears)), (((poorly drawn face))), (extra limb), ((deformed hands)), (((poorly drawn hands))), (poorly drawn feet), (fused toes), (mutated hands and fingers), (one hand with more than 5 fingers), (one hand with less than 5 fingers), extra toes, missing toes, extra feet, extra legs, extra ears, missing ear, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, bad mouth, animal hands, censored,doubled, huge breasts, black and white, monochrome, 3D Game, 3D, (realistic), face mask<br /> New settings: (img2img with original image, then again with the new generated image, inpainted to fix the neck) Model: Sketchstyle V3-27.5k 2000steps text encoder, Steps: 80, CFG scale: 12, Seed: 1237755461 / 1353966202, Size: 832x832, Denoising strength: 0.5 / 0.3, Mask blur: 4<br /> New prompt: sketchstyle,(masterpiece,best quality,ultra-detailed,detailed_eyes),(((portrait,face focus,close-up))),(((shaded eyes))),(wavy hair),(((ringed eyes,red_hair))),((black hair ribbon)),((hair behind ear)),(((short ponytail))),(blush lines),(good anatomy),(((hair strands))),(bangs),((lips)),[teeth, tongue],(yellow eyes,eyelashes,tsurime,slanted_eyes),shirt, v-neck,collarbone,breasts,(medium hair),(sidelocks),looking at viewer,(shiny hair),1girl,solo,highres<br /> New negative prompt: ((deformed)),((loli,young)),lowres,(black hair),(formal),earrings,(twin, multiple girls, 2girls),(braided bangs),((big eyes)),((close up, eye focus)),(separated eyes),(multiple eyebrows),((eyebrows visible through hair)),(long neck),(bad lips),(tongue out),((thick lips)),(from below),loli,long body,(((poorly drawn eyes))),((poorly drawn)),((bad drawing)),((blurry)),depth of field,(fused fingers),(((mutation))),(((bad anatomy))),(((multiple arms))),(((bad face))),(((bad eyes))),bad tail,(((more than 2 ears)), (((poorly drawn face))), (extra limb), ((deformed hands)), (((poorly drawn hands))), (poorly drawn feet), (fused toes), (mutated hands and fingers), (one hand with more than 5 fingers), (one hand with less than 5 fingers), extra toes, missing toes, extra feet, extra legs, extra ears, missing ear, extra hands, bad feet, bad anatomy, bad hands, text, error, missing fingers, bad hands, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name, bad face, bad mouth, animal hands, censored,doubled, huge breasts, black and white, monochrome, 3D Game, 3D, (realistic), face mask<br /> ```
deprem-ml/distilroberta-tweet-clustering-embeddings
deprem-ml
2023-02-09T00:11:25Z
0
0
null
[ "feature-extraction", "tr", "license:apache-2.0", "region:us" ]
feature-extraction
2023-02-08T23:54:30Z
--- license: apache-2.0 language: - tr pipeline_tag: feature-extraction --- ## Topic Modelling için Clustering Embedding'leri Bu repository'i güncelleyeceğiz. Notebook burada: https://github.com/metekemertas/deprem-intent-classification-tfidf/blob/main/unsupervised_analysis.py Tweet verisinde ihtiyaç belirlemek (topic modelling) için çıkarılmış embedding'ler bu repo'da.
daripaez/poca-SoccerTwos-1
daripaez
2023-02-09T00:02:59Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T00:02:26Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: daripaez/poca-SoccerTwos-1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
deetsml/dummy-model
deetsml
2023-02-08T23:37:22Z
3
0
transformers
[ "transformers", "pytorch", "bart", "feature-extraction", "text-classification", "en", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T21:25:20Z
--- tags: - text-classification - transformers language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-classification --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 14756 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "accuracy", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 14756, "warmup_steps": 1476, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BartModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Nyaaneet/donut-cord
Nyaaneet
2023-02-08T22:39:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-02-06T17:19:06Z
--- license: mit tags: - generated_from_trainer model-index: - name: donut-cord results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-cord This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
rerdscf/Embed
rerdscf
2023-02-08T22:37:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T15:31:05Z
--- license: creativeml-openrail-m ---
eduiqe/ppo-LunarLander-v2
eduiqe
2023-02-08T22:12:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-23T02:07:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 261.92 +/- 20.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Nonin/ppo-Huggy
Nonin
2023-02-08T21:57:45Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-08T21:57:38Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Nonin/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
saurabhnaik/dqn-SpaceInvadersNoFrameskip-v4
saurabhnaik
2023-02-08T21:21:02Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T19:47:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 578.00 +/- 157.66 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga saurabhnaik -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga saurabhnaik -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga saurabhnaik ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Kilgori/inisanium-model
Kilgori
2023-02-08T20:58:20Z
17
