modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 06:27:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
519 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 06:27:45
card
stringlengths
11
1.01M
UltronAI1/helptechno
UltronAI1
2023-02-07T18:58:45Z
0
0
null
[ "region:us" ]
null
2023-02-07T18:56:10Z
--- license: afl-3.0 ---Chatgpt/run/computershelp101.info
Ramuvannela/bert-fine-tuned-cola
Ramuvannela
2023-02-07T18:58:17Z
8
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-04T17:45:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-fine-tuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6107419227947289 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8073 - Matthews Correlation: 0.6107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4681 | 1.0 | 1069 | 0.5613 | 0.4892 | | 0.321 | 2.0 | 2138 | 0.6681 | 0.5851 | | 0.1781 | 3.0 | 3207 | 0.8073 | 0.6107 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
summervent/speller-t5-90
summervent
2023-02-07T18:57:18Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-02T23:43:26Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: speller-t5-90 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speller-t5-90 This model is a fine-tuned version of [sberbank-ai/ruT5-base](https://huggingface.co/sberbank-ai/ruT5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1486 - Rouge1: 19.3503 - Rouge2: 8.3898 - Rougel: 19.4209 - Rougelsum: 19.4915 - Gen Len: 41.3136 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.3435 | 0.03 | 500 | 0.2100 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.4492 | | 0.3245 | 0.07 | 1000 | 0.2102 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.1949 | | 0.3777 | 0.1 | 1500 | 0.2010 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.0 | | 0.3643 | 0.14 | 2000 | 0.1980 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.0593 | | 0.3212 | 0.17 | 2500 | 0.1986 | 19.209 | 8.2062 | 19.2797 | 19.2797 | 41.1525 | | 0.4181 | 0.2 | 3000 | 0.1896 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 42.2373 | | 0.3175 | 0.24 | 3500 | 0.1879 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.4576 | | 0.3399 | 0.27 | 4000 | 0.1838 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.1102 | | 0.314 | 0.31 | 4500 | 0.1837 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.0339 | | 0.3063 | 0.34 | 5000 | 0.1796 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 40.9407 | | 0.3434 | 0.38 | 5500 | 0.1769 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 40.8814 | | 0.376 | 0.41 | 6000 | 0.1790 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.0593 | | 0.3355 | 0.44 | 6500 | 0.1735 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.4153 | | 0.3181 | 0.48 | 7000 | 0.1665 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.0508 | | 0.3017 | 0.51 | 7500 | 0.1701 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.2881 | | 0.2953 | 0.55 | 8000 | 0.1664 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.2458 | | 0.2711 | 0.58 | 8500 | 0.1664 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.4068 | | 0.3661 | 0.61 | 9000 | 0.1626 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.2797 | | 0.273 | 0.65 | 9500 | 0.1585 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.3051 | | 0.3346 | 0.68 | 10000 | 0.1627 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.2797 | | 0.2529 | 0.72 | 10500 | 0.1590 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.2627 | | 0.2926 | 0.75 | 11000 | 0.1601 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.2712 | | 0.2677 | 0.78 | 11500 | 0.1551 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.2797 | | 0.2746 | 0.82 | 12000 | 0.1570 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.1186 | | 0.2494 | 0.85 | 12500 | 0.1513 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.2373 | | 0.2834 | 0.89 | 13000 | 0.1506 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.2458 | | 0.2646 | 0.92 | 13500 | 0.1512 | 19.5975 | 8.7571 | 19.7034 | 19.774 | 41.3729 | | 0.2782 | 0.95 | 14000 | 0.1528 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.3644 | | 0.2954 | 0.99 | 14500 | 0.1486 | 19.3503 | 8.3898 | 19.4209 | 19.4915 | 41.3136 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.7.1+cu110 - Datasets 2.9.0 - Tokenizers 0.13.2
austinmw/q-FrozenLake-v1-4x4-noSlippery
austinmw
2023-02-07T18:47:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T18:47:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="austinmw/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Hatman/ddpm-celebahq-finetuned-few-shot-universe
Hatman
2023-02-07T18:46:22Z
10
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-02-07T18:46:12Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) A model from google/ddpm-celebahq-256 finetuned using the huggan/few-shot-universe dataset ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Hatman/ddpm-celebahq-finetuned-few-shot-universe') image = pipeline().images[0] image ```
sb3/ppo-CarRacing-v0
sb3
2023-02-07T18:27:18Z
19
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T18:24:16Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 metrics: - type: mean_reward value: 174.99 +/- 100.17 name: mean_reward verified: false --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo --env CarRacing-v0 -orga sb3 -f logs/ python -m rl_zoo3.enjoy --algo ppo --env CarRacing-v0 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo ppo --env CarRacing-v0 -orga sb3 -f logs/ python -m rl_zoo3.enjoy --algo ppo --env CarRacing-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo ppo --env CarRacing-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo --env CarRacing-v0 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('clip_range', 0.2), ('ent_coef', 0.0), ('env_wrapper', [{'rl_zoo3.wrappers.FrameSkip': {'skip': 2}}, {'gym.wrappers.resize_observation.ResizeObservation': {'shape': 64}}, {'gym.wrappers.gray_scale_observation.GrayScaleObservation': {'keep_dim': True}}]), ('frame_stack', 2), ('gae_lambda', 0.95), ('gamma', 0.99), ('learning_rate', 'lin_1e-4'), ('max_grad_norm', 0.5), ('n_envs', 8), ('n_epochs', 10), ('n_steps', 512), ('n_timesteps', 4000000.0), ('normalize', "{'norm_obs': False, 'norm_reward': True}"), ('policy', 'CnnPolicy'), ('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False, activation_fn=nn.GELU, ' 'net_arch=dict(pi=[256], vf=[256]), )'), ('sde_sample_freq', 4), ('use_sde', True), ('vf_coef', 0.5), ('normalize_kwargs', {'norm_obs': False, 'norm_reward': False})]) ```
