modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-14 00:44:55
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 519
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-14 00:44:41
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Venkatesh4342/bert-base-uncased-finetuned-fin | Venkatesh4342 | 2023-02-09T08:56:36Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2022-12-31T06:58:47Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-finetuned-fin
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-fin
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3931
- Accuracy: 0.8873
- F1: 0.8902
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6478 | 1.0 | 134 | 0.4118 | 0.8293 | 0.8309 |
| 0.3304 | 2.0 | 268 | 0.3315 | 0.8653 | 0.8694 |
| 0.2221 | 3.0 | 402 | 0.3229 | 0.8756 | 0.8781 |
| 0.1752 | 4.0 | 536 | 0.3192 | 0.8891 | 0.8921 |
| 0.1457 | 5.0 | 670 | 0.3700 | 0.8840 | 0.8880 |
| 0.1315 | 6.0 | 804 | 0.3774 | 0.8854 | 0.8882 |
| 0.1172 | 7.0 | 938 | 0.3883 | 0.8849 | 0.8877 |
| 0.112 | 8.0 | 1072 | 0.3931 | 0.8873 | 0.8902 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
reemalyami/AraRoBERTa-DZ | reemalyami | 2023-02-09T08:56:29Z | 7 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"ar",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2022-03-02T23:29:05Z | ---
license: apache-2.0
language:
- ar
---
The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/).
The following are the AraRoBERTa seven dialectal variations:
* [AraRoBERTa-SA](https://huggingface.co/reemalyami/AraRoBERTa-SA): Saudi Arabia (SA) dialect.
* [AraRoBERTa-EGY](https://huggingface.co/reemalyami/AraRoBERTa-EGY): Egypt (EGY) dialect.
* [AraRoBERTa-KU](https://huggingface.co/reemalyami/AraRoBERTa-KU): Kuwait (KU) dialect.
* [AraRoBERTa-OM](https://huggingface.co/reemalyami/AraRoBERTa-OM): Oman (OM) dialect.
* [AraRoBERTa-LB](https://huggingface.co/reemalyami/AraRoBERTa-LB): Lebanon (LB) dialect.
* [AraRoBERTa-JO](https://huggingface.co/reemalyami/AraRoBERTa-JO): Jordan (JO) dialect.
* [AraRoBERTa-DZ](https://huggingface.co/reemalyami/AraRoBERTa-DZ): Algeria (DZ) dialect
# When using the model, please cite our paper:
```python
@inproceedings{alyami-al-zaidy-2022-weakly,
title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models",
author = "AlYami, Reem and Al-Zaidy, Rabah",
booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wanlp-1.24",
pages = "260--272",
}
```
# Contact
**Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <[email protected]> | <[email protected]>
|
Anjoe/poetry-gpt2-large-no-hoel_2 | Anjoe | 2023-02-09T08:56:20Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-02-06T20:25:45Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: poetry-gpt2-large-no-hoel_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# poetry-gpt2-large-no-hoel_2
This model is a fine-tuned version of [benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7067
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 3.6683 | 1.0 | 19927 | 3.7260 |
| 3.3474 | 2.0 | 39854 | 3.7067 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
reemalyami/AraRoBERTa-LB | reemalyami | 2023-02-09T08:55:47Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"ar",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2022-03-02T23:29:05Z | ---
license: apache-2.0
language:
- ar
---
The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/).
The following are the AraRoBERTa seven dialectal variations:
* [AraRoBERTa-SA](https://huggingface.co/reemalyami/AraRoBERTa-SA): Saudi Arabia (SA) dialect.
* [AraRoBERTa-EGY](https://huggingface.co/reemalyami/AraRoBERTa-EGY): Egypt (EGY) dialect.
* [AraRoBERTa-KU](https://huggingface.co/reemalyami/AraRoBERTa-KU): Kuwait (KU) dialect.
* [AraRoBERTa-OM](https://huggingface.co/reemalyami/AraRoBERTa-OM): Oman (OM) dialect.
* [AraRoBERTa-LB](https://huggingface.co/reemalyami/AraRoBERTa-LB): Lebanon (LB) dialect.
* [AraRoBERTa-JO](https://huggingface.co/reemalyami/AraRoBERTa-JO): Jordan (JO) dialect.
* [AraRoBERTa-DZ](https://huggingface.co/reemalyami/AraRoBERTa-DZ): Algeria (DZ) dialect
# When using the model, please cite our paper:
```python
@inproceedings{alyami-al-zaidy-2022-weakly,
title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models",
author = "AlYami, Reem and Al-Zaidy, Rabah",
booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wanlp-1.24",
pages = "260--272",
}
```
# Contact
**Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <[email protected]> | <[email protected]> |
sryu1/poca-SoccerTwos | sryu1 | 2023-02-09T08:45:17Z | 5 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
]
| reinforcement-learning | 2023-02-09T08:45:05Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: sryu1/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
swl-models/koushake | swl-models | 2023-02-09T08:41:34Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2023-02-09T07:05:06Z | ---
license: creativeml-openrail-m
---
|
marcosgg/bert-large-pt-ner-enamex | marcosgg | 2023-02-09T08:33:59Z | 93 | 2 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"pt",
"gl",
"license:agpl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2022-12-05T08:44:19Z | ---
license: agpl-3.0
language:
- pt
- gl
widget:
- text: >-
A minha amiga Rosa, de São Paulo, estudou en Montreal. Agora trabalha em
Santiago de Compostela com o Mário.
---
# Named Entity Recognition (NER) model for Portuguese
This is a NER model for Portuguese which uses the standard 'enamex' classes: LOC (geographical locations); PER (people); ORG (organizations); MISC (other entities).
The model is based on [BERTimbau Large](https://huggingface.co/neuralmind/bert-large-portuguese-cased), which has been fine-tuned using a combination of available corpora (see [1] for details).
There is an alternative model trained using [BERTimbau Base](https://huggingface.co/neuralmind/bert-base-portuguese-cased): [bert-base-pt-ner-enamex](https://huggingface.co/marcosgg/bert-base-pt-ner-enamex).
It was trained with a batch size of 32 and a learning rate of 3e-5 during 3 epochs. It achieved the following results on the test set (Precision/Recall/F1): 0.919/0.925/0.922.
[1] Pablo Gamallo, Marcos Garcia & Patricia Martín-Rodilla, 2019. [NER and open information extraction for Portuguese notebook for IberLEF 2019 Portuguese named entity recognition and relation extraction tasks](https://ceur-ws.org/Vol-2421/NER_Portuguese_paper_6.pdf). In _Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019)
co-located with 35th Conference of the Spanish Society for Natural Language Processing (SEPLN 2019)_: 457-467. |
marcosgg/bert-base-gl-cased | marcosgg | 2023-02-09T08:33:40Z | 638 | 3 | transformers | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"gl",
"pt",
"arxiv:2106.13553",
"license:agpl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2022-03-02T23:29:05Z | ---
language:
- gl
- pt
widget:
- text: A mesa estaba feita de [MASK].
license: agpl-3.0
---
# BERT for Galician (Base)
This is a base pre-trained BERT model (12 layers, cased) for Galician (ILG/RAG spelling). It was evaluated on lexical semantics tasks, using a [dataset to identify homonymy and synonymy in context](https://github.com/marcospln/homonymy_acl21), and presented at ACL 2021.