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-07T23:32:18Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Inisanium-Model Dreambooth model trained by Kilgori with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) !!!IMPORTANT!!! Really NSFW Model use at your own risk! This model can generate anything from furry futanari nsfw to kinda realistic human women. This model uses tags and you will be able to see the captions used if you download the captions zip. Its an unstable model. Clip skip changes the results substantially so use as you wish. Hard to use, bigger prompts = better images usually. It doesn't do sfw furries in my experience. DM me on discord if you want access to the images used to train this model. Kilgorio#6392 😁 Sample pictures of this concept: ![0](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00005-3643574537-girl,_realistic.png) ![1](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00011-3643574537-Rain,_day,_foggy,_horror.png) ![2](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00020-3643574537-(masterpiece_1,2),_best_quality,_masterpiece,_highres,_original,_extremely_detailed_wallpaper,_looking_at_viewer,_(sitting_1.4),.png) ![3](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00018-3643574537-Woman,_street,_city,_market,_happy.png) ![4](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00008-3643574537-Mountain,_night,_Lights.png) ![5](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00021-3643574537-((masterpiece)),_best_quality,_perfect_anatomy,_(1girl,_solo_focus_1.4),_pov,_looking_at_viewer,_flower_trim,(perspective,_sidew.png) ![6](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00003-3643574537-girl,_realistic.png) ![7](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00012-3643574537-Rain,_day,_foggy.png) ![8](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00009-3643574537-Mountain,_night,_Lights.png) ![9](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00023-3643574537-((masterpiece)),_best_quality,_perfect_anatomy,_(1girl,_solo_focus_1.4),_pov,_looking_at_viewer,_flower_trim,(perspective,_sidew.png) ![10](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00001-3643574537-girl.png) ![11](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00030-3643574537-girl.png) ![12](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00013-3643574537-Rain,_day,_foggy,_horror.png) ![13](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00017-3643574537-Woman,_street,_city,_market,_happy.png) ![14](https://huggingface.co/Kilgori/inisanium-model/resolve/main/sample_images/00027-3643574537-girl.png)
aimarsg/pharmacoNER
aimarsg
2023-02-08T20:53:19Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:pharmaconer", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-08T20:41:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - pharmaconer metrics: - precision - recall - f1 - accuracy model-index: - name: pharmacoNER results: - task: name: Token Classification type: token-classification dataset: name: pharmaconer type: pharmaconer config: PharmaCoNER split: validation args: PharmaCoNER metrics: - name: Precision type: precision value: 0.9057634526085769 - name: Recall type: recall value: 0.9025585193249864 - name: F1 type: f1 value: 0.9041581458759373 - name: Accuracy type: accuracy value: 0.9948434782608696 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pharmacoNER This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the pharmaconer dataset. It achieves the following results on the evaluation set: - Loss: 0.0251 - Precision: 0.9058 - Recall: 0.9026 - F1: 0.9042 - Accuracy: 0.9948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0272 | 1.0 | 1017 | 0.0288 | 0.8047 | 0.8503 | 0.8269 | 0.9914 | | 0.0114 | 2.0 | 2034 | 0.0240 | 0.8950 | 0.8998 | 0.8974 | 0.9945 | | 0.006 | 3.0 | 3051 | 0.0251 | 0.9058 | 0.9026 | 0.9042 | 0.9948 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
hulkster/sd-class-butterflies-32
hulkster
2023-02-08T20:52:34Z
2
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-02-08T20:52:18Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('hulkster/sd-class-butterflies-32') image = pipeline().images[0] image ```
huggingtweets/101dadjokes-dadsjokes
huggingtweets
2023-02-08T20:48:16Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-08T20:45:18Z
--- language: en thumbnail: http://www.huggingtweets.com/101dadjokes-dadsjokes/1675889291789/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1406653045757317121/YCS9YykL_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/641271414/dad_jokes_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Dad Jokes & Dad Jokes</div> <div style="text-align: center; font-size: 14px;">@101dadjokes-dadsjokes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Dad Jokes & Dad Jokes. | Data | Dad Jokes | Dad Jokes | | --- | --- | --- | | Tweets downloaded | 184 | 2043 | | Retweets | 14 | 0 | | Short tweets | 10 | 123 | | Tweets kept | 160 | 1920 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/od2iwqt2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @101dadjokes-dadsjokes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7ruisgab) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7ruisgab/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/101dadjokes-dadsjokes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Iggg0r/rl_course
Iggg0r
2023-02-08T20:32:19Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T19:18:11Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 281.37 +/- 14.10 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JD97/Riffusion_sentiment_LoRA
JD97
2023-02-08T20:29:17Z
10
2
diffusers
