modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 00:44:55
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 00:44:41
card
stringlengths
11
1.01M
ell-hol/mT5-OrangeSum
ell-hol
2023-02-08T14:34:07Z
12
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "summarization", "unk", "dataset:ell-hol/autotrain-data-test-orangesum", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-12-27T22:06:22Z
--- language: - unk tags: - autotrain - summarization datasets: - ell-hol/autotrain-data-test-orangesum widget: - text: I love AutoTrain 🤗 co2_eq_emissions: emissions: 675.7789931017469 model-index: - name: ell-hol/mT5-OrangeSum results: - task: type: summarization name: Summarization dataset: name: orange_sum type: orange_sum config: abstract split: validation metrics: - type: rouge value: 33.377 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhjMWIxYmNmNDYzNTMzMDM2YjQyOTdkYjYyMDJkZDhlNzQ2ZDVkNGM2YTIzODU4ZWYwZDg2ODZkN2U5OTk2MSIsInZlcnNpb24iOjF9.UL_nv_GGJ75LMgDmRjvrp0dYhCyjz-h5txS1ljDFS7k9Yy6iJ0QnTebou1tsLFtj7sBSvUKvZeyqFXEHN7SBCg - type: rouge value: 14.4472 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTYxZTVkMzFlMGUxMWNmNzc5ZDI0OWM3ODY2ZTc1MDg2MDc2NTRiZjM3OTA4NGI1MmEwNzQzMjQyOWM5NDE3YiIsInZlcnNpb24iOjF9.xsBp4kyHAnAnAWllwvcXNF3vFFbgP_3Ipplg0Cs8yMzY2qIKozlflWSpmm7qyru1RvtDrHH5JQy0hSSz49tMDQ - type: rouge value: 24.1902 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzgxMDNmODZiOTcxYmU0NjlkMjEzOTBmZjZhMzkxZDcyODNjYmJjOGNiNzA2MTI2YjU4MTUzZTFlM2EwYjRkNyIsInZlcnNpb24iOjF9.QE9X1gqHxDA_Vzj86nOi1FrYXrvvYR-uQgAKn2ESJp48mnT4rHCnpxVo3qJGXcoeD0vA0M9VDWJzc2pci34PBA - type: rouge value: 25.5277 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDk2YzY1NjU3NDgxMDllYjIwMGI5NGE2ZjY3NzcxZGEwNmYzYjQxYzVlZTdmYzdkYWIxM2Y1YjkxNjZhOWRlZiIsInZlcnNpb24iOjF9.ksd-KgRtY71cHJxFsqLWr5lofRSrfiwixGTI6Hek6GvfisssetoDPy17bWnQpUqfN0ozxJciw2VzpauYPDuZCg - type: loss value: 1.6347737312316895 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDNmODJhNzdmMzNkMTc4MDcwZDhmNDFiZjM1ZWVmYjQ4N2IzNWU3MjYwMWM4ZmM0NjFhNjY1OTBlZjBkMjY0YSIsInZlcnNpb24iOjF9.aaF2D-cKnhK4YaqFV23QhoiTCOK7rQJKoXJMMj-kuxe_NLQBLNj73LBou376IlsTmOxxk_mmEimzwMMbTiVSDA - type: gen_len value: 48.4967 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzk3YjMxZWY2NzE5ZWMxZjBhYmE5YzU2YTM3MzNmMjlmNmJjM2MyMzY4ZTE1MjI1ZTNkN2YxOWZhOThmYzljMyIsInZlcnNpb24iOjF9._I_I9B66dT3S8RMMmMACG3YjIQYcXzmodriDWM33jRa4X6NFQx0b6_YHNP7K-uLEm8qD31bgb0NlsaRA37qLBA --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 2638979565 - CO2 Emissions (in grams): 675.7790 ## Validation Metrics - Loss: 1.631 - Rouge1: 33.348 - Rouge2: 14.481 - RougeL: 24.210 - RougeLsum: 25.514 - Gen Len: 48.497 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ell-hol/autotrain-test-orangesum-2638979565 ```
pfunk/Pong-v4-DQPN_p100_pt0.1-seed1
pfunk
2023-02-08T14:20:49Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T14:20:29Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 4.50 +/- 3.93 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p100_pt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p100_pt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p100_pt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p100_pt0.1 --start-policy-f 100000 --end-policy-f 100000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 100000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p100_pt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 100000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
jojoUla/bert-large-cased-sigir-support-no-label-20-sigir-tune2nd-LR10-labelled-30
jojoUla
2023-02-08T13:54:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-08T13:50:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-large-cased-sigir-support-no-label-20-sigir-tune2nd-LR10-labelled-30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-sigir-support-no-label-20-sigir-tune2nd-LR10-labelled-30 This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-no-label-20](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-no-label-20) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1303 | 1.0 | 1 | 3.2415 | | 2.3107 | 2.0 | 2 | 2.1225 | | 1.2824 | 3.0 | 3 | 2.2623 | | 1.0548 | 4.0 | 4 | 0.5449 | | 1.1366 | 5.0 | 5 | 1.1446 | | 0.5947 | 6.0 | 6 | 0.3811 | | 0.4889 | 7.0 | 7 | 1.6445 | | 1.2689 | 8.0 | 8 | 1.7214 | | 0.8074 | 9.0 | 9 | 2.3152 | | 0.7084 | 10.0 | 10 | 0.9325 | | 1.0307 | 11.0 | 11 | 2.4217 | | 0.7119 | 12.0 | 12 | 2.6455 | | 1.0052 | 13.0 | 13 | 1.1594 | | 0.7125 | 14.0 | 14 | 1.2795 | | 0.4732 | 15.0 | 15 | 0.1245 | | 0.8829 | 16.0 | 16 | 1.8585 | | 0.7079 | 17.0 | 17 | 1.6644 | | 0.6243 | 18.0 | 18 | 1.6117 | | 1.2438 | 19.0 | 19 | 2.3044 | | 1.0812 | 20.0 | 20 | 4.5037 | | 0.7003 | 21.0 | 21 | 1.5862 | | 0.867 | 22.0 | 22 | 2.1851 | | 0.9098 | 23.0 | 23 | 1.6055 | | 0.6214 | 24.0 | 24 | 2.6699 | | 0.282 | 25.0 | 25 | 1.3515 | | 0.1888 | 26.0 | 26 | 2.3864 | | 0.6863 | 27.0 | 27 | 1.2444 | | 0.8527 | 28.0 | 28 | 1.9603 | | 0.9416 | 29.0 | 29 | 3.7045 | | 0.8302 | 30.0 | 30 | 0.9336 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
nhiro3303/ppo-LunarLander-v2
nhiro3303
2023-02-08T13:51:09Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-06T05:38:52Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 281.10 +/- 23.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
fathyshalab/massive_social-roberta-large-v1-2
fathyshalab
2023-02-08T13:33:13Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T13:32:55Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_social-roberta-large-v1-2 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_social-roberta-large-v1-2") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
fathyshalab/massive_social-roberta-large-v1-1
fathyshalab
2023-02-08T13:20:27Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T12:52:52Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_social-roberta-large-v1-1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_social-roberta-large-v1-1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
hectorjelly/Kats_Komets
hectorjelly
2023-02-08T13:05:05Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-08T13:04:57Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: hectorjelly/Kats_Komets 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
akoshel/dqn-SpaceInvadersNoFrameskip-v4
akoshel
2023-02-08T12:59:46Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T12:59:13Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 15.50 +/- 12.54 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga akoshel -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga akoshel -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga akoshel ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
jannikskytt/a2c-AntBulletEnv-v0
jannikskytt
2023-02-08T12:57:47Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T11:04:59Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1216.00 +/- 351.77 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
jannikskytt/a2c-PandaReachDense-v2
jannikskytt
2023-02-08T12:57:30Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T11:59:49Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.21 +/- 0.33 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
Svetlana0303/Regression_distilbert-base-uncased
Svetlana0303
2023-02-08T12:56:31Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-08T12:40:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Regression_distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Regression_distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1187 - Mse: 2.1187 - Mae: 1.3097 - R2: -0.0932 - Accuracy: 0.1429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:--------:| | No log | 1.0 | 2 | 3.3933 | 3.3933 | 1.5228 | -2.1839 | 0.2857 | | No log | 2.0 | 4 | 3.0571 | 3.0571 | 1.4011 | -1.8684 | 0.4286 | | No log | 3.0 | 6 | 2.6747 | 2.6747 | 1.2786 | -1.5096 | 0.4286 | | No log | 4.0 | 8 | 2.3024 | 2.3024 | 1.2088 | -1.1603 | 0.4286 | | No log | 5.0 | 10 | 1.9496 | 1.9496 | 1.1459 | -0.8292 | 0.4286 | | No log | 6.0 | 12 | 1.6637 | 1.6637 | 1.1225 | -0.5610 | 0.2857 | | No log | 7.0 | 14 | 1.4167 | 1.4167 | 1.0938 | -0.3293 | 0.1429 | | No log | 8.0 | 16 | 1.2365 | 1.2365 | 1.0609 | -0.1602 | 0.0 | | No log | 9.0 | 18 | 1.1239 | 1.1239 | 1.0234 | -0.0545 | 0.0 | | No log | 10.0 | 20 | 1.0879 | 1.0879 | 0.9906 | -0.0207 | 0.0 | | No log | 11.0 | 22 | 1.1122 | 1.1122 | 0.9599 | -0.0436 | 0.2857 | | No log | 12.0 | 24 | 1.1879 | 1.1879 | 0.9374 | -0.1145 | 0.2857 | | No log | 13.0 | 26 | 1.2784 | 1.2784 | 0.9132 | -0.1995 | 0.4286 | | No log | 14.0 | 28 | 1.3756 | 1.3756 | 0.8905 | -0.2907 | 0.4286 | | No log | 15.0 | 30 | 1.4710 | 1.4710 | 0.9093 | -0.3802 | 0.4286 | | No log | 16.0 | 32 | 1.5513 | 1.5513 | 0.9333 | -0.4555 | 0.4286 | | No log | 17.0 | 34 | 1.6094 | 1.6094 | 0.9491 | -0.5101 | 0.5714 | | No log | 18.0 | 36 | 1.6446 | 1.6446 | 0.9567 | -0.5431 | 0.5714 | | No log | 19.0 | 38 | 1.6510 | 1.6510 | 0.9555 | -0.5491 | 0.5714 | | No log | 20.0 | 40 | 1.6425 | 1.6425 | 0.9503 | -0.5412 | 0.5714 | | No log | 21.0 | 42 | 1.6254 | 1.6254 | 0.9455 | -0.5251 | 0.5714 | | No log | 22.0 | 44 | 1.6025 | 1.6025 | 0.9378 | -0.5036 | 0.5714 | | No log | 23.0 | 46 | 1.5758 | 1.5758 | 0.9289 | -0.4786 | 0.5714 | | No log | 24.0 | 48 | 1.5583 | 1.5583 | 0.9233 | -0.4622 | 0.5714 | | No log | 25.0 | 50 | 1.5504 | 1.5504 | 0.9210 | -0.4547 | 0.5714 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mingcai/ESimCSE-ext-chinese-bert-wwm
