modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-14 00:44:55
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 519
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-14 00:44:41
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
ell-hol/mT5-OrangeSum | ell-hol | 2023-02-08T14:34:07Z | 12 | 1 | transformers | [
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"autotrain",
"summarization",
"unk",
"dataset:ell-hol/autotrain-data-test-orangesum",
"model-index",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| summarization | 2022-12-27T22:06:22Z | ---
language:
- unk
tags:
- autotrain
- summarization
datasets:
- ell-hol/autotrain-data-test-orangesum
widget:
- text: I love AutoTrain 🤗
co2_eq_emissions:
emissions: 675.7789931017469
model-index:
- name: ell-hol/mT5-OrangeSum
results:
- task:
type: summarization
name: Summarization
dataset:
name: orange_sum
type: orange_sum
config: abstract
split: validation
metrics:
- type: rouge
value: 33.377
name: ROUGE-1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDhjMWIxYmNmNDYzNTMzMDM2YjQyOTdkYjYyMDJkZDhlNzQ2ZDVkNGM2YTIzODU4ZWYwZDg2ODZkN2U5OTk2MSIsInZlcnNpb24iOjF9.UL_nv_GGJ75LMgDmRjvrp0dYhCyjz-h5txS1ljDFS7k9Yy6iJ0QnTebou1tsLFtj7sBSvUKvZeyqFXEHN7SBCg
- type: rouge
value: 14.4472
name: ROUGE-2
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTYxZTVkMzFlMGUxMWNmNzc5ZDI0OWM3ODY2ZTc1MDg2MDc2NTRiZjM3OTA4NGI1MmEwNzQzMjQyOWM5NDE3YiIsInZlcnNpb24iOjF9.xsBp4kyHAnAnAWllwvcXNF3vFFbgP_3Ipplg0Cs8yMzY2qIKozlflWSpmm7qyru1RvtDrHH5JQy0hSSz49tMDQ
- type: rouge
value: 24.1902
name: ROUGE-L
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzgxMDNmODZiOTcxYmU0NjlkMjEzOTBmZjZhMzkxZDcyODNjYmJjOGNiNzA2MTI2YjU4MTUzZTFlM2EwYjRkNyIsInZlcnNpb24iOjF9.QE9X1gqHxDA_Vzj86nOi1FrYXrvvYR-uQgAKn2ESJp48mnT4rHCnpxVo3qJGXcoeD0vA0M9VDWJzc2pci34PBA
- type: rouge
value: 25.5277
name: ROUGE-LSUM
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDk2YzY1NjU3NDgxMDllYjIwMGI5NGE2ZjY3NzcxZGEwNmYzYjQxYzVlZTdmYzdkYWIxM2Y1YjkxNjZhOWRlZiIsInZlcnNpb24iOjF9.ksd-KgRtY71cHJxFsqLWr5lofRSrfiwixGTI6Hek6GvfisssetoDPy17bWnQpUqfN0ozxJciw2VzpauYPDuZCg
- type: loss
value: 1.6347737312316895
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDNmODJhNzdmMzNkMTc4MDcwZDhmNDFiZjM1ZWVmYjQ4N2IzNWU3MjYwMWM4ZmM0NjFhNjY1OTBlZjBkMjY0YSIsInZlcnNpb24iOjF9.aaF2D-cKnhK4YaqFV23QhoiTCOK7rQJKoXJMMj-kuxe_NLQBLNj73LBou376IlsTmOxxk_mmEimzwMMbTiVSDA
- type: gen_len
value: 48.4967
name: gen_len
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzk3YjMxZWY2NzE5ZWMxZjBhYmE5YzU2YTM3MzNmMjlmNmJjM2MyMzY4ZTE1MjI1ZTNkN2YxOWZhOThmYzljMyIsInZlcnNpb24iOjF9._I_I9B66dT3S8RMMmMACG3YjIQYcXzmodriDWM33jRa4X6NFQx0b6_YHNP7K-uLEm8qD31bgb0NlsaRA37qLBA
---
# Model Trained Using AutoTrain
- Problem type: Summarization
- Model ID: 2638979565
- CO2 Emissions (in grams): 675.7790
## Validation Metrics
- Loss: 1.631
- Rouge1: 33.348
- Rouge2: 14.481
- RougeL: 24.210
- RougeLsum: 25.514
- Gen Len: 48.497
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ell-hol/autotrain-test-orangesum-2638979565
``` |
pfunk/Pong-v4-DQPN_p100_pt0.1-seed1 | pfunk | 2023-02-08T14:20:49Z | 0 | 0 | cleanrl | [
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T14:20:29Z | ---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: 4.50 +/- 3.93
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p100_pt0.1.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p100_pt0.1]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p100_pt0.1 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p100_pt0.1-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p100_pt0.1 --start-policy-f 100000 --end-policy-f 100000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 100000,
'env_id': 'Pong-v4',
'evaluation_fraction': 1.0,
'exp_name': 'DQPN_p100_pt0.1',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 0.1,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 100000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
jojoUla/bert-large-cased-sigir-support-no-label-20-sigir-tune2nd-LR10-labelled-30 | jojoUla | 2023-02-08T13:54:16Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-02-08T13:50:58Z | ---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-large-cased-sigir-support-no-label-20-sigir-tune2nd-LR10-labelled-30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-cased-sigir-support-no-label-20-sigir-tune2nd-LR10-labelled-30
This model is a fine-tuned version of [jojoUla/bert-large-cased-sigir-support-no-label-20](https://huggingface.co/jojoUla/bert-large-cased-sigir-support-no-label-20) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3995
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 30
- eval_batch_size: 30
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1303 | 1.0 | 1 | 3.2415 |
| 2.3107 | 2.0 | 2 | 2.1225 |
| 1.2824 | 3.0 | 3 | 2.2623 |
| 1.0548 | 4.0 | 4 | 0.5449 |
| 1.1366 | 5.0 | 5 | 1.1446 |
| 0.5947 | 6.0 | 6 | 0.3811 |
| 0.4889 | 7.0 | 7 | 1.6445 |
| 1.2689 | 8.0 | 8 | 1.7214 |
| 0.8074 | 9.0 | 9 | 2.3152 |
| 0.7084 | 10.0 | 10 | 0.9325 |
| 1.0307 | 11.0 | 11 | 2.4217 |
| 0.7119 | 12.0 | 12 | 2.6455 |
| 1.0052 | 13.0 | 13 | 1.1594 |
| 0.7125 | 14.0 | 14 | 1.2795 |
| 0.4732 | 15.0 | 15 | 0.1245 |
| 0.8829 | 16.0 | 16 | 1.8585 |
| 0.7079 | 17.0 | 17 | 1.6644 |
| 0.6243 | 18.0 | 18 | 1.6117 |
| 1.2438 | 19.0 | 19 | 2.3044 |
| 1.0812 | 20.0 | 20 | 4.5037 |
| 0.7003 | 21.0 | 21 | 1.5862 |
| 0.867 | 22.0 | 22 | 2.1851 |
| 0.9098 | 23.0 | 23 | 1.6055 |
| 0.6214 | 24.0 | 24 | 2.6699 |
| 0.282 | 25.0 | 25 | 1.3515 |
| 0.1888 | 26.0 | 26 | 2.3864 |
| 0.6863 | 27.0 | 27 | 1.2444 |
| 0.8527 | 28.0 | 28 | 1.9603 |
| 0.9416 | 29.0 | 29 | 3.7045 |
| 0.8302 | 30.0 | 30 | 0.9336 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
nhiro3303/ppo-LunarLander-v2 | nhiro3303 | 2023-02-08T13:51:09Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-06T05:38:52Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 281.10 +/- 23.96
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
fathyshalab/massive_social-roberta-large-v1-2 | fathyshalab | 2023-02-08T13:33:13Z | 3 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
]
| text-classification | 2023-02-08T13:32:55Z | ---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/massive_social-roberta-large-v1-2
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/massive_social-roberta-large-v1-2")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
fathyshalab/massive_social-roberta-large-v1-1 | fathyshalab | 2023-02-08T13:20:27Z | 5 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
]
| text-classification | 2023-02-08T12:52:52Z | ---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/massive_social-roberta-large-v1-1
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/massive_social-roberta-large-v1-1")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
hectorjelly/Kats_Komets | hectorjelly | 2023-02-08T13:05:05Z | 0 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
]
| reinforcement-learning | 2023-02-08T13:04:57Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: hectorjelly/Kats_Komets
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
akoshel/dqn-SpaceInvadersNoFrameskip-v4 | akoshel | 2023-02-08T12:59:46Z | 3 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T12:59:13Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 15.50 +/- 12.54
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga akoshel -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga akoshel -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga akoshel
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 100000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
jannikskytt/a2c-AntBulletEnv-v0 | jannikskytt | 2023-02-08T12:57:47Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T11:04:59Z | ---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1216.00 +/- 351.77
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
jannikskytt/a2c-PandaReachDense-v2 | jannikskytt | 2023-02-08T12:57:30Z | 1 | 0 | stable-baselines3 | [
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T11:59:49Z | ---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -1.21 +/- 0.33
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
Svetlana0303/Regression_distilbert-base-uncased | Svetlana0303 | 2023-02-08T12:56:31Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-02-08T12:40:01Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Regression_distilbert-base-uncased
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Regression_distilbert-base-uncased
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1187
- Mse: 2.1187
- Mae: 1.3097
- R2: -0.0932
- Accuracy: 0.1429
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:--------:|
| No log | 1.0 | 2 | 3.3933 | 3.3933 | 1.5228 | -2.1839 | 0.2857 |
| No log | 2.0 | 4 | 3.0571 | 3.0571 | 1.4011 | -1.8684 | 0.4286 |
| No log | 3.0 | 6 | 2.6747 | 2.6747 | 1.2786 | -1.5096 | 0.4286 |
| No log | 4.0 | 8 | 2.3024 | 2.3024 | 1.2088 | -1.1603 | 0.4286 |
| No log | 5.0 | 10 | 1.9496 | 1.9496 | 1.1459 | -0.8292 | 0.4286 |
| No log | 6.0 | 12 | 1.6637 | 1.6637 | 1.1225 | -0.5610 | 0.2857 |
