modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 00:44:55
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 00:44:41
card
stringlengths
11
1.01M
Venkatesh4342/bert-base-uncased-finetuned-fin
Venkatesh4342
2023-02-09T08:56:36Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-31T06:58:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-fin results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-fin This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3931 - Accuracy: 0.8873 - F1: 0.8902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6478 | 1.0 | 134 | 0.4118 | 0.8293 | 0.8309 | | 0.3304 | 2.0 | 268 | 0.3315 | 0.8653 | 0.8694 | | 0.2221 | 3.0 | 402 | 0.3229 | 0.8756 | 0.8781 | | 0.1752 | 4.0 | 536 | 0.3192 | 0.8891 | 0.8921 | | 0.1457 | 5.0 | 670 | 0.3700 | 0.8840 | 0.8880 | | 0.1315 | 6.0 | 804 | 0.3774 | 0.8854 | 0.8882 | | 0.1172 | 7.0 | 938 | 0.3883 | 0.8849 | 0.8877 | | 0.112 | 8.0 | 1072 | 0.3931 | 0.8873 | 0.8902 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
reemalyami/AraRoBERTa-DZ
reemalyami
2023-02-09T08:56:29Z
7
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ar --- The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/). The following are the AraRoBERTa seven dialectal variations: * [AraRoBERTa-SA](https://huggingface.co/reemalyami/AraRoBERTa-SA): Saudi Arabia (SA) dialect. * [AraRoBERTa-EGY](https://huggingface.co/reemalyami/AraRoBERTa-EGY): Egypt (EGY) dialect. * [AraRoBERTa-KU](https://huggingface.co/reemalyami/AraRoBERTa-KU): Kuwait (KU) dialect. * [AraRoBERTa-OM](https://huggingface.co/reemalyami/AraRoBERTa-OM): Oman (OM) dialect. * [AraRoBERTa-LB](https://huggingface.co/reemalyami/AraRoBERTa-LB): Lebanon (LB) dialect. * [AraRoBERTa-JO](https://huggingface.co/reemalyami/AraRoBERTa-JO): Jordan (JO) dialect. * [AraRoBERTa-DZ](https://huggingface.co/reemalyami/AraRoBERTa-DZ): Algeria (DZ) dialect # When using the model, please cite our paper: ```python @inproceedings{alyami-al-zaidy-2022-weakly, title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models", author = "AlYami, Reem and Al-Zaidy, Rabah", booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wanlp-1.24", pages = "260--272", } ``` # Contact **Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <[email protected]> | <[email protected]>
Anjoe/poetry-gpt2-large-no-hoel_2
Anjoe
2023-02-09T08:56:20Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-06T20:25:45Z
--- license: mit tags: - generated_from_trainer model-index: - name: poetry-gpt2-large-no-hoel_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poetry-gpt2-large-no-hoel_2 This model is a fine-tuned version of [benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.6683 | 1.0 | 19927 | 3.7260 | | 3.3474 | 2.0 | 39854 | 3.7067 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
reemalyami/AraRoBERTa-LB
reemalyami
2023-02-09T08:55:47Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "ar", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ar --- The **AraRoBERTa** models are mono-dialectal Arabic models trained on a country-level dialect. AraRoBERTa uses RoBERTa base config. More details are available in the paper [click](https://aclanthology.org/2022.wanlp-1.24/). The following are the AraRoBERTa seven dialectal variations: * [AraRoBERTa-SA](https://huggingface.co/reemalyami/AraRoBERTa-SA): Saudi Arabia (SA) dialect. * [AraRoBERTa-EGY](https://huggingface.co/reemalyami/AraRoBERTa-EGY): Egypt (EGY) dialect. * [AraRoBERTa-KU](https://huggingface.co/reemalyami/AraRoBERTa-KU): Kuwait (KU) dialect. * [AraRoBERTa-OM](https://huggingface.co/reemalyami/AraRoBERTa-OM): Oman (OM) dialect. * [AraRoBERTa-LB](https://huggingface.co/reemalyami/AraRoBERTa-LB): Lebanon (LB) dialect. * [AraRoBERTa-JO](https://huggingface.co/reemalyami/AraRoBERTa-JO): Jordan (JO) dialect. * [AraRoBERTa-DZ](https://huggingface.co/reemalyami/AraRoBERTa-DZ): Algeria (DZ) dialect # When using the model, please cite our paper: ```python @inproceedings{alyami-al-zaidy-2022-weakly, title = "Weakly and Semi-Supervised Learning for {A}rabic Text Classification using Monodialectal Language Models", author = "AlYami, Reem and Al-Zaidy, Rabah", booktitle = "Proceedings of the The Seventh Arabic Natural Language Processing Workshop (WANLP)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wanlp-1.24", pages = "260--272", } ``` # Contact **Reem AlYami**: [Linkedin](https://www.linkedin.com/in/reem-alyami/) | <[email protected]> | <[email protected]>
sryu1/poca-SoccerTwos
sryu1
2023-02-09T08:45:17Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T08:45:05Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: sryu1/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
swl-models/koushake
swl-models
2023-02-09T08:41:34Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T07:05:06Z
--- license: creativeml-openrail-m ---
marcosgg/bert-large-pt-ner-enamex
marcosgg
2023-02-09T08:33:59Z
93
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "pt", "gl", "license:agpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-05T08:44:19Z
--- license: agpl-3.0 language: - pt - gl widget: - text: >- A minha amiga Rosa, de São Paulo, estudou en Montreal. Agora trabalha em Santiago de Compostela com o Mário. --- # Named Entity Recognition (NER) model for Portuguese This is a NER model for Portuguese which uses the standard 'enamex' classes: LOC (geographical locations); PER (people); ORG (organizations); MISC (other entities). The model is based on [BERTimbau Large](https://huggingface.co/neuralmind/bert-large-portuguese-cased), which has been fine-tuned using a combination of available corpora (see [1] for details). There is an alternative model trained using [BERTimbau Base](https://huggingface.co/neuralmind/bert-base-portuguese-cased): [bert-base-pt-ner-enamex](https://huggingface.co/marcosgg/bert-base-pt-ner-enamex). It was trained with a batch size of 32 and a learning rate of 3e-5 during 3 epochs. It achieved the following results on the test set (Precision/Recall/F1): 0.919/0.925/0.922. [1] Pablo Gamallo, Marcos Garcia & Patricia Martín-Rodilla, 2019. [NER and open information extraction for Portuguese notebook for IberLEF 2019 Portuguese named entity recognition and relation extraction tasks](https://ceur-ws.org/Vol-2421/NER_Portuguese_paper_6.pdf). In _Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019) co-located with 35th Conference of the Spanish Society for Natural Language Processing (SEPLN 2019)_: 457-467.