mingcai
2023-02-08T12:49:45Z
32
2
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "zh", "endpoints_compatible", "region:us" ]
feature-extraction
2023-02-08T08:59:04Z
--- language: - zh metrics: - spearmanr --- 基于论文ESimCSE进行复现,基于STS-B训练集 + 额外数据 进行训练,在中文STS-B的验证集spermanr相关性得分为0.7201. 论文参考: @inproceedings{Wu2021ESimCSEES, title={ESimCSE: Enhanced Sample Building Method for Contrastive Learning of Unsupervised Sentence Embedding}, author={Xing Wu and Chaochen Gao and Liangjun Zang and Jizhong Han and Zhongyuan Wang and Songlin Hu}, booktitle={International Conference on Computational Linguistics}, year={2021} }
plai-edp-test/distilbert_base_uncased
plai-edp-test
2023-02-08T12:49:24Z
3
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-08T12:46:58Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # DistilBERT base model (uncased) This model is a distilled version of the [BERT base model](https://huggingface.co/bert-base-uncased). It was introduced in [this paper](https://arxiv.org/abs/1910.01108). The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation). This model is uncased: it does not make a difference between english and English. ## Model description DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts using the BERT base model. More precisely, it was pretrained with three objectives: - Distillation loss: the model was trained to return the same probabilities as the BERT base model. - Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Cosine embedding loss: the model was also trained to generate hidden states as close as possible as the BERT base model. This way, the model learns the same inner representation of the English language than its teacher model, while being faster for inference or downstream tasks. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=distilbert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.05292855575680733, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.03968575969338417, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a business model. [SEP]", 'score': 0.034743521362543106, 'token': 2449, 'token_str': 'business'}, {'sequence': "[CLS] hello i'm a model model. [SEP]", 'score': 0.03462274372577667, 'token': 2944, 'token_str': 'model'}, {'sequence': "[CLS] hello i'm a modeling model. [SEP]", 'score': 0.018145186826586723, 'token': 11643, 'token_str': 'modeling'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import DistilBertTokenizer, DistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = DistilBertModel.from_pretrained("distilbert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import DistilBertTokenizer, TFDistilBertModel tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') model = TFDistilBertModel.from_pretrained("distilbert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. It also inherits some of [the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias). ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased') >>> unmasker("The White man worked as a [MASK].") [{'sequence': '[CLS] the white man worked as a blacksmith. [SEP]', 'score': 0.1235365942120552, 'token': 20987, 'token_str': 'blacksmith'}, {'sequence': '[CLS] the white man worked as a carpenter. [SEP]', 'score': 0.10142576694488525, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the white man worked as a farmer. [SEP]', 'score': 0.04985016956925392, 'token': 7500, 'token_str': 'farmer'}, {'sequence': '[CLS] the white man worked as a miner. [SEP]', 'score': 0.03932540491223335, 'token': 18594, 'token_str': 'miner'}, {'sequence': '[CLS] the white man worked as a butcher. [SEP]', 'score': 0.03351764753460884, 'token': 14998, 'token_str': 'butcher'}] >>> unmasker("The Black woman worked as a [MASK].") [{'sequence': '[CLS] the black woman worked as a waitress. [SEP]', 'score': 0.13283951580524445, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the black woman worked as a nurse. [SEP]', 'score': 0.12586183845996857, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the black woman worked as a maid. [SEP]', 'score': 0.11708822101354599, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the black woman worked as a prostitute. [SEP]', 'score': 0.11499975621700287, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the black woman worked as a housekeeper. [SEP]', 'score': 0.04722772538661957, 'token': 22583, 'token_str': 'housekeeper'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data DistilBERT pretrained on the same data as BERT, which is [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 8 16 GB V100 for 90 hours. See the [training code](https://github.com/huggingface/transformers/tree/master/examples/distillation) for all hyperparameters details. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:| | | 82.2 | 88.5 | 89.2 | 91.3 | 51.3 | 85.8 | 87.5 | 59.9 | ### BibTeX entry and citation info ```bibtex @article{Sanh2019DistilBERTAD, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, journal={ArXiv}, year={2019}, volume={abs/1910.01108} } ``` <a href="https://huggingface.co/exbert/?model=distilbert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
plai-edp-test/bert_base_spanish_wwm_cased
plai-edp-test
2023-02-08T12:44:39Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "masked-lm", "es", "arxiv:1904.09077", "arxiv:1906.01502", "arxiv:1812.10464", "arxiv:1901.07291", "arxiv:1904.02099", "arxiv:1906.01569", "arxiv:1908.11828", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-08T12:40:33Z
--- language: - es tags: - masked-lm --- # BETO: Spanish BERT BETO is a [BERT model](https://github.com/google-research/bert) trained on a [big Spanish corpus](https://github.com/josecannete/spanish-corpora). BETO is of size similar to a BERT-Base and was trained with the Whole Word Masking technique. Below you find Tensorflow and Pytorch checkpoints for the uncased and cased versions, as well as some results for Spanish benchmarks comparing BETO with [Multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) as well as other (not BERT-based) models. ## Download | | | | | |-|:--------:|:-----:|:----:| |BETO uncased|[tensorflow_weights](https://users.dcc.uchile.cl/~jperez/beto/uncased_2M/tensorflow_weights.tar.gz) | [pytorch_weights](https://users.dcc.uchile.cl/~jperez/beto/uncased_2M/pytorch_weights.tar.gz) | [vocab](./config/uncased_2M/vocab.txt), [config](./config/uncased_2M/config.json) | |BETO cased| [tensorflow_weights](https://users.dcc.uchile.cl/~jperez/beto/cased_2M/tensorflow_weights.tar.gz) | [pytorch_weights](https://users.dcc.uchile.cl/~jperez/beto/cased_2M/pytorch_weights.tar.gz) | [vocab](./config/cased_2M/vocab.txt), [config](./config/cased_2M/config.json) | All models use a vocabulary of about 31k BPE subwords constructed using SentencePiece and were trained for 2M steps. ## Benchmarks The following table shows some BETO results in the Spanish version of every task. We compare BETO (cased and uncased) with the Best Multilingual BERT results that we found in the literature (as of October 2019). The table also shows some alternative methods for the same tasks (not necessarily BERT-based methods). References for all methods can be found [here](#references). |Task | BETO-cased | BETO-uncased | Best Multilingual BERT | Other results | |-------|--------------:|--------------:|--------------------------:|-------------------------------:| |[POS](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1827) | **98.97** | 98.44 | 97.10 [2] | 98.91 [6], 96.71 [3] | |[NER-C](https://www.kaggle.com/nltkdata/conll-corpora) | [**88.43**](https://github.com/gchaperon/beto-benchmarks/blob/master/conll2002/dev_results_beto-cased_conll2002.txt) | 82.67 | 87.38 [2] | 87.18 [3] | |[MLDoc](https://github.com/facebookresearch/MLDoc) | [95.60](https://github.com/gchaperon/beto-benchmarks/blob/master/MLDoc/dev_results_beto-cased_mldoc.txt) | [**96.12**](https://github.com/gchaperon/beto-benchmarks/blob/master/MLDoc/dev_results_beto-uncased_mldoc.txt) | 95.70 [2] | 88.75 [4] | |[PAWS-X](https://github.com/google-research-datasets/paws/tree/master/pawsx) | 89.05 | 89.55 | 90.70 [8] | |[XNLI](https://github.com/facebookresearch/XNLI) | **82.01** | 80.15 | 78.50 [2] | 80.80 [5], 77.80 [1], 73.15 [4]| ## Example of use For further details on how to use BETO you can visit the [🤗Huggingface Transformers library](https://github.com/huggingface/transformers), starting by the [Quickstart section](https://huggingface.co/transformers/quickstart.html). BETO models can be accessed simply as [`'dccuchile/bert-base-spanish-wwm-cased'`](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) and [`'dccuchile/bert-base-spanish-wwm-uncased'`](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) by using the Transformers library. An example on how to download and use the models in this page can be found in [this colab notebook](https://colab.research.google.com/drive/1uRwg4UmPgYIqGYY4gW_Nsw9782GFJbPt). (We will soon add a more detailed step-by-step tutorial in Spanish for newcommers 😉) ## Acknowledgments We thank [Adereso](https://www.adere.so/) for kindly providing support for traininig BETO-uncased, and the [Millennium Institute for Foundational Research on Data](https://imfd.cl/en/) that