There is also a small version (6 layers, cased): `marcosgg/bert-small-gl-cased`
## Citation
If you use this model, please cite the following [paper](https://arxiv.org/abs/2106.13553):
```
@inproceedings{garcia-2021-exploring,
title = "Exploring the Representation of Word Meanings in Context: {A} Case Study on Homonymy and Synonymy",
author = "Garcia, Marcos",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.281",
doi = "10.18653/v1/2021.acl-long.281",
pages = "3625--3640"
}
``` |
swl-models/zoirun-plus | swl-models | 2023-02-09T08:15:32Z | 0 | 1 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2023-02-09T07:03:26Z | ---
license: creativeml-openrail-m
---
|
kkh4162/xlm-roberta-base-finetuned-panx-de | kkh4162 | 2023-02-09T07:52:57Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2023-02-09T06:50:32Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.de
split: validation
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8638300289723342
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1358
- F1: 0.8638
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 |
| 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 |
| 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
sunwooooong/klue-bert-finetuned-klue-ner | sunwooooong | 2023-02-09T07:47:31Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:klue",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2023-02-09T07:19:36Z | ---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- klue
metrics:
- f1
model-index:
- name: klue-bert-finetuned-klue-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# klue-bert-finetuned-klue-ner
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3741
- F1: 0.3930
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5313 | 1.0 | 876 | 0.5225 | 0.2331 |
| 0.3884 | 2.0 | 1752 | 0.4197 | 0.3350 |
| 0.3136 | 3.0 | 2628 | 0.3741 | 0.3930 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
atorre/poca-SoccerTwos-10M | atorre | 2023-02-09T07:47:23Z | 6 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
]
| reinforcement-learning | 2023-02-09T07:47:15Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: atorre/poca-SoccerTwos-10M
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
imjunaidafzal/saqib-t1400-u2000-photoreal-9-feb | imjunaidafzal | 2023-02-09T07:26:03Z | 2 | 0 | diffusers | [
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-09T07:22:34Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Fine tune the
### concept name: saqib-t1400-u2000-photoreal-9-feb
### Training steps: 1500
### Text encoder steps: 350% of Training steps
Sample pictures of this concept:
|
ZoeScralet/Zoe_LOL_LoraModel | ZoeScralet | 2023-02-09T06:55:21Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2023-02-09T06:47:48Z | ---
license: creativeml-openrail-m
---
|
jannikskytt/poca-SoccerTwos | jannikskytt | 2023-02-09T06:50:28Z | 5 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
]
| reinforcement-learning | 2023-02-09T06:50:13Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: jannikskytt/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
thanat/mt5-small-finetuned-amazon-en-es | thanat | 2023-02-09T06:42:12Z | 3 | 0 | transformers | [
"transformers",
"tf",
"mt5",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-02-09T05:12:02Z | ---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: thanat/mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# thanat/mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [amazon_reviews_multi](https://huggingface.co/datasets/amazon_reviews_multi) dataset.
It achieves the following results on the evaluation set:
- Train Loss: 4.0061
- Validation Loss: 3.3257
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 9.6013 | 4.2024 | 0 |
| 5.8556 | 3.7335 | 1 |
| 5.0930 | 3.5494 | 2 |
| 4.6610 | 3.4502 | 3 |
| 4.3874 | 3.4030 | 4 |
| 4.2103 | 3.3568 | 5 |
| 4.0930 | 3.3311 | 6 |
| 4.0061 | 3.3257 | 7 |
### Framework versions
- Transformers 4.26.0
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2
|
TkskKurumi/KurumiMix | TkskKurumi | 2023-02-09T06:12:07Z | 2 | 1 | diffusers | [
"diffusers",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-08T02:26:32Z | # KurumiMix
## Composition
### unet weights
The model weights are interpolated with same composition in all UNet blocks.
|Model|Contribution|
|-|-|
|[PastelMix](https://huggingface.co/andite/pastel-mix)|40%|
|[Counterfeit V2.5](https://huggingface.co/gsdf/Counterfeit-V2.5)|20%|
|Counterfeit V2.2|20%|
|[EimisAnimeDiffusion](https://huggingface.co/eimiss/EimisAnimeDiffusion_1.0v)|10%|
|[BasilMix](https://huggingface.co/nuigurumi/basil_mix)|5%|
|[AbyssOrangeMix2](https://huggingface.co/WarriorMama777/OrangeMixs)|5%|
### vae weights
Pastel mix's vae is colorful and beautiful, but a bit over-saturated in my view. Mix a little bit other vae.
|Model|Contribution|
|-|-|
|[orangemix.vae.pt](https://huggingface.co/WarriorMama777/OrangeMixs)|10%|
|[pastel-waifu-diffusion.vae.pt](https://huggingface.co/andite/pastel-mix)|90%|
## samples



 |
Toying/distilbert-base-uncased-finetuned-emotion | Toying | 2023-02-09T06:06:03Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-02-09T05:44:25Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9265
- name: F1
type: f1
value: 0.9264887378942147
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2107
- Accuracy: 0.9265
- F1: 0.9265
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.811 | 1.0 | 250 | 0.3073 | 0.905 | 0.9023 |
| 0.2402 | 2.0 | 500 | 0.2107 | 0.9265 | 0.9265 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
shaoyu17/my_awesome_model | shaoyu17 | 2023-02-09T06:03:53Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-02-07T05:49:11Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
- precision
- recall
- accuracy
model-index:
- name: my_awesome_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8597
- F1: 0.5171
- Precision: 0.5205
- Recall: 0.52
- Accuracy: 0.52
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:|
| 0.6451 | 1.0 | 752 | 0.7708 | 0.4699 | 0.5047 | 0.5035 | 0.5035 |
| 0.5828 | 2.0 | 1504 | 0.7702 | 0.5101 | 0.5106 | 0.5106 | 0.5106 |
| 0.5139 | 3.0 | 2256 | 0.8597 | 0.5171 | 0.5205 | 0.52 | 0.52 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Ransaka/dqn-SpaceInvadersNoFrameskip-v4 | Ransaka | 2023-02-09T05:57:27Z | 3 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-09T05:56:38Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 738.00 +/- 279.64
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Ransaka -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Ransaka -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Ransaka
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
SandyML/ddpm-celebahq-finetuned-butterflies-2epochs | SandyML | 2023-02-09T05:35:07Z | 0 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2023-02-09T05:34:23Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
Describe your model here
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('SandyML/ddpm-celebahq-finetuned-butterflies-2epochs')
image = pipeline().images[0]
image
```
|
csebuetnlp/banglat5_small | csebuetnlp | 2023-02-09T05:30:25Z | 79 | 1 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"bn",
"arxiv:2205.11081",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-02-09T05:18:08Z | ---
language:
- bn
licenses:
- cc-by-nc-sa-4.0
---
# BanglaT5
This repository contains the pretrained checkpoint of the model **BanglaT5 (small)**. This is a sequence to sequence transformer model pretrained with the ["Span Corruption"]() objective. Finetuned models using this checkpoint achieve state-of-the-art results on many of the NLG tasks in bengali.
For finetuning on different downstream tasks such as `Machine Translation`, `Abstractive Text Summarization`, `Question Answering` etc., refer to the scripts in the official GitHub [repository](https://github.com/csebuetnlp/BanglaNLG).