marcosgg/bert-base-gl-cased
marcosgg
2023-02-09T08:33:40Z
638
3
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "gl", "pt", "arxiv:2106.13553", "license:agpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - gl - pt widget: - text: A mesa estaba feita de [MASK]. license: agpl-3.0 --- # BERT for Galician (Base) This is a base pre-trained BERT model (12 layers, cased) for Galician (ILG/RAG spelling). It was evaluated on lexical semantics tasks, using a [dataset to identify homonymy and synonymy in context](https://github.com/marcospln/homonymy_acl21), and presented at ACL 2021. There is also a small version (6 layers, cased): `marcosgg/bert-small-gl-cased` ## Citation If you use this model, please cite the following [paper](https://arxiv.org/abs/2106.13553): ``` @inproceedings{garcia-2021-exploring, title = "Exploring the Representation of Word Meanings in Context: {A} Case Study on Homonymy and Synonymy", author = "Garcia, Marcos", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", year = "2021", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.281", doi = "10.18653/v1/2021.acl-long.281", pages = "3625--3640" } ```
swl-models/zoirun-plus
swl-models
2023-02-09T08:15:32Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T07:03:26Z
--- license: creativeml-openrail-m ---
kkh4162/xlm-roberta-base-finetuned-panx-de
kkh4162
2023-02-09T07:52:57Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T06:50:32Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8638300289723342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
sunwooooong/klue-bert-finetuned-klue-ner
sunwooooong
2023-02-09T07:47:31Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:klue", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-09T07:19:36Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: klue-bert-finetuned-klue-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # klue-bert-finetuned-klue-ner This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3741 - F1: 0.3930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5313 | 1.0 | 876 | 0.5225 | 0.2331 | | 0.3884 | 2.0 | 1752 | 0.4197 | 0.3350 | | 0.3136 | 3.0 | 2628 | 0.3741 | 0.3930 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
atorre/poca-SoccerTwos-10M
atorre
2023-02-09T07:47:23Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T07:47:15Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: atorre/poca-SoccerTwos-10M 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
imjunaidafzal/saqib-t1400-u2000-photoreal-9-feb
imjunaidafzal
2023-02-09T07:26:03Z
2
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-09T07:22:34Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Fine tune the ### concept name: saqib-t1400-u2000-photoreal-9-feb ### Training steps: 1500 ### Text encoder steps: 350% of Training steps Sample pictures of this concept:
ZoeScralet/Zoe_LOL_LoraModel
ZoeScralet
2023-02-09T06:55:21Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T06:47:48Z
--- license: creativeml-openrail-m ---
jannikskytt/poca-SoccerTwos
jannikskytt
2023-02-09T06:50:28Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T06:50:13Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: jannikskytt/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
thanat/mt5-small-finetuned-amazon-en-es
thanat
2023-02-09T06:42:12Z
3
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-09T05:12:02Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: thanat/mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # thanat/mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [amazon_reviews_multi](https://huggingface.co/datasets/amazon_reviews_multi) dataset. It achieves the following results on the evaluation set: - Train Loss: 4.0061 - Validation Loss: 3.3257 - Epoch: 7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 9672, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 9.6013 | 4.2024 | 0 | | 5.8556 | 3.7335 | 1 | | 5.0930 | 3.5494 | 2 | | 4.6610 | 3.4502 | 3 | | 4.3874 | 3.4030 | 4 | | 4.2103 | 3.3568 | 5 | | 4.0930 | 3.3311 | 6 | | 4.0061 | 3.3257 | 7 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
TkskKurumi/KurumiMix
TkskKurumi
2023-02-09T06:12:07Z
2
1
diffusers
[ "diffusers", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T02:26:32Z
# KurumiMix ## Composition ### unet weights The model weights are interpolated with same composition in all UNet blocks. |Model|Contribution| |-|-| |[PastelMix](https://huggingface.co/andite/pastel-mix)|40%| |[Counterfeit V2.5](https://huggingface.co/gsdf/Counterfeit-V2.5)|20%| |Counterfeit V2.2|20%| |[EimisAnimeDiffusion](https://huggingface.co/eimiss/EimisAnimeDiffusion_1.0v)|10%| |[BasilMix](https://huggingface.co/nuigurumi/basil_mix)|5%| |[AbyssOrangeMix2](https://huggingface.co/WarriorMama777/OrangeMixs)|5%| ### vae weights Pastel mix's vae is colorful and beautiful, but a bit over-saturated in my view. Mix a little bit other vae. |Model|Contribution| |-|-| |[orangemix.vae.pt](https://huggingface.co/WarriorMama777/OrangeMixs)|10%| |[pastel-waifu-diffusion.vae.pt](https://huggingface.co/andite/pastel-mix)|90%| ## samples ![](https://huggingface.co/TkskKurumi/KurumiMix/resolve/main/gallery/005.jpg) ![](https://huggingface.co/TkskKurumi/KurumiMix/resolve/main/gallery/001.jpg) ![](https://huggingface.co/TkskKurumi/KurumiMix/resolve/main/gallery/003.png) ![](https://huggingface.co/TkskKurumi/KurumiMix/resolve/main/gallery/004.jpg)
Toying/distilbert-base-uncased-finetuned-emotion
Toying
2023-02-09T06:06:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-09T05:44:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9264887378942147 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2107 - Accuracy: 0.9265 - F1: 0.9265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.811 | 1.0 | 250 | 0.3073 | 0.905 | 0.9023 | | 0.2402 | 2.0 | 500 | 0.2107 | 0.9265 | 0.9265 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
shaoyu17/my_awesome_model
shaoyu17
2023-02-09T06:03:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T05:49:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 - precision - recall - accuracy model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8597 - F1: 0.5171 - Precision: 0.5205 - Recall: 0.52 - Accuracy: 0.52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| | 0.6451 | 1.0 | 752 | 0.7708 | 0.4699 | 0.5047 | 0.5035 | 0.5035 | | 0.5828 | 2.0 | 1504 | 0.7702 | 0.5101 | 0.5106 | 0.5106 | 0.5106 | | 0.5139 | 3.0 | 2256 | 0.8597 | 0.5171 | 0.5205 | 0.52 | 0.52 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Ransaka/dqn-SpaceInvadersNoFrameskip-v4
Ransaka
2023-02-09T05:57:27Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T05:56:38Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 738.00 +/- 279.64 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Ransaka -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Ransaka -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Ransaka ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
SandyML/ddpm-celebahq-finetuned-butterflies-2epochs
SandyML
2023-02-09T05:35:07Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-02-09T05:34:23Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('SandyML/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
csebuetnlp/banglat5_small
csebuetnlp
2023-02-09T05:30:25Z
79
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "bn", "arxiv:2205.11081", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-09T05:18:08Z