| No log | 7.0 | 14 | 1.4167 | 1.4167 | 1.0938 | -0.3293 | 0.1429 |
| No log | 8.0 | 16 | 1.2365 | 1.2365 | 1.0609 | -0.1602 | 0.0 |
| No log | 9.0 | 18 | 1.1239 | 1.1239 | 1.0234 | -0.0545 | 0.0 |
| No log | 10.0 | 20 | 1.0879 | 1.0879 | 0.9906 | -0.0207 | 0.0 |
| No log | 11.0 | 22 | 1.1122 | 1.1122 | 0.9599 | -0.0436 | 0.2857 |
| No log | 12.0 | 24 | 1.1879 | 1.1879 | 0.9374 | -0.1145 | 0.2857 |
| No log | 13.0 | 26 | 1.2784 | 1.2784 | 0.9132 | -0.1995 | 0.4286 |
| No log | 14.0 | 28 | 1.3756 | 1.3756 | 0.8905 | -0.2907 | 0.4286 |
| No log | 15.0 | 30 | 1.4710 | 1.4710 | 0.9093 | -0.3802 | 0.4286 |
| No log | 16.0 | 32 | 1.5513 | 1.5513 | 0.9333 | -0.4555 | 0.4286 |
| No log | 17.0 | 34 | 1.6094 | 1.6094 | 0.9491 | -0.5101 | 0.5714 |
| No log | 18.0 | 36 | 1.6446 | 1.6446 | 0.9567 | -0.5431 | 0.5714 |
| No log | 19.0 | 38 | 1.6510 | 1.6510 | 0.9555 | -0.5491 | 0.5714 |
| No log | 20.0 | 40 | 1.6425 | 1.6425 | 0.9503 | -0.5412 | 0.5714 |
| No log | 21.0 | 42 | 1.6254 | 1.6254 | 0.9455 | -0.5251 | 0.5714 |
| No log | 22.0 | 44 | 1.6025 | 1.6025 | 0.9378 | -0.5036 | 0.5714 |
| No log | 23.0 | 46 | 1.5758 | 1.5758 | 0.9289 | -0.4786 | 0.5714 |
| No log | 24.0 | 48 | 1.5583 | 1.5583 | 0.9233 | -0.4622 | 0.5714 |
| No log | 25.0 | 50 | 1.5504 | 1.5504 | 0.9210 | -0.4547 | 0.5714 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
mingcai/ESimCSE-ext-chinese-bert-wwm | mingcai | 2023-02-08T12:49:45Z | 32 | 2 | transformers | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"zh",
"endpoints_compatible",
"region:us"
]
| feature-extraction | 2023-02-08T08:59:04Z | ---
language:
- zh
metrics:
- spearmanr
---
基于论文ESimCSE进行复现,基于STS-B训练集 + 额外数据 进行训练,在中文STS-B的验证集spermanr相关性得分为0.7201.
论文参考:
@inproceedings{Wu2021ESimCSEES,
title={ESimCSE: Enhanced Sample Building Method for Contrastive Learning of Unsupervised Sentence Embedding},
author={Xing Wu and Chaochen Gao and Liangjun Zang and Jizhong Han and Zhongyuan Wang and Songlin Hu},
booktitle={International Conference on Computational Linguistics},
year={2021}
} |
plai-edp-test/distilbert_base_uncased | plai-edp-test | 2023-02-08T12:49:24Z | 3 | 0 | transformers | [
"transformers",
"tf",
"distilbert",
"fill-mask",
"exbert",
"en",
"dataset:bookcorpus",
"dataset:wikipedia",
"arxiv:1910.01108",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-02-08T12:46:58Z | ---
language: en
tags:
- exbert
license: apache-2.0
datasets:
- bookcorpus
- wikipedia
---
# DistilBERT base model (uncased)
This model is a distilled version of the [BERT base model](https://huggingface.co/bert-base-uncased). It was
introduced in [this paper](https://arxiv.org/abs/1910.01108). The code for the distillation process can be found
[here](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation). This model is uncased: it does
not make a difference between english and English.
## Model description
DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a
self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only,
with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic
process to generate inputs and labels from those texts using the BERT base model. More precisely, it was pretrained
with three objectives:
- Distillation loss: the model was trained to return the same probabilities as the BERT base model.
- Masked language modeling (MLM): this is part of the original training loss of the BERT base model. When taking a
sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the
model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that
usually see the words one after the other, or from autoregressive models like GPT which internally mask the future
tokens. It allows the model to learn a bidirectional representation of the sentence.
- Cosine embedding loss: the model was also trained to generate hidden states as close as possible as the BERT base
model.
This way, the model learns the same inner representation of the English language than its teacher model, while being
faster for inference or downstream tasks.
## Intended uses & limitations
You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=distilbert) to look for
fine-tuned versions on a task that interests you.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased')
>>> unmasker("Hello I'm a [MASK] model.")
[{'sequence': "[CLS] hello i'm a role model. [SEP]",
'score': 0.05292855575680733,
'token': 2535,
'token_str': 'role'},
{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
'score': 0.03968575969338417,
'token': 4827,
'token_str': 'fashion'},
{'sequence': "[CLS] hello i'm a business model. [SEP]",
'score': 0.034743521362543106,
'token': 2449,
'token_str': 'business'},
{'sequence': "[CLS] hello i'm a model model. [SEP]",
'score': 0.03462274372577667,
'token': 2944,
'token_str': 'model'},
{'sequence': "[CLS] hello i'm a modeling model. [SEP]",
'score': 0.018145186826586723,
'token': 11643,
'token_str': 'modeling'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import DistilBertTokenizer, DistilBertModel
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertModel.from_pretrained("distilbert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import DistilBertTokenizer, TFDistilBertModel
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = TFDistilBertModel.from_pretrained("distilbert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
predictions. It also inherits some of
[the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias).
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='distilbert-base-uncased')
>>> unmasker("The White man worked as a [MASK].")
[{'sequence': '[CLS] the white man worked as a blacksmith. [SEP]',
'score': 0.1235365942120552,
'token': 20987,
'token_str': 'blacksmith'},
{'sequence': '[CLS] the white man worked as a carpenter. [SEP]',
'score': 0.10142576694488525,
'token': 10533,
'token_str': 'carpenter'},
{'sequence': '[CLS] the white man worked as a farmer. [SEP]',
'score': 0.04985016956925392,
'token': 7500,
'token_str': 'farmer'},
{'sequence': '[CLS] the white man worked as a miner. [SEP]',
'score': 0.03932540491223335,
'token': 18594,
'token_str': 'miner'},
{'sequence': '[CLS] the white man worked as a butcher. [SEP]',
'score': 0.03351764753460884,
'token': 14998,
'token_str': 'butcher'}]
>>> unmasker("The Black woman worked as a [MASK].")
[{'sequence': '[CLS] the black woman worked as a waitress. [SEP]',
'score': 0.13283951580524445,
'token': 13877,
'token_str': 'waitress'},
{'sequence': '[CLS] the black woman worked as a nurse. [SEP]',
'score': 0.12586183845996857,
'token': 6821,
'token_str': 'nurse'},
{'sequence': '[CLS] the black woman worked as a maid. [SEP]',
'score': 0.11708822101354599,
'token': 10850,
'token_str': 'maid'},
{'sequence': '[CLS] the black woman worked as a prostitute. [SEP]',
'score': 0.11499975621700287,
'token': 19215,
'token_str': 'prostitute'},
{'sequence': '[CLS] the black woman worked as a housekeeper. [SEP]',
'score': 0.04722772538661957,
'token': 22583,
'token_str': 'housekeeper'}]
```
This bias will also affect all fine-tuned versions of this model.
## Training data
DistilBERT pretrained on the same data as BERT, which is [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset
consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia)
(excluding lists, tables and headers).
## Training procedure
### Preprocessing
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
then of the form:
```
[CLS] Sentence A [SEP] Sentence B [SEP]
```
With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
### Pretraining
The model was trained on 8 16 GB V100 for 90 hours. See the
[training code](https://github.com/huggingface/transformers/tree/master/examples/distillation) for all hyperparameters
details.
## Evaluation results
When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE |
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|
| | 82.2 | 88.5 | 89.2 | 91.3 | 51.3 | 85.8 | 87.5 | 59.9 |
### BibTeX entry and citation info
```bibtex
@article{Sanh2019DistilBERTAD,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
journal={ArXiv},
year={2019},
volume={abs/1910.01108}
}
```
<a href="https://huggingface.co/exbert/?model=distilbert-base-uncased">
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
</a>
|
plai-edp-test/bert_base_spanish_wwm_cased | plai-edp-test | 2023-02-08T12:44:39Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"masked-lm",
"es",
"arxiv:1904.09077",
"arxiv:1906.01502",
"arxiv:1812.10464",
"arxiv:1901.07291",
"arxiv:1904.02099",
"arxiv:1906.01569",
"arxiv:1908.11828",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-02-08T12:40:33Z | ---
language:
- es
tags:
- masked-lm
---
# BETO: Spanish BERT
BETO is a [BERT model](https://github.com/google-research/bert) trained on a [big Spanish corpus](https://github.com/josecannete/spanish-corpora). BETO is of size similar to a BERT-Base and was trained with the Whole Word Masking technique. Below you find Tensorflow and Pytorch checkpoints for the uncased and cased versions, as well as some results for Spanish benchmarks comparing BETO with [Multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) as well as other (not BERT-based) models.