**Note**: This model was pretrained using a specific normalization pipeline available [here](https://github.com/csebuetnlp/normalizer). All finetuning scripts in the official GitHub repository use this normalization by default. If you need to adapt the pretrained model for a different task make sure the text units are normalized using this pipeline before tokenizing to get best results. A basic example is given below:
## Using this model in `transformers` (tested on 4.11.0.dev0)
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from normalizer import normalize # pip install git+https://github.com/csebuetnlp/normalizer
model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_small")
tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_small", use_fast=False)
input_sentence = ""
input_ids = tokenizer(normalize(input_sentence), return_tensors="pt").input_ids
generated_tokens = model.generate(input_ids)
decoded_tokens = tokenizer.batch_decode(generated_tokens)[0]
print(decoded_tokens)
```
## Benchmarks
* Supervised fine-tuning
| Model | Params | MT (SacreBLEU) | TS (ROUGE-2) | QA (EM/F1) | MD (SacreBLEU-1) | NHG (ROUGE-2) | XLS (ROUGE-2) | BNLG score |
|--------------------|------------|-----------------------|------------------------|-------------------|--------------------|----------------|----------------|---------------|
|[mT5 (base)](https://huggingface.co/google/mt5-base) | 582M | 36.6/22.5 | 10.3 | 59.0/65.3 | 17.5 | 9.6 | 2.7/0.7 | 24.9 |
|[XLM-ProphetNet](https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased) | 616M | 23.3/16.4 | 7.8 | 53.0/57.3 | 20.0 | 9.5 | 6.2/2.7 | 21.8 |
|[mBART-50](https://huggingface.co/facebook/mbart-large-50) | 611M | 23.6/16.7 | 10.4 | 53.4/58.9 | 18.5 | 11.2 | 5.4/3.7 | 22.4 |
|[IndicBART](https://huggingface.co/ai4bharat/IndicBART) | 244M | 22.7/13.1 | 8.1 | 53.3/58.8 | 14.8 | 7.9 | 6.3/2.5 | 20.8 |
|[BanglaT5](https://huggingface.co/csebuetnlp/banglat5) | 247M | 38.8/25.2 | 13.7 | 68.5/74.8 | 19.0 | 13.8 | 6.4/4.0 | 29.4 |
The benchmarking datasets are as follows:
* **MT:** **[Machine Translation](https://github.com/csebuetnlp/banglanmt#datasets)**
* **TS:** **[Abstractive Text Summarization](https://huggingface.co/datasets/csebuetnlp/xlsum)**
* **QA:** **[Question Answering](https://huggingface.co/datasets/csebuetnlp/squad_bn)**
* **MD:** **[Multi Turn Dialogue Generation](https://drive.google.com/file/d/1qPmNN6qA4evbh4cD_BDDTCFOwMu4H2JS/view?usp=sharing)**
* **NHG:** **[News Headline Generation](https://huggingface.co/datasets/csebuetnlp/xlsum)**
* **XLS:** **[Cross-lingual Summarization](https://huggingface.co/datasets/csebuetnlp/CrossSum)**
## Citation
If you use this model, please cite the following paper:
```
@article{bhattacharjee2022banglanlg,
author = {Abhik Bhattacharjee and Tahmid Hasan and Wasi Uddin Ahmad and Rifat Shahriyar},
title = {BanglaNLG: Benchmarks and Resources for Evaluating Low-Resource Natural Language Generation in Bangla},
journal = {CoRR},
volume = {abs/2205.11081},
year = {2022},
url = {https://arxiv.org/abs/2205.11081},
eprinttype = {arXiv},
eprint = {2205.11081}
}
```
If you use the normalization module, please cite the following paper:
```
@inproceedings{hasan-etal-2020-low,
title = "Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for {B}engali-{E}nglish Machine Translation",
author = "Hasan, Tahmid and
Bhattacharjee, Abhik and
Samin, Kazi and
Hasan, Masum and
Basak, Madhusudan and
Rahman, M. Sohel and
Shahriyar, Rifat",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.207",
doi = "10.18653/v1/2020.emnlp-main.207",
pages = "2612--2623",
abstract = "Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt.",
}
```
|
pfunk/Pong-v4-DQPN_p10-seed1 | pfunk | 2023-02-09T05:25:11Z | 0 | 0 | cleanrl | [
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-09T05:24:46Z | ---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: 3.10 +/- 6.20
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p10.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p10]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p10 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p10 --start-policy-f 10000 --end-policy-f 10000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 10000,
'env_id': 'Pong-v4',
'evaluation_fraction': 1.0,
'exp_name': 'DQPN_p10',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 10000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
rishabhjain16/whisper_base_to_pf10h | rishabhjain16 | 2023-02-09T05:03:28Z | 8 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2023-02-08T15:16:51Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-base
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1929
- Wer: 4.3549
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0326 | 10.0 | 500 | 0.1670 | 5.0398 |
| 0.0019 | 20.0 | 1000 | 0.1728 | 4.5113 |
| 0.0008 | 30.01 | 1500 | 0.1820 | 4.4071 |
| 0.0005 | 40.01 | 2000 | 0.1847 | 4.3773 |
| 0.0004 | 51.0 | 2500 | 0.1886 | 4.3549 |
| 0.0003 | 61.0 | 3000 | 0.1910 | 4.3475 |
| 0.0003 | 71.01 | 3500 | 0.1925 | 4.3549 |
| 0.0002 | 81.01 | 4000 | 0.1929 | 4.3549 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
|
Weeze17/Everything-v2 | Weeze17 | 2023-02-09T05:02:24Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2023-02-09T05:02:23Z | ---
license: creativeml-openrail-m
---
|
juanmi1234/Reinforce-Pixelcopter-PLE-v0 | juanmi1234 | 2023-02-09T04:55:28Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-09T04:55:24Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 23.70 +/- 26.66
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
PecanPi/q-taxi-v3-v2 | PecanPi | 2023-02-09T04:43:15Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-09T04:41:55Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3-v2
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="PecanPi/q-taxi-v3-v2", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
jojoUla/bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30 | jojoUla | 2023-02-09T04:43:12Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-02-09T03:52:16Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30
This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-no-label-40) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6520
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 30
- eval_batch_size: 30
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.8321 | 1.0 | 2 | 4.3250 |
| 3.383 | 2.0 | 4 | 2.4023 |
| 1.9548 | 3.0 | 6 | 1.2925 |
| 1.4856 | 4.0 | 8 | 1.5152 |
| 0.9588 | 5.0 | 10 | 1.7731 |
| 1.2668 | 6.0 | 12 | 1.3830 |
| 0.8441 | 7.0 | 14 | 1.9760 |
| 1.0173 | 8.0 | 16 | 1.2364 |
| 0.6814 | 9.0 | 18 | 1.1771 |
| 0.9044 | 10.0 | 20 | 1.4721 |
| 0.6889 | 11.0 | 22 | 0.8518 |
| 0.5845 | 12.0 | 24 | 0.6993 |
| 0.4068 | 13.0 | 26 | 1.1771 |
| 0.5957 | 14.0 | 28 | 0.5895 |
| 0.4277 | 15.0 | 30 | 0.5326 |
| 0.3736 | 16.0 | 32 | 1.0893 |
| 0.413 | 17.0 | 34 | 1.3267 |
| 0.5718 | 18.0 | 36 | 1.0331 |
| 0.3892 | 19.0 | 38 | 1.0793 |
| 0.3913 | 20.0 | 40 | 0.8742 |
| 0.4794 | 21.0 | 42 | 1.1264 |
| 0.4626 | 22.0 | 44 | 1.1857 |
| 0.2683 | 23.0 | 46 | 1.5181 |
| 0.3436 | 24.0 | 48 | 1.4419 |
| 0.3793 | 25.0 | 50 | 1.4198 |
| 0.356 | 26.0 | 52 | 1.1776 |
| 0.2189 | 27.0 | 54 | 0.7166 |
| 0.286 | 28.0 | 56 | 0.7601 |
| 0.3681 | 29.0 | 58 | 1.2592 |
| 0.5858 | 30.0 | 60 | 0.6520 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
pfunk/Pong-v4-DQPN_p50_e0.50-seed1 | pfunk | 2023-02-09T04:41:31Z | 0 | 0 | cleanrl | [
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-09T04:41:12Z | ---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: 7.20 +/- 4.85
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.50.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p50_e0.50]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.50 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p50_e0.50 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.50 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 1000,
'env_id': 'Pong-v4',
'evaluation_fraction': 0.5,
'exp_name': 'DQPN_p50_e0.50',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 50000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
YifanPan/bert-finetuned-squad | YifanPan | 2023-02-09T04:40:11Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-02-09T03:33:25Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
PecanPi/q-taxi-v3 | PecanPi | 2023-02-09T04:34:24Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-09T04:34:20Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="PecanPi/q-taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
sweaterr/pegasus-samsum | sweaterr | 2023-02-09T04:34:21Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"dataset:samsum",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-02-09T03:33:08Z | ---
tags:
- generated_from_trainer
datasets:
- samsum
model-index:
- name: pegasus-samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus-samsum
This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4812
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6928 | 0.54 | 500 | 1.4812 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
SirVeggie/wlop | SirVeggie | 2023-02-09T04:33:46Z | 0 | 41 | null | [
"art",
"license:creativeml-openrail-m",
"region:us"
]
| null | 2022-10-16T00:53:46Z | ---
license: creativeml-openrail-m
tags:
- art
---
# WLOP stable diffusion model
Original artist: WLOP\
Patreon: https://www.patreon.com/wlop/posts
## Basic explanation
Token and Class words are what guide the AI to produce images similar to the trained style/object/character.
Include any mix of these words in the prompt to produce verying results, or exclude them to have a less pronounced effect.
There is usually at least a slight stylistic effect even without the words, but it is recommended to include at least one.
Adding token word/phrase class word/phrase at the start of the prompt in that order produces results most similar to the trained concept, but they can be included elsewhere as well. Some models produce better results when not including all token/class words.