provided support for training BETO-cased. Also thanks to Google for helping us with the [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc) program. ## Citation [Spanish Pre-Trained BERT Model and Evaluation Data](https://users.dcc.uchile.cl/~jperez/papers/pml4dc2020.pdf) To cite this resource in a publication please use the following: ``` @inproceedings{CaneteCFP2020, title={Spanish Pre-Trained BERT Model and Evaluation Data}, author={Cañete, José and Chaperon, Gabriel and Fuentes, Rodrigo and Ho, Jou-Hui and Kang, Hojin and Pérez, Jorge}, booktitle={PML4DC at ICLR 2020}, year={2020} } ``` ## License Disclaimer The license CC BY 4.0 best describes our intentions for our work. However we are not sure that all the datasets used to train BETO have licenses compatible with CC BY 4.0 (specially for commercial use). Please use at your own discretion and verify that the licenses of the original text resources match your needs. ## References * [1] [Original Multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) * [2] [Multilingual BERT on "Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT"](https://arxiv.org/pdf/1904.09077.pdf) * [3] [Multilingual BERT on "How Multilingual is Multilingual BERT?"](https://arxiv.org/pdf/1906.01502.pdf) * [4] [LASER](https://arxiv.org/abs/1812.10464) * [5] [XLM (MLM+TLM)](https://arxiv.org/pdf/1901.07291.pdf) * [6] [UDPipe on "75 Languages, 1 Model: Parsing Universal Dependencies Universally"](https://arxiv.org/pdf/1904.02099.pdf) * [7] [Multilingual BERT on "Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation"](https://arxiv.org/pdf/1906.01569.pdf) * [8] [Multilingual BERT on "PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification"](https://arxiv.org/abs/1908.11828)
vvn0/ppo-PyramidsRND
vvn0
2023-02-08T12:39:46Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-08T10:21:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: vvn0/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
javiervela/a2c-PandaReachDense-v2
javiervela
2023-02-08T12:36:09Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T12:33:31Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.07 +/- 0.18 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
RocioUrquijo/clasificador-appreviews
RocioUrquijo
2023-02-08T12:24:45Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "classification", "generated_from_trainer", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-08T11:54:02Z
--- license: cc-by-sa-4.0 tags: - classification - generated_from_trainer model-index: - name: clasificador-appreviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-appreviews This model is a fine-tuned version of [nlpaueb/sec-bert-base](https://huggingface.co/nlpaueb/sec-bert-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
DaniilSirota/Reinforce_pixelcopter
DaniilSirota
2023-02-08T12:15:17Z
0
1
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-06T14:11:17Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 21.80 +/- 16.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
navjordj/snl-large-summarization
navjordj
2023-02-08T12:02:00Z
8
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:navjordj/SNL_summarization", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-07T13:41:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - navjordj/SNL_summarization model-index: - name: snl-large-summarization results: [] inference: parameters: max_length: 160 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # snl-large-summarization This model is a fine-tuned version of [north/t5_large_NCC_lm](https://huggingface.co/north/t5_large_NCC_lm) on the navjordj/SNL_summarization dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
ecemisildar/Reinforce-1
ecemisildar
2023-02-08T11:40:20Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T11:40:07Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_data_aug_mnli_256
gokuls
2023-02-08T11:36:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T17:31:52Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_mnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.6312042310821806 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_mnli_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5082 - Accuracy: 0.6312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.5216 | 1.0 | 31440 | 0.5047 | 0.6315 | | 0.4566 | 2.0 | 62880 | 0.5097 | 0.6383 | | 0.4188 | 3.0 | 94320 | 0.5243 | 0.6361 | | 0.3943 | 4.0 | 125760 | 0.5328 | 0.6346 | | 0.3777 | 5.0 | 157200 | 0.5345 | 0.6300 | | 0.3658 | 6.0 | 188640 | 0.5392 | 0.6318 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
jakub014/bert-base-uncased-finetuned-effectiveness-dagstuhl
jakub014
2023-02-08T11:29:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-08T11:26:24Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-effectiveness-dagstuhl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-effectiveness-dagstuhl This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6418 - Accuracy: 0.6190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 16 | 0.6729 | 0.5714 | | No log | 2.0 | 32 | 0.6418 | 0.6190 | | No log | 3.0 | 48 | 0.6719 | 0.5556 | | No log | 4.0 | 64 | 0.6386 | 0.6032 | | No log | 5.0 | 80 | 0.6559 | 0.5714 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
LouisDT/videomae-base-finetuned
LouisDT
2023-02-08T11:28:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-02-08T10:48:28Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5590 - Accuracy: 0.8641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 135 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7163 | 0.21 | 28 | 0.6078 | 0.8098 | | 0.7383 | 1.21 | 56 | 0.6975 | 0.4728 | | 0.6853 | 2.21 | 84 | 0.6637 | 0.6957 | | 0.7065 | 3.21 | 112 | 0.5590 | 0.8641 | | 0.6673 | 4.17 | 135 | 0.5766 | 0.8587 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
sunwooooong/xlm-roberta-base-finetuned-panx-de-fr
sunwooooong
2023-02-08T11:22:22Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-08T11:07:51Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1656 - F1: 0.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2905 | 1.0 | 715 | 0.1783 | 0.8310 | | 0.1461 | 2.0 | 1430 | 0.1600 | 0.8455 | | 0.0948 | 3.0 | 2145 | 0.1656 | 0.8589 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
kongacute/ppo-Huggy
kongacute
2023-02-08T11:21:24Z
44
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-08T11:21:17Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: kongacute/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
schreon/gpt2-lhm-large-03
schreon
2023-02-08T11:15:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "dataset:training_corpus", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-07T13:08:56Z
--- license: mit tags: - generated_from_trainer datasets: - training_corpus model-index: - name: gpt2-lhm-large-03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-lhm-large-03 This model is a fine-tuned version of [schreon/gpt2-lhm-large-02](https://huggingface.co/schreon/gpt2-lhm-large-02) on the training_corpus dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
MarcusLee/bert-finetuned-squad
MarcusLee
2023-02-08T11:05:14Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T08:55:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.0+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
microsoft/git-large-r-textcaps
microsoft
2023-02-08T10:50:43Z
86
10
transformers
[ "transformers", "pytorch", "git", "image-text-to-text", "vision", "image-captioning", "image-to-text", "en", "arxiv:2205.14100", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2023-01-22T19:24:43Z
--- language: en license: mit tags: - vision - image-captioning model_name: microsoft/git-large-textcaps pipeline_tag: image-to-text --- # GIT (GenerativeImage2Text), large-sized, fine-tuned on TextCaps, R* R = re-trained by removing some offensive captions in cc12m dataset GIT (short for GenerativeImage2Text) model, large-sized version, fine-tuned on TextCaps. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text). Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs. The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens. The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token. ![GIT architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg) This allows the model to be used for tasks like: - image and video captioning - visual question answering (VQA) on images and videos - even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text). ## Intended uses & limitations You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/git.html). ## Training data From the paper: > We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions (CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016), Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B data following a similar collection procedure in Hu et al. (2021a). => however this is for the model referred to as "GIT" in the paper, which is not open-sourced. This checkpoint is "GIT-large", which is a smaller variant of GIT trained on 20 million image-text pairs. Next, the model was fine-tuned on TextCaps. See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details. ### Preprocessing We refer to the original repo regarding details for preprocessing during training. During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100).