## Download
| | | | |
|-|:--------:|:-----:|:----:|
|BETO uncased|[tensorflow_weights](https://users.dcc.uchile.cl/~jperez/beto/uncased_2M/tensorflow_weights.tar.gz) | [pytorch_weights](https://users.dcc.uchile.cl/~jperez/beto/uncased_2M/pytorch_weights.tar.gz) | [vocab](./config/uncased_2M/vocab.txt), [config](./config/uncased_2M/config.json) |
|BETO cased| [tensorflow_weights](https://users.dcc.uchile.cl/~jperez/beto/cased_2M/tensorflow_weights.tar.gz) | [pytorch_weights](https://users.dcc.uchile.cl/~jperez/beto/cased_2M/pytorch_weights.tar.gz) | [vocab](./config/cased_2M/vocab.txt), [config](./config/cased_2M/config.json) |
All models use a vocabulary of about 31k BPE subwords constructed using SentencePiece and were trained for 2M steps.
## Benchmarks
The following table shows some BETO results in the Spanish version of every task.
We compare BETO (cased and uncased) with the Best Multilingual BERT results that
we found in the literature (as of October 2019).
The table also shows some alternative methods for the same tasks (not necessarily BERT-based methods).
References for all methods can be found [here](#references).
|Task | BETO-cased | BETO-uncased | Best Multilingual BERT | Other results |
|-------|--------------:|--------------:|--------------------------:|-------------------------------:|
|[POS](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1827) | **98.97** | 98.44 | 97.10 [2] | 98.91 [6], 96.71 [3] |
|[NER-C](https://www.kaggle.com/nltkdata/conll-corpora) | [**88.43**](https://github.com/gchaperon/beto-benchmarks/blob/master/conll2002/dev_results_beto-cased_conll2002.txt) | 82.67 | 87.38 [2] | 87.18 [3] |
|[MLDoc](https://github.com/facebookresearch/MLDoc) | [95.60](https://github.com/gchaperon/beto-benchmarks/blob/master/MLDoc/dev_results_beto-cased_mldoc.txt) | [**96.12**](https://github.com/gchaperon/beto-benchmarks/blob/master/MLDoc/dev_results_beto-uncased_mldoc.txt) | 95.70 [2] | 88.75 [4] |
|[PAWS-X](https://github.com/google-research-datasets/paws/tree/master/pawsx) | 89.05 | 89.55 | 90.70 [8] |
|[XNLI](https://github.com/facebookresearch/XNLI) | **82.01** | 80.15 | 78.50 [2] | 80.80 [5], 77.80 [1], 73.15 [4]|
## Example of use
For further details on how to use BETO you can visit the [🤗Huggingface Transformers library](https://github.com/huggingface/transformers), starting by the [Quickstart section](https://huggingface.co/transformers/quickstart.html).
BETO models can be accessed simply as [`'dccuchile/bert-base-spanish-wwm-cased'`](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) and [`'dccuchile/bert-base-spanish-wwm-uncased'`](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) by using the Transformers library.
An example on how to download and use the models in this page can be found in [this colab notebook](https://colab.research.google.com/drive/1uRwg4UmPgYIqGYY4gW_Nsw9782GFJbPt).
(We will soon add a more detailed step-by-step tutorial in Spanish for newcommers 😉)
## Acknowledgments
We thank [Adereso](https://www.adere.so/) for kindly providing support for traininig BETO-uncased, and the [Millennium Institute for Foundational Research on Data](https://imfd.cl/en/)
that provided support for training BETO-cased. Also thanks to Google for helping us with the [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc) program.
## Citation
[Spanish Pre-Trained BERT Model and Evaluation Data](https://users.dcc.uchile.cl/~jperez/papers/pml4dc2020.pdf)
To cite this resource in a publication please use the following:
```
@inproceedings{CaneteCFP2020,
title={Spanish Pre-Trained BERT Model and Evaluation Data},
author={Cañete, José and Chaperon, Gabriel and Fuentes, Rodrigo and Ho, Jou-Hui and Kang, Hojin and Pérez, Jorge},
booktitle={PML4DC at ICLR 2020},
year={2020}
}
```
## License Disclaimer
The license CC BY 4.0 best describes our intentions for our work. However we are not sure that all the datasets used to train BETO have licenses compatible with CC BY 4.0 (specially for commercial use). Please use at your own discretion and verify that the licenses of the original text resources match your needs.
## References
* [1] [Original Multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md)
* [2] [Multilingual BERT on "Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT"](https://arxiv.org/pdf/1904.09077.pdf)
* [3] [Multilingual BERT on "How Multilingual is Multilingual BERT?"](https://arxiv.org/pdf/1906.01502.pdf)
* [4] [LASER](https://arxiv.org/abs/1812.10464)
* [5] [XLM (MLM+TLM)](https://arxiv.org/pdf/1901.07291.pdf)
* [6] [UDPipe on "75 Languages, 1 Model: Parsing Universal Dependencies Universally"](https://arxiv.org/pdf/1904.02099.pdf)
* [7] [Multilingual BERT on "Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation"](https://arxiv.org/pdf/1906.01569.pdf)
* [8] [Multilingual BERT on "PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification"](https://arxiv.org/abs/1908.11828)
|
vvn0/ppo-PyramidsRND | vvn0 | 2023-02-08T12:39:46Z | 4 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
]
| reinforcement-learning | 2023-02-08T10:21:37Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: vvn0/ppo-PyramidsRND
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
javiervela/a2c-PandaReachDense-v2 | javiervela | 2023-02-08T12:36:09Z | 4 | 0 | stable-baselines3 | [
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T12:33:31Z | ---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -1.07 +/- 0.18
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
RocioUrquijo/clasificador-appreviews | RocioUrquijo | 2023-02-08T12:24:45Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"classification",
"generated_from_trainer",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-02-08T11:54:02Z | ---
license: cc-by-sa-4.0
tags:
- classification
- generated_from_trainer
model-index:
- name: clasificador-appreviews
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clasificador-appreviews
This model is a fine-tuned version of [nlpaueb/sec-bert-base](https://huggingface.co/nlpaueb/sec-bert-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
DaniilSirota/Reinforce_pixelcopter | DaniilSirota | 2023-02-08T12:15:17Z | 0 | 1 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-06T14:11:17Z | ---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce_pixelcopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 21.80 +/- 16.40
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
navjordj/snl-large-summarization | navjordj | 2023-02-08T12:02:00Z | 8 | 1 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:navjordj/SNL_summarization",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-02-07T13:41:51Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- navjordj/SNL_summarization
model-index:
- name: snl-large-summarization
results: []
inference:
parameters:
max_length: 160
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# snl-large-summarization
This model is a fine-tuned version of [north/t5_large_NCC_lm](https://huggingface.co/north/t5_large_NCC_lm) on the navjordj/SNL_summarization dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2
|
ecemisildar/Reinforce-1 | ecemisildar | 2023-02-08T11:40:20Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T11:40:07Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_data_aug_mnli_256 | gokuls | 2023-02-08T11:36:15Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-02-07T17:31:52Z | ---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_mnli_256
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MNLI
type: glue
args: mnli
metrics:
- name: Accuracy
type: accuracy
value: 0.6312042310821806
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_sa_GLUE_Experiment_logit_kd_data_aug_mnli_256
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5082
- Accuracy: 0.6312
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.5216 | 1.0 | 31440 | 0.5047 | 0.6315 |
| 0.4566 | 2.0 | 62880 | 0.5097 | 0.6383 |
| 0.4188 | 3.0 | 94320 | 0.5243 | 0.6361 |
| 0.3943 | 4.0 | 125760 | 0.5328 | 0.6346 |
| 0.3777 | 5.0 | 157200 | 0.5345 | 0.6300 |
| 0.3658 | 6.0 | 188640 | 0.5392 | 0.6318 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
|
jakub014/bert-base-uncased-finetuned-effectiveness-dagstuhl | jakub014 | 2023-02-08T11:29:35Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-02-08T11:26:24Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-effectiveness-dagstuhl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-effectiveness-dagstuhl
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6418
- Accuracy: 0.6190
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 16 | 0.6729 | 0.5714 |
| No log | 2.0 | 32 | 0.6418 | 0.6190 |
| No log | 3.0 | 48 | 0.6719 | 0.5556 |
| No log | 4.0 | 64 | 0.6386 | 0.6032 |
| No log | 5.0 | 80 | 0.6559 | 0.5714 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
LouisDT/videomae-base-finetuned | LouisDT | 2023-02-08T11:28:39Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"videomae",
"video-classification",
"generated_from_trainer",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
]
| video-classification | 2023-02-08T10:48:28Z | ---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5590
- Accuracy: 0.8641
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 135
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7163 | 0.21 | 28 | 0.6078 | 0.8098 |
| 0.7383 | 1.21 | 56 | 0.6975 | 0.4728 |
| 0.6853 | 2.21 | 84 | 0.6637 | 0.6957 |
| 0.7065 | 3.21 | 112 | 0.5590 | 0.8641 |
| 0.6673 | 4.17 | 135 | 0.5766 | 0.8587 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
sunwooooong/xlm-roberta-base-finetuned-panx-de-fr | sunwooooong | 2023-02-08T11:22:22Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2023-02-08T11:07:51Z | ---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1656
- F1: 0.8589
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2905 | 1.0 | 715 | 0.1783 | 0.8310 |
| 0.1461 | 2.0 | 1430 | 0.1600 | 0.8455 |
| 0.0948 | 3.0 | 2145 | 0.1656 | 0.8589 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
kongacute/ppo-Huggy | kongacute | 2023-02-08T11:21:24Z | 44 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2023-02-08T11:21:17Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: kongacute/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
schreon/gpt2-lhm-large-03 | schreon | 2023-02-08T11:15:29Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:training_corpus",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-02-07T13:08:56Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- training_corpus
model-index:
- name: gpt2-lhm-large-03
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-lhm-large-03
This model is a fine-tuned version of [schreon/gpt2-lhm-large-02](https://huggingface.co/schreon/gpt2-lhm-large-02) on the training_corpus dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2
|
MarcusLee/bert-finetuned-squad | MarcusLee | 2023-02-08T11:05:14Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-02-08T08:55:31Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.0+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
microsoft/git-large-r-textcaps | microsoft | 2023-02-08T10:50:43Z | 86 | 10 | transformers | [
"transformers",
"pytorch",
"git",
"image-text-to-text",
"vision",
"image-captioning",
"image-to-text",
"en",
"arxiv:2205.14100",
"license:mit",
"endpoints_compatible",
"region:us"
]
| image-to-text | 2023-01-22T19:24:43Z | ---
language: en
license: mit
tags:
- vision
- image-captioning
model_name: microsoft/git-large-textcaps
pipeline_tag: image-to-text
---
# GIT (GenerativeImage2Text), large-sized, fine-tuned on TextCaps, R*
R = re-trained by removing some offensive captions in cc12m dataset
GIT (short for GenerativeImage2Text) model, large-sized version, fine-tuned on TextCaps. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text).
Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs.
The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens.
The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token.

This allows the model to be used for tasks like:
- image and video captioning
- visual question answering (VQA) on images and videos
- even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text).
## Intended uses & limitations
You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for
fine-tuned versions on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/git.html).
## Training data
From the paper:
> We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions
(CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016),
Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B
data following a similar collection procedure in Hu et al. (2021a).
=> however this is for the model referred to as "GIT" in the paper, which is not open-sourced.
This checkpoint is "GIT-large", which is a smaller variant of GIT trained on 20 million image-text pairs.
Next, the model was fine-tuned on TextCaps.
See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details.
### Preprocessing
We refer to the original repo regarding details for preprocessing during training.
During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation.
## Evaluation results
For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100). |
microsoft/git-large-r-coco | microsoft | 2023-02-08T10:50:12Z | 247 | 10 | transformers | [
"transformers",
"pytorch",
"git",
"image-text-to-text",
"vision",
"image-captioning",
"image-to-text",
"en",
"arxiv:2205.14100",
"license:mit",
"endpoints_compatible",
"region:us"
]
| image-to-text | 2023-01-22T19:04:40Z | ---
language: en
license: mit
tags:
- vision
- image-captioning
model_name: microsoft/git-large-coco
pipeline_tag: image-to-text
---
# GIT (GenerativeImage2Text), large-sized, fine-tuned on COCO, R*
R = re-trained by removing some offensive captions in cc12m dataset
GIT (short for GenerativeImage2Text) model, large-sized version, fine-tuned on COCO. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text).
Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs.
The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens.
The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token.

This allows the model to be used for tasks like:
- image and video captioning
- visual question answering (VQA) on images and videos
- even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text).
## Intended uses & limitations
You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for
fine-tuned versions on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/model_doc/git#transformers.GitForCausalLM.forward.example).
## Training data
From the paper:
> We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions
(CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016),
Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B
data following a similar collection procedure in Hu et al. (2021a).
=> however this is for the model referred to as "GIT" in the paper, which is not open-sourced.
This checkpoint is "GIT-large", which is a smaller variant of GIT trained on 20 million image-text pairs.
Next, the model was fine-tuned on COCO.
See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details.
### Preprocessing
We refer to the original repo regarding details for preprocessing during training.
During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation.
## Evaluation results
For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100). |
microsoft/git-large-textcaps | microsoft | 2023-02-08T10:49:30Z | 1,491 | 29 | transformers | [
"transformers",
"pytorch",
"git",
"image-text-to-text",
"vision",
"image-captioning",
"image-to-text",
"en",
"arxiv:2205.14100",
"license:mit",
"endpoints_compatible",
"region:us"
]
| image-to-text | 2023-01-02T10:53:45Z | ---
language: en
license: mit
tags:
- vision
- image-captioning
model_name: microsoft/git-large-textcaps
pipeline_tag: image-to-text
---
# GIT (GenerativeImage2Text), large-sized, fine-tuned on TextCaps
GIT (short for GenerativeImage2Text) model, large-sized version, fine-tuned on TextCaps. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text).
Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs.
The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens.
The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token.

This allows the model to be used for tasks like:
- image and video captioning
- visual question answering (VQA) on images and videos
- even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text).
## Intended uses & limitations
You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for
fine-tuned versions on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/git.html).
## Training data
From the paper:
> We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions
(CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016),
Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B
data following a similar collection procedure in Hu et al. (2021a).
=> however this is for the model referred to as "GIT" in the paper, which is not open-sourced.
This checkpoint is "GIT-large", which is a smaller variant of GIT trained on 20 million image-text pairs.
Next, the model was fine-tuned on TextCaps.
See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details.
### Preprocessing
We refer to the original repo regarding details for preprocessing during training.
During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation.
## Evaluation results
For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100). |
microsoft/git-base-coco | microsoft | 2023-02-08T10:48:43Z | 66,443 | 20 | transformers | [
"transformers",
"pytorch",
"git",
"image-text-to-text",
"vision",
"image-captioning",
"image-to-text",
"en",
"arxiv:2205.14100",
"license:mit",
"endpoints_compatible",
"region:us"
]
| image-to-text | 2022-12-06T09:27:24Z | ---
language: en
license: mit
tags:
- vision
- image-captioning
model_name: microsoft/git-base-coco
pipeline_tag: image-to-text
---
# GIT (GenerativeImage2Text), base-sized, fine-tuned on COCO
GIT (short for GenerativeImage2Text) model, base-sized version, fine-tuned on COCO. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text).
Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs.
The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens.
The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token.

This allows the model to be used for tasks like:
- image and video captioning
- visual question answering (VQA) on images and videos
- even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text).
## Intended uses & limitations
You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for
fine-tuned versions on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/model_doc/git#transformers.GitForCausalLM.forward.example).
## Training data
From the paper:
> We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions
(CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016),
Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B
data following a similar collection procedure in Hu et al. (2021a).
=> however this is for the model referred to as "GIT" in the paper, which is not open-sourced.
This checkpoint is "GIT-base", which is a smaller variant of GIT trained on 10 million image-text pairs.
Next, the model was fine-tuned on COCO.
See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details.
### Preprocessing
We refer to the original repo regarding details for preprocessing during training.
During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation.
## Evaluation results
For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100). |
alibidaran/codeparrot-ds-1 | alibidaran | 2023-02-08T10:41:46Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text-generation | 2023-02-07T11:39:55Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: codeparrot-ds-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codeparrot-ds-1
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8410
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.991 | 0.33 | 1000 | 2.5183 |
| 2.2592 | 0.65 | 2000 | 2.0328 |
| 1.9112 | 0.98 | 3000 | 1.8410 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
deemboi/whisper-small-ko | deemboi | 2023-02-08T10:39:28Z | 10 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"ko",
"dataset:google/fleurs",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2023-02-08T04:40:07Z | ---
datasets:
- google/fleurs
language:
- ko
metrics:
- wer
---
# Whisper Small Ko
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google fleurs korean dataset.
|
tomasabril/unit1 | tomasabril | 2023-02-08T10:34:52Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T10:34:27Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 270.02 +/- 18.74
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
xavisgg/dqn-SpaceInvadersNoFrameskip-v4 | xavisgg | 2023-02-08T10:22:38Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T10:21:58Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 529.50 +/- 153.27
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga xavisgg -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga xavisgg -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga xavisgg
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
mshibatatt/ppo-Huggy | mshibatatt | 2023-02-08T10:18:20Z | 4 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2023-02-08T10:18:13Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: mshibatatt/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
virto/rabbiberel-finetuned-xsum | virto | 2023-02-08T10:17:22Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"encoder-decoder",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-02-07T11:36:12Z | ---
tags:
- generated_from_trainer
model-index:
- name: rabbiberel-finetuned-xsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rabbiberel-finetuned-xsum
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 223 | 5.8673 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.12.1
- Datasets 2.9.0
- Tokenizers 0.11.0
|
ocisd4/kenlm | ocisd4 | 2023-02-08T10:08:56Z | 0 | 2 | null | [
"kenlm",
"perplexity",
"n-gram",
"kneser-ney",
"bigscience",
"ja",
"de",
"ru",
"dataset:wikipedia",
"license:mit",
"region:us"
]
| null | 2023-02-03T07:30:43Z | ---
language:
- ja
- de
- ru
tags:
- kenlm
- perplexity
- n-gram
- kneser-ney
- bigscience
license: mit
datasets:
- wikipedia
---
# KenLM models
This repo contains several KenLM models trained on different tokenized datasets and languages.
KenLM models are probabilistic n-gram languge models that models. One use case of these models consist on fast perplexity estimation for [filtering or sampling large datasets](https://huggingface.co/bertin-project/bertin-roberta-base-spanish). For example, one could use a KenLM model trained on French Wikipedia to run inference on a large dataset and filter out samples that are very unlike to appear on Wikipedia (high perplexity), or very simple non-informative sentences that could appear repeatedly (low perplexity).
At the root of this repo you will find different directories named after the dataset models were trained on (e.g. `wikipedia`, `oscar`). Within each directory, you will find several models trained on different language subsets of the dataset (e.g. `en (English)`, `es (Spanish)`, `fr (French)`). For each language you will find three different files
* `{language}.arpa.bin`: The trained KenLM model binary
* `{language}.sp.model`: The trained SentencePiece model used for tokenization
* `{language}.sp.vocab`: The vocabulary file for the SentencePiece model
The models have been trained using some of the preprocessing steps from [cc_net](https://github.com/facebookresearch/cc_net), in particular replacing numbers with zeros and normalizing punctuation. So, it is important to keep the default values for the parameters: `lower_case`, `remove_accents`, `normalize_numbers` and `punctuation` when using the pre-trained models in order to replicate the same pre-processing steps at inference time.