For model merging I recommend using the wlop.ckpt or wlop-any model.
### Model: AbyssalWlop - (current best version)
The model works without a keyword, but you can affect the style with the keywords `m_wlop illustration style`, which are used by the merged models.
The model works best at clip skip 2 and 3.
Mix using [AbyssOrangeMix2_nsfw](https://huggingface.co/WarriorMama777/OrangeMixs), wlop and wlop-any models to create a stable and accurate wlop style.
The recipe itself is quite simple.
```
orange-wlop = AbyssOrangeMix2_nsfw + (wlop-any - anything) @1.0
orange-wlop2 = AbyssOrangeMix2_nsfw + (wlop - wd1.3) @1.0
AbyssalWlop = orange-wlop + orange-wlop2 @0.5
```
Image comparisons between models, more models located under the image grids:


### Model: wlop-any
Has the most consistent wlop style, but difficult to get good results
```
token: m_wlop
class: illustration style
base: anything v3
images: 120
steps: 12000
```
### Model: wlop-anymix
Custom berry mix using wlop-any as last step. Great quality if prompted correctly, but loses wlop style. Is influenced by the style though.
### Model: wlop
This version is highly overfit, and not suitable for standalone use. Merge with another model to use.
```
token: m_wlop
class: illustration style
base: waifu diffusion 1.3-full
images: 160
steps: 16000
```
### Model: wlopmix
Custom berry mix using wlop as last step. Pretty similar to wlop-anymix, though there are some flavor differences.
### Model: wlop_e5
Old wlop model, I guess it works ok. Decent wlop style reproduction if you can get good quality out of it.
```
token: m_concept
class: 1girl
base: waifu diffusion 1.3-e5
```
## License
This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage.
The CreativeML OpenRAIL License specifies:
1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content
2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully)
[Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) |
PecanPi/q-FrozenLake-v1-4x4-noSlippery | PecanPi | 2023-02-09T04:31:28Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-09T04:31:23Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="PecanPi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
juanmi1234/Reinforce-CartPole | juanmi1234 | 2023-02-09T04:14:22Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-09T04:14:14Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
rishabhjain16/whisper_tiny_en_to_pf10h | rishabhjain16 | 2023-02-09T04:12:50Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2023-02-08T15:16:22Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-tiny.en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-tiny.en
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2166
- Wer: 6.5585
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1174 | 10.0 | 500 | 0.1975 | 6.4170 |
| 0.0034 | 20.0 | 1000 | 0.1896 | 5.2259 |
| 0.0012 | 30.01 | 1500 | 0.2040 | 6.6478 |
| 0.0007 | 40.01 | 2000 | 0.2080 | 6.6404 |
| 0.0005 | 51.0 | 2500 | 0.2117 | 6.5957 |
| 0.0004 | 61.0 | 3000 | 0.2139 | 6.5510 |
| 0.0003 | 71.01 | 3500 | 0.2162 | 6.5883 |
| 0.0003 | 81.01 | 4000 | 0.2166 | 6.5585 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
|
Ngao/DialoGPT-small-ngao | Ngao | 2023-02-09T04:07:15Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-02-08T14:32:51Z | ---
tags:
- conversational
--- |
UtopiansRareTruth/poca-SoccerTwos | UtopiansRareTruth | 2023-02-09T04:03:42Z | 1 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
]
| reinforcement-learning | 2023-02-08T08:25:46Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: UtopiansRareTruth/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Gokulapriyan/swin-tiny-patch4-window7-224-finetuned-new_dataset_50e | Gokulapriyan | 2023-02-09T03:49:39Z | 35 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-02-08T11:42:50Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-new_dataset_50e
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7972972972972973
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-new_dataset_50e
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6407
- Accuracy: 0.7973
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.94 | 4 | 0.7081 | 0.6081 |
| No log | 1.94 | 8 | 0.7104 | 0.6351 |
| 0.5516 | 2.94 | 12 | 0.6911 | 0.6351 |
| 0.5516 | 3.94 | 16 | 0.7156 | 0.7027 |
| 0.537 | 4.94 | 20 | 0.7345 | 0.7297 |
| 0.537 | 5.94 | 24 | 0.6745 | 0.6892 |
| 0.537 | 6.94 | 28 | 0.7146 | 0.7297 |
| 0.5333 | 7.94 | 32 | 0.7057 | 0.6892 |
| 0.5333 | 8.94 | 36 | 0.6531 | 0.7027 |
| 0.4871 | 9.94 | 40 | 0.6405 | 0.7027 |
| 0.4871 | 10.94 | 44 | 0.6126 | 0.6892 |
| 0.4871 | 11.94 | 48 | 0.6303 | 0.7027 |
| 0.4432 | 12.94 | 52 | 0.6264 | 0.7027 |
| 0.4432 | 13.94 | 56 | 0.6347 | 0.7432 |
| 0.3669 | 14.94 | 60 | 0.6698 | 0.6622 |
| 0.3669 | 15.94 | 64 | 0.6346 | 0.7568 |
| 0.3669 | 16.94 | 68 | 0.6510 | 0.6892 |
| 0.3704 | 17.94 | 72 | 0.6491 | 0.6892 |
| 0.3704 | 18.94 | 76 | 0.5947 | 0.7568 |
| 0.3624 | 19.94 | 80 | 0.6248 | 0.7027 |
| 0.3624 | 20.94 | 84 | 0.6580 | 0.7027 |
| 0.3624 | 21.94 | 88 | 0.6345 | 0.7162 |
| 0.3164 | 22.94 | 92 | 0.6092 | 0.7568 |
| 0.3164 | 23.94 | 96 | 0.6498 | 0.7162 |
| 0.2777 | 24.94 | 100 | 0.6915 | 0.7703 |
| 0.2777 | 25.94 | 104 | 0.6482 | 0.7838 |
| 0.2777 | 26.94 | 108 | 0.6407 | 0.7973 |
| 0.2946 | 27.94 | 112 | 0.6135 | 0.7838 |
| 0.2946 | 28.94 | 116 | 0.6819 | 0.7568 |
| 0.2546 | 29.94 | 120 | 0.6401 | 0.7568 |
| 0.2546 | 30.94 | 124 | 0.6370 | 0.7432 |
| 0.2546 | 31.94 | 128 | 0.6488 | 0.7703 |
| 0.2477 | 32.94 | 132 | 0.6429 | 0.7973 |
| 0.2477 | 33.94 | 136 | 0.6540 | 0.7703 |
| 0.1968 | 34.94 | 140 | 0.5895 | 0.7973 |
| 0.1968 | 35.94 | 144 | 0.6242 | 0.7568 |
| 0.1968 | 36.94 | 148 | 0.6575 | 0.7568 |
| 0.2235 | 37.94 | 152 | 0.6263 | 0.7703 |
| 0.2235 | 38.94 | 156 | 0.6225 | 0.7838 |
| 0.2005 | 39.94 | 160 | 0.6731 | 0.7703 |
| 0.2005 | 40.94 | 164 | 0.6844 | 0.7703 |
| 0.2005 | 41.94 | 168 | 0.6550 | 0.7703 |
| 0.2062 | 42.94 | 172 | 0.6700 | 0.7703 |
| 0.2062 | 43.94 | 176 | 0.6661 | 0.7703 |
| 0.1933 | 44.94 | 180 | 0.6606 | 0.7838 |
| 0.1933 | 45.94 | 184 | 0.6757 | 0.7703 |
| 0.1933 | 46.94 | 188 | 0.6889 | 0.7568 |
| 0.1895 | 47.94 | 192 | 0.6940 | 0.7568 |
| 0.1895 | 48.94 | 196 | 0.6919 | 0.7568 |
| 0.1666 | 49.94 | 200 | 0.6899 | 0.7432 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Tune-A-Video-library/mo-di-bear-guitar | Tune-A-Video-library | 2023-02-09T03:07:51Z | 7 | 22 | diffusers | [
"diffusers",
"tune-a-video",
"text-to-video",
"arxiv:2212.11565",
"arxiv:2112.10752",
"base_model:nitrosocke/mo-di-diffusion",
"base_model:finetune:nitrosocke/mo-di-diffusion",
"license:creativeml-openrail-m",
"diffusers:TuneAVideoPipeline",
"region:us"
]
| text-to-video | 2023-02-03T14:31:17Z | ---
license: creativeml-openrail-m
base_model: nitrosocke/mo-di-diffusion
training_prompt: A bear is playing guitar.
tags:
- tune-a-video
- text-to-video
- diffusers
inference: false
---
# Tune-A-Video - Modern Disney
## Model Description
- Base model: [nitrosocke/mo-di-diffusion](https://huggingface.co/nitrosocke/mo-di-diffusion)
- Training prompt: a bear is playing guitar.