[ "diffusers", "stable-diffusion", "diffusion", "riffusion", "text-to-audio", "text-to-image", "en", "dataset:gwkim22/spectro_caption_dataset", "dataset:Chr0my/Epidemic_music", "license:mit", "region:us" ]
text-to-image
2023-02-08T15:36:09Z
--- license: mit datasets: - gwkim22/spectro_caption_dataset - Chr0my/Epidemic_music language: - en library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - diffusion - riffusion - text-to-audio --- ### Introduce Riffusion with LoRA, fine-tuned with <code>Chr0my/Epidemic_music</code> <br/> This model was used during Naver Connect BoostCamp AI tech 4th, NLP Track ### Citation ~~~ @article{Forsgren_Martiros_2022, author = {Forsgren, Seth* and Martiros, Hayk*}, title = {{Riffusion - Stable diffusion for real-time music generation}}, url = {https://riffusion.com/about}, year = {2022} } ~~~
PecanPi/ppo-LunarLander-v2
PecanPi
2023-02-08T20:21:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T14:40:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 277.86 +/- 21.77 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mfrayha/marcelo
mfrayha
2023-02-08T20:03:59Z
6
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T19:50:13Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Marcelo Dreambooth model trained by mfrayha with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)! To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars). Sample pictures of this concept:
Luisfrdz/PPO-RL-1-LunarLander-v3
Luisfrdz
2023-02-08T20:01:54Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T18:23:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO-RL-Agent results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 175.25 +/- 116.16 name: mean_reward verified: false --- # **PPO-RL-Agent** Agent playing **LunarLander-v2** This is a trained model of a **PPO-RL-Agent** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DeepaKrish/distilbert-base-uncased-finetuned-squad
DeepaKrish
2023-02-08T19:40:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T14:55:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 78 | 0.7144 | | No log | 2.0 | 156 | 0.3996 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.9.0 - Datasets 2.5.1 - Tokenizers 0.13.2
Snim/dqn-SpaceInvadersNoFrameskip-v4
Snim
2023-02-08T19:25:49Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T19:25:04Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 753.50 +/- 272.14 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Snim -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Snim -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Snim ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
kitintouch/kit-the-bear
kitintouch
2023-02-08T18:44:56Z
0
0
null
[ "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-08T18:44:30Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: kitthebear --- ### kit the bear Dreambooth model trained by kitintouch with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: kitthebear (use that on your prompt) ![kitthebear 0](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%281%29.jpg)![kitthebear 1](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%282%29.jpg)![kitthebear 2](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%283%29.jpg)![kitthebear 3](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%284%29.jpg)![kitthebear 4](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%285%29.jpg)![kitthebear 5](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%286%29.jpg)![kitthebear 6](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%287%29.jpg)![kitthebear 7](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%288%29.jpg)![kitthebear 8](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%289%29.jpg)
ernie-ai/finetuned-vit-image-text-classifier
ernie-ai
2023-02-08T18:36:19Z
26
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-08T06:08:50Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-vit-doc-text-classifer results: - task: name: Image Classification type: image-classification dataset: name: ernie-ai/image-text-examples-ar-cn-latin-notext type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9029850746268657 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-vit-doc-text-classifer This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the ernie-ai/image-text-examples-ar-cn-latin-notext dataset. It achieves the following results on the evaluation set: - Loss: 0.3107 - Accuracy: 0.9030 ## Model description It is an image classificatin model fine-tuned to predict whether an images contains text and if that text is Latin script, Chinese or Arabic. It also classifies non-text images. ## Training and evaluation data Dataset: [ernie-ai/image-text-examples-ar-cn-latin-notext] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2719 | 2.08 | 100 | 0.4120 | 0.8657 | | 0.1027 | 4.17 | 200 | 0.3907 | 0.8881 | | 0.0723 | 6.25 | 300 | 0.3107 | 0.9030 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
fjaragones/Taxi-v3
fjaragones
2023-02-08T18:28:50Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T18:28:47Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="fjaragones/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
LarryAIDraw/yabukiKentaroStyle_yabukiFinalV10
LarryAIDraw
2023-02-08T18:22:35Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-07T21:21:21Z
--- license: creativeml-openrail-m --- https://civitai.com/models/7106/yabukikentaro-style
Luisfrdz/PPO-RL-1-LunarLander-v2
Luisfrdz