# Dependencies
* KenLM: `pip install https://github.com/kpu/kenlm/archive/master.zip`
* SentencePiece: `pip install sentencepiece`
# Example:
```
from model import KenlmModel
# Load model trained on English wikipedia
model = KenlmModel.from_pretrained("wikipedia", "en")
# Get perplexity
model.get_perplexity("I am very perplexed")
# 341.3 (low perplexity, since sentence style is formal and with no grammar mistakes)
model.get_perplexity("im hella trippin")
# 46793.5 (high perplexity, since the sentence is colloquial and contains grammar mistakes)
```
In the example above we see that, since Wikipedia is a collection of encyclopedic articles, a KenLM model trained on it will naturally give lower perplexity scores to sentences with formal language and no grammar mistakes than colloquial sentences with grammar mistakes. |
Mykolyt/q-Taxi-v3 | Mykolyt | 2023-02-08T09:43:50Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T09:43:48Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Mykolyt/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
vaibhav9/mini5-theme1 | vaibhav9 | 2023-02-08T09:32:40Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-02-08T09:26:23Z | ---
tags:
- generated_from_trainer
model-index:
- name: mini5-theme1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mini5-theme1
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9619
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 12 | 1.0640 |
| No log | 2.0 | 24 | 0.9881 |
| No log | 3.0 | 36 | 0.9619 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
spatial/Reinforce-CartPole8 | spatial | 2023-02-08T09:32:09Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T09:31:58Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole8
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Alex423/xlm-roberta-base-finetuned-panx-de | Alex423 | 2023-02-08T09:28:48Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2023-02-08T09:17:25Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8627004891366169
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1363
- F1: 0.8627
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2539 | 1.0 | 525 | 0.1697 | 0.8179 |
| 0.1317 | 2.0 | 1050 | 0.1327 | 0.8516 |
| 0.0819 | 3.0 | 1575 | 0.1363 | 0.8627 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
nlp-waseda/comet-t5-base-japanese | nlp-waseda | 2023-02-08T09:26:55Z | 211 | 3 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"ja",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2022-11-12T15:07:40Z | ---
language: ja
widget:
- text: "次の出来事の後に起こりうることは何ですか: Xがパンを焼く"
---
# COMET-T5 ja
Finetuned T5 on [ATOMIC ja](https://github.com/nlp-waseda/comet-atomic-ja) using a text-to-text language modeling objective.
It was introduced in [this paper](https://www.anlp.jp/proceedings/annual_meeting/2023/pdf_dir/B2-5.pdf).
### How to use
You can use this model directly with a pipeline for text2text generation.
Since the generation relies on some randomness, we set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text2text-generation', model='nlp-waseda/comet-t5-base-japanese')
>>> set_seed(42)
>>> generator("次の出来事の後に起こりうることは何ですか: Xが友人に電話する", max_length=30, num_return_sequences=5, do_sample=True)
[{'generated_text': 'Xが友人から返事を得る'},
{'generated_text': 'Xが会話する'},
{'generated_text': 'Xが友人に怒られる'},
{'generated_text': 'Xが退屈しそうな雰囲気になる'},
{'generated_text': 'Xが友人と会う'}]
```
### Preprocessing
The prompts are different for each relation:
| Relation | Prompt |
| :------: | :---------------------------------------: |
| xNeed | 次の出来事に必要な前提条件は何ですか: |
| xEffect | 次の出来事の後に起こりうることは何ですか: |
| xIntent | 次の出来事が起こった動機は何ですか: |
| xReact | 次の出来事の後に感じることは何ですか: |
## Evaluation results
The model achieves the following results:
| BLEU | BERTScore |
|:-----:|:---------:|
| 39.85 | 82.37 |
### BibTeX entry and citation info
```bibtex
@InProceedings{ide_nlp2023_event,
author = "井手竜也 and 村田栄樹 and 堀尾海斗 and 河原大輔 and 山崎天 and 李聖哲 and 新里顕大 and 佐藤敏紀",
title = "人間と言語モデルに対するプロンプトを用いたゼロからのイベント常識知識グラフ構築",
booktitle = "言語処理学会第29回年次大会",
year = "2023",
url = "https://www.anlp.jp/proceedings/annual_meeting/2023/pdf_dir/B2-5.pdf"
}
```
|
waffle4040/TOTFN | waffle4040 | 2023-02-08T09:23:18Z | 0 | 2 | null | [
"region:us"
]
| null | 2023-01-24T13:02:58Z | 2/06 いい感じになったTOTFN-5-25ができました
呼び出しは変わらず、補強はnavelが推奨 正則化画像の偏りか髪がグレーになる副作用あり
以前の話
呼び出しは“trick or treatment”のつもりです
これで補強したほうがいいかもしれないです“bikini,boot,gloves, layered bikini,purple bikini,pencil skirt,”
あんまり把握してないけどさすがLora、いい感じに見えるので
|
ottovoncwim/Reinforce-CartPolev1 | ottovoncwim | 2023-02-08T09:17:33Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T09:11:19Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPolev1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
|
Gokulapriyan/swin-tiny-patch4-window7-224-finetuned-3e | Gokulapriyan | 2023-02-08T09:16:58Z | 35 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-02-08T07:53:13Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-3e
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9606135986733002
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-3e
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1065
- Accuracy: 0.9606
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4549 | 1.0 | 527 | 0.2910 | 0.8857 |
| 0.2838 | 2.0 | 1054 | 0.1524 | 0.9410 |
| 0.254 | 3.0 | 1581 | 0.1065 | 0.9606 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
jannikskytt/Pyramids | jannikskytt | 2023-02-08T09:12:02Z | 6 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
]
| reinforcement-learning | 2023-02-08T09:11:57Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: jannikskytt/Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
leoleung93/Reinforce-1 | leoleung93 | 2023-02-08T08:57:01Z | 0 | 0 | null | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T08:56:51Z | ---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
fathyshalab/clinic-kitchen_and_dining-roberta | fathyshalab | 2023-02-08T08:46:39Z | 5 | 0 | sentence-transformers | [
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
]
| text-classification | 2023-02-08T08:46:21Z | ---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# fathyshalab/clinic-kitchen_and_dining-roberta
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("fathyshalab/clinic-kitchen_and_dining-roberta")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
jidbo/BME-NaturalQuestions | jidbo | 2023-02-08T08:41:33Z | 6 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"question-answering",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-02-08T08:33:53Z | ---
license: mit
tags:
- generated_from_trainer
model-index:
- name: result
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# result
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
mingcai/ESimCSE-chinese-bert-wwm | mingcai | 2023-02-08T08:41:18Z | 5 | 1 | transformers | [
"transformers",
"pytorch",
"bert",
"feature-extraction",
"zh",
"endpoints_compatible",
"region:us"
]
| feature-extraction | 2023-02-08T07:49:44Z | ---
language:
- zh
metrics:
- spearmanr
---
基于论文ESimCSE进行复现,基于STS-B训练集进行训练,在中文STS-B的验证集spermanr相关性得分为0.7226.
论文参考:
@inproceedings{Wu2021ESimCSEES,
title={ESimCSE: Enhanced Sample Building Method for Contrastive Learning of Unsupervised Sentence Embedding},
author={Xing Wu and Chaochen Gao and Liangjun Zang and Jizhong Han and Zhongyuan Wang and Songlin Hu},
booktitle={International Conference on Computational Linguistics},
year={2021}
} |
pfunk/Pong-v4-DQPN_p30_e0.50-seed1 | pfunk | 2023-02-08T08:34:04Z | 0 | 0 | cleanrl | [
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T08:33:44Z | ---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: 0.80 +/- 6.79
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p30_e0.50.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p30_e0.50]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p30_e0.50 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.50-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.50-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.50-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p30_e0.50 --start-policy-f 30000 --end-policy-f 1000 --evaluation-fraction 0.50 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 1000,
'env_id': 'Pong-v4',
'evaluation_fraction': 0.5,
'exp_name': 'DQPN_p30_e0.50',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 30000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
iubeda/q-Taxi-v3 | iubeda | 2023-02-08T08:31:30Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T08:31:27Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.75
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="iubeda/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
yuanzheng/carrot-commercial-v1 | yuanzheng | 2023-02-08T08:25:31Z | 7 | 1 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-04T00:08:26Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### carrot_commercial_v1 Dreambooth model
Sample pictures of this concept:















|
jannikskytt/ppo-snowballTarget | jannikskytt | 2023-02-08T08:21:54Z | 5 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
]
| reinforcement-learning | 2023-02-08T08:21:49Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: jannikskytt/ppo-snowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
catlord/bert-finetuned-squad | catlord | 2023-02-08T08:17:22Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-02-08T04:45:28Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
courtneypham/bert-finetuned-squad | courtneypham | 2023-02-08T08:16:49Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-02-08T04:50:56Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
hello2mao/sd-class-butterflies-32 | hello2mao | 2023-02-08T07:39:59Z | 1 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2023-02-08T07:39:38Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('hello2mao/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
Hudayday/bert-finetuned-squad | Hudayday | 2023-02-08T07:23:38Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| question-answering | 2023-02-08T06:34:39Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
tianxing1994/EcapaTDNN-VoxCeleb1 | tianxing1994 | 2023-02-08T07:22:43Z | 0 | 0 | null | [
"region:us"
]
| null | 2022-12-14T06:36:03Z | ## ECAPA-TDNN 说话人分类
```text
该模型采用 `VoxCeleb1 数据集` 做说话人分类训练.