## Samples

Test prompt: a [handsome prince/magical princess/rabbit/baby] is playing guitar, modern disney style.
## Usage
Clone the github repo
```bash
git clone https://github.com/showlab/Tune-A-Video.git
```
Run inference code
```python
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.util import save_videos_grid
import torch
pretrained_model_path = "nitrosocke/mo-di-diffusion"
unet_model_path = "Tune-A-Video-library/mo-di-bear-guitar"
unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda')
pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
prompt = "a magical princess is playing guitar, modern disney style"
video = pipe(prompt, video_length=8, height=512, width=512, num_inference_steps=50, guidance_scale=7.5).videos
save_videos_grid(video, f"./{prompt}.gif")
```
## Related Papers:
- [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
- [Stable Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
|
nolanaatama/esdmv2 | nolanaatama | 2023-02-09T02:48:50Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2023-02-09T02:43:26Z | ---
license: creativeml-openrail-m
---
|
Isaacp/Reinforce-pixelcopter | Isaacp | 2023-02-09T02:34:28Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-09T02:34:20Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-pixelcopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 39.90 +/- 33.12
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
bbbbearczx/bert-finetuned-squad | bbbbearczx | 2023-02-09T01:46:18Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-02-08T05:13:44Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
jrnold/poca-SoccerTwos | jrnold | 2023-02-09T01:37:57Z | 43 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
]
| reinforcement-learning | 2023-02-09T01:37:49Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: jrnold/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
seastar105/whisper-medium-ko-zeroth | seastar105 | 2023-02-09T00:49:53Z | 135 | 14 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"whisper-event",
"generated_from_trainer",
"ko",
"dataset:kresnik/zeroth_korean",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-11T06:17:26Z | ---
language:
- ko
license: apache-2.0
tags:
- hf-asr-leaderboard
- whisper-event
- generated_from_trainer
datasets:
- kresnik/zeroth_korean
metrics:
- wer
model-index:
- name: Whisper Medium Korean
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Zeroth Korean
type: kresnik/zeroth_korean
config: clean
split: test
args: 'split: test'
metrics:
- name: Test Wer
type: wer
value: 3.6440295136274656
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Korean
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Zeroth Korean dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0727
- Wer: 3.6440
- Cer: 1.4840
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.0873 | 0.72 | 1000 | 0.1086 | 7.7549 | 2.5597 |
| 0.0258 | 1.44 | 2000 | 0.0805 | 4.5475 | 1.7588 |
| 0.0091 | 2.16 | 3000 | 0.0719 | 3.7946 | 1.5664 |
| 0.0086 | 2.88 | 4000 | 0.0704 | 3.5537 | 1.5232 |
| 0.0019 | 3.59 | 5000 | 0.0727 | 3.6440 | 1.4840 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0a0+d0d6b1f
- Datasets 2.7.1
- Tokenizers 0.13.2
|
yizhangliu/poca-SoccerTwos-v4 | yizhangliu | 2023-02-09T00:23:06Z | 15 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
]
| reinforcement-learning | 2023-02-09T00:22:58Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: yizhangliu/poca-SoccerTwos-v4
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
petergoldstein/q-FrozenLake-v1-4x4-noSlippery | petergoldstein | 2023-02-08T23:52:21Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T23:52:17Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="petergoldstein/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
jha2ee/riffusion-model-db | jha2ee | 2023-02-08T23:10:45Z | 4 | 0 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-08T23:02:24Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### riffusion_model-db Dreambooth model trained by jha2ee with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
ivi137/Taxi-v3 | ivi137 | 2023-02-08T22:40:42Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T22:40:39Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="ivi137/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Nyaaneet/donut-cord | Nyaaneet | 2023-02-08T22:39:37Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
]
| image-text-to-text | 2023-02-06T17:19:06Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: donut-cord
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut-cord
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base).
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
DeepaKrish/roberta-base-squad2-finetuned | DeepaKrish | 2023-02-08T22:39:26Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-02-08T21:53:41Z | ---
license: cc-by-4.0
tags:
- generated_from_trainer
model-index:
- name: roberta-base-squad2-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-squad2-finetuned
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0010
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 27 | 0.0023 |
| No log | 2.0 | 54 | 0.0010 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.9.0
- Datasets 2.5.1
- Tokenizers 0.13.2
|
rerdscf/Embed | rerdscf | 2023-02-08T22:37:40Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2023-02-08T15:31:05Z | ---
license: creativeml-openrail-m
---
|
Isaacp/Reinforce-cartpole | Isaacp | 2023-02-08T22:23:25Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T22:23:13Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
saurabhnaik/dqn-SpaceInvadersNoFrameskip-v4 | saurabhnaik | 2023-02-08T21:21:02Z | 7 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T19:47:58Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 578.00 +/- 157.66
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga saurabhnaik -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga saurabhnaik -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga saurabhnaik
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 10000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
LarryAIDraw/yurucampInuyamaaoi_yurucampInuyamaaoiV1 | LarryAIDraw | 2023-02-08T21:09:52Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2023-02-07T17:07:20Z | ---
license: creativeml-openrail-m
---
https://civitai.com/models/7033/yurucampinuyamaaoi |
hulkster/sd-class-butterflies-32 | hulkster | 2023-02-08T20:52:34Z | 2 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2023-02-08T20:52:18Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('hulkster/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
Iggg0r/rl_course | Iggg0r | 2023-02-08T20:32:19Z | 3 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T19:18:11Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 281.37 +/- 14.10
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
JD97/Riffusion_sentiment_LoRA | JD97 | 2023-02-08T20:29:17Z | 10 | 2 | diffusers | [
"diffusers",
"stable-diffusion",
"diffusion",
"riffusion",
"text-to-audio",
"text-to-image",
"en",
"dataset:gwkim22/spectro_caption_dataset",
"dataset:Chr0my/Epidemic_music",
"license:mit",
"region:us"
]
| text-to-image | 2023-02-08T15:36:09Z | ---
license: mit
datasets:
- gwkim22/spectro_caption_dataset
- Chr0my/Epidemic_music
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- stable-diffusion
- diffusion
- riffusion
- text-to-audio
---
### Introduce
Riffusion with LoRA, fine-tuned with <code>Chr0my/Epidemic_music</code> <br/>
This model was used during Naver Connect BoostCamp AI tech 4th, NLP Track
### Citation
~~~
@article{Forsgren_Martiros_2022,
author = {Forsgren, Seth* and Martiros, Hayk*},
title = {{Riffusion - Stable diffusion for real-time music generation}},
url = {https://riffusion.com/about},
year = {2022}
}
~~~ |
VladVslv/ddd | VladVslv | 2023-02-08T20:19:34Z | 0 | 0 | null | [
"region:us"
]
| null | 2023-02-08T20:19:18Z | git clone https://huggingface.co/templates/automatic-speech-recognition
cd automatic-speech-recognition
git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME
git push --force
|
sgoodfriend/PPO-sb3-LunarLander-v2 | sgoodfriend | 2023-02-08T19:58:11Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T19:02:31Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 290.45 +/- 15.38
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
johko/mcc_co3dv2_all_categories | johko | 2023-02-08T19:57:50Z | 0 | 1 | null | [
"3D Reconstruction",
"dataset:CO3Dv2",
"arxiv:2301.08247",
"license:apache-2.0",
"region:us"
]
| null | 2023-02-08T19:42:57Z | ---
license: apache-2.0
datasets:
- CO3Dv2
tags:
- 3D Reconstruction
---
# Multiview Compressive Coding (MCC)
## Model Description
These are model weights originally provided by the authors of the paper [Multiview Compressive Coding (MCC)](https://arxiv.org/abs/2301.08247).