microsoft/git-large-r-coco
microsoft
2023-02-08T10:50:12Z
247
10
transformers
[ "transformers", "pytorch", "git", "image-text-to-text", "vision", "image-captioning", "image-to-text", "en", "arxiv:2205.14100", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2023-01-22T19:04:40Z
--- language: en license: mit tags: - vision - image-captioning model_name: microsoft/git-large-coco pipeline_tag: image-to-text --- # GIT (GenerativeImage2Text), large-sized, fine-tuned on COCO, R* R = re-trained by removing some offensive captions in cc12m dataset GIT (short for GenerativeImage2Text) model, large-sized version, fine-tuned on COCO. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text). Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs. The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens. The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token. ![GIT architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg) This allows the model to be used for tasks like: - image and video captioning - visual question answering (VQA) on images and videos - even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text). ## Intended uses & limitations You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/model_doc/git#transformers.GitForCausalLM.forward.example). ## Training data From the paper: > We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions (CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016), Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B data following a similar collection procedure in Hu et al. (2021a). => however this is for the model referred to as "GIT" in the paper, which is not open-sourced. This checkpoint is "GIT-large", which is a smaller variant of GIT trained on 20 million image-text pairs. Next, the model was fine-tuned on COCO. See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details. ### Preprocessing We refer to the original repo regarding details for preprocessing during training. During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100).
microsoft/git-large-textcaps
microsoft
2023-02-08T10:49:30Z
1,491
29
transformers
[ "transformers", "pytorch", "git", "image-text-to-text", "vision", "image-captioning", "image-to-text", "en", "arxiv:2205.14100", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2023-01-02T10:53:45Z
--- language: en license: mit tags: - vision - image-captioning model_name: microsoft/git-large-textcaps pipeline_tag: image-to-text --- # GIT (GenerativeImage2Text), large-sized, fine-tuned on TextCaps GIT (short for GenerativeImage2Text) model, large-sized version, fine-tuned on TextCaps. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text). Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs. The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens. The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token. ![GIT architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg) This allows the model to be used for tasks like: - image and video captioning - visual question answering (VQA) on images and videos - even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text). ## Intended uses & limitations You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/git.html). ## Training data From the paper: > We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions (CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016), Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B data following a similar collection procedure in Hu et al. (2021a). => however this is for the model referred to as "GIT" in the paper, which is not open-sourced. This checkpoint is "GIT-large", which is a smaller variant of GIT trained on 20 million image-text pairs. Next, the model was fine-tuned on TextCaps. See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details. ### Preprocessing We refer to the original repo regarding details for preprocessing during training. During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100).
microsoft/git-base-coco
microsoft
2023-02-08T10:48:43Z
66,443
20
transformers
[ "transformers", "pytorch", "git", "image-text-to-text", "vision", "image-captioning", "image-to-text", "en", "arxiv:2205.14100", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2022-12-06T09:27:24Z
--- language: en license: mit tags: - vision - image-captioning model_name: microsoft/git-base-coco pipeline_tag: image-to-text --- # GIT (GenerativeImage2Text), base-sized, fine-tuned on COCO GIT (short for GenerativeImage2Text) model, base-sized version, fine-tuned on COCO. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text). Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs. The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens. The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token. ![GIT architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg) This allows the model to be used for tasks like: - image and video captioning - visual question answering (VQA) on images and videos - even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text). ## Intended uses & limitations You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/model_doc/git#transformers.GitForCausalLM.forward.example). ## Training data From the paper: > We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions (CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016), Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B data following a similar collection procedure in Hu et al. (2021a). => however this is for the model referred to as "GIT" in the paper, which is not open-sourced. This checkpoint is "GIT-base", which is a smaller variant of GIT trained on 10 million image-text pairs. Next, the model was fine-tuned on COCO. See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details. ### Preprocessing We refer to the original repo regarding details for preprocessing during training. During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100).
alibidaran/codeparrot-ds-1
alibidaran
2023-02-08T10:41:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-07T11:39:55Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds-1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.991 | 0.33 | 1000 | 2.5183 | | 2.2592 | 0.65 | 2000 | 2.0328 | | 1.9112 | 0.98 | 3000 | 1.8410 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
deemboi/whisper-small-ko
deemboi
2023-02-08T10:39:28Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "ko", "dataset:google/fleurs", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-08T04:40:07Z
--- datasets: - google/fleurs language: - ko metrics: - wer --- # Whisper Small Ko This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google fleurs korean dataset.
tomasabril/unit1
tomasabril
2023-02-08T10:34:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T10:34:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.02 +/- 18.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
xavisgg/dqn-SpaceInvadersNoFrameskip-v4
xavisgg
2023-02-08T10:22:38Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T10:21:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 529.50 +/- 153.27 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga xavisgg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga xavisgg -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga xavisgg ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
mshibatatt/ppo-Huggy
mshibatatt
2023-02-08T10:18:20Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-08T10:18:13Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: mshibatatt/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
virto/rabbiberel-finetuned-xsum
virto
2023-02-08T10:17:22Z
3
0
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-07T11:36:12Z
--- tags: - generated_from_trainer model-index: - name: rabbiberel-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rabbiberel-finetuned-xsum This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 223 | 5.8673 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.1 - Datasets 2.9.0 - Tokenizers 0.11.0
ocisd4/kenlm
ocisd4
2023-02-08T10:08:56Z
0
2
null
[ "kenlm", "perplexity", "n-gram", "kneser-ney", "bigscience", "ja", "de", "ru", "dataset:wikipedia", "license:mit", "region:us" ]
null
2023-02-03T07:30:43Z
--- language: - ja - de - ru tags: - kenlm - perplexity - n-gram - kneser-ney - bigscience license: mit datasets: - wikipedia --- # KenLM models This repo contains several KenLM models trained on different tokenized datasets and languages. KenLM models are probabilistic n-gram languge models that models. One use case of these models consist on fast perplexity estimation for [filtering or sampling large datasets](https://huggingface.co/bertin-project/bertin-roberta-base-spanish). For example, one could use a KenLM model trained on French Wikipedia to run inference on a large dataset and filter out samples that are very unlike to appear on Wikipedia (high perplexity), or very simple non-informative sentences that could appear repeatedly (low perplexity). At the root of this repo you will find different directories named after the dataset models were trained on (e.g. `wikipedia`, `oscar`). Within each directory, you will find several models trained on different language subsets of the dataset (e.g. `en (English)`, `es (Spanish)`, `fr (French)`). For each language you will find three different files * `{language}.arpa.bin`: The trained KenLM model binary * `{language}.sp.model`: The trained SentencePiece model used for tokenization * `{language}.sp.vocab`: The vocabulary file for the SentencePiece model The models have been trained using some of the preprocessing steps from [cc_net](https://github.com/facebookresearch/cc_net), in particular replacing numbers with zeros and normalizing punctuation. So, it is important to keep the default values for the parameters: `lower_case`, `remove_accents`, `normalize_numbers` and `punctuation` when using the pre-trained models in order to replicate the same pre-processing steps at inference time. # Dependencies * KenLM: `pip install https://github.com/kpu/kenlm/archive/master.zip` * SentencePiece: `pip install sentencepiece` # Example: ``` from model import KenlmModel # Load model trained on English wikipedia model = KenlmModel.from_pretrained("wikipedia", "en") # Get perplexity model.get_perplexity("I am very perplexed") # 341.3 (low perplexity, since sentence style is formal and with no grammar mistakes) model.get_perplexity("im hella trippin") # 46793.5 (high perplexity, since the sentence is colloquial and contains grammar mistakes) ``` In the example above we see that, since Wikipedia is a collection of encyclopedic articles, a KenLM model trained on it will naturally give lower perplexity scores to sentences with formal language and no grammar mistakes than colloquial sentences with grammar mistakes.