类别数 1251
训练集准确率 0.640
验证集准确率 0.650
在
https://mm.kaist.ac.kr/datasets/voxceleb/index.html
页面的
List of trial pairs - VoxCeleb1
https://mm.kaist.ac.kr/datasets/voxceleb/meta/veri_test.txt
数据集上做了说话人验证,
EER大约为 2%, 相比于 Ecapa-TDNN 论文中的大约 1%
模型应该还没有被充分训练. (不太确定是不是同一个测试集, 但这个模型应该没有充分训练).
```
### VoxCeleb1 数据集
```text
VoxCeleb1 数据集包含 4 个挑战
http://mm.kaist.ac.kr/datasets/voxceleb/voxsrc
Track 1: 完全监督的说话人验证 Speaker Verification (封闭)
训练集, 采用具体说话人标注的 VoxCeleb1 数据集.
验证集, 采用官方给定的说话人验证对.
Track 2: 完全监督的说话人验证 Speaker Verification (开放)
训练集, 采用具体说话人标注的 VoxCeleb1 数据集, 以及任何其它开源的数据集.
验证集, 采用官方给定的说话人验证对.
Track 3: 半监督的说话人验证 Speaker Verification (封闭)
训练集, ......
验证集, 采用官方给定的说话人验证对.
Track 4 是说话人分离 Speaker Diarization (开放)
其任务是将多说话人音频分解为单个说话人的片段, 以判断谁在何时说话.
训练集, 除测试集之后的任何数据.
验证集, 官方提供 VoxConverse 的开发和测试集以用于验证.
```
```text
数据集下载
http://mm.kaist.ac.kr/datasets/voxceleb/voxsrc
https://mm.kaist.ac.kr/datasets/voxceleb/index.html
The username and password is voxceleb1912 and 0s42xuw6:
wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partaa --http-user=voxceleb1912 --http-passwd=0s42xuw6
wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partab --http-user=voxceleb1912 --http-passwd=0s42xuw6
wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partac --http-user=voxceleb1912 --http-passwd=0s42xuw6
wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_dev_wav_partad --http-user=voxceleb1912 --http-passwd=0s42xuw6
wget http://cnode01.mm.kaist.ac.kr/voxceleb/vox1a/vox1_test_wav.zip --http-user=voxceleb1912 --http-passwd=0s42xuw6
# dev 的4个文件, 应该是先压缩成 zip, 再按二进制切割成每个 10G 的文件.
# 此处用 cat 将其合并为一个文件, 再做 unzip 解压.
cat vox1_dev* > vox1_dev_wav.zip
unzip vox1_dev_wav.zip
```
|
Abelll/marian-finetuned-kde4-en-to-fr | Abelll | 2023-02-08T06:53:27Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| translation | 2022-12-27T20:13:44Z | ---
license: apache-2.0
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-fr
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
config: en-fr
split: train
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 52.836492533087124
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8559
- Bleu: 52.8365
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
seokwoni/distilbert-base-uncased-finetuned-emotion | seokwoni | 2023-02-08T06:28:53Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-01-17T07:39:02Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2210
- Accuracy: 0.9235
- F1: 0.9234
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8313 | 1.0 | 250 | 0.3228 | 0.902 | 0.8992 |
| 0.2463 | 2.0 | 500 | 0.2210 | 0.9235 | 0.9234 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.1
- Datasets 2.6.1
- Tokenizers 0.11.0
|
ahjim0m0/Taxi-uncle-3-lr05-n30k-v3 | ahjim0m0 | 2023-02-08T06:26:16Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T06:26:08Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-uncle-3-lr05-n30k-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: -99.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="ahjim0m0/Taxi-uncle-3-lr05-n30k-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ahjim0m0/Taxi-uncle-2-lr02-n60k-v3 | ahjim0m0 | 2023-02-08T06:22:27Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T06:22:19Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-uncle-2-lr02-n60k-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: -99.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="ahjim0m0/Taxi-uncle-2-lr02-n60k-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
SandyML/sd-class-butterflies-32 | SandyML | 2023-02-08T06:19:55Z | 0 | 0 | diffusers | [
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
]
| unconditional-image-generation | 2023-02-08T06:19:33Z | ---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('SandyML/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
ahjim0m0/Taxi-uncle-1-v3 | ahjim0m0 | 2023-02-08T06:15:42Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T06:15:35Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-uncle-1-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: -99.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="ahjim0m0/Taxi-uncle-1-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ahjim0m0/q-FrozenLake-v1-4x4-noSlippery | ahjim0m0 | 2023-02-08T06:05:39Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T06:05:35Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 0.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="ahjim0m0/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Art-phys/dqn-SpaceInvadersNoFrameskip-v4 | Art-phys | 2023-02-08T05:54:39Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T05:53:55Z | ---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 601.00 +/- 350.80
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Art-phys -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Art-phys -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Art-phys
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
Ekkel-AI-Pvt-ltd/stable-diffusion-inpainting2 | Ekkel-AI-Pvt-ltd | 2023-02-08T05:51:25Z | 2 | 0 | diffusers | [
"diffusers",
"stable-diffusion",
"text-to-image",
"arxiv:2112.10752",
"arxiv:2202.00512",
"arxiv:1910.09700",
"license:openrail++",
"diffusers:StableDiffusionInpaintPipeline",
"region:us"
]
| text-to-image | 2023-01-24T09:56:00Z | ---
license: openrail++
tags:
- stable-diffusion
- text-to-image
inference: false
---
# Stable Diffusion v2 Model Card
This model card focuses on the model associated with the Stable Diffusion v2, available [here](https://github.com/Stability-AI/stablediffusion).
This `stable-diffusion-2-inpainting` model is resumed from [stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) (`512-base-ema.ckpt`) and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning.

- Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `512-inpainting-ema.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/resolve/main/512-inpainting-ema.ckpt).
- Use it with 🧨 [`diffusers`](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting#examples)
## Model Details
- **Developed by:** Robin Rombach, Patrick Esser
- **Model type:** Diffusion-based text-to-image generation model
- **Language(s):** English
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL)
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)).
- **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/).
- **Cite as:**
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
## Examples
Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion 2 inpainting in a simple and efficient manner.
```bash
pip install diffusers transformers accelerate scipy safetensors
```
```python
from diffusers import StableDiffusionInpaintPipeline
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float16,
)
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
#image and mask_image should be PIL images.
#The mask structure is white for inpainting and black for keeping as is
image = pipe(prompt=prompt, image=image, mask_image=mask_image).images[0]
image.save("./yellow_cat_on_park_bench.png")
```
**Notes**:
- Despite not being a dependency, we highly recommend you to install [xformers](https://github.com/facebookresearch/xformers) for memory efficient attention (better performance)
- If you have low GPU RAM available, make sure to add a `pipe.enable_attention_slicing()` after sending it to `cuda` for less VRAM usage (to the cost of speed)
**How it works:**
`image` | `mask_image`
:-------------------------:|:-------------------------:|
<img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" alt="drawing" width="300"/> | <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" alt="drawing" width="300"/>
`prompt` | `Output`
:-------------------------:|:-------------------------:|
<span style="position: relative;bottom: 150px;">Face of a yellow cat, high resolution, sitting on a park bench</span> | <img src="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/test.png" alt="drawing" width="300"/>
# Uses
## Direct Use
The model is intended for research purposes only. Possible research areas and tasks include
- Safe deployment of models which have the potential to generate harmful content.
- Probing and understanding the limitations and biases of generative models.
- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
- Research on generative models.
Excluded uses are described below.
### Misuse, Malicious Use, and Out-of-Scope Use
_Note: This section is originally taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), was used for Stable Diffusion v1, but applies in the same way to Stable Diffusion v2_.
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
#### Out-of-Scope Use
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
#### Misuse and Malicious Use
Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
- Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc.
- Intentionally promoting or propagating discriminatory content or harmful stereotypes.
- Impersonating individuals without their consent.
- Sexual content without consent of the people who might see it.
- Mis- and disinformation
- Representations of egregious violence and gore
- Sharing of copyrighted or licensed material in violation of its terms of use.
- Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use.
## Limitations and Bias
### Limitations
- The model does not achieve perfect photorealism
- The model cannot render legible text
- The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
- Faces and people in general may not be generated properly.
- The model was trained mainly with English captions and will not work as well in other languages.
- The autoencoding part of the model is lossy
- The model was trained on a subset of the large-scale dataset
[LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, we have filtered the dataset using LAION's NFSW detector (see Training section).
### Bias
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
Stable Diffusion vw was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/),
which consists of images that are limited to English descriptions.
Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for.
This affects the overall output of the model, as white and western cultures are often set as the default. Further, the
ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts.
Stable Diffusion v2 mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent.
## Training
**Training Data**
The model developers used the following dataset for training the model:
- LAION-5B and subsets (details below). The training data is further filtered using LAION's NSFW detector, with a "p_unsafe" score of 0.1 (conservative). For more details, please refer to LAION-5B's [NeurIPS 2022](https://openreview.net/forum?id=M3Y74vmsMcY) paper and reviewer discussions on the topic.
**Training Procedure**
Stable Diffusion v2 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training,
- Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4
- Text prompts are encoded through the OpenCLIP-ViT/H text-encoder.
- The output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention.
- The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We also use the so-called _v-objective_, see https://arxiv.org/abs/2202.00512.
We currently provide the following checkpoints:
- `512-base-ema.ckpt`: 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`.
850k steps at resolution `512x512` on the same dataset with resolution `>= 512x512`.
- `768-v-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for 150k steps using a [v-objective](https://arxiv.org/abs/2202.00512) on the same dataset. Resumed for another 140k steps on a `768x768` subset of our dataset.