Their method aims to create a 3D multiview object from a single RGB-D image.
## Datasets
The authors trained the model on [the CO3D v2 dataset](https://ai.facebook.com/datasets/CO3D-dataset/) |
Javenma/Basic_A2C_CartpoleV1 | Javenma | 2023-02-08T19:55:04Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"CartPole-v1",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-06T16:30:49Z | ---
library_name: stable-baselines3
tags:
- CartPole-v1
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 54.20 +/- 20.84
name: mean_reward
verified: false
---
# **A2C** Agent playing **CartPole-v1**
This is a trained model of a **A2C** agent playing **CartPole-v1**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Snim/dqn-SpaceInvadersNoFrameskip-v4 | Snim | 2023-02-08T19:25:49Z | 4 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T19:25:04Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 753.50 +/- 272.14
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Snim -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Snim -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Snim
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
pneubauer/basic-poca-SoccerTwos_1 | pneubauer | 2023-02-08T19:23:00Z | 5 | 0 | ml-agents | [
"ml-agents",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
]
| reinforcement-learning | 2023-02-08T19:22:49Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: pneubauer/basic-poca-SoccerTwos_1
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ernie-ai/autotrain-document-text-language-ar-en-zh-3338392240 | ernie-ai | 2023-02-08T19:12:02Z | 35 | 1 | transformers | [
"transformers",
"pytorch",
"swin",
"image-classification",
"autotrain",
"vision",
"dataset:ernie-ai/autotrain-data-document-text-language-ar-en-zh",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-02-08T06:41:29Z | ---
tags:
- autotrain
- vision
- image-classification
datasets:
- ernie-ai/autotrain-data-document-text-language-ar-en-zh
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
co2_eq_emissions:
emissions: 2.2266908460523576
---
# finetuned-MS-swin-doc-text-classifer
This model is a fine-tuned version of Microsoft’s Swin Transformer tiny-sized model [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the ernie-ai/image-text-examples-ar-cn-latin-notext dataset.
It achieves the following results on the evaluation set:
- Loss: 0.267
- Accuracy: 0.882
## Model description
It is an image classificatin model fine-tuned to predict whether an images contains text and if that text is Latin script, Chinese or Arabic. It also classifies non-text images.
## Training and evaluation data
Dataset: [ernie-ai/image-text-examples-ar-cn-latin-notext]
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 3338392240
- CO2 Emissions (in grams): 2.2267
## Validation Metrics
- Loss: 0.267
- Accuracy: 0.882
- Macro F1: 0.862
- Micro F1: 0.882
- Weighted F1: 0.880
- Macro Precision: 0.877
- Micro Precision: 0.882
- Weighted Precision: 0.883
- Macro Recall: 0.856
- Micro Recall: 0.882
- Weighted Recall: 0.882 |
pfunk/Pong-v4-DQPN_p50_e0.25-seed1 | pfunk | 2023-02-08T19:11:53Z | 0 | 0 | cleanrl | [
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T19:11:32Z | ---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: 1.60 +/- 6.87
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.25.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p50_e0.25]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.25 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p50_e0.25 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.25 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 1000,
'env_id': 'Pong-v4',
'evaluation_fraction': 0.25,
'exp_name': 'DQPN_p50_e0.25',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 50000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
kitintouch/kit-the-bear | kitintouch | 2023-02-08T18:44:56Z | 0 | 0 | null | [
"text-to-image",
"license:creativeml-openrail-m",
"region:us"
]
| text-to-image | 2023-02-08T18:44:30Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
widget:
- text: kitthebear
---
### kit the bear Dreambooth model trained by kitintouch with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
kitthebear (use that on your prompt)

|
ernie-ai/finetuned-vit-image-text-classifier | ernie-ai | 2023-02-08T18:36:19Z | 26 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-02-08T06:08:50Z | ---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: finetuned-vit-doc-text-classifer
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: ernie-ai/image-text-examples-ar-cn-latin-notext
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9029850746268657
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-vit-doc-text-classifer
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the ernie-ai/image-text-examples-ar-cn-latin-notext dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3107
- Accuracy: 0.9030
## Model description
It is an image classificatin model fine-tuned to predict whether an images contains text and if that text is Latin script, Chinese or Arabic. It also classifies non-text images.
## Training and evaluation data
Dataset: [ernie-ai/image-text-examples-ar-cn-latin-notext]
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2719 | 2.08 | 100 | 0.4120 | 0.8657 |
| 0.1027 | 4.17 | 200 | 0.3907 | 0.8881 |
| 0.0723 | 6.25 | 300 | 0.3107 | 0.9030 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
fjaragones/Taxi-v3 | fjaragones | 2023-02-08T18:28:50Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T18:28:47Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.76
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="fjaragones/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
sgoodfriend/poca-SoccerTwos-v3 | sgoodfriend | 2023-02-08T18:26:23Z | 1 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
]
| reinforcement-learning | 2023-02-08T18:25:31Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: sgoodfriend/poca-SoccerTwos-v3
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
fjaragones/q-FrozenLake-v1-4x4-noSlippery | fjaragones | 2023-02-08T18:24:12Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T18:24:09Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="fjaragones/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
tomasabril/bonusunit1 | tomasabril | 2023-02-08T18:04:09Z | 1 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2023-02-08T18:04:01Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: tomasabril/bonusunit1
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
pfunk/Pong-v4-DQPN_p50_e0.10-seed1 | pfunk | 2023-02-08T17:41:56Z | 0 | 0 | cleanrl | [
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T17:41:35Z | ---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: 10.00 +/- 5.67
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.10.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p50_e0.10]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.10 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p50_e0.10 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.10 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 1000,
'env_id': 'Pong-v4',
'evaluation_fraction': 0.1,
'exp_name': 'DQPN_p50_e0.10',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 50000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
GFMRommel/Vergelltungswaffe1 | GFMRommel | 2023-02-08T17:27:57Z | 0 | 0 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2023-02-08T10:14:26Z | ---
license: creativeml-openrail-m
---
|
frangiral/dqn-SpaceInvadersNoFrameskip-v4-2 | frangiral | 2023-02-08T17:20:12Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T17:19:36Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 196.50 +/- 75.40
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga frangiral -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga frangiral -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga frangiral
```
## Hyperparameters
```python
OrderedDict([('batch_size', 256),
('buffer_size', 50000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
zmaro/zmaroavatar | zmaro | 2023-02-08T17:09:36Z | 1 | 0 | diffusers | [
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-08T17:07:34Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### zmaroavatar Dreambooth model trained by zmaro with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
Hamid-reza/mt5-small-finetuned-digikala-titleGen | Hamid-reza | 2023-02-08T17:09:14Z | 9 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| summarization | 2023-02-07T19:19:31Z | ---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-digikala-titleGen
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-digikala-titleGen
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8801
- Rouge1: 70.3489
- Rouge2: 43.245
- Rougel: 34.6608
- Rougelsum: 34.6608
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 7.5555 | 1.0 | 847 | 3.2594 | 45.6729 | 19.6446 | 31.5974 | 31.5974 |
| 4.1386 | 2.0 | 1694 | 3.0347 | 58.3021 | 32.8172 | 33.9012 | 33.9012 |
| 3.7449 | 3.0 | 2541 | 2.9665 | 66.731 | 40.8991 | 34.2203 | 34.2203 |
| 3.5575 | 4.0 | 3388 | 2.9102 | 65.598 | 39.4081 | 34.5116 | 34.5116 |
| 3.4062 | 5.0 | 4235 | 2.8944 | 69.6081 | 42.8707 | 34.6622 | 34.6622 |
| 3.3408 | 6.0 | 5082 | 2.8888 | 70.2123 | 42.8639 | 34.5669 | 34.5669 |
| 3.3025 | 7.0 | 5929 | 2.8801 | 70.3489 | 43.245 | 34.6608 | 34.6608 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
YoriV/Reinforce-CartPole-v1 | YoriV | 2023-02-08T17:07:24Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T17:07:12Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 477.90 +/- 31.31