--- language: - bn licenses: - cc-by-nc-sa-4.0 --- # BanglaT5 This repository contains the pretrained checkpoint of the model **BanglaT5 (small)**. This is a sequence to sequence transformer model pretrained with the ["Span Corruption"]() objective. Finetuned models using this checkpoint achieve state-of-the-art results on many of the NLG tasks in bengali. For finetuning on different downstream tasks such as `Machine Translation`, `Abstractive Text Summarization`, `Question Answering` etc., refer to the scripts in the official GitHub [repository](https://github.com/csebuetnlp/BanglaNLG). **Note**: This model was pretrained using a specific normalization pipeline available [here](https://github.com/csebuetnlp/normalizer). All finetuning scripts in the official GitHub repository use this normalization by default. If you need to adapt the pretrained model for a different task make sure the text units are normalized using this pipeline before tokenizing to get best results. A basic example is given below: ## Using this model in `transformers` (tested on 4.11.0.dev0) ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from normalizer import normalize # pip install git+https://github.com/csebuetnlp/normalizer model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_small") tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_small", use_fast=False) input_sentence = "" input_ids = tokenizer(normalize(input_sentence), return_tensors="pt").input_ids generated_tokens = model.generate(input_ids) decoded_tokens = tokenizer.batch_decode(generated_tokens)[0] print(decoded_tokens) ``` ## Benchmarks * Supervised fine-tuning | Model | Params | MT (SacreBLEU) | TS (ROUGE-2) | QA (EM/F1) | MD (SacreBLEU-1) | NHG (ROUGE-2) | XLS (ROUGE-2) | BNLG score | |--------------------|------------|-----------------------|------------------------|-------------------|--------------------|----------------|----------------|---------------| |[mT5 (base)](https://huggingface.co/google/mt5-base) | 582M | 36.6/22.5 | 10.3 | 59.0/65.3 | 17.5 | 9.6 | 2.7/0.7 | 24.9 | |[XLM-ProphetNet](https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased) | 616M | 23.3/16.4 | 7.8 | 53.0/57.3 | 20.0 | 9.5 | 6.2/2.7 | 21.8 | |[mBART-50](https://huggingface.co/facebook/mbart-large-50) | 611M | 23.6/16.7 | 10.4 | 53.4/58.9 | 18.5 | 11.2 | 5.4/3.7 | 22.4 | |[IndicBART](https://huggingface.co/ai4bharat/IndicBART) | 244M | 22.7/13.1 | 8.1 | 53.3/58.8 | 14.8 | 7.9 | 6.3/2.5 | 20.8 | |[BanglaT5](https://huggingface.co/csebuetnlp/banglat5) | 247M | 38.8/25.2 | 13.7 | 68.5/74.8 | 19.0 | 13.8 | 6.4/4.0 | 29.4 | The benchmarking datasets are as follows: * **MT:** **[Machine Translation](https://github.com/csebuetnlp/banglanmt#datasets)** * **TS:** **[Abstractive Text Summarization](https://huggingface.co/datasets/csebuetnlp/xlsum)** * **QA:** **[Question Answering](https://huggingface.co/datasets/csebuetnlp/squad_bn)** * **MD:** **[Multi Turn Dialogue Generation](https://drive.google.com/file/d/1qPmNN6qA4evbh4cD_BDDTCFOwMu4H2JS/view?usp=sharing)** * **NHG:** **[News Headline Generation](https://huggingface.co/datasets/csebuetnlp/xlsum)** * **XLS:** **[Cross-lingual Summarization](https://huggingface.co/datasets/csebuetnlp/CrossSum)** ## Citation If you use this model, please cite the following paper: ``` @article{bhattacharjee2022banglanlg, author = {Abhik Bhattacharjee and Tahmid Hasan and Wasi Uddin Ahmad and Rifat Shahriyar}, title = {BanglaNLG: Benchmarks and Resources for Evaluating Low-Resource Natural Language Generation in Bangla}, journal = {CoRR}, volume = {abs/2205.11081}, year = {2022}, url = {https://arxiv.org/abs/2205.11081}, eprinttype = {arXiv}, eprint = {2205.11081} } ``` If you use the normalization module, please cite the following paper: ``` @inproceedings{hasan-etal-2020-low, title = "Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for {B}engali-{E}nglish Machine Translation", author = "Hasan, Tahmid and Bhattacharjee, Abhik and Samin, Kazi and Hasan, Masum and Basak, Madhusudan and Rahman, M. Sohel and Shahriyar, Rifat", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.207", doi = "10.18653/v1/2020.emnlp-main.207", pages = "2612--2623", abstract = "Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at https://github.com/csebuetnlp/banglanmt.", } ```
pfunk/Pong-v4-DQPN_p10-seed1
pfunk
2023-02-09T05:25:11Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T05:24:46Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 3.10 +/- 6.20 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p10.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p10]" python -m cleanrl_utils.enjoy --exp-name DQPN_p10 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p10 --start-policy-f 10000 --end-policy-f 10000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 10000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p10', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 10000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
rishabhjain16/whisper_base_to_pf10h
rishabhjain16
2023-02-09T05:03:28Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-08T15:16:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1929 - Wer: 4.3549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0326 | 10.0 | 500 | 0.1670 | 5.0398 | | 0.0019 | 20.0 | 1000 | 0.1728 | 4.5113 | | 0.0008 | 30.01 | 1500 | 0.1820 | 4.4071 | | 0.0005 | 40.01 | 2000 | 0.1847 | 4.3773 | | 0.0004 | 51.0 | 2500 | 0.1886 | 4.3549 | | 0.0003 | 61.0 | 3000 | 0.1910 | 4.3475 | | 0.0003 | 71.01 | 3500 | 0.1925 | 4.3549 | | 0.0002 | 81.01 | 4000 | 0.1929 | 4.3549 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
Weeze17/Everything-v2
Weeze17
2023-02-09T05:02:24Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T05:02:23Z
--- license: creativeml-openrail-m ---
juanmi1234/Reinforce-Pixelcopter-PLE-v0
juanmi1234
2023-02-09T04:55:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:55:24Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 23.70 +/- 26.66 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
PecanPi/q-taxi-v3-v2
PecanPi
2023-02-09T04:43:15Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:41:55Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="PecanPi/q-taxi-v3-v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jojoUla/bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30
jojoUla
2023-02-09T04:43:12Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-09T03:52:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-no-label-40-sigir-tune2nd-LR100-labelled-30 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-no-label-40](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-no-label-40) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.8321 | 1.0 | 2 | 4.3250 | | 3.383 | 2.0 | 4 | 2.4023 | | 1.9548 | 3.0 | 6 | 1.2925 | | 1.4856 | 4.0 | 8 | 1.5152 | | 0.9588 | 5.0 | 10 | 1.7731 | | 1.2668 | 6.0 | 12 | 1.3830 | | 0.8441 | 7.0 | 14 | 1.9760 | | 1.0173 | 8.0 | 16 | 1.2364 | | 0.6814 | 9.0 | 18 | 1.1771 | | 0.9044 | 10.0 | 20 | 1.4721 | | 0.6889 | 11.0 | 22 | 0.8518 | | 0.5845 | 12.0 | 24 | 0.6993 | | 0.4068 | 13.0 | 26 | 1.1771 | | 0.5957 | 14.0 | 28 | 0.5895 | | 0.4277 | 15.0 | 30 | 0.5326 | | 0.3736 | 16.0 | 32 | 1.0893 | | 0.413 | 17.0 | 34 | 1.3267 | | 0.5718 | 18.0 | 36 | 1.0331 | | 0.3892 | 19.0 | 38 | 1.0793 | | 0.3913 | 20.0 | 40 | 0.8742 | | 0.4794 | 21.0 | 42 | 1.1264 | | 0.4626 | 22.0 | 44 | 1.1857 | | 0.2683 | 23.0 | 46 | 1.5181 | | 0.3436 | 24.0 | 48 | 1.4419 | | 0.3793 | 25.0 | 50 | 1.4198 | | 0.356 | 26.0 | 52 | 1.1776 | | 0.2189 | 27.0 | 54 | 0.7166 | | 0.286 | 28.0 | 56 | 0.7601 | | 0.3681 | 29.0 | 58 | 1.2592 | | 0.5858 | 30.0 | 60 | 0.6520 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pfunk/Pong-v4-DQPN_p50_e0.50-seed1
pfunk
2023-02-09T04:41:31Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:41:12Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 7.20 +/- 4.85 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.50.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p50_e0.50]" python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.50 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.50-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p50_e0.50 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.50 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.5, 'exp_name': 'DQPN_p50_e0.50', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 50000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
YifanPan/bert-finetuned-squad
YifanPan
2023-02-09T04:40:11Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-09T03:33:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
PecanPi/q-taxi-v3
PecanPi
2023-02-09T04:34:24Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:34:20Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="PecanPi/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sweaterr/pegasus-samsum
sweaterr
2023-02-09T04:34:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-09T03:33:08Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6928 | 0.54 | 500 | 1.4812 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
SirVeggie/wlop
SirVeggie
2023-02-09T04:33:46Z
0
41
null
[ "art", "license:creativeml-openrail-m", "region:us" ]
null
2022-10-16T00:53:46Z