- `512-depth-ema.ckpt`: Resumed from `512-base-ema.ckpt` and finetuned for 200k steps. Added an extra input channel to process the (relative) depth prediction produced by [MiDaS](https://github.com/isl-org/MiDaS) (`dpt_hybrid`) which is used as an additional conditioning.
The additional input channels of the U-Net which process this extra information were zero-initialized.
- `512-inpainting-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning.
The additional input channels of the U-Net which process this extra information were zero-initialized. The same strategy was used to train the [1.5-inpainting checkpoint](https://github.com/saic-mdal/lama).
- `x4-upscaling-ema.ckpt`: Trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752).
In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml).
- **Hardware:** 32 x 8 x A100 GPUs
- **Optimizer:** AdamW
- **Gradient Accumulations**: 1
- **Batch:** 32 x 8 x 2 x 4 = 2048
- **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant
## Evaluation Results
Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0) and 50 steps DDIM sampling steps show the relative improvements of the checkpoints:

Evaluated using 50 DDIM steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores.
## Environmental Impact
**Stable Diffusion v1** **Estimated Emissions**
Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.
- **Hardware Type:** A100 PCIe 40GB
- **Hours used:** 200000
- **Cloud Provider:** AWS
- **Compute Region:** US-east
- **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 15000 kg CO2 eq.
## Citation
@InProceedings{Rombach_2022_CVPR,
author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
title = {High-Resolution Image Synthesis With Latent Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {10684-10695}
}
*This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
|
Jaeung/xlm-roberta-base-finetuned-panx-de | Jaeung | 2023-02-08T05:17:39Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| token-classification | 2023-02-08T04:26:59Z | ---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.de
split: validation
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.849462976643746
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1358
- F1: 0.8495
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3842 | 1.0 | 99 | 0.1687 | 0.8120 |
| 0.1526 | 2.0 | 198 | 0.1447 | 0.8355 |
| 0.1139 | 3.0 | 297 | 0.1358 | 0.8495 |
### Framework versions
- Transformers 4.26.0
- Pytorch 2.0.0.dev20230129
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Airic/Counterfeit | Airic | 2023-02-08T04:48:05Z | 0 | 1 | null | [
"license:creativeml-openrail-m",
"region:us"
]
| null | 2023-02-08T04:36:25Z | ---
license: creativeml-openrail-m
---
|
chaoyivision/t5-small-finetuned-xsum-epoch4 | chaoyivision | 2023-02-08T04:30:24Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:xsum",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-02-03T19:37:16Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
model-index:
- name: t5-small-finetuned-xsum-epoch4
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xsum
type: xsum
config: default
split: validation
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-xsum-epoch4
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 0.0
- Rouge2: 0.0
- Rougel: 0.0
- Rougelsum: 0.0
- Gen Len: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.0 | 1.0 | 6377 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 2.0 | 12754 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 3.0 | 19131 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 4.0 | 25508 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.26.0
- Pytorch 2.0.0.dev20230127+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2
|
SyedAbdul/PPO-LunarLander-V2 | SyedAbdul | 2023-02-08T04:27:40Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T04:27:15Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 288.38 +/- 13.94
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
layoric/ppo-Huggy | layoric | 2023-02-08T04:17:17Z | 23 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2023-02-08T04:10:26Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: layoric/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
bryanhpchiang/flan-t5-base-samsum | bryanhpchiang | 2023-02-08T04:07:13Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:samsum",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-02-08T03:21:15Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- samsum
model-index:
- name: flan-t5-base-samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-samsum
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.0.dev20221005+cu117
- Datasets 2.5.2
- Tokenizers 0.13.2
|
EnD-Diffusers/YoutubersV2 | EnD-Diffusers | 2023-02-08T04:04:32Z | 0 | 0 | diffusers | [
"diffusers",
"tensorboard",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-04T22:13:43Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
widget:
- text: utube
---
### Youtubers Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Information on this model will be here: https://civitai.com/user/duskfallcrew
If you want to donate towards costs and don't want to subscribe:
https://ko-fi.com/DUSKFALLcrew
If you want to monthly support the EARTH & DUSK media projects and not just AI:
https://www.patreon.com/earthndusk
utube (use that on your prompt) |
pupubear/pupugirl_v1_anime_attempt_2 | pupubear | 2023-02-08T03:57:24Z | 24 | 2 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-04T23:16:52Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### anime_girl_from_pu0112 Dreambooth model trained by pupubear with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Trained from Pu0112
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:

|
petergoldstein/ppo-Huggy | petergoldstein | 2023-02-08T03:53:29Z | 13 | 0 | ml-agents | [
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
]
| reinforcement-learning | 2023-02-08T03:53:21Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: petergoldstein/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
pfunk/Pong-v4-DQPN_p50_pt0.1-seed1 | pfunk | 2023-02-08T03:51:01Z | 0 | 0 | cleanrl | [
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T03:50:39Z | ---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: 3.70 +/- 6.45
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p50_pt0.1.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p50_pt0.1]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p50_pt0.1 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_pt0.1-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_pt0.1-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p50_pt0.1-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p50_pt0.1 --start-policy-f 50000 --end-policy-f 50000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 50000,
'env_id': 'Pong-v4',
'evaluation_fraction': 1.0,
'exp_name': 'DQPN_p50_pt0.1',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 0.1,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 50000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
yuanzheng/carrot-commercial-v2 | yuanzheng | 2023-02-08T03:31:03Z | 12 | 3 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-08T02:27:56Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### carrot_commercial_v2 Dreambooth model
Sample pictures of this concept:





|
vumichien/wav2vec2-large-pitch-recognition | vumichien | 2023-02-08T03:15:13Z | 16 | 2 | transformers | [
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"ja",
"doi:10.57967/hf/0343",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
language:
- ja
license: apache-2.0
tags:
- audio
- automatic-speech-recognition
- speech
datasets:
- Japanese accent datasets
metrics:
- wer
# Optional. Add this if you want to encode your eval results in a structured way.
model-index:
- name: Wav2vec2 Accent Japanese
results:
- task:
type: Speech Recognition # Required. Example: automatic-speech-recognition
name: automatic-speech-recognition # Optional. Example: Speech Recognition
dataset:
type: accent_voice
name: Japanese accent datasets
args: ja
metrics:
- type: wer # Required.
value: 15.82 # Required.
name: Test WER
---
# Wav2Vec2 Accent Japanese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese accent dataset
When using this model, make sure that your speech input is sampled at 16kHz.
## Test Result
WER: 15.82% |
aichina/cy0208 | aichina | 2023-02-08T03:03:15Z | 5 | 0 | diffusers | [
"diffusers",
"tensorboard",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-08T03:02:17Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
widget:
- text: cy0208
---
### cy0208 Dreambooth model trained by aichina with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
cy0208 (use that on your prompt)

|
layoric/ppo-LunarLander-v2 | layoric | 2023-02-08T02:57:36Z | 2 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T02:14:29Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 263.30 +/- 10.08
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
pupubear/pupugirl_v1 | pupubear | 2023-02-08T02:39:33Z | 14 | 4 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-02T06:50:15Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### girl Dreambooth model trained by pupubear with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
trianed from c_PVC_mix
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:

|
lyk0013/distilbert-finetuned-imdb | lyk0013 | 2023-02-08T02:20:17Z | 5 | 0 | transformers | [
"transformers",
"pytorch",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| fill-mask | 2023-02-07T15:29:14Z | ---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3611
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.9507 | 1.0 | 13 | 2.5946 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Josh98/t5-small-transferLearning-NL2BASH_seqTrain | Josh98 | 2023-02-08T01:36:49Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-02-08T01:25:01Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-transferLearning-NL2BASH_seqTrain
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-transferLearning-NL2BASH_seqTrain
This model is a fine-tuned version of [kevinum/t5-small-finetuned-English-to-BASH](https://huggingface.co/kevinum/t5-small-finetuned-English-to-BASH) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6524
- Bleu: 48.0701
- Gen Len: 8.9028
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 36 | 0.6524 | 48.0701 | 8.9028 |
| No log | 2.0 | 72 | 0.6524 | 48.0701 | 8.9028 |
| No log | 3.0 | 108 | 0.6524 | 48.0701 | 8.9028 |
| No log | 4.0 | 144 | 0.6524 | 48.0701 | 8.9028 |
| No log | 5.0 | 180 | 0.6524 | 48.0701 | 8.9028 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Josh98/t5-small-finetuned-English-to-BASH | Josh98 | 2023-02-08T01:19:21Z | 4 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
]
| text2text-generation | 2023-02-08T01:05:46Z | ---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-finetuned-English-to-BASH
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-English-to-BASH