2023-02-08T18:20:24Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T17:18:35Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO-RL-Agent results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 229.23 +/- 77.53 name: mean_reward verified: false --- # **PPO-RL-Agent** Agent playing **LunarLander-v2** This is a trained model of a **PPO-RL-Agent** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pfunk/Pong-v4-DQPN_p50_e0.10-seed1
pfunk
2023-02-08T17:41:56Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T17:41:35Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 10.00 +/- 5.67 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.10.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p50_e0.10]" python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.10 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p50_e0.10 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.10 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.1, 'exp_name': 'DQPN_p50_e0.10', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 50000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
GFMRommel/Vergelltungswaffe1
GFMRommel
2023-02-08T17:27:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T10:14:26Z
--- license: creativeml-openrail-m ---
AravindReddy/Gender
AravindReddy
2023-02-08T17:14:00Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-02-08T16:56:58Z
--- title: Which Gender emoji: 🦀 colorFrom: yellow colorTo: blue sdk: gradio sdk_version: 3.17.0 app_file: app.py pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
Phantom-Artist/phantom-diffusion-s3-the-last-8
Phantom-Artist
2023-02-08T16:52:18Z
0
4
null
[ "art", "en", "ja", "dataset:Phantom-Artist/phantom-diffusion-s3-the-last-8-dataset", "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T12:28:01Z
--- license: creativeml-openrail-m datasets: - Phantom-Artist/phantom-diffusion-s3-the-last-8-dataset language: - en - ja tags: - art --- The final 8 models that are trained over [hakurei's Waifu Diffusion](https://huggingface.co/hakurei/waifu-diffusion). Each model was trained on a notable Japanese (and Taiwanese, I think) AI artist's works using dreambooth, with 30 of their works gained mainly from twitter (except for sabakichi, which I collected the dataset from pixiv). It tooks 1000 steps to train each model, at a learning rate of 5-e6. I have shared the notebook [here](https://huggingface.co/Phantom-Artist/phantom-diffusion/blob/main/DreamBooth_Stable_Diffusion_works_with_SD_2.ipynb) in case you want to try out additional training. Some are good at backgrounds, while others can generate a semi-realistic style as seen in many SD 1.5 anime/waifu models (and some might be a bit overfitted). The dataset is published [here](https://huggingface.co/datasets/Phantom-Artist/phantom-diffusion-s3-the-last-8-dataset), and the full members are listed [here](https://twitter.com/i/lists/1622444997240037377) (special thanks to Yunyalula for creating it!). # For those who are against generative AIs You can see that now they are the target. Take our tool. Now is the time for pay back. Generate the images in their styles, and bring back the power you had to yourself. # For those who support the development of generative AIs Some of the AI artists, even though they take advantage of the open strategy of Stable Diffusion, now tend to hide their prompts, trying to monopolize their style (I'm not saying the AI artists I trained are as such, to be sure). To continue protecting our values and beliefs on the open community and fight against them trying to create another pre-modern style guilds, I will show you a new way. You no longer need their prompts; just train their images by yourself to protect the open community. It's not only legal but also ethical, as they have been taking advantages of others' trained dataset. # For those who call themselves "phantom 40" I saw some caliming there should be 48, and here you go. Phantom 48, or do you like to call yourselves *PTM* 48 instead? It's up to you. # Why will they be the last? My initial intention on this series was a social experiment to see what will happen if the AI artists are targeted for personalized training. As it became more popular than expected and the artists started calling themselves "phantom 20," I came up with the second intention to see how they will react after I add 20 more in one day, to see if they can adapt to the sudden change. They acted greatly, and I think that's why they could become notable. All the reactions and the interpretations on my action were impressive, but since I have accomplished my goal, and since the main stream model will probably be SD 2.1 768 (not SD 2.1 512), I will no longer add new models. I know I couldn't add some of the artists, but no. I will not do it under the name of phantom. It takes me like 8 hours to train, test, and upload 20 models, and it's just unsustainable to continue doing it everyday. **From now on, anyone who wish to add more is the next phantom. Train anyone you wish to by yourself.