--- license: creativeml-openrail-m tags: - art --- # WLOP stable diffusion model Original artist: WLOP\ Patreon: https://www.patreon.com/wlop/posts ## Basic explanation Token and Class words are what guide the AI to produce images similar to the trained style/object/character. Include any mix of these words in the prompt to produce verying results, or exclude them to have a less pronounced effect. There is usually at least a slight stylistic effect even without the words, but it is recommended to include at least one. Adding token word/phrase class word/phrase at the start of the prompt in that order produces results most similar to the trained concept, but they can be included elsewhere as well. Some models produce better results when not including all token/class words. For model merging I recommend using the wlop.ckpt or wlop-any model. ### Model: AbyssalWlop - (current best version) The model works without a keyword, but you can affect the style with the keywords `m_wlop illustration style`, which are used by the merged models. The model works best at clip skip 2 and 3. Mix using [AbyssOrangeMix2_nsfw](https://huggingface.co/WarriorMama777/OrangeMixs), wlop and wlop-any models to create a stable and accurate wlop style. The recipe itself is quite simple. ``` orange-wlop = AbyssOrangeMix2_nsfw + (wlop-any - anything) @1.0 orange-wlop2 = AbyssOrangeMix2_nsfw + (wlop - wd1.3) @1.0 AbyssalWlop = orange-wlop + orange-wlop2 @0.5 ``` Image comparisons between models, more models located under the image grids: ![grid1](wlopgrid1.png) ![grid2](wlopgrid2.png) ### Model: wlop-any Has the most consistent wlop style, but difficult to get good results ``` token: m_wlop class: illustration style base: anything v3 images: 120 steps: 12000 ``` ### Model: wlop-anymix Custom berry mix using wlop-any as last step. Great quality if prompted correctly, but loses wlop style. Is influenced by the style though. ### Model: wlop This version is highly overfit, and not suitable for standalone use. Merge with another model to use. ``` token: m_wlop class: illustration style base: waifu diffusion 1.3-full images: 160 steps: 16000 ``` ### Model: wlopmix Custom berry mix using wlop as last step. Pretty similar to wlop-anymix, though there are some flavor differences. ### Model: wlop_e5 Old wlop model, I guess it works ok. Decent wlop style reproduction if you can get good quality out of it. ``` token: m_concept class: 1girl base: waifu diffusion 1.3-e5 ``` ## License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
PecanPi/q-FrozenLake-v1-4x4-noSlippery
PecanPi
2023-02-09T04:31:28Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:31:23Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="PecanPi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
juanmi1234/Reinforce-CartPole
juanmi1234
2023-02-09T04:14:22Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T04:14:14Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
rishabhjain16/whisper_tiny_en_to_pf10h
rishabhjain16
2023-02-09T04:12:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-08T15:16:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-tiny.en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-tiny.en This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2166 - Wer: 6.5585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1174 | 10.0 | 500 | 0.1975 | 6.4170 | | 0.0034 | 20.0 | 1000 | 0.1896 | 5.2259 | | 0.0012 | 30.01 | 1500 | 0.2040 | 6.6478 | | 0.0007 | 40.01 | 2000 | 0.2080 | 6.6404 | | 0.0005 | 51.0 | 2500 | 0.2117 | 6.5957 | | 0.0004 | 61.0 | 3000 | 0.2139 | 6.5510 | | 0.0003 | 71.01 | 3500 | 0.2162 | 6.5883 | | 0.0003 | 81.01 | 4000 | 0.2166 | 6.5585 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
Ngao/DialoGPT-small-ngao
Ngao
2023-02-09T04:07:15Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-08T14:32:51Z
--- tags: - conversational ---
UtopiansRareTruth/poca-SoccerTwos
UtopiansRareTruth
2023-02-09T04:03:42Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-08T08:25:46Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: UtopiansRareTruth/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Gokulapriyan/swin-tiny-patch4-window7-224-finetuned-new_dataset_50e
Gokulapriyan
2023-02-09T03:49:39Z
35
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-08T11:42:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-new_dataset_50e results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7972972972972973 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-new_dataset_50e This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6407 - Accuracy: 0.7973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.94 | 4 | 0.7081 | 0.6081 | | No log | 1.94 | 8 | 0.7104 | 0.6351 | | 0.5516 | 2.94 | 12 | 0.6911 | 0.6351 | | 0.5516 | 3.94 | 16 | 0.7156 | 0.7027 | | 0.537 | 4.94 | 20 | 0.7345 | 0.7297 | | 0.537 | 5.94 | 24 | 0.6745 | 0.6892 | | 0.537 | 6.94 | 28 | 0.7146 | 0.7297 | | 0.5333 | 7.94 | 32 | 0.7057 | 0.6892 | | 0.5333 | 8.94 | 36 | 0.6531 | 0.7027 | | 0.4871 | 9.94 | 40 | 0.6405 | 0.7027 | | 0.4871 | 10.94 | 44 | 0.6126 | 0.6892 | | 0.4871 | 11.94 | 48 | 0.6303 | 0.7027 | | 0.4432 | 12.94 | 52 | 0.6264 | 0.7027 | | 0.4432 | 13.94 | 56 | 0.6347 | 0.7432 | | 0.3669 | 14.94 | 60 | 0.6698 | 0.6622 | | 0.3669 | 15.94 | 64 | 0.6346 | 0.7568 | | 0.3669 | 16.94 | 68 | 0.6510 | 0.6892 | | 0.3704 | 17.94 | 72 | 0.6491 | 0.6892 | | 0.3704 | 18.94 | 76 | 0.5947 | 0.7568 | | 0.3624 | 19.94 | 80 | 0.6248 | 0.7027 | | 0.3624 | 20.94 | 84 | 0.6580 | 0.7027 | | 0.3624 | 21.94 | 88 | 0.6345 | 0.7162 | | 0.3164 | 22.94 | 92 | 0.6092 | 0.7568 | | 0.3164 | 23.94 | 96 | 0.6498 | 0.7162 | | 0.2777 | 24.94 | 100 | 0.6915 | 0.7703 | | 0.2777 | 25.94 | 104 | 0.6482 | 0.7838 | | 0.2777 | 26.94 | 108 | 0.6407 | 0.7973 | | 0.2946 | 27.94 | 112 | 0.6135 | 0.7838 | | 0.2946 | 28.94 | 116 | 0.6819 | 0.7568 | | 0.2546 | 29.94 | 120 | 0.6401 | 0.7568 | | 0.2546 | 30.94 | 124 | 0.6370 | 0.7432 | | 0.2546 | 31.94 | 128 | 0.6488 | 0.7703 | | 0.2477 | 32.94 | 132 | 0.6429 | 0.7973 | | 0.2477 | 33.94 | 136 | 0.6540 | 0.7703 | | 0.1968 | 34.94 | 140 | 0.5895 | 0.7973 | | 0.1968 | 35.94 | 144 | 0.6242 | 0.7568 | | 0.1968 | 36.94 | 148 | 0.6575 | 0.7568 | | 0.2235 | 37.94 | 152 | 0.6263 | 0.7703 | | 0.2235 | 38.94 | 156 | 0.6225 | 0.7838 | | 0.2005 | 39.94 | 160 | 0.6731 | 0.7703 | | 0.2005 | 40.94 | 164 | 0.6844 | 0.7703 | | 0.2005 | 41.94 | 168 | 0.6550 | 0.7703 | | 0.2062 | 42.94 | 172 | 0.6700 | 0.7703 | | 0.2062 | 43.94 | 176 | 0.6661 | 0.7703 | | 0.1933 | 44.94 | 180 | 0.6606 | 0.7838 | | 0.1933 | 45.94 | 184 | 0.6757 | 0.7703 | | 0.1933 | 46.94 | 188 | 0.6889 | 0.7568 | | 0.1895 | 47.94 | 192 | 0.6940 | 0.7568 | | 0.1895 | 48.94 | 196 | 0.6919 | 0.7568 | | 0.1666 | 49.94 | 200 | 0.6899 | 0.7432 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Tune-A-Video-library/mo-di-bear-guitar
Tune-A-Video-library
2023-02-09T03:07:51Z
7
22
diffusers
[ "diffusers", "tune-a-video", "text-to-video", "arxiv:2212.11565", "arxiv:2112.10752", "base_model:nitrosocke/mo-di-diffusion", "base_model:finetune:nitrosocke/mo-di-diffusion", "license:creativeml-openrail-m", "diffusers:TuneAVideoPipeline", "region:us" ]
text-to-video
2023-02-03T14:31:17Z
--- license: creativeml-openrail-m base_model: nitrosocke/mo-di-diffusion training_prompt: A bear is playing guitar. tags: - tune-a-video - text-to-video - diffusers inference: false --- # Tune-A-Video - Modern Disney ## Model Description - Base model: [nitrosocke/mo-di-diffusion](https://huggingface.co/nitrosocke/mo-di-diffusion) - Training prompt: a bear is playing guitar. ![sample-train](samples/train.gif) ## Samples ![sample-500](samples/sample-500.gif) Test prompt: a [handsome prince/magical princess/rabbit/baby] is playing guitar, modern disney style. ## Usage Clone the github repo ```bash git clone https://github.com/showlab/Tune-A-Video.git ``` Run inference code ```python from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline from tuneavideo.models.unet import UNet3DConditionModel from tuneavideo.util import save_videos_grid import torch pretrained_model_path = "nitrosocke/mo-di-diffusion" unet_model_path = "Tune-A-Video-library/mo-di-bear-guitar" unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda') pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda") pipe.enable_xformers_memory_efficient_attention() prompt = "a magical princess is playing guitar, modern disney style" video = pipe(prompt, video_length=8, height=512, width=512, num_inference_steps=50, guidance_scale=7.5).videos save_videos_grid(video, f"./{prompt}.gif") ``` ## Related Papers: - [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation - [Stable Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
nolanaatama/esdmv2
nolanaatama
2023-02-09T02:48:50Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T02:43:26Z
--- license: creativeml-openrail-m ---