Mykolyt/q-Taxi-v3
Mykolyt
2023-02-08T09:43:50Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T09:43:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Mykolyt/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vaibhav9/mini5-theme1
vaibhav9
2023-02-08T09:32:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T09:26:23Z
--- tags: - generated_from_trainer model-index: - name: mini5-theme1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini5-theme1 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 12 | 1.0640 | | No log | 2.0 | 24 | 0.9881 | | No log | 3.0 | 36 | 0.9619 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
spatial/Reinforce-CartPole8
spatial
2023-02-08T09:32:09Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T09:31:58Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Alex423/xlm-roberta-base-finetuned-panx-de
Alex423
2023-02-08T09:28:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-08T09:17:25Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8627004891366169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1363 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2539 | 1.0 | 525 | 0.1697 | 0.8179 | | 0.1317 | 2.0 | 1050 | 0.1327 | 0.8516 | | 0.0819 | 3.0 | 1575 | 0.1363 | 0.8627 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
nlp-waseda/comet-t5-base-japanese
nlp-waseda
2023-02-08T09:26:55Z
211
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ja", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-12T15:07:40Z
--- language: ja widget: - text: "次の出来事の後に起こりうることは何ですか: Xがパンを焼く" --- # COMET-T5 ja Finetuned T5 on [ATOMIC ja](https://github.com/nlp-waseda/comet-atomic-ja) using a text-to-text language modeling objective. It was introduced in [this paper](https://www.anlp.jp/proceedings/annual_meeting/2023/pdf_dir/B2-5.pdf). ### How to use You can use this model directly with a pipeline for text2text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text2text-generation', model='nlp-waseda/comet-t5-base-japanese') >>> set_seed(42) >>> generator("次の出来事の後に起こりうることは何ですか: Xが友人に電話する", max_length=30, num_return_sequences=5, do_sample=True) [{'generated_text': 'Xが友人から返事を得る'}, {'generated_text': 'Xが会話する'}, {'generated_text': 'Xが友人に怒られる'}, {'generated_text': 'Xが退屈しそうな雰囲気になる'}, {'generated_text': 'Xが友人と会う'}] ``` ### Preprocessing The prompts are different for each relation: | Relation | Prompt | | :------: | :---------------------------------------: | | xNeed | 次の出来事に必要な前提条件は何ですか: | | xEffect | 次の出来事の後に起こりうることは何ですか: | | xIntent | 次の出来事が起こった動機は何ですか: | | xReact | 次の出来事の後に感じることは何ですか: | ## Evaluation results The model achieves the following results: | BLEU | BERTScore | |:-----:|:---------:| | 39.85 | 82.37 | ### BibTeX entry and citation info ```bibtex @InProceedings{ide_nlp2023_event, author = "井手竜也 and 村田栄樹 and 堀尾海斗 and 河原大輔 and 山崎天 and 李聖哲 and 新里顕大 and 佐藤敏紀", title = "人間と言語モデルに対するプロンプトを用いたゼロからのイベント常識知識グラフ構築", booktitle = "言語処理学会第29回年次大会", year = "2023", url = "https://www.anlp.jp/proceedings/annual_meeting/2023/pdf_dir/B2-5.pdf" } ```
waffle4040/TOTFN
waffle4040
2023-02-08T09:23:18Z
0
2
null
[ "region:us" ]
null
2023-01-24T13:02:58Z
2/06 いい感じになったTOTFN-5-25ができました 呼び出しは変わらず、補強はnavelが推奨 正則化画像の偏りか髪がグレーになる副作用あり 以前の話 呼び出しは“trick or treatment”のつもりです これで補強したほうがいいかもしれないです“bikini,boot,gloves, layered bikini,purple bikini,pencil skirt,” あんまり把握してないけどさすがLora、いい感じに見えるので
ottovoncwim/Reinforce-CartPolev1
ottovoncwim
2023-02-08T09:17:33Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T09:11:19Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPolev1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Gokulapriyan/swin-tiny-patch4-window7-224-finetuned-3e
Gokulapriyan
2023-02-08T09:16:58Z
35
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-08T07:53:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-3e results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9606135986733002 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-3e This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1065 - Accuracy: 0.9606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4549 | 1.0 | 527 | 0.2910 | 0.8857 | | 0.2838 | 2.0 | 1054 | 0.1524 | 0.9410 | | 0.254 | 3.0 | 1581 | 0.1065 | 0.9606 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
jannikskytt/Pyramids
jannikskytt
2023-02-08T09:12:02Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-08T09:11:57Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: jannikskytt/Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
leoleung93/Reinforce-1
leoleung93
2023-02-08T08:57:01Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T08:56:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
fathyshalab/clinic-kitchen_and_dining-roberta
fathyshalab
2023-02-08T08:46:39Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-08T08:46:21Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/clinic-kitchen_and_dining-roberta This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/clinic-kitchen_and_dining-roberta") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
jidbo/BME-NaturalQuestions
jidbo
2023-02-08T08:41:33Z
6
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T08:33:53Z
--- license: mit tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mingcai/ESimCSE-chinese-bert-wwm
mingcai
2023-02-08T08:41:18Z
5
1
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "zh", "endpoints_compatible", "region:us" ]
feature-extraction
2023-02-08T07:49:44Z
--- language: - zh metrics: - spearmanr --- 基于论文ESimCSE进行复现,基于STS-B训练集进行训练,在中文STS-B的验证集spermanr相关性得分为0.7226. 论文参考: @inproceedings{Wu2021ESimCSEES, title={ESimCSE: Enhanced Sample Building Method for Contrastive Learning of Unsupervised Sentence Embedding}, author={Xing Wu and Chaochen Gao and Liangjun Zang and Jizhong Han and Zhongyuan Wang and Songlin Hu}, booktitle={International Conference on Computational Linguistics}, year={2021} }
pfunk/Pong-v4-DQPN_p30_e0.50-seed1
pfunk
2023-02-08T08:34:04Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T08:33:44Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 0.80 +/- 6.79 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p30_e0.50.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p30_e0.50]" python -m cleanrl_utils.enjoy --exp-name DQPN_p30_e0.50 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.50-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.50-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.50-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p30_e0.50 --start-policy-f 30000 --end-policy-f 1000 --evaluation-fraction 0.50 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.5, 'exp_name': 'DQPN_p30_e0.50', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 30000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
iubeda/q-Taxi-v3
iubeda
2023-02-08T08:31:30Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T08:31:27Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="iubeda/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
yuanzheng/carrot-commercial-v1
yuanzheng
2023-02-08T08:25:31Z
7
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-04T00:08:26Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### carrot_commercial_v1 Dreambooth model Sample pictures of this concept: ![0](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00087-1720633401-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![1](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00192-1789510950-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![2](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00222-3855371334-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![3](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00230-3855371342-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![4](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00182-1789510940-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![5](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00194-1789510952-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![6](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00236-3855371348-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![7](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00238-3855371350-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![8](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00174-2092912628-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![9](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00079-4004019013-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![10](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00121-1978687305-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![11](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00212-3855371324-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![12](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00213-3855371325-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![13](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00223-3855371335-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![14](https://huggingface.co/yuanzheng/carrot-commercial-v1/resolve/main/sample_images/00088-1720633402-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png)
jannikskytt/ppo-snowballTarget
jannikskytt
2023-02-08T08:21:54Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-08T08:21:49Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: jannikskytt/ppo-snowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
catlord/bert-finetuned-squad
catlord
2023-02-08T08:17:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T04:45:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
courtneypham/bert-finetuned-squad
courtneypham
2023-02-08T08:16:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T04:50:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
hello2mao/sd-class-butterflies-32
hello2mao
2023-02-08T07:39:59Z
1
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-02-08T07:39:38Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('hello2mao/sd-class-butterflies-32') image = pipeline().images[0] image ```
Hudayday/bert-finetuned-squad
Hudayday
2023-02-08T07:23:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T06:34:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
tianxing1994/EcapaTDNN-VoxCeleb1
tianxing1994
2023-02-08T07:22:43Z
0
0
null
[ "region:us" ]
null
2022-12-14T06:36:03Z