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Elifr/clasificador-sentimientos-pln-uned | Elifr | 2023-02-08T16:50:20Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"electra",
"text-classification",
"classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-02-08T16:49:17Z | ---
tags:
- classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: clasificador-sentimientos-pln-uned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clasificador-sentimientos-pln-uned
This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3848
- Accuracy: 0.4297
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 388 | 1.3848 | 0.3806 |
| 1.4224 | 2.0 | 776 | 1.2911 | 0.4090 |
| 1.0722 | 3.0 | 1164 | 1.3848 | 0.4297 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
pabloac31/ppo-Pyramids | pabloac31 | 2023-02-08T16:39:43Z | 8 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
]
| reinforcement-learning | 2023-02-08T16:39:36Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: pabloac31/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ahmad-alismail/pyramids-RND-1 | ahmad-alismail | 2023-02-08T16:39:34Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
]
| reinforcement-learning | 2023-02-08T16:39:29Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: ahmad1289/pyramids-RND-1
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
apatidar0/conversation-summ | apatidar0 | 2023-02-08T16:36:19Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"dataset:samsum",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-02-08T15:58:12Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: conversation-summ
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: validation
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 51.7796
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# conversation-summ
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4048
- Rouge1: 51.7796
- Rouge2: 26.1341
- Rougel: 41.4013
- Rougelsum: 41.4563
- Gen Len: 29.656
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.5781 | 1.0 | 500 | 0.3637 | 50.8871 | 26.6178 | 41.8757 | 41.9291 | 25.16 |
| 0.2183 | 2.0 | 1000 | 0.3586 | 50.7919 | 25.4277 | 40.8428 | 40.8421 | 27.712 |
| 0.1354 | 3.0 | 1500 | 0.4048 | 51.7796 | 26.1341 | 41.4013 | 41.4563 | 29.656 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
vvn0/a2c-AntBulletEnv-v0 | vvn0 | 2023-02-08T16:30:28Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T16:29:13Z | ---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1442.86 +/- 397.05
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
dasaprakashk/Reinforce-Pixelcopter-PLE-v0 | dasaprakashk | 2023-02-08T16:23:22Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T16:23:19Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 31.60 +/- 25.50
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
mshibatatt/q-Taxi-v3 | mshibatatt | 2023-02-08T16:10:27Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T14:48:43Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="mshibatatt/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
fathyshalab/massive_calendar-roberta-large-v1-2-0.89 | fathyshalab | 2023-02-08T16:09:11Z | 12 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
]
| text-classification | 2023-02-08T16:08:47Z | ---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/massive_calendar-roberta-large-v1-2-0.89
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/massive_calendar-roberta-large-v1-2-0.89")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
davanstrien/dataset_mentions | davanstrien | 2023-02-08T16:02:29Z | 5 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
]
| text-classification | 2023-02-08T15:50:40Z | ---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# davanstrien/dataset_mentions
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("davanstrien/dataset_mentions")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
griffin/clinical-led-summarizer | griffin | 2023-02-08T15:58:41Z | 11 | 5 | transformers | [
"transformers",
"pytorch",
"led",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2022-10-12T14:29:12Z | # clinical-led-summarizer
HuggingFace Model Weights for the LongFormer Hospital-Course Summarization model trained on Revised References, as described in Findings of EMNLP 2022 Paper "Learning to Revise References for Faithful Summarization"
[Paper Link](https://aclanthology.org/2022.findings-emnlp.296/)
---
language:
- en
tags:
- summarization
license: apache-2.0
datasets:
- MIMIC-III
metrics:
- rouge
- bertscore
---
|
fathyshalab/massive_transport-roberta-large-v1-2-0.15 | fathyshalab | 2023-02-08T15:57:47Z | 4 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
]
| text-classification | 2023-02-08T15:57:25Z | ---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/massive_transport-roberta-large-v1-2-0.15
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/massive_transport-roberta-large-v1-2-0.15")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
akiFQC/japanese-dialogpt-small-aozora | akiFQC | 2023-02-08T15:55:31Z | 5 | 5 | transformers | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"ja",
"japanese",
"lm",
"nlp",
"arxiv:1911.00536",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-02-08T13:22:23Z | ---
language:
- ja
library_name: transformers
tags:
- conversational
- ja
- japanese
- gpt2
- text-generation
- lm
- nlp
---
# Japanese DialoGPT trained with Aozora
**(ja) 青空文庫のセリフで学習した日本語のDialoGPT Smallです**
**(en) Japanese DialoGPT Small trained on Aozora Bunko.**
## [Demo](https://huggingface.co/spaces/akiFQC/Japanese_DialoGPT_small_Aozora)
Demo in this page is not working so well. I recommend you to try it on [Hugging Face Spaces Version](https://huggingface.co/spaces/akiFQC/Japanese_DialoGPT_small_Aozora).
## Reference
- [Aozora-bunko](https://www.aozora.gr.jp/)
- Japanese public domain books.
- I extracted the dialogue part from the books and used it as the training data.
- [japanese-gpt2-small](https://huggingface.co/rinna/japanese-gpt2-small)
- Novel Japanese GPT2. I used a small model because of the limitation of GPU memory of my desktop PC(with RTX3060x1) 😢.
- I used this model as a pre-trained model.
- [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536)
|
fathyshalab/massive_social-roberta-large-v1-2-0.13 | fathyshalab | 2023-02-08T15:23:03Z | 5 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
]
| text-classification | 2023-02-08T15:22:45Z | ---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/massive_social-roberta-large-v1-2-0.13
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/massive_social-roberta-large-v1-2-0.13")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
nasheed/rl-course | nasheed | 2023-02-08T15:22:35Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T15:22:06Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 273.60 +/- 12.28
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
lambdalabs/sd-image-variations-diffusers | lambdalabs | 2023-02-08T15:10:13Z | 15,781 | 432 | diffusers | [
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"image-to-image",
"dataset:ChristophSchuhmann/improved_aesthetics_6plus",
"license:creativeml-openrail-m",
"diffusers:StableDiffusionImageVariationPipeline",
"region:us"
]
| image-to-image | 2022-09-09T14:53:35Z | ---
thumbnail: "https://repository-images.githubusercontent.com/523487884/fdb03a69-8353-4387-b5fc-0d85f888a63f"
datasets:
- ChristophSchuhmann/improved_aesthetics_6plus
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- image-to-image
---
# Stable Diffusion Image Variations Model Card
📣 V2 model released, and blurriness issues fixed! 📣
🧨🎉 Image Variations is now natively supported in 🤗 Diffusers! 🎉🧨

## Version 2
This version of Stable Diffusion has been fine tuned from [CompVis/stable-diffusion-v1-4-original](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original) to accept CLIP image embedding rather than text embeddings. This allows the creation of "image variations" similar to DALLE-2 using Stable Diffusion. This version of the weights has been ported to huggingface Diffusers, to use this with the Diffusers library requires the [Lambda Diffusers repo](https://github.com/LambdaLabsML/lambda-diffusers).
This model was trained in two stages and longer than the original variations model and gives better image quality and better CLIP rated similarity compared to the original version
See training details and v1 vs v2 comparison below.
## Example
Make sure you are using a version of Diffusers >=0.8.0 (for older version see the old instructions at the bottom of this model card)
```python
from diffusers import StableDiffusionImageVariationPipeline
from PIL import Image
device = "cuda:0"
sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained(
"lambdalabs/sd-image-variations-diffusers",
revision="v2.0",
)
sd_pipe = sd_pipe.to(device)
im = Image.open("path/to/image.jpg")
tform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(
(224, 224),
interpolation=transforms.InterpolationMode.BICUBIC,
antialias=False,
),
transforms.Normalize(
[0.48145466, 0.4578275, 0.40821073],
[0.26862954, 0.26130258, 0.27577711]),
])
inp = tform(im).to(device).unsqueeze(0)
out = sd_pipe(inp, guidance_scale=3)
out["images"][0].save("result.jpg")
```
### The importance of resizing correctly... (or not)
Note that due a bit of an oversight during training, the model expects resized images without anti-aliasing. This turns out to make a big difference and is important to do the resizing the same way during inference. When passing a PIL image to the Diffusers pipeline antialiasing will be applied during resize, so it's better to input a tensor which you have prepared manually according to the transfrom in the example above!