Isaacp/Reinforce-pixelcopter
Isaacp
2023-02-09T02:34:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T02:34:20Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 39.90 +/- 33.12 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bbbbearczx/bert-finetuned-squad
bbbbearczx
2023-02-09T01:46:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T05:13:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
jrnold/poca-SoccerTwos
jrnold
2023-02-09T01:37:57Z
43
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T01:37:49Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: jrnold/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
seastar105/whisper-medium-ko-zeroth
seastar105
2023-02-09T00:49:53Z
135
14
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "whisper-event", "generated_from_trainer", "ko", "dataset:kresnik/zeroth_korean", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-11T06:17:26Z
--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - whisper-event - generated_from_trainer datasets: - kresnik/zeroth_korean metrics: - wer model-index: - name: Whisper Medium Korean results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Zeroth Korean type: kresnik/zeroth_korean config: clean split: test args: 'split: test' metrics: - name: Test Wer type: wer value: 3.6440295136274656 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Korean This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Zeroth Korean dataset. It achieves the following results on the evaluation set: - Loss: 0.0727 - Wer: 3.6440 - Cer: 1.4840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.0873 | 0.72 | 1000 | 0.1086 | 7.7549 | 2.5597 | | 0.0258 | 1.44 | 2000 | 0.0805 | 4.5475 | 1.7588 | | 0.0091 | 2.16 | 3000 | 0.0719 | 3.7946 | 1.5664 | | 0.0086 | 2.88 | 4000 | 0.0704 | 3.5537 | 1.5232 | | 0.0019 | 3.59 | 5000 | 0.0727 | 3.6440 | 1.4840 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0a0+d0d6b1f - Datasets 2.7.1 - Tokenizers 0.13.2
yizhangliu/poca-SoccerTwos-v4
yizhangliu
2023-02-09T00:23:06Z
15
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T00:22:58Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: yizhangliu/poca-SoccerTwos-v4 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
petergoldstein/q-FrozenLake-v1-4x4-noSlippery
petergoldstein
2023-02-08T23:52:21Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T23:52:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="petergoldstein/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jha2ee/riffusion-model-db
jha2ee
2023-02-08T23:10:45Z
4
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T23:02:24Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### riffusion_model-db Dreambooth model trained by jha2ee with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
ivi137/Taxi-v3
ivi137
2023-02-08T22:40:42Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T22:40:39Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ivi137/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Nyaaneet/donut-cord
Nyaaneet
2023-02-08T22:39:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-02-06T17:19:06Z
--- license: mit tags: - generated_from_trainer model-index: - name: donut-cord results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-cord This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
DeepaKrish/roberta-base-squad2-finetuned
DeepaKrish
2023-02-08T22:39:26Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T21:53:41Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-base-squad2-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-squad2-finetuned This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 27 | 0.0023 | | No log | 2.0 | 54 | 0.0010 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.9.0 - Datasets 2.5.1 - Tokenizers 0.13.2
rerdscf/Embed
rerdscf
2023-02-08T22:37:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T15:31:05Z
--- license: creativeml-openrail-m ---
Isaacp/Reinforce-cartpole
Isaacp
2023-02-08T22:23:25Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T22:23:13Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
saurabhnaik/dqn-SpaceInvadersNoFrameskip-v4
saurabhnaik
2023-02-08T21:21:02Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T19:47:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 578.00 +/- 157.66 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga saurabhnaik -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga saurabhnaik -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga saurabhnaik ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
LarryAIDraw/yurucampInuyamaaoi_yurucampInuyamaaoiV1
LarryAIDraw
2023-02-08T21:09:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-07T17:07:20Z
--- license: creativeml-openrail-m --- https://civitai.com/models/7033/yurucampinuyamaaoi
hulkster/sd-class-butterflies-32
hulkster
2023-02-08T20:52:34Z
2
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-02-08T20:52:18Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('hulkster/sd-class-butterflies-32') image = pipeline().images[0] image ```
Iggg0r/rl_course
Iggg0r
2023-02-08T20:32:19Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T19:18:11Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 281.37 +/- 14.10 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JD97/Riffusion_sentiment_LoRA
JD97
2023-02-08T20:29:17Z
10
2
diffusers
[ "diffusers", "stable-diffusion", "diffusion", "riffusion", "text-to-audio", "text-to-image", "en", "dataset:gwkim22/spectro_caption_dataset", "dataset:Chr0my/Epidemic_music", "license:mit", "region:us" ]
text-to-image
2023-02-08T15:36:09Z
--- license: mit datasets: - gwkim22/spectro_caption_dataset - Chr0my/Epidemic_music language: - en library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - diffusion - riffusion - text-to-audio --- ### Introduce Riffusion with LoRA, fine-tuned with <code>Chr0my/Epidemic_music</code> <br/> This model was used during Naver Connect BoostCamp AI tech 4th, NLP Track ### Citation ~~~ @article{Forsgren_Martiros_2022, author = {Forsgren, Seth* and Martiros, Hayk*}, title = {{Riffusion - Stable diffusion for real-time music generation}}, url = {https://riffusion.com/about}, year = {2022} } ~~~
VladVslv/ddd
VladVslv
2023-02-08T20:19:34Z
0
0
null
[ "region:us" ]
null
2023-02-08T20:19:18Z
git clone https://huggingface.co/templates/automatic-speech-recognition cd automatic-speech-recognition git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force
sgoodfriend/PPO-sb3-LunarLander-v2
sgoodfriend
2023-02-08T19:58:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T19:02:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 290.45 +/- 15.38 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
johko/mcc_co3dv2_all_categories
johko
2023-02-08T19:57:50Z
0
1
null
[ "3D Reconstruction", "dataset:CO3Dv2", "arxiv:2301.08247", "license:apache-2.0", "region:us" ]
null
2023-02-08T19:42:57Z
--- license: apache-2.0 datasets: - CO3Dv2 tags: - 3D Reconstruction --- # Multiview Compressive Coding (MCC) ## Model Description These are model weights originally provided by the authors of the paper [Multiview Compressive Coding (MCC)](https://arxiv.org/abs/2301.08247). Their method aims to create a 3D multiview object from a single RGB-D image. ## Datasets The authors trained the model on [the CO3D v2 dataset](https://ai.facebook.com/datasets/CO3D-dataset/)
Javenma/Basic_A2C_CartpoleV1
Javenma
2023-02-08T19:55:04Z
0
0
stable-baselines3
[ "stable-baselines3", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-06T16:30:49Z
--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 54.20 +/- 20.84 name: mean_reward verified: false --- # **A2C** Agent playing **CartPole-v1** This is a trained model of a **A2C** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Snim/dqn-SpaceInvadersNoFrameskip-v4
Snim
2023-02-08T19:25:49Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T19:25:04Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 753.50 +/- 272.14 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Snim -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Snim -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Snim ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
pneubauer/basic-poca-SoccerTwos_1
pneubauer
2023-02-08T19:23:00Z
5
0
ml-agents
[ "ml-agents", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-08T19:22:49Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: pneubauer/basic-poca-SoccerTwos_1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ernie-ai/autotrain-document-text-language-ar-en-zh-3338392240