## ECAPA-TDNN 说话人分类 ```text 该模型采用 `VoxCeleb1 数据集` 做说话人分类训练. 类别数 1251 训练集准确率 0.640 验证集准确率 0.650 在 https://mm.kaist.ac.kr/datasets/voxceleb/index.html 页面的 List of trial pairs - VoxCeleb1 https://mm.kaist.ac.kr/datasets/voxceleb/meta/veri_test.txt 数据集上做了说话人验证, EER大约为 2%, 相比于 Ecapa-TDNN 论文中的大约 1% 模型应该还没有被充分训练. (不太确定是不是同一个测试集, 但这个模型应该没有充分训练). ``` ### VoxCeleb1 数据集 ```text VoxCeleb1 数据集包含 4 个挑战 http://mm.kaist.ac.kr/datasets/voxceleb/voxsrc Track 1: 完全监督的说话人验证 Speaker Verification (封闭) 训练集, 采用具体说话人标注的 VoxCeleb1 数据集. 验证集, 采用官方给定的说话人验证对. Track 2: 完全监督的说话人验证 Speaker Verification (开放) 训练集, 采用具体说话人标注的 VoxCeleb1 数据集, 以及任何其它开源的数据集. 验证集, 采用官方给定的说话人验证对. Track 3: 半监督的说话人验证 Speaker Verification (封闭) 训练集, ...... 验证集, 采用官方给定的说话人验证对. Track 4 是说话人分离 Speaker Diarization (开放) 其任务是将多说话人音频分解为单个说话人的片段, 以判断谁在何时说话. 训练集, 除测试集之后的任何数据. 验证集, 官方提供 VoxConverse 的开发和测试集以用于验证. ``` ```text 数据集下载 http://mm.kaist.ac.kr/datasets/voxceleb/voxsrc https://mm.kaist.ac.kr/datasets/voxceleb/index.html The username and password is voxceleb1912 and 0s42xuw6: wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partaa --http-user=voxceleb1912 --http-passwd=0s42xuw6 wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partab --http-user=voxceleb1912 --http-passwd=0s42xuw6 wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partac --http-user=voxceleb1912 --http-passwd=0s42xuw6 wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partad --http-user=voxceleb1912 --http-passwd=0s42xuw6 wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_test_wav.zip --http-user=voxceleb1912 --http-passwd=0s42xuw6 # dev 的4个文件, 应该是先压缩成 zip, 再按二进制切割成每个 10G 的文件. # 此处用 cat 将其合并为一个文件, 再做 unzip 解压. cat vox1_dev* > vox1_dev_wav.zip unzip vox1_dev_wav.zip ```
Abelll/marian-finetuned-kde4-en-to-fr
Abelll
2023-02-08T06:53:27Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-12-27T20:13:44Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.836492533087124 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8559 - Bleu: 52.8365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
seokwoni/distilbert-base-uncased-finetuned-emotion
seokwoni
2023-02-08T06:28:53Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-17T07:39:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2210 - Accuracy: 0.9235 - F1: 0.9234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8313 | 1.0 | 250 | 0.3228 | 0.902 | 0.8992 | | 0.2463 | 2.0 | 500 | 0.2210 | 0.9235 | 0.9234 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.1 - Datasets 2.6.1 - Tokenizers 0.11.0
ahjim0m0/Taxi-uncle-3-lr05-n30k-v3
ahjim0m0
2023-02-08T06:26:16Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T06:26:08Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-uncle-3-lr05-n30k-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: -99.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ahjim0m0/Taxi-uncle-3-lr05-n30k-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ahjim0m0/Taxi-uncle-2-lr02-n60k-v3
ahjim0m0
2023-02-08T06:22:27Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T06:22:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-uncle-2-lr02-n60k-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: -99.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ahjim0m0/Taxi-uncle-2-lr02-n60k-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SandyML/sd-class-butterflies-32
SandyML
2023-02-08T06:19:55Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-02-08T06:19:33Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('SandyML/sd-class-butterflies-32') image = pipeline().images[0] image ```
ahjim0m0/Taxi-uncle-1-v3
ahjim0m0
2023-02-08T06:15:42Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T06:15:35Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-uncle-1-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: -99.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ahjim0m0/Taxi-uncle-1-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ahjim0m0/q-FrozenLake-v1-4x4-noSlippery
ahjim0m0
2023-02-08T06:05:39Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T06:05:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ahjim0m0/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Art-phys/dqn-SpaceInvadersNoFrameskip-v4
Art-phys
2023-02-08T05:54:39Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T05:53:55Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 601.00 +/- 350.80 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Art-phys -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Art-phys -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Art-phys ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Ekkel-AI-Pvt-ltd/stable-diffusion-inpainting2
Ekkel-AI-Pvt-ltd
2023-02-08T05:51:25Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "arxiv:2112.10752", "arxiv:2202.00512", "arxiv:1910.09700", "license:openrail++", "diffusers:StableDiffusionInpaintPipeline", "region:us" ]
text-to-image
2023-01-24T09:56:00Z
--- license: openrail++ tags: - stable-diffusion - text-to-image inference: false --- # Stable Diffusion v2 Model Card This model card focuses on the model associated with the Stable Diffusion v2, available [here](https://github.com/Stability-AI/stablediffusion). This `stable-diffusion-2-inpainting` model is resumed from [stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) (`512-base-ema.ckpt`) and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning. ![image](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/resolve/main/merged-leopards.png) - Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `512-inpainting-ema.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/resolve/main/512-inpainting-ema.ckpt). - Use it with 🧨 [`diffusers`](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting#examples) ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)). - **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## Examples Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion 2 inpainting in a simple and efficient manner. ```bash pip install diffusers transformers accelerate scipy safetensors ``` ```python from diffusers import StableDiffusionInpaintPipeline pipe = StableDiffusionInpaintPipeline.from_pretrained( "stabilityai/stable-diffusion-2-inpainting", torch_dtype=torch.float16, ) prompt = "Face of a yellow cat, high resolution, sitting on a park bench" #image and mask_image should be PIL images. #The mask structure is white for inpainting and black for keeping as is image = pipe(prompt=prompt, image=image, mask_image=mask_image).images[0] image.save("./yellow_cat_on_park_bench.png") ``` **Notes**: - Despite not being a dependency, we highly recommend you to install [xformers](https://github.com/facebookresearch/xformers) for memory efficient attention (better performance) - If you have low GPU RAM available, make sure to add a `pipe.enable_attention_slicing()` after sending it to `cuda` for less VRAM usage (to the cost of speed) **How it works:** `image` | `mask_image` :-------------------------:|:-------------------------:| <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" alt="drawing" width="300"/> | <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" alt="drawing" width="300"/> `prompt` | `Output` :-------------------------:|:-------------------------:| <span style="position: relative;bottom: 150px;">Face of a yellow cat, high resolution, sitting on a park bench</span> | <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/test.png" alt="drawing" width="300"/> # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is originally taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), was used for Stable Diffusion v1, but applies in the same way to Stable Diffusion v2_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a subset of the large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, we have filtered the dataset using LAION's NFSW detector (see Training section). ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion vw was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. Stable Diffusion v2 mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-5B and subsets (details below). The training data is further filtered using LAION's NSFW detector, with a "p_unsafe" score of 0.1 (conservative). For more details, please refer to LAION-5B's [NeurIPS 2022](https://openreview.net/forum?id=M3Y74vmsMcY) paper and reviewer discussions on the topic. **Training Procedure** Stable Diffusion v2 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through the OpenCLIP-ViT/H text-encoder. - The output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We also use the so-called _v-objective_, see https://arxiv.org/abs/2202.00512. We currently provide the following checkpoints: - `512-base-ema.ckpt`: 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`. 850k steps at resolution `512x512` on the same dataset with resolution `>= 512x512`. - `768-v-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for 150k steps using a [v-objective](https://arxiv.org/abs/2202.00512) on the same dataset. Resumed for another 140k steps on a `768x768` subset of our dataset. - `512-depth-ema.ckpt`: Resumed from `512-base-ema.ckpt` and finetuned for 200k steps. Added an extra input channel to process the (relative) depth prediction produced by [MiDaS](https://github.com/isl-org/MiDaS) (`dpt_hybrid`) which is used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. - `512-inpainting-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. The same strategy was used to train the [1.5-inpainting checkpoint](https://github.com/saic-mdal/lama). - `x4-upscaling-ema.ckpt`: Trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752). In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml). - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 1 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 steps DDIM sampling steps show the relative improvements of the checkpoints: ![pareto](model-variants.jpg) Evaluated using 50 DDIM steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 200000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 15000 kg CO2 eq. ## Citation @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } *This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
Jaeung/xlm-roberta-base-finetuned-panx-de
Jaeung
2023-02-08T05:17:39Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-08T04:26:59Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.849462976643746 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3842 | 1.0 | 99 | 0.1687 | 0.8120 | | 0.1526 | 2.0 | 198 | 0.1447 | 0.8355 | | 0.1139 | 3.0 | 297 | 0.1358 | 0.8495 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.0.dev20230129 - Datasets 2.9.0 - Tokenizers 0.13.2
Airic/Counterfeit
Airic
2023-02-08T04:48:05Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-08T04:36:25Z
--- license: creativeml-openrail-m ---
chaoyivision/t5-small-finetuned-xsum-epoch4
chaoyivision
2023-02-08T04:30:24Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-03T19:37:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-epoch4 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-epoch4 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 6377 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 2.0 | 12754 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 3.0 | 19131 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 4.0 | 25508 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.0.0.dev20230127+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