This model is a fine-tuned version of [kevinum/t5-small-finetuned-English-to-BASH](https://huggingface.co/kevinum/t5-small-finetuned-English-to-BASH) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7624
- Bleu: 15.8119
- Gen Len: 7.75
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 36 | 2.4759 | 9.4129 | 12.8472 |
| No log | 2.0 | 72 | 2.2581 | 14.8612 | 9.7639 |
| No log | 3.0 | 108 | 2.0998 | 16.1955 | 8.7222 |
| No log | 4.0 | 144 | 1.9945 | 14.576 | 8.4444 |
| No log | 5.0 | 180 | 1.9181 | 15.4464 | 8.1806 |
| No log | 6.0 | 216 | 1.8639 | 14.7446 | 7.9028 |
| No log | 7.0 | 252 | 1.8185 | 14.5825 | 8.0833 |
| No log | 8.0 | 288 | 1.7867 | 14.9773 | 7.9444 |
| No log | 9.0 | 324 | 1.7679 | 15.8119 | 7.75 |
| No log | 10.0 | 360 | 1.7624 | 15.8119 | 7.75 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
rjac/whisper-tiny-spanish | rjac | 2023-02-08T01:13:07Z | 60 | 2 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"es",
"dataset:mozilla-foundation/common_voice_11_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-12-08T14:13:24Z | ---
language:
- es
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
model-index:
- name: Whisper Small Spanish
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Spanish
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 es dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 4
- training_steps: 50
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
|
bandish97/rhymbert | bandish97 | 2023-02-08T01:12:21Z | 0 | 0 | null | [
"fill-mask",
"en",
"region:us"
]
| fill-mask | 2023-02-08T01:10:57Z | ---
language:
- en
pipeline_tag: fill-mask
--- |
yenpolin/wav2vec2-common_voice-tr-demo | yenpolin | 2023-02-08T00:51:56Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"tr",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2023-02-07T12:53:01Z | ---
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-common_voice-tr-demo
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: COMMON_VOICE - TR
type: common_voice
config: tr
split: train+validation
args: 'Config: tr, Training split: train+validation, Eval split: test'
metrics:
- name: Wer
type: wer
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-common_voice-tr-demo
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4626
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| No log | 0.92 | 100 | 3.6030 | 1.0 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1
- Datasets 2.7.0
- Tokenizers 0.13.2
|
pfunk/Pong-v4-DQPN_p30_e0.25-seed1 | pfunk | 2023-02-08T00:46:10Z | 0 | 0 | cleanrl | [
"cleanrl",
"tensorboard",
"Pong-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-08T00:45:48Z | ---
tags:
- Pong-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pong-v4
type: Pong-v4
metrics:
- type: mean_reward
value: 1.40 +/- 4.88
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p30_e0.25.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p30_e0.25]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p30_e0.25 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.25-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.25-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_e0.25-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p30_e0.25 --start-policy-f 30000 --end-policy-f 1000 --evaluation-fraction 0.25 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 1000,
'env_id': 'Pong-v4',
'evaluation_fraction': 0.25,
'exp_name': 'DQPN_p30_e0.25',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 1.0,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 30000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
EnD-Diffusers/duskfalls-artificial-photography | EnD-Diffusers | 2023-02-08T00:33:32Z | 1 | 0 | diffusers | [
"diffusers",
"tensorboard",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-08T00:27:32Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
widget:
- text: rtrophto1
---
### Duskfalls Artificial Photography Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Information on this model will be here: https://civitai.com/user/duskfallcrew
If you want to donate towards costs and don't want to subscribe:
https://ko-fi.com/DUSKFALLcrew
If you want to monthly support the EARTH & DUSK media projects and not just AI:
https://www.patreon.com/earthndusk
Data Training Examples:
rtrophto1 (use that on your prompt)

|
sanali209/imclasif-quality-v001 | sanali209 | 2023-02-08T00:32:45Z | 19 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| image-classification | 2023-02-07T15:48:48Z | ---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: imclasif-quality-v001
results:
- task:
name: Image genre Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.875
---
# imclasif-quality-v001
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). |
vumichien/wav2vec2-xls-r-1b-japanese | vumichien | 2023-02-08T00:22:33Z | 31 | 1 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"common-voice",
"hf-asr-leaderboard",
"ja",
"robust-speech-event",
"dataset:mozilla-foundation/common_voice_7_0",
"doi:10.57967/hf/0336",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| automatic-speech-recognition | 2022-03-02T23:29:05Z | ---
license: apache-2.0
language:
- ja
tags:
- automatic-speech-recognition
- common-voice
- hf-asr-leaderboard
- ja
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: wav2vec2-xls-r-1b
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7.0
type: mozilla-foundation/common_voice_7_0
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 7.98
- name: Test CER (with LM)
type: cer
value: 3.42
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0
type: mozilla-foundation/common_voice_8_0
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 7.88
- name: Test CER (with LM)
type: cer
value: 3.35
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 28.07
- name: Test CER (with LM)
type: cer
value: 16.27
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ja
metrics:
- name: Test CER
type: cer
value: 19.89
---
## Model description
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on my collection of Public Japanese Voice datasets for research [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0), [JUST](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) (Japanese speech corpus of Saruwatari-lab., University of Tokyo), [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus) (Japanese speech corpus for summarization and simplification), [CSS10](https://paperswithcode.com/dataset/css10) (A collection of single speaker speech datasets). You can find in preprocessing dataset in here VUMICHIEN/COMMON_VOICE_LARGE_JSUT_JSSS_CSS10.
### Total training data:
~60 hours
### Benchmark WER result:
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0)
|---|---|---|
|without LM| 10.96 | 10.91 |
|with 4-grams LM| 7.98 | 7.88 |
### Benchmark CER result:
| | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0)
|---|---|---|
|without LM| 4.28 | 4.22 |
|with 4-grams LM| 3.42 | 3.35 |
## Evaluation
Please use the eval.py file to run the evaluation:
```python
pip install mecab-python3 unidic-lite pykakasi
python eval.py --model_id vumichien/wav2vec2-xls-r-1b-japanese --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 2.2896 | 3.37 | 1500 | 0.4748 | 0.4013 | 0.1767 |
| 1.1608 | 6.74 | 3000 | 0.3350 | 0.3159 | 0.1456 |
| 1.1042 | 10.11 | 4500 | 0.3119 | 0.2971 | 0.1400 |
| 1.0494 | 13.48 | 6000 | 0.2974 | 0.2867 | 0.1353 |
| 1.0061 | 16.85 | 7500 | 0.2802 | 0.2746 | 0.1300 |
| 0.9629 | 20.22 | 9000 | 0.2844 | 0.2776 | 0.1326 |
| 0.9267 | 23.59 | 10500 | 0.2577 | 0.2603 | 0.1255 |
| 0.8984 | 26.96 | 12000 | 0.2508 | 0.2531 | 0.1226 |
| 0.8729 | 30.34 | 13500 | 0.2629 | 0.2606 | 0.1254 |
| 0.8546 | 33.71 | 15000 | 0.2402 | 0.2447 | 0.1193 |
| 0.8304 | 37.08 | 16500 | 0.2532 | 0.2472 | 0.1209 |
| 0.8075 | 40.45 | 18000 | 0.2439 | 0.2469 | 0.1198 |
| 0.7827 | 43.82 | 19500 | 0.2387 | 0.2372 | 0.1167 |
| 0.7627 | 47.19 | 21000 | 0.2344 | 0.2331 | 0.1147 |
| 0.7402 | 50.56 | 22500 | 0.2314 | 0.2299 | 0.1135 |
| 0.718 | 53.93 | 24000 | 0.2257 | 0.2267 | 0.1114 |
| 0.7016 | 57.3 | 25500 | 0.2204 | 0.2184 | 0.1089 |
| 0.6804 | 60.67 | 27000 | 0.2227 | 0.2181 | 0.1085 |
| 0.6625 | 64.04 | 28500 | 0.2138 | 0.2112 | 0.1058 |
| 0.6465 | 67.42 | 30000 | 0.2141 | 0.2081 | 0.1044 |
| 0.6238 | 70.79 | 31500 | 0.2172 | 0.2082 | 0.1050 |
| 0.6062 | 74.16 | 33000 | 0.2174 | 0.2058 | 0.1043 |
| 0.588 | 77.53 | 34500 | 0.2156 | 0.2034 | 0.1027 |
| 0.5722 | 80.9 | 36000 | 0.2162 | 0.2032 | 0.1029 |
| 0.5585 | 84.27 | 37500 | 0.2156 | 0.2022 | 0.1021 |
| 0.5456 | 87.64 | 39000 | 0.2126 | 0.1993 | 0.1009 |
| 0.5325 | 91.01 | 40500 | 0.2121 | 0.1966 | 0.1003 |
| 0.5229 | 94.38 | 42000 | 0.2104 | 0.1941 | 0.0991 |
| 0.5134 | 97.75 | 43500 | 0.2108 | 0.1948 | 0.0992 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli | gokuls | 2023-02-08T00:03:46Z | 3 | 0 | transformers | [
"transformers",
"pytorch",
"tensorboard",
"mobilebert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| text-classification | 2023-02-04T03:20:55Z | ---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE WNLI
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.1267605633802817
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE WNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5690
- Accuracy: 0.1268
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3354 | 1.0 | 435 | 0.5690 | 0.1268 |
| 0.299 | 2.0 | 870 | 0.5693 | 0.1408 |
| 0.2905 | 3.0 | 1305 | 0.6161 | 0.1127 |
| 0.2827 | 4.0 | 1740 | 0.6297 | 0.0704 |
| 0.2757 | 5.0 | 2175 | 0.6336 | 0.0986 |
| 0.2705 | 6.0 | 2610 | 0.6493 | 0.0845 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
|
gatardochi/q-Taxi-v3 | gatardochi | 2023-02-07T23:24:05Z | 0 | 0 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-07T23:24:02Z | ---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.77
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="gatardochi/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
SRobbins/a2c-AntBulletEnv-v0 | SRobbins | 2023-02-07T23:03:33Z | 3 | 0 | stable-baselines3 | [
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-07T23:02:21Z | ---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1698.96 +/- 180.65
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
masibasi/disney-ps | masibasi | 2023-02-07T22:49:57Z | 61 | 4 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-02T10:56:14Z | ---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### disney-ps Dreambooth model trained by masibasi with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Type 'disney-ps style' before or after your prompt to see the finetuned results
|
eshwarprasadS/q-FrozenLake-v1-4x4-noSlippery | eshwarprasadS | 2023-02-07T22:32:21Z | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
]
| reinforcement-learning | 2023-02-07T22:32:12Z | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="eshwarprasadS/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
dhifraan/YXJlcw | dhifraan | 2023-02-07T22:20:01Z | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
]
| text-to-image | 2023-02-07T22:09:49Z | ---
license: creativeml-openrail-m
---
|
Subsets and Splits