ernie-ai
2023-02-08T19:12:02Z
35
1
transformers
[ "transformers", "pytorch", "swin", "image-classification", "autotrain", "vision", "dataset:ernie-ai/autotrain-data-document-text-language-ar-en-zh", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-08T06:41:29Z
--- tags: - autotrain - vision - image-classification datasets: - ernie-ai/autotrain-data-document-text-language-ar-en-zh widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 2.2266908460523576 --- # finetuned-MS-swin-doc-text-classifer This model is a fine-tuned version of Microsoft’s Swin Transformer tiny-sized model [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the ernie-ai/image-text-examples-ar-cn-latin-notext dataset. It achieves the following results on the evaluation set: - Loss: 0.267 - Accuracy: 0.882 ## Model description It is an image classificatin model fine-tuned to predict whether an images contains text and if that text is Latin script, Chinese or Arabic. It also classifies non-text images. ## Training and evaluation data Dataset: [ernie-ai/image-text-examples-ar-cn-latin-notext] # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3338392240 - CO2 Emissions (in grams): 2.2267 ## Validation Metrics - Loss: 0.267 - Accuracy: 0.882 - Macro F1: 0.862 - Micro F1: 0.882 - Weighted F1: 0.880 - Macro Precision: 0.877 - Micro Precision: 0.882 - Weighted Precision: 0.883 - Macro Recall: 0.856 - Micro Recall: 0.882 - Weighted Recall: 0.882
pfunk/Pong-v4-DQPN_p50_e0.25-seed1
pfunk
2023-02-08T19:11:53Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T19:11:32Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 1.60 +/- 6.87 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.25.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p50_e0.25]" python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.25 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.25-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p50_e0.25 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.25 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.25, 'exp_name': 'DQPN_p50_e0.25', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 50000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
kitintouch/kit-the-bear
kitintouch
2023-02-08T18:44:56Z
0
0
null
[ "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-08T18:44:30Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: kitthebear --- ### kit the bear Dreambooth model trained by kitintouch with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: kitthebear (use that on your prompt) ![kitthebear 0](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%281%29.jpg)![kitthebear 1](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%282%29.jpg)![kitthebear 2](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%283%29.jpg)![kitthebear 3](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%284%29.jpg)![kitthebear 4](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%285%29.jpg)![kitthebear 5](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%286%29.jpg)![kitthebear 6](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%287%29.jpg)![kitthebear 7](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%288%29.jpg)![kitthebear 8](https://huggingface.co/kitintouch/kit-the-bear/resolve/main/concept_images/kitthebear_%289%29.jpg)
ernie-ai/finetuned-vit-image-text-classifier
ernie-ai
2023-02-08T18:36:19Z
26
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-08T06:08:50Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-vit-doc-text-classifer results: - task: name: Image Classification type: image-classification dataset: name: ernie-ai/image-text-examples-ar-cn-latin-notext type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9029850746268657 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-vit-doc-text-classifer This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the ernie-ai/image-text-examples-ar-cn-latin-notext dataset. It achieves the following results on the evaluation set: - Loss: 0.3107 - Accuracy: 0.9030 ## Model description It is an image classificatin model fine-tuned to predict whether an images contains text and if that text is Latin script, Chinese or Arabic. It also classifies non-text images. ## Training and evaluation data Dataset: [ernie-ai/image-text-examples-ar-cn-latin-notext] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2719 | 2.08 | 100 | 0.4120 | 0.8657 | | 0.1027 | 4.17 | 200 | 0.3907 | 0.8881 | | 0.0723 | 6.25 | 300 | 0.3107 | 0.9030 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
fjaragones/Taxi-v3
fjaragones
2023-02-08T18:28:50Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T18:28:47Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="fjaragones/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sgoodfriend/poca-SoccerTwos-v3
sgoodfriend
2023-02-08T18:26:23Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-08T18:25:31Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: sgoodfriend/poca-SoccerTwos-v3 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
fjaragones/q-FrozenLake-v1-4x4-noSlippery
fjaragones
2023-02-08T18:24:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T18:24:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="fjaragones/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tomasabril/bonusunit1
tomasabril
2023-02-08T18:04:09Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-08T18:04:01Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: tomasabril/bonusunit1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pfunk/Pong-v4-DQPN_p50_e0.10-seed1
pfunk
2023-02-08T17:41:56Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T17:41:35Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 10.00 +/- 5.67 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_e0.10.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p50_e0.10]" python -m cleanrl_utils.enjoy --exp-name DQPN_p50_e0.10 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_e0.10-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p50_e0.10 --start-policy-f 50000 --end-policy-f 1000 --evaluation-fraction 0.10 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.1, 'exp_name': 'DQPN_p50_e0.10', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 50000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
GFMRommel/Vergelltungswaffe1
GFMRommel
2023-02-08T17:27:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T10:14:26Z
--- license: creativeml-openrail-m ---
frangiral/dqn-SpaceInvadersNoFrameskip-v4-2
frangiral
2023-02-08T17:20:12Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T17:19:36Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 196.50 +/- 75.40 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga frangiral -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga frangiral -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga frangiral ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('buffer_size', 50000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
zmaro/zmaroavatar
zmaro
2023-02-08T17:09:36Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T17:07:34Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### zmaroavatar Dreambooth model trained by zmaro with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Hamid-reza/mt5-small-finetuned-digikala-titleGen
Hamid-reza
2023-02-08T17:09:14Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-02-07T19:19:31Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-digikala-titleGen results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-digikala-titleGen This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8801 - Rouge1: 70.3489 - Rouge2: 43.245 - Rougel: 34.6608 - Rougelsum: 34.6608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 7.5555 | 1.0 | 847 | 3.2594 | 45.6729 | 19.6446 | 31.5974 | 31.5974 | | 4.1386 | 2.0 | 1694 | 3.0347 | 58.3021 | 32.8172 | 33.9012 | 33.9012 | | 3.7449 | 3.0 | 2541 | 2.9665 | 66.731 | 40.8991 | 34.2203 | 34.2203 | | 3.5575 | 4.0 | 3388 | 2.9102 | 65.598 | 39.4081 | 34.5116 | 34.5116 | | 3.4062 | 5.0 | 4235 | 2.8944 | 69.6081 | 42.8707 | 34.6622 | 34.6622 | | 3.3408 | 6.0 | 5082 | 2.8888 | 70.2123 | 42.8639 | 34.5669 | 34.5669 | | 3.3025 | 7.0 | 5929 | 2.8801 | 70.3489 | 43.245 | 34.6608 | 34.6608 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
YoriV/Reinforce-CartPole-v1
YoriV
2023-02-08T17:07:24Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T17:07:12Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 477.90 +/- 31.31 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Elifr/clasificador-sentimientos-pln-uned