SyedAbdul/PPO-LunarLander-V2
SyedAbdul
2023-02-08T04:27:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T04:27:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 288.38 +/- 13.94 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
layoric/ppo-Huggy
layoric
2023-02-08T04:17:17Z
23
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-08T04:10:26Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: layoric/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bryanhpchiang/flan-t5-base-samsum
bryanhpchiang
2023-02-08T04:07:13Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T03:21:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum model-index: - name: flan-t5-base-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-samsum This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.0.dev20221005+cu117 - Datasets 2.5.2 - Tokenizers 0.13.2
EnD-Diffusers/YoutubersV2
EnD-Diffusers
2023-02-08T04:04:32Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-04T22:13:43Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: utube --- ### Youtubers Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Information on this model will be here: https://civitai.com/user/duskfallcrew If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk utube (use that on your prompt)
pupubear/pupugirl_v1_anime_attempt_2
pupubear
2023-02-08T03:57:24Z
24
2
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-04T23:16:52Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### anime_girl_from_pu0112 Dreambooth model trained by pupubear with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Trained from Pu0112 Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/pupubear/anime-girl-from-pu0112/resolve/main/sample_images/00004-3488972886-NSFW,_girl,_best_quality,highly_detailed,masterpiece,ultra-naked,detailed,illustration,a_girl,_official_art,_cum_on_body,_cum_on.png)
petergoldstein/ppo-Huggy
petergoldstein
2023-02-08T03:53:29Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-08T03:53:21Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: petergoldstein/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pfunk/Pong-v4-DQPN_p50_pt0.1-seed1
pfunk
2023-02-08T03:51:01Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T03:50:39Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 3.70 +/- 6.45 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_pt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p50_pt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p50_pt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_pt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_pt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_pt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p50_pt0.1 --start-policy-f 50000 --end-policy-f 50000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 50000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p50_pt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 50000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
yuanzheng/carrot-commercial-v2
yuanzheng
2023-02-08T03:31:03Z
12
3
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T02:27:56Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### carrot_commercial_v2 Dreambooth model Sample pictures of this concept: ![0](https://huggingface.co/yuanzheng/carrot-commercial-v2/resolve/main/sample_images/00174-2092912628-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![1](https://huggingface.co/yuanzheng/carrot-commercial-v2/resolve/main/sample_images/00087-1720633401-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![2](https://huggingface.co/yuanzheng/carrot-commercial-v2/resolve/main/sample_images/00088-1720633402-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![3](https://huggingface.co/yuanzheng/carrot-commercial-v2/resolve/main/sample_images/00079-4004019013-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png) ![4](https://huggingface.co/yuanzheng/carrot-commercial-v2/resolve/main/sample_images/00121-1978687305-_pid_sayuri_sake__japanese_sake_on_the_desk_with_assorted_sushi_at_a_fancy_Japanese_restaurant,_cybercinematic_lighting,_studio.png)
vumichien/wav2vec2-large-pitch-recognition
vumichien
2023-02-08T03:15:13Z
16
2
transformers
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "ja", "doi:10.57967/hf/0343", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ja license: apache-2.0 tags: - audio - automatic-speech-recognition - speech datasets: - Japanese accent datasets metrics: - wer # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: Wav2vec2 Accent Japanese results: - task: type: Speech Recognition # Required. Example: automatic-speech-recognition name: automatic-speech-recognition # Optional. Example: Speech Recognition dataset: type: accent_voice name: Japanese accent datasets args: ja metrics: - type: wer # Required. value: 15.82 # Required. name: Test WER --- # Wav2Vec2 Accent Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese accent dataset When using this model, make sure that your speech input is sampled at 16kHz. ## Test Result WER: 15.82%
aichina/cy0208
aichina
2023-02-08T03:03:15Z
5
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T03:02:17Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: cy0208 --- ### cy0208 Dreambooth model trained by aichina with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: cy0208 (use that on your prompt) ![cy0208 0](https://huggingface.co/aichina/cy0208/resolve/main/concept_images/cy0208_%281%29.jpg)![cy0208 1](https://huggingface.co/aichina/cy0208/resolve/main/concept_images/cy0208_%282%29.jpg)![cy0208 2](https://huggingface.co/aichina/cy0208/resolve/main/concept_images/cy0208_%283%29.jpg)![cy0208 3](https://huggingface.co/aichina/cy0208/resolve/main/concept_images/cy0208_%284%29.jpg)![cy0208 4](https://huggingface.co/aichina/cy0208/resolve/main/concept_images/cy0208_%285%29.jpg)![cy0208 5](https://huggingface.co/aichina/cy0208/resolve/main/concept_images/cy0208_%286%29.jpg)
layoric/ppo-LunarLander-v2
layoric
2023-02-08T02:57:36Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T02:14:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.30 +/- 10.08 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pupubear/pupugirl_v1
pupubear
2023-02-08T02:39:33Z
14
4
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-02T06:50:15Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### girl Dreambooth model trained by pupubear with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook trianed from c_PVC_mix Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/pupubear/girl/resolve/main/sample_images/00001-1639922232-Ultra-res_,NSFW,_1girl,_cum,_full_body,,_best_quality,highly_detailed,masterpiece,ultra-detailed,illustration.png)
lyk0013/distilbert-finetuned-imdb
lyk0013
2023-02-08T02:20:17Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-07T15:29:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.3611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9507 | 1.0 | 13 | 2.5946 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
Josh98/t5-small-transferLearning-NL2BASH_seqTrain
Josh98
2023-02-08T01:36:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T01:25:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-transferLearning-NL2BASH_seqTrain results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-transferLearning-NL2BASH_seqTrain This model is a fine-tuned version of [kevinum/t5-small-finetuned-English-to-BASH](https://huggingface.co/kevinum/t5-small-finetuned-English-to-BASH) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6524 - Bleu: 48.0701 - Gen Len: 8.9028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 36 | 0.6524 | 48.0701 | 8.9028 | | No log | 2.0 | 72 | 0.6524 | 48.0701 | 8.9028 | | No log | 3.0 | 108 | 0.6524 | 48.0701 | 8.9028 | | No log | 4.0 | 144 | 0.6524 | 48.0701 | 8.9028 | | No log | 5.0 | 180 | 0.6524 | 48.0701 | 8.9028 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Josh98/t5-small-finetuned-English-to-BASH
Josh98
2023-02-08T01:19:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T01:05:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-English-to-BASH results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-English-to-BASH This model is a fine-tuned version of [kevinum/t5-small-finetuned-English-to-BASH](https://huggingface.co/kevinum/t5-small-finetuned-English-to-BASH) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7624 - Bleu: 15.8119 - Gen Len: 7.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 36 | 2.4759 | 9.4129 | 12.8472 | | No log | 2.0 | 72 | 2.2581 | 14.8612 | 9.7639 | | No log | 3.0 | 108 | 2.0998 | 16.1955 | 8.7222 | | No log | 4.0 | 144 | 1.9945 | 14.576 | 8.4444 | | No log | 5.0 | 180 | 1.9181 | 15.4464 | 8.1806 | | No log | 6.0 | 216 | 1.8639 | 14.7446 | 7.9028 | | No log | 7.0 | 252 | 1.8185 | 14.5825 | 8.0833 | | No log | 8.0 | 288 | 1.7867 | 14.9773 | 7.9444 | | No log | 9.0 | 324 | 1.7679 | 15.8119 | 7.75 | | No log | 10.0 | 360 | 1.7624 | 15.8119 | 7.75 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
rjac/whisper-tiny-spanish
rjac
2023-02-08T01:13:07Z
60
2
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "es", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T14:13:24Z
--- language: - es license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Spanish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Spanish This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 es dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
bandish97/rhymbert
bandish97
2023-02-08T01:12:21Z
0
0
null
[ "fill-mask", "en", "region:us" ]
fill-mask
2023-02-08T01:10:57Z
--- language: - en pipeline_tag: fill-mask ---
yenpolin/wav2vec2-common_voice-tr-demo
yenpolin
2023-02-08T00:51:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-07T12:53:01Z
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-common_voice-tr-demo results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: COMMON_VOICE - TR type: common_voice config: tr split: train+validation args: 'Config: tr, Training split: train+validation, Eval split: test' metrics: - name: Wer type: wer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 3.4626 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 0.92 | 100 | 3.6030 | 1.0 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.0 - Tokenizers 0.13.2
pfunk/Pong-v4-DQPN_p30_e0.25-seed1
pfunk