** # trained artist list - atsuwo_AI - recommended pos: multicolored hair, cg - fladdict - recommended pos: oil painting/ancient relief/impressionist impasto oil painting (maybe more) - possible neg: monkey - Hifumi_AID - recommended pos: dark purple hair, emerald eyes - mayonaka_rr - recommended pos: cg - possible pos: dynamic posing, bikini, ponytail - o81morimori - possible pos: cg, in a messy apartment room with objects on the floor and the bed - sabakichi - possible pos 1: merging underwater, limited pallete, melting underwater, unstable outlines - possible pos 2: rough sketch, limited pallete, ((unstable outlines)), monotone gradation, dynamic posing - teftef - possible pos: light skyblue hair, bun, retropunk gears of a factory - violet_fizz - recommended pos: beautiful face, grown up face, long eyes, expressionless - possible pos: expressionless # samples The basic prompt is as follows. However, to present you the potential of these models as much as possible, many of them have additional postive tags (such as "in the style of") to get the result below (yes, use ``aitop (ARTIST)_style`` to gain the finetuned result). Many works better with the additional prompt ``beautiful face``. Generally speaking, prompting words close to the trained dataset will give you a better result. ``` POS: masterpiece, best quality, 1girl, aitop (ARTIST)_style NEG: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digits, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, simple background ``` ## atsuwo_AI ![atsuwo_AI_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/atsuwo_AI_style.png) ![atsuwo_AI_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/atsuwo_AI_style2.png) ![atsuwo_AI_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/atsuwo_AI_style3.png) ## fladdict ![fladdict_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/fladdict_style.png) ![fladdict_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/fladdict_style2.png) ![fladdict_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/fladdict_style3.png) ## Hifumi_AID ![Hifumi_AID_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/Hifumi_AID_style.png) ![Hifumi_AID_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/Hifumi_AID_style2.png) ## mayonaka_rr ![mayonaka_rr_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/mayonaka_rr_style.png) ![mayonaka_rr_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/mayonaka_rr_style2.png) ![mayonaka_rr_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/mayonaka_rr_style3.png) ## o81morimori ![o81morimori_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/o81morimori_style.png) ![o81morimori_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/o81morimori_style2.png) ## sabakichi ![sabakichi_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style.png) ![sabakichi_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style2.png) ![sabakichi_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style3.png) ![sabakichi_sample4](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/sabakichi_style4.png) ## teftef ![teftef_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/teftef_style.png) ![teftef_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/teftef_style2.png) ## violet_fizz ![violet_fizz_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/violet_fizz_style.png) ![violet_fizz_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion-s3-the-last-8/resolve/main/violet_fizz_style2.png)
victorivus/Q-Learner-Taxi-v3
victorivus
2023-02-08T16:42:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T16:42:47Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Q-Learner-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="victorivus/Q-Learner-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ahmad-alismail/pyramids-RND-1
ahmad-alismail
2023-02-08T16:39:34Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-08T16:39:29Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: ahmad1289/pyramids-RND-1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
apatidar0/conversation-summ
apatidar0
2023-02-08T16:36:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T15:58:12Z
--- license: mit tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: conversation-summ results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 51.7796 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # conversation-summ This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 0.4048 - Rouge1: 51.7796 - Rouge2: 26.1341 - Rougel: 41.4013 - Rougelsum: 41.4563 - Gen Len: 29.656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.5781 | 1.0 | 500 | 0.3637 | 50.8871 | 26.6178 | 41.8757 | 41.9291 | 25.16 | | 0.2183 | 2.0 | 1000 | 0.3586 | 50.7919 | 25.4277 | 40.8428 | 40.8421 | 27.712 | | 0.1354 | 3.0 | 1500 | 0.4048 | 51.7796 | 26.1341 | 41.4013 | 41.4563 | 29.656 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
vvn0/a2c-AntBulletEnv-v0
vvn0
2023-02-08T16:30:28Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T16:29:13Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1442.86 +/- 397.05 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sheldonxxxx/OFA_model_weights
sheldonxxxx
2023-02-08T16:22:21Z
0
1
null
[ "visual-question-answering", "en", "license:apache-2.0", "region:us" ]
visual-question-answering
2023-02-07T13:54:05Z
--- license: apache-2.0 language: - en pipeline_tag: visual-question-answering --- This is an unoffical mirror of the model weights for use with https://github.com/OFA-Sys/OFA The original link is too slow when downloading from outside of China...
fathyshalab/massive_calendar-roberta-large-v1-2-0.89
fathyshalab
2023-02-08T16:09:11Z
12
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T16:08:47Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_calendar-roberta-large-v1-2-0.89 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_calendar-roberta-large-v1-2-0.89") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
davanstrien/dataset_mentions
davanstrien