Elifr
2023-02-08T16:50:20Z
5
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-08T16:49:17Z
--- tags: - classification - generated_from_trainer metrics: - accuracy model-index: - name: clasificador-sentimientos-pln-uned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-sentimientos-pln-uned This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3848 - Accuracy: 0.4297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.3848 | 0.3806 | | 1.4224 | 2.0 | 776 | 1.2911 | 0.4090 | | 1.0722 | 3.0 | 1164 | 1.3848 | 0.4297 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pabloac31/ppo-Pyramids
pabloac31
2023-02-08T16:39:43Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-08T16:39:36Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: pabloac31/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ahmad-alismail/pyramids-RND-1
ahmad-alismail
2023-02-08T16:39:34Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-08T16:39:29Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: ahmad1289/pyramids-RND-1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
apatidar0/conversation-summ
apatidar0
2023-02-08T16:36:19Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T15:58:12Z
--- license: mit tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: conversation-summ results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 51.7796 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # conversation-summ This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 0.4048 - Rouge1: 51.7796 - Rouge2: 26.1341 - Rougel: 41.4013 - Rougelsum: 41.4563 - Gen Len: 29.656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.5781 | 1.0 | 500 | 0.3637 | 50.8871 | 26.6178 | 41.8757 | 41.9291 | 25.16 | | 0.2183 | 2.0 | 1000 | 0.3586 | 50.7919 | 25.4277 | 40.8428 | 40.8421 | 27.712 | | 0.1354 | 3.0 | 1500 | 0.4048 | 51.7796 | 26.1341 | 41.4013 | 41.4563 | 29.656 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
vvn0/a2c-AntBulletEnv-v0
vvn0
2023-02-08T16:30:28Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T16:29:13Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1442.86 +/- 397.05 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dasaprakashk/Reinforce-Pixelcopter-PLE-v0
dasaprakashk
2023-02-08T16:23:22Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T16:23:19Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 31.60 +/- 25.50 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
mshibatatt/q-Taxi-v3
mshibatatt
2023-02-08T16:10:27Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T14:48:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mshibatatt/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fathyshalab/massive_calendar-roberta-large-v1-2-0.89
fathyshalab
2023-02-08T16:09:11Z
12
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T16:08:47Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_calendar-roberta-large-v1-2-0.89 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_calendar-roberta-large-v1-2-0.89") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
davanstrien/dataset_mentions
davanstrien
2023-02-08T16:02:29Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T15:50:40Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # davanstrien/dataset_mentions This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("davanstrien/dataset_mentions") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
griffin/clinical-led-summarizer
griffin
2023-02-08T15:58:41Z
11
5
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-12T14:29:12Z
# clinical-led-summarizer HuggingFace Model Weights for the LongFormer Hospital-Course Summarization model trained on Revised References, as described in Findings of EMNLP 2022 Paper "Learning to Revise References for Faithful Summarization" [Paper Link](https://aclanthology.org/2022.findings-emnlp.296/) --- language: - en tags: - summarization license: apache-2.0 datasets: - MIMIC-III metrics: - rouge - bertscore ---
fathyshalab/massive_transport-roberta-large-v1-2-0.15
fathyshalab
2023-02-08T15:57:47Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T15:57:25Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_transport-roberta-large-v1-2-0.15 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_transport-roberta-large-v1-2-0.15") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
akiFQC/japanese-dialogpt-small-aozora
akiFQC
2023-02-08T15:55:31Z
5
5
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "ja", "japanese", "lm", "nlp", "arxiv:1911.00536", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-08T13:22:23Z
--- language: - ja library_name: transformers tags: - conversational - ja - japanese - gpt2 - text-generation - lm - nlp --- # Japanese DialoGPT trained with Aozora **(ja) 青空文庫のセリフで学習した日本語のDialoGPT Smallです** **(en) Japanese DialoGPT Small trained on Aozora Bunko.** ## [Demo](https://huggingface.co/spaces/akiFQC/Japanese_DialoGPT_small_Aozora) Demo in this page is not working so well. I recommend you to try it on [Hugging Face Spaces Version](https://huggingface.co/spaces/akiFQC/Japanese_DialoGPT_small_Aozora). ## Reference - [Aozora-bunko](https://www.aozora.gr.jp/) - Japanese public domain books. - I extracted the dialogue part from the books and used it as the training data. - [japanese-gpt2-small](https://huggingface.co/rinna/japanese-gpt2-small) - Novel Japanese GPT2. I used a small model because of the limitation of GPU memory of my desktop PC(with RTX3060x1) 😢. - I used this model as a pre-trained model. - [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536)
fathyshalab/massive_social-roberta-large-v1-2-0.13
fathyshalab
2023-02-08T15:23:03Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T15:22:45Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_social-roberta-large-v1-2-0.13 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_social-roberta-large-v1-2-0.13") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
nasheed/rl-course
nasheed
2023-02-08T15:22:35Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T15:22:06Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.60 +/- 12.28 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lambdalabs/sd-image-variations-diffusers
lambdalabs
2023-02-08T15:10:13Z
15,781
432
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "image-to-image", "dataset:ChristophSchuhmann/improved_aesthetics_6plus", "license:creativeml-openrail-m", "diffusers:StableDiffusionImageVariationPipeline", "region:us" ]
image-to-image
2022-09-09T14:53:35Z
--- thumbnail: "https://repository-images.githubusercontent.com/523487884/fdb03a69-8353-4387-b5fc-0d85f888a63f" datasets: - ChristophSchuhmann/improved_aesthetics_6plus license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - image-to-image --- # Stable Diffusion Image Variations Model Card 📣 V2 model released, and blurriness issues fixed! 📣 🧨🎉 Image Variations is now natively supported in 🤗 Diffusers! 🎉🧨 ![](https://raw.githubusercontent.com/justinpinkney/stable-diffusion/main/assets/im-vars-thin.jpg) ## Version 2 This version of Stable Diffusion has been fine tuned from [CompVis/stable-diffusion-v1-4-original](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original) to accept CLIP image embedding rather than text embeddings. This allows the creation of "image variations" similar to DALLE-2 using Stable Diffusion. This version of the weights has been ported to huggingface Diffusers, to use this with the Diffusers library requires the [Lambda Diffusers repo](https://github.com/LambdaLabsML/lambda-diffusers). This model was trained in two stages and longer than the original variations model and gives better image quality and better CLIP rated similarity compared to the original version See training details and v1 vs v2 comparison below. ## Example Make sure you are using a version of Diffusers >=0.8.0 (for older version see the old instructions at the bottom of this model card) ```python from diffusers import StableDiffusionImageVariationPipeline from PIL import Image device = "cuda:0" sd_pipe = StableDiffusionImageVariationPipeline.from_pretrained( "lambdalabs/sd-image-variations-diffusers", revision="v2.0", ) sd_pipe = sd_pipe.to(device) im = Image.open("path/to/image.jpg") tform = transforms.Compose([ transforms.ToTensor(), transforms.Resize( (224, 224), interpolation=transforms.InterpolationMode.BICUBIC, antialias=False, ), transforms.Normalize( [0.48145466, 0.4578275, 0.40821073], [0.26862954, 0.26130258, 0.27577711]), ]) inp = tform(im).to(device).unsqueeze(0) out = sd_pipe(inp, guidance_scale=3) out["images"][0].save("result.jpg") ``` ### The importance of resizing correctly... (or not) Note that due a bit of an oversight during training, the model expects resized images without anti-aliasing. This turns out to make a big difference and is important to do the resizing the same way during inference. When passing a PIL image to the Diffusers pipeline antialiasing will be applied during resize, so it's better to input a tensor which you have prepared manually according to the transfrom in the example above! Here are examples of images generated without (top) and with (bottom) anti-aliasing during resize. (Input is [this image](https://github.com/SHI-Labs/Versatile-Diffusion/blob/master/assets/ghibli.jpg)) ![](alias-montage.jpg) ![](default-montage.jpg) ### V1 vs V2 Here's an example of V1 vs V2, version two was trained more carefully and for longer, see the details below. V2-top vs V1-bottom ![](v2-montage.jpg) ![](v1-montage.jpg) Input images: ![](inputs.jpg) One important thing to note is that due to the longer training V2 appears to have memorised some common images from the training data, e.g. now the previous example of the Girl with a Pearl Earring almosts perfectly reproduce the original rather than creating variations. You can always use v1 by specifiying `revision="v1.0"`. v2 output for girl with a pearl earing as input (guidance scale=3) ![](earring.jpg) # Training **Training Procedure** This model is fine tuned from Stable Diffusion v1-3 where the text encoder has been replaced with an image encoder. The training procedure is the same as for Stable Diffusion except for the fact that images are encoded through a ViT-L/14 image-encoder including the final projection layer to the CLIP shared embedding space. The model was trained on LAION improved aesthetics 6plus. - **Hardware:** 8 x A100-40GB GPUs (provided by [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud)) - **Optimizer:** AdamW - **Stage 1** - Fine tune only CrossAttention layer weights from Stable Diffusion v1.4 model - **Steps**: 46,000 - **Batch:** batch size=4, GPUs=8, Gradient Accumulations=4. Total batch size=128 - **Learning rate:** warmup to 1e-5 for 10,000 steps and then kept constant - **Stage 2** - Resume from Stage 1 training the whole unet - **Steps**: 50,000 - **Batch:** batch size=4, GPUs=8, Gradient Accumulations=5. Total batch size=160 - **Learning rate:** warmup to 1e-5 for 5,000 steps and then kept constant Training was done using a [modified version of the original Stable Diffusion training code](https://github.com/justinpinkney/stable-diffusion). # Uses _The following section is adapted from the [Stable Diffusion model card](https://huggingface.co/CompVis/stable-diffusion-v1-4)_ ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ### Safety Module The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers. This checker works by checking model outputs against known hard-coded NSFW concepts. The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter. Specifically, the checker compares the class probability of harmful concepts in the embedding space of the `CLIPModel` *after generation* of the images. The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept. ## Old instructions If you are using a diffusers version <0.8.0 there is no `StableDiffusionImageVariationPipeline`, in this case you need to use an older revision (`2ddbd90b14bc5892c19925b15185e561bc8e5d0a`) in conjunction with the lambda-diffusers repo: First clone [Lambda Diffusers](https://github.com/LambdaLabsML/lambda-diffusers) and install any requirements (in a virtual environment in the example below): ```bash git clone https://github.com/LambdaLabsML/lambda-diffusers.git cd lambda-diffusers python -m venv .venv source .venv/bin/activate pip install -r requirements.txt ``` Then run the following python code: ```python from pathlib import Path from lambda_diffusers import StableDiffusionImageEmbedPipeline from PIL import Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipe = StableDiffusionImageEmbedPipeline.from_pretrained( "lambdalabs/sd-image-variations-diffusers", revision="2ddbd90b14bc5892c19925b15185e561bc8e5d0a", ) pipe = pipe.to(device) im = Image.open("your/input/image/here.jpg") num_samples = 4 image = pipe(num_samples*[im], guidance_scale=3.0) image = image["sample"] base_path = Path("outputs/im2im") base_path.mkdir(exist_ok=True, parents=True) for idx, im in enumerate(image): im.save(base_path/f"{idx:06}.jpg") ``` *This model card was written by: Justin Pinkney and is based on the [Stable Diffusion model card](https://huggingface.co/CompVis/stable-diffusion-v1-4).*
quartz14/Reinforce-cartpole
quartz14
2023-02-08T15:06:21Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T15:06:07Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
mwissing/dqn-SpaceInvadersNoFrameskip-v4
mwissing
2023-02-08T15:02:50Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T15:02:08Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 679.50 +/- 183.98 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mwissing -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mwissing -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mwissing ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
mertyazan/Reinforce-1
mertyazan
2023-02-08T15:01:26Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T10:30:26Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 33.20 +/- 25.45 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nc33/multiqa_model
nc33
2023-02-08T14:58:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-08T12:16:51Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: multiqa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multiqa_model This model is a fine-tuned version of [nc33/multiqa_model](https://huggingface.co/nc33/multiqa_model) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1150 - Precision: 0.0855 - Recall: 0.0485 - F1: 0.0619 - Accuracy: 0.9626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 327 | 0.1121 | 0.0708 | 0.0280 | 0.0402 | 0.9631 | | 0.0786 | 2.0 | 654 | 0.1098 | 0.0531 | 0.0254 | 0.0343 | 0.9599 | | 0.0786 | 3.0 | 981 | 0.1085 | 0.0657 | 0.0243 | 0.0354 | 0.9634 | | 0.0681 | 4.0 | 1308 | 0.1133 | 0.0765 | 0.0453 | 0.0569 | 0.9618 | | 0.0641 | 5.0 | 1635 | 0.1150 | 0.0855 | 0.0485 | 0.0619 | 0.9626 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
irenekar/taxiv3
irenekar
2023-02-08T14:53:38Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T14:53:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxiv3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.40 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="irenekar/taxiv3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
pfunk/Pong-v4-DQPN_p500_pt0.1_tt0.1-seed1
pfunk
2023-02-08T14:40:48Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T14:40:26Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: -16.40 +/- 1.85 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p500_pt0.1_tt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p500_pt0.1_tt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p500_pt0.1_tt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1_tt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1_tt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_pt0.1_tt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p500_pt0.1_tt0.1 --start-policy-f 500000 --end-policy-f 500000 --evaluation-fraction 1.00 --target-tau 0.1 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 500000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p500_pt0.1_tt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 500000, 'target_network_frequency': 1000, 'target_tau': 0.1, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
Elytum/bert-finetuned-ner
Elytum
2023-02-08T14:35:31Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-08T10:22:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [gaunernst/bert-small-uncased](https://huggingface.co/gaunernst/bert-small-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0186 - Precision: 0.9941 - Recall: 0.9952 - F1: 0.9946 - Accuracy: 0.9963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0277 | 1.0 | 2500 | 0.0190 | 0.9929 | 0.9939 | 0.9934 | 0.9956 | | 0.0137 | 2.0 | 5000 | 0.0180 | 0.9935 | 0.9951 | 0.9943 | 0.9960 | | 0.0095 | 3.0 | 7500 | 0.0186 | 0.9941 | 0.9952 | 0.9946 | 0.9963 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2