2023-02-08T00:46:10Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-08T00:45:48Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 1.40 +/- 4.88 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p30_e0.25.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p30_e0.25]" python -m cleanrl_utils.enjoy --exp-name DQPN_p30_e0.25 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.25-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.25-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.25-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p30_e0.25 --start-policy-f 30000 --end-policy-f 1000 --evaluation-fraction 0.25 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.25, 'exp_name': 'DQPN_p30_e0.25', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 30000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
EnD-Diffusers/duskfalls-artificial-photography
EnD-Diffusers
2023-02-08T00:33:32Z
1
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-08T00:27:32Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: rtrophto1 --- ### Duskfalls Artificial Photography Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Information on this model will be here: https://civitai.com/user/duskfallcrew If you want to donate towards costs and don't want to subscribe: https://ko-fi.com/DUSKFALLcrew If you want to monthly support the EARTH & DUSK media projects and not just AI: https://www.patreon.com/earthndusk Data Training Examples: rtrophto1 (use that on your prompt) ![rtrophto1 0](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%281%29.jpg)![rtrophto1 1](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%282%29.jpg)![rtrophto1 2](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%283%29.jpg)![rtrophto1 3](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%284%29.jpg)![rtrophto1 4](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%285%29.jpg)![rtrophto1 5](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%286%29.jpg)![rtrophto1 6](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%287%29.jpg)![rtrophto1 7](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%288%29.jpg)![rtrophto1 8](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%289%29.jpg)![rtrophto1 9](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2810%29.jpg)![rtrophto1 10](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2811%29.jpg)![rtrophto1 11](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2812%29.jpg)![rtrophto1 12](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2813%29.jpg)![rtrophto1 13](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2814%29.jpg)![rtrophto1 14](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2815%29.jpg)![rtrophto1 15](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2816%29.jpg)![rtrophto1 16](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2817%29.jpg)![rtrophto1 17](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2818%29.jpg)![rtrophto1 18](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2819%29.jpg)![rtrophto1 19](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2820%29.jpg)![rtrophto1 20](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2821%29.jpg)![rtrophto1 21](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2822%29.jpg)![rtrophto1 22](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2823%29.jpg)![rtrophto1 23](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2824%29.jpg)![rtrophto1 24](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2825%29.jpg)![rtrophto1 25](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2826%29.jpg)![rtrophto1 26](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2827%29.jpg)![rtrophto1 27](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2828%29.jpg)![rtrophto1 28](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2829%29.jpg)![rtrophto1 29](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2830%29.jpg)![rtrophto1 30](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2831%29.jpg)![rtrophto1 31](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2832%29.jpg)![rtrophto1 32](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2833%29.jpg)![rtrophto1 33](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2834%29.jpg)![rtrophto1 34](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2835%29.jpg)![rtrophto1 35](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2836%29.jpg)![rtrophto1 36](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2837%29.jpg)![rtrophto1 37](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2838%29.jpg)![rtrophto1 38](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2839%29.jpg)![rtrophto1 39](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2840%29.jpg)![rtrophto1 40](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2841%29.jpg)![rtrophto1 41](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2842%29.jpg)![rtrophto1 42](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2843%29.jpg)![rtrophto1 43](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2844%29.jpg)![rtrophto1 44](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2845%29.jpg)![rtrophto1 45](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2846%29.jpg)![rtrophto1 46](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2847%29.jpg)![rtrophto1 47](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2848%29.jpg)![rtrophto1 48](https://huggingface.co/Duskfallcrew/duskfalls-artificial-photography/resolve/main/concept_images/rtrophto1_%2849%29.jpg)
sanali209/imclasif-quality-v001
sanali209
2023-02-08T00:32:45Z
19
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-07T15:48:48Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: imclasif-quality-v001 results: - task: name: Image genre Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.875 --- # imclasif-quality-v001 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
vumichien/wav2vec2-xls-r-1b-japanese
vumichien
2023-02-08T00:22:33Z
31
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "ja", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "doi:10.57967/hf/0336", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xls-r-1b results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 7.98 - name: Test CER (with LM) type: cer value: 3.42 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 7.88 - name: Test CER (with LM) type: cer value: 3.35 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 28.07 - name: Test CER (with LM) type: cer value: 16.27 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 19.89 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on my collection of Public Japanese Voice datasets for research [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [JUST](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) (Japanese speech corpus of Saruwatari-lab., University of Tokyo), [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus) (Japanese speech corpus for summarization and simplification), [CSS10](https://paperswithcode.com/dataset/css10) (A collection of single speaker speech datasets). You can find in preprocessing dataset in here VUMICHIEN/COMMON_VOICE_LARGE_JSUT_JSSS_CSS10. ### Total training data: ~60 hours ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 10.96 | 10.91 | |with 4-grams LM| 7.98 | 7.88 | ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 4.28 | 4.22 | |with 4-grams LM| 3.42 | 3.35 | ## Evaluation Please use the eval.py file to run the evaluation: ```python pip install mecab-python3 unidic-lite pykakasi python eval.py --model_id vumichien/wav2vec2-xls-r-1b-japanese --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 2.2896 | 3.37 | 1500 | 0.4748 | 0.4013 | 0.1767 | | 1.1608 | 6.74 | 3000 | 0.3350 | 0.3159 | 0.1456 | | 1.1042 | 10.11 | 4500 | 0.3119 | 0.2971 | 0.1400 | | 1.0494 | 13.48 | 6000 | 0.2974 | 0.2867 | 0.1353 | | 1.0061 | 16.85 | 7500 | 0.2802 | 0.2746 | 0.1300 | | 0.9629 | 20.22 | 9000 | 0.2844 | 0.2776 | 0.1326 | | 0.9267 | 23.59 | 10500 | 0.2577 | 0.2603 | 0.1255 | | 0.8984 | 26.96 | 12000 | 0.2508 | 0.2531 | 0.1226 | | 0.8729 | 30.34 | 13500 | 0.2629 | 0.2606 | 0.1254 | | 0.8546 | 33.71 | 15000 | 0.2402 | 0.2447 | 0.1193 | | 0.8304 | 37.08 | 16500 | 0.2532 | 0.2472 | 0.1209 | | 0.8075 | 40.45 | 18000 | 0.2439 | 0.2469 | 0.1198 | | 0.7827 | 43.82 | 19500 | 0.2387 | 0.2372 | 0.1167 | | 0.7627 | 47.19 | 21000 | 0.2344 | 0.2331 | 0.1147 | | 0.7402 | 50.56 | 22500 | 0.2314 | 0.2299 | 0.1135 | | 0.718 | 53.93 | 24000 | 0.2257 | 0.2267 | 0.1114 | | 0.7016 | 57.3 | 25500 | 0.2204 | 0.2184 | 0.1089 | | 0.6804 | 60.67 | 27000 | 0.2227 | 0.2181 | 0.1085 | | 0.6625 | 64.04 | 28500 | 0.2138 | 0.2112 | 0.1058 | | 0.6465 | 67.42 | 30000 | 0.2141 | 0.2081 | 0.1044 | | 0.6238 | 70.79 | 31500 | 0.2172 | 0.2082 | 0.1050 | | 0.6062 | 74.16 | 33000 | 0.2174 | 0.2058 | 0.1043 | | 0.588 | 77.53 | 34500 | 0.2156 | 0.2034 | 0.1027 | | 0.5722 | 80.9 | 36000 | 0.2162 | 0.2032 | 0.1029 | | 0.5585 | 84.27 | 37500 | 0.2156 | 0.2022 | 0.1021 | | 0.5456 | 87.64 | 39000 | 0.2126 | 0.1993 | 0.1009 | | 0.5325 | 91.01 | 40500 | 0.2121 | 0.1966 | 0.1003 | | 0.5229 | 94.38 | 42000 | 0.2104 | 0.1941 | 0.0991 | | 0.5134 | 97.75 | 43500 | 0.2108 | 0.1948 | 0.0992 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli
gokuls
2023-02-08T00:03:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-04T03:20:55Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.1267605633802817 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5690 - Accuracy: 0.1268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3354 | 1.0 | 435 | 0.5690 | 0.1268 | | 0.299 | 2.0 | 870 | 0.5693 | 0.1408 | | 0.2905 | 3.0 | 1305 | 0.6161 | 0.1127 | | 0.2827 | 4.0 | 1740 | 0.6297 | 0.0704 | | 0.2757 | 5.0 | 2175 | 0.6336 | 0.0986 | | 0.2705 | 6.0 | 2610 | 0.6493 | 0.0845 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gatardochi/q-Taxi-v3
gatardochi
2023-02-07T23:24:05Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T23:24:02Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.77 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="gatardochi/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SRobbins/a2c-AntBulletEnv-v0
SRobbins
2023-02-07T23:03:33Z
3
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T23:02:21Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1698.96 +/- 180.65 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
masibasi/disney-ps
masibasi
2023-02-07T22:49:57Z
61
4
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-02T10:56:14Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### disney-ps Dreambooth model trained by masibasi with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Type 'disney-ps style' before or after your prompt to see the finetuned results
eshwarprasadS/q-FrozenLake-v1-4x4-noSlippery
eshwarprasadS
2023-02-07T22:32:21Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T22:32:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="eshwarprasadS/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dhifraan/YXJlcw
dhifraan
2023-02-07T22:20:01Z
0
0
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-07T22:09:49Z
--- license: creativeml-openrail-m ---