Here are examples of images generated without (top) and with (bottom) anti-aliasing during resize. (Input is [this image](https://github.com/SHI-Labs/Versatile-Diffusion/blob/master/assets/ghibli.jpg))


### V1 vs V2
Here's an example of V1 vs V2, version two was trained more carefully and for longer, see the details below. V2-top vs V1-bottom


Input images:

One important thing to note is that due to the longer training V2 appears to have memorised some common images from the training data, e.g. now the previous example of the Girl with a Pearl Earring almosts perfectly reproduce the original rather than creating variations. You can always use v1 by specifiying `revision="v1.0"`.
v2 output for girl with a pearl earing as input (guidance scale=3)

# Training
**Training Procedure**
This model is fine tuned from Stable Diffusion v1-3 where the text encoder has been replaced with an image encoder. The training procedure is the same as for Stable Diffusion except for the fact that images are encoded through a ViT-L/14 image-encoder including the final projection layer to the CLIP shared embedding space. The model was trained on LAION improved aesthetics 6plus.
- **Hardware:** 8 x A100-40GB GPUs (provided by [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud))
- **Optimizer:** AdamW
- **Stage 1** - Fine tune only CrossAttention layer weights from Stable Diffusion v1.4 model
- **Steps**: 46,000
- **Batch:** batch size=4, GPUs=8, Gradient Accumulations=4. Total batch size=128
- **Learning rate:** warmup to 1e-5 for 10,000 steps and then kept constant
- **Stage 2** - Resume from Stage 1 training the whole unet
- **Steps**: 50,000
- **Batch:** batch size=4, GPUs=8, Gradient Accumulations=5. Total batch size=160
- **Learning rate:** warmup to 1e-5 for 5,000 steps and then kept constant
Training was done using a [modified version of the original Stable Diffusion training code](https://github.com/justinpinkney/stable-diffusion).
# Uses
_The following section is adapted from the [Stable Diffusion model card](https://huggingface.co/CompVis/stable-diffusion-v1-4)_
## Direct Use
The model is intended for research purposes only. Possible research areas and
tasks include
- Safe deployment of models which have the potential to generate harmful content.
- Probing and understanding the limitations and biases of generative models.
- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
- Research on generative models.
Excluded uses are described below.
### Misuse, Malicious Use, and Out-of-Scope Use
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
#### Out-of-Scope Use
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
#### Misuse and Malicious Use
Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
- Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc.
- Intentionally promoting or propagating discriminatory content or harmful stereotypes.
- Impersonating individuals without their consent.
- Sexual content without consent of the people who might see it.
- Mis- and disinformation
- Representations of egregious violence and gore
- Sharing of copyrighted or licensed material in violation of its terms of use.
- Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use.
## Limitations and Bias
### Limitations
- The model does not achieve perfect photorealism
- The model cannot render legible text
- The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
- Faces and people in general may not be generated properly.
- The model was trained mainly with English captions and will not work as well in other languages.
- The autoencoding part of the model is lossy
- The model was trained on a large-scale dataset
[LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material
and is not fit for product use without additional safety mechanisms and
considerations.
- No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data.
The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images.
### Bias
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/),
which consists of images that are primarily limited to English descriptions.
Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for.
This affects the overall output of the model, as white and western cultures are often set as the default. Further, the
ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts.
### Safety Module
The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers.
This checker works by checking model outputs against known hard-coded NSFW concepts.
The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter.
Specifically, the checker compares the class probability of harmful concepts in the embedding space of the `CLIPModel` *after generation* of the images.
The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept.
## Old instructions
If you are using a diffusers version <0.8.0 there is no `StableDiffusionImageVariationPipeline`,
in this case you need to use an older revision (`2ddbd90b14bc5892c19925b15185e561bc8e5d0a`) in conjunction with the lambda-diffusers repo:
First clone [Lambda Diffusers](https://github.com/LambdaLabsML/lambda-diffusers) and install any requirements (in a virtual environment in the example below):
```bash
git clone https://github.com/LambdaLabsML/lambda-diffusers.git
cd lambda-diffusers
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
```
Then run the following python code:
```python
from pathlib import Path
from lambda_diffusers import StableDiffusionImageEmbedPipeline
from PIL import Image
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionImageEmbedPipeline.from_pretrained(
"lambdalabs/sd-image-variations-diffusers",
revision="2ddbd90b14bc5892c19925b15185e561bc8e5d0a",
)
pipe = pipe.to(device)
im = Image.open("your/input/image/here.jpg")
num_samples = 4
image = pipe(num_samples*[im], guidance_scale=3.0)
image = image["sample"]
base_path = Path("outputs/im2im")
base_path.mkdir(exist_ok=True, parents=True)
for idx, im in enumerate(image):
im.save(base_path/f"{idx:06}.jpg")
```
*This model card was written by: Justin Pinkney and is based on the [Stable Diffusion model card](https://huggingface.co/CompVis/stable-diffusion-v1-4).* |
quartz14/Reinforce-cartpole | quartz14 | 2023-02-08T15:06:21Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T15:06:07Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
mwissing/dqn-SpaceInvadersNoFrameskip-v4 | mwissing | 2023-02-08T15:02:50Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T15:02:08Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 679.50 +/- 183.98
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mwissing -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mwissing -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mwissing
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
mertyazan/Reinforce-1 | mertyazan | 2023-02-08T15:01:26Z | 0 | 0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-07T10:30:26Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 33.20 +/- 25.45
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
nc33/multiqa_model | nc33 | 2023-02-08T14:58:38Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2023-02-08T12:16:51Z | ---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: multiqa_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multiqa_model
This model is a fine-tuned version of [nc33/multiqa_model](https://huggingface.co/nc33/multiqa_model) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1150
- Precision: 0.0855
- Recall: 0.0485
- F1: 0.0619
- Accuracy: 0.9626
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 327 | 0.1121 | 0.0708 | 0.0280 | 0.0402 | 0.9631 |
| 0.0786 | 2.0 | 654 | 0.1098 | 0.0531 | 0.0254 | 0.0343 | 0.9599 |
| 0.0786 | 3.0 | 981 | 0.1085 | 0.0657 | 0.0243 | 0.0354 | 0.9634 |
| 0.0681 | 4.0 | 1308 | 0.1133 | 0.0765 | 0.0453 | 0.0569 | 0.9618 |
| 0.0641 | 5.0 | 1635 | 0.1150 | 0.0855 | 0.0485 | 0.0619 | 0.9626 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
irenekar/taxiv3 | irenekar | 2023-02-08T14:53:38Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T14:53:36Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxiv3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.40 +/- 2.76
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="irenekar/taxiv3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
pfunk/Pong-v4-DQPN_p500_pt0.1_tt0.1-seed1 | pfunk | 2023-02-08T14:40:48Z | 0 | 0 | cleanrl | [
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T14:40:26Z | ---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: -16.40 +/- 1.85
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p500_pt0.1_tt0.1.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p500_pt0.1_tt0.1]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p500_pt0.1_tt0.1 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1_tt0.1-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1_tt0.1-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1_tt0.1-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p500_pt0.1_tt0.1 --start-policy-f 500000 --end-policy-f 500000 --evaluation-fraction 1.00 --target-tau 0.1 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 500000,
'env_id': 'Pong-v4',
'evaluation_fraction': 1.0,
'exp_name': 'DQPN_p500_pt0.1_tt0.1',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 0.1,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 500000,
'target_network_frequency': 1000,
'target_tau': 0.1,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
Elytum/bert-finetuned-ner | Elytum | 2023-02-08T14:35:31Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2023-02-08T10:22:24Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [gaunernst/bert-small-uncased](https://huggingface.co/gaunernst/bert-small-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0186
- Precision: 0.9941
- Recall: 0.9952
- F1: 0.9946
- Accuracy: 0.9963
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0277 | 1.0 | 2500 | 0.0190 | 0.9929 | 0.9939 | 0.9934 | 0.9956 |
| 0.0137 | 2.0 | 5000 | 0.0180 | 0.9935 | 0.9951 | 0.9943 | 0.9960 |
| 0.0095 | 3.0 | 7500 | 0.0186 | 0.9941 | 0.9952 | 0.9946 | 0.9963 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Subsets and Splits