HealthTeam/mt5-small-finetuned-MultiHead-230207
HealthTeam
2023-02-07T18:22:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-07T04:31:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: mt5-small-finetuned-MultiHead-230207 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-MultiHead-230207 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2185 - Bleu: 14.3905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:------:|:---------------:|:-------:| | 3.0155 | 1.0 | 67222 | 2.3749 | 11.2986 | | 2.7777 | 2.0 | 134444 | 2.2518 | 13.5854 | | 2.7531 | 3.0 | 201666 | 2.2185 | 14.3905 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
lnros/poca-SoccerTwos
lnros
2023-02-07T18:19:36Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-07T18:19:27Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: lnros/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Periramm/dqn-SpaceInvadersNoFrameskip-v4
Periramm
2023-02-07T18:08:45Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-28T08:46:00Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 481.00 +/- 176.15 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Periramm -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Periramm -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Periramm ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 10000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
dawokim/pegasus-samsum
dawokim
2023-02-07T17:54:32Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-07T16:11:25Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Framework versions - Transformers 4.26.0 - Pytorch 1.10.1+cu113 - Datasets 2.9.0 - Tokenizers 0.13.2
Nikitarabine/G
Nikitarabine
2023-02-07T17:54:05Z
0
0
diffusers
[ "diffusers", "text-to-image", "aa", "dataset:fka/awesome-chatgpt-prompts", "license:openrail", "region:us" ]
text-to-image
2023-02-07T17:52:15Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts language: - aa metrics: - code_eval library_name: diffusers pipeline_tag: text-to-image ---
sd-concepts-library/matrix
sd-concepts-library
2023-02-07T17:53:20Z
0
1
null
[ "license:mit", "region:us" ]
null
2023-02-04T19:36:30Z
--- license: mit --- ### matrix on Stable Diffusion This is the `<hatman-matrix>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). ### Troubleshooting This concept was trained using "CompVis/stable-diffusion-v1-4" which is linked to in the inference notebook for concepts and has a tensor length of [756]. The notebook to train concepts links to "stabilityai/stable-diffusion-2" which has a tensor length of [1024]. Here is the new concept you will be able to use as a `style`: ![<matrix> 0](https://huggingface.co/sd-concepts-library/matrix/resolve/main/concept_images/matrix.png) ![<matrix> 1](https://huggingface.co/sd-concepts-library/matrix/resolve/main/concept_images/matrix2_cropped.jpg) ![<matrix> 2](https://huggingface.co/sd-concepts-library/matrix/resolve/main/concept_images/matrix7.png)
Mandoryan/DQN-LunarLander-v2
Mandoryan
2023-02-07T17:47:34Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T16:47:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 134.93 +/- 118.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
qgallouedec/ppo-MiniGrid-DoorKey-5x5-v0
qgallouedec
2023-02-07T17:44:54Z
0
0
stable-baselines3
[ "stable-baselines3", "MiniGrid-DoorKey-5x5-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T17:44:42Z
--- library_name: stable-baselines3 tags: - MiniGrid-DoorKey-5x5-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MiniGrid-DoorKey-5x5-v0 type: MiniGrid-DoorKey-5x5-v0 metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- # **PPO** Agent playing **MiniGrid-DoorKey-5x5-v0** This is a trained model of a **PPO** agent playing **MiniGrid-DoorKey-5x5-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo --env MiniGrid-DoorKey-5x5-v0 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo ppo --env MiniGrid-DoorKey-5x5-v0 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo ppo --env MiniGrid-DoorKey-5x5-v0 -orga qgallouedec -f logs/ python -m rl_zoo3.enjoy --algo ppo --env MiniGrid-DoorKey-5x5-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo ppo --env MiniGrid-DoorKey-5x5-v0 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo --env MiniGrid-DoorKey-5x5-v0 -f logs/ -orga qgallouedec ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('clip_range', 0.2), ('ent_coef', 0.0), ('env_wrapper', 'gym_minigrid.wrappers.FlatObsWrapper'), ('gae_lambda', 0.95), ('gamma', 0.99), ('learning_rate', 0.00025), ('n_envs', 8), ('n_epochs', 10), ('n_steps', 128), ('n_timesteps', 100000.0), ('normalize', True), ('policy', 'MlpPolicy'), ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})]) ```
pfunk/Pong-v4-DQPN_p30_pt0.1-seed1
pfunk
2023-02-07T17:19:55Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T17:19:34Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 0.70 +/- 4.71 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p30_pt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p30_pt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p30_pt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_pt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_pt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p30_pt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p30_pt0.1 --start-policy-f 30000 --end-policy-f 30000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 30000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p30_pt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 30000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
palinachka/ya
palinachka
2023-02-07T17:14:02Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-02-07T17:14:02Z
--- license: bigscience-bloom-rail-1.0 ---
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_256
gokuls
2023-02-07T17:13:43Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T17:04:39Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.15492957746478872 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5279 - Accuracy: 0.1549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3422 | 1.0 | 218 | 0.5279 | 0.1549 | | 0.305 | 2.0 | 436 | 0.5961 | 0.1268 | | 0.291 | 3.0 | 654 | 0.6