2023-02-08T16:02:29Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T15:50:40Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # davanstrien/dataset_mentions This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("davanstrien/dataset_mentions") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
griffin/clinical-led-summarizer
griffin
2023-02-08T15:58:41Z
11
5
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-12T14:29:12Z
# clinical-led-summarizer HuggingFace Model Weights for the LongFormer Hospital-Course Summarization model trained on Revised References, as described in Findings of EMNLP 2022 Paper "Learning to Revise References for Faithful Summarization" [Paper Link](https://aclanthology.org/2022.findings-emnlp.296/) --- language: - en tags: - summarization license: apache-2.0 datasets: - MIMIC-III metrics: - rouge - bertscore ---
fathyshalab/massive_transport-roberta-large-v1-2-0.15
fathyshalab
2023-02-08T15:57:47Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T15:57:25Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_transport-roberta-large-v1-2-0.15 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_transport-roberta-large-v1-2-0.15") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
pyflynn/taxi-v3-model-v0
pyflynn
2023-02-08T15:42:13Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T15:13:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3-model-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="pyflynn/taxi-v3-model-v0", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
pabloac31/ppo-SnowballTarget
pabloac31
2023-02-08T15:24:46Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-08T15:24:40Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: pabloac31/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nasheed/rl-course
nasheed
2023-02-08T15:22:35Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T15:22:06Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.60 +/- 12.28 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
frangiral/dqn-SpaceInvadersNoFrameskip-v4
frangiral
2023-02-08T15:08:13Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T15:07:40Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 422.50 +/- 299.79 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga frangiral -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga frangiral -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga frangiral ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 10000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
quartz14/Reinforce-cartpole
quartz14
2023-02-08T15:06:21Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T15:06:07Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
mwissing/dqn-SpaceInvadersNoFrameskip-v4
mwissing
2023-02-08T15:02:50Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T15:02:08Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 679.50 +/- 183.98 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mwissing -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mwissing -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mwissing ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
mertyazan/Reinforce-1
mertyazan
2023-02-08T15:01:26Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T10:30:26Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 33.20 +/- 25.45 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Axel578/flan_t5_summarization
Axel578
2023-02-08T15:00:53Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T13:06:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan_t5_summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan_t5_summarization This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6162 - Rouge1: 15.9418 - Rouge2: 7.4447 - Rougel: 15.5655 - Rougelsum: 15.5835 - Gen Len: 18.7313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 272 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7405 | 2.0 | 544 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7405 | 3.0 | 816 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7453 | 4.0 | 1088 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7453 | 5.0 | 1360 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7372 | 6.0 | 1632 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7372 | 7.0 | 1904 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7436 | 8.0 | 2176 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7436 | 9.0 | 2448 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | | 0.7425 | 10.0 | 2720 | 0.6162 | 15.9418 | 7.4447 | 15.5655 | 15.5835 | 18.7313 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
nc33/multiqa_model
nc33
2023-02-08T14:58:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-08T12:16:51Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: multiqa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multiqa_model This model is a fine-tuned version of [nc33/multiqa_model](https://huggingface.co/nc33/multiqa_model) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1150 - Precision: 0.0855 - Recall: 0.0485 - F1: 0.0619 - Accuracy: 0.9626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 327 | 0.1121 | 0.0708 | 0.0280 | 0.0402 | 0.9631 | | 0.0786 | 2.0 | 654 | 0.1098 | 0.0531 | 0.0254 | 0.0343 | 0.9599 | | 0.0786 | 3.0 | 981 | 0.1085 | 0.0657 | 0.0243 | 0.0354 | 0.9634 | | 0.0681 | 4.0 | 1308 | 0.1133 | 0.0765 | 0.0453 | 0.0569 | 0.9618 | | 0.0641 | 5.0 | 1635 | 0.1150 | 0.0855 | 0.0485 | 0.0619 | 0.9626 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mrm8488/xlm-v-base-finetuned-xglue-xnli
mrm8488
2023-02-08T14:51:30Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "xnli", "dataset:xglue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T22:06:50Z
--- license: mit langs: - multilingual tags: - generated_from_trainer - xnli datasets: - xglue metrics: - accuracy model-index: - name: xlm-v-base-finetuned-xglue-xnli results: - task: name: Text Classification type: text-classification dataset: name: xglue type: xglue config: xnli split: validation.en+validation.ar+validation.bg+validation.de+validation.el+validation.es+validation.fr+validation.hi+validation.ru+validation.sw+validation.th+validation.tr+validation.ur+validation.vi+validation.zh args: xnli metrics: - name: Accuracy type: accuracy value: 0.7402677376171352 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLM-V (base) fine-tuned on XNLI This model is a fine-tuned version of [XLM-V (base)](https://huggingface.co/facebook/xlm-v-base) on the XNLI (XGLUE) dataset. It achieves the following results on the evaluation set: - Loss: 0.6511 - Accuracy: 0.7403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0994 | 0.08 | 1000 | 1.0966 | 0.3697 | | 1.0221 | 0.16 | 2000 | 1.0765 | 0.4560 | | 0.8437 | 0.24 | 3000 | 0.8472 | 0.6179 | | 0.6997 | 0.33 | 4000 | 0.7650 | 0.6804 | | 0.6304 | 0.41 | 5000 | 0.7227 | 0.7007 | | 0.5972 | 0.49 | 6000 | 0.7430 | 0.6977 | | 0.5886 | 0.57 | 7000 | 0.7365 | 0.7066 | | 0.5585 | 0.65 | 8000 | 0.6819 | 0.7223 | | 0.5464 | 0.73 | 9000 | 0.7222 | 0.7046 | | 0.5289 | 0.81 | 10000 | 0.7290 | 0.7054 | | 0.5298 | 0.9 | 11000 | 0.6824 | 0.7221 | | 0.5241 | 0.98 | 12000 | 0.6650 | 0.7268 | | 0.4806 | 1.06 | 13000 | 0.6861 | 0.7308 | | 0.4715 | 1.14 | 14000 | 0.6619 | 0.7304 | | 0.4645 | 1.22 | 15000 | 0.6656 | 0.7284 | | 0.4443 | 1.3 | 16000 | 0.7026 | 0.7270 | | 0.4582 | 1.39 | 17000 | 0.7055 | 0.7225 | | 0.4456 | 1.47 | 18000 | 0.6592 | 0.7361 | | 0.44 | 1.55 | 19000 | 0.6816 | 0.7329 | | 0.4419 | 1.63 | 20000 | 0.6772 | 0.7357 | | 0.4403 | 1.71 | 21000 | 0.6745 | 0.7319 | | 0.4348 | 1.79 | 22000 | 0.6678 | 0.7338 | | 0.4355 | 1.87 | 23000 | 0.6614 | 0.7365 | | 0.4295 | 1.96 | 24000 | 0.6511 | 0.7403 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
irenekar/q-FrozenLake-v1-4x4-noSlippery
irenekar
2023-02-08T14:50:40Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T14:50:38Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="irenekar/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Rolo/Reinforce-Pixelcopter
Rolo
2023-02-08T14:37:37Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-06T22:48:38Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 62.20 +/- 39.28 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Elytum/bert-finetuned-ner
Elytum
2023-02-08T14:35:31Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-08T10:22:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [gaunernst/bert-small-uncased](https://huggingface.co/gaunernst/bert-small-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0186 - Precision: 0.9941 - Recall: 0.9952 - F1: 0.9946 - Accuracy: 0.9963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0277 | 1.0 | 2500 | 0.0190 | 0.9929 | 0.9939 | 0.9934 | 0.9956 | | 0.0137 | 2.0 | 5000 | 0.0180 | 0.9935 | 0.9951 | 0.9943 | 0.9960 | | 0.0095 | 3.0 | 7500 | 0.0186 | 0.9941 | 0.9952 | 0.9946 | 0.9963 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
ell-hol/mT5-OrangeSum
ell-hol
2023-02-08T14:34:07Z
12
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:ell-hol/autotrain-data-test-orangesum", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-12-27T22:06:22Z
--- language: - unk tags: - autotrain - summarization datasets: - ell-hol/autotrain-data-test-orangesum widget: - text: I love AutoTrain 🤗 co2_eq_emissions: emissions: 675.7789931017469 model-index: - name: ell-hol/mT5-OrangeSum results: - task: type: summarization name: Summarization dataset: name: orange_sum type: orange_sum config: abstract split: validation metrics: - type: rouge value: 33.377 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhjMWIxYmNmNDYzNTMzMDM2YjQyOTdkYjYyMDJkZDhlNzQ2ZDVkNGM2YTIzODU4ZWYwZDg2ODZkN2U5OTk2MSIsInZlcnNpb24iOjF9.UL_nv_GGJ75LMgDmRjvrp0dYhCyjz-h5txS1ljDFS7k9Yy6iJ0QnTebou1tsLFtj7sBSvUKvZeyqFXEHN7SBCg - type: rouge value: 14.4472 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTYxZTVkMzFlMGUxMWNmNzc5ZDI0OWM3ODY2ZTc1MDg2MDc2NTRiZjM3OTA4NGI1MmEwNzQzMjQyOWM5NDE3YiIsInZlcnNpb24iOjF9.xsBp4kyHAnAnAWllwvcXNF3vFFbgP_3Ipplg0Cs8yMzY2qIKozlflWSpmm7qyru1RvtDrHH5JQy0hSSz49tMDQ - type: rouge value: 24.1902 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzgxMDNmODZiOTcxYmU0NjlkMjEzOTBmZjZhMzkxZDcyODNjYmJjOGNiNzA2MTI2YjU4MTUzZTFlM2EwYjRkNyIsInZlcnNpb24iOjF9.QE9X1gqHxDA_Vzj86nOi1FrYXrvvYR-uQgAKn2ESJp48mnT4rHCnpxVo3qJGXcoeD0vA0M9VDWJzc2pci34PBA - type: rouge value: 25.5277 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDk2YzY1NjU3NDgxMDllYjIwMGI5NGE2ZjY3NzcxZGEwNmYzYjQxYzVlZTdmYzdkYWIxM2Y1YjkxNjZhOWRlZiIsInZlcnNpb24iOjF9.ksd-KgRtY71cHJxFsqLWr5lofRSrfiwixGTI6Hek6GvfisssetoDPy17bWnQpUqfN0ozxJciw2VzpauYPDuZCg - type: loss value: 1.6347737312316895 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDNmODJhNzdmMzNkMTc4MDcwZDhmNDFiZjM1ZWVmYjQ4N2IzNWU3MjYwMWM4ZmM0NjFhNjY1OTBlZjBkMjY0YSIsInZlcnNpb24iOjF9.aaF2D-cKnhK4YaqFV23QhoiTCOK7rQJKoXJMMj-kuxe_NLQBLNj73LBou376IlsTmOxxk_mmEimzwMMbTiVSDA - type: gen_len value: 48.4967 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzk3YjMxZWY2NzE5ZWMxZjBhYmE5YzU2YTM3MzNmMjlmNmJjM2MyMzY4ZTE1MjI1ZTNkN2YxOWZhOThmYzljMyIsInZlcnNpb24iOjF9._I_I9B66dT3S8RMMmMACG3YjIQYcXzmodriDWM33jRa4X6NFQx0b6_YHNP7K-uLEm8qD31bgb0NlsaRA37qLBA --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 2638979565 - CO2 Emissions (in grams): 675.7790 ## Validation Metrics - Loss: 1.631 - Rouge1: 33.348 - Rouge2: 14.481 - RougeL: 24.210 - RougeLsum: 25.514 - Gen Len: 48.497 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ell-hol/autotrain-test-orangesum-2638979565 ```
mili7522/dqn-SpaceInvadersNoFrameskip-v4
mili7522
2023-02-08T14:22:25Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T14:21:39Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 885.00 +/- 294.17 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mili7522 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mili7522 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mili7522 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
pfunk/Pong-v4-DQPN_p100_pt0.1-seed1
pfunk
2023-02-08T14:20:49Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T14:20:29Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 4.50 +/- 3.93 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p100_pt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p100_pt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p100_pt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p100_pt0.1 --start-policy-f 100000 --end-policy-f 100000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 100000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p100_pt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 100000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
mechanicalsea/speecht5-vc
mechanicalsea
2023-02-08T14:02:35Z
0
24
null
[ "speech", "text", "cross-modal", "unified model", "self-supervised learning", "SpeechT5", "Voice Conversion", "dataset:CMUARCTIC", "dataset:bdl", "dataset:clb", "dataset:rms", "dataset:slt", "license:mit", "region:us" ]
null
2022-08-25T09:24:52Z
--- license: mit tags: - speech - text - cross-modal - unified model - self-supervised learning - SpeechT5 - Voice Conversion datasets: - CMUARCTIC - bdl - clb - rms - slt --- ## SpeechT5 VC Manifest | [**Github**](https://github.com/microsoft/SpeechT5) | [**Huggingface**](https://huggingface.co/mechanicalsea/speecht5-vc) | This manifest is an attempt to recreate the Voice Conversion recipe used for training [SpeechT5](https://aclanthology.org/2022.acl-long.393). This manifest was constructed using [CMU ARCTIC](http://www.festvox.org/cmu_arctic/) four speakers, e.g., bdl, clb, rms, slt. There are 932 utterances for training, 100 utterances for validation, and 100 utterance for evaluation. ### News - 8 February 2023: SpeechT5 is integrated as an official model into the Hugging Face Transformers library [[Blog](https://huggingface.co/blog/speecht5)] and [[Demo](https://huggingface.co/spaces/Matthijs/speecht5-vc-demo)]. ### Requirements - [SpeechBrain](https://github.com/speechbrain/speechbrain) for extracting speaker embedding - [Parallel WaveGAN](https://github.com/kan-bayashi/ParallelWaveGAN) for implementing vocoder. ### Tools - `manifest/utils` is used to extract speaker embedding, generate manifest, and apply vocoder. - `manifest/arctic*` provides the pre-trained vocoder for each speaker. ### Model and Samples - [`speecht5_vc.pt`](./speecht5_vc.pt) are reimplemented Voice Conversion fine-tuning on the released manifest **but with a smaller batch size or max updates** (Ensure the manifest is ok). - `samples` are created by the released fine-tuned model and vocoder. ### Reference If you find our work is useful in your research, please cite the following paper: ```bibtex @inproceedings{ao-etal-2022-speecht5, title = {{S}peech{T}5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing}, author = {Ao, Junyi and Wang, Rui and Zhou, Long and Wang, Chengyi and Ren, Shuo and Wu, Yu and Liu, Shujie and Ko, Tom and Li, Qing and Zhang, Yu and Wei, Zhihua and Qian, Yao and Li, Jinyu and Wei, Furu}, booktitle = {Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, month = {May}, year = {2022}, pages={5723--5738}, } ```
jojoUla/bert-large-cased-sigir-support-no-label-20-sigir-tune2nd-LR10-labelled-30
jojoUla
2023-02-08T13:54:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-08T13:50:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-no-label-20-sigir-tune2nd-LR10-labelled-30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-no-label-20-sigir-tune2nd-LR10-labelled-30 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-no-label-20](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-no-label-20) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1303 | 1.0 | 1 | 3.2415 | | 2.3107 | 2.0 | 2 | 2.1225 | | 1.2824 | 3.0 | 3 | 2.2623 | | 1.0548 | 4.0 | 4 | 0.5449 | | 1.1366 | 5.0 | 5 | 1.1446 | | 0.5947 | 6.0 | 6 | 0.3811 | | 0.4889 | 7.0 | 7 | 1.6445 | | 1.2689 | 8.0 | 8 | 1.7214 | | 0.8074 | 9.0 | 9 | 2.3152 | | 0.7084 | 10.0 | 10 | 0.9325 | | 1.0307 | 11.0 | 11 | 2.4217 | | 0.7119 | 12.0 | 12 | 2.6455 | | 1.0052 | 13.0 | 13 | 1.1594 | | 0.7125 | 14.0 | 14 | 1.2795 | | 0.4732 | 15.0 | 15 | 0.1245 | | 0.8829 | 16.0 | 16 | 1.8585 | | 0.7079 | 17.0 | 17 | 1.6644 | | 0.6243 | 18.0 | 18 | 1.6117 | | 1.2438 | 19.0 | 19 | 2.3044 | | 1.0812 | 20.0 | 20 | 4.5037 | | 0.7003 | 21.0 | 21 | 1.5862 | | 0.867 | 22.0 | 22 | 2.1851 | | 0.9098 | 23.0 | 23 | 1.6055 | | 0.6214 | 24.0 | 24 | 2.6699 | | 0.282 | 25.0 | 25 | 1.3515 | | 0.1888 | 26.0 | 26 | 2.3864 | | 0.6863 | 27.0 | 27 | 1.2444 | | 0.8527 | 28.0 | 28 | 1.9603 | | 0.9416 | 29.0 | 29 | 3.7045 | | 0.8302 | 30.0 | 30 | 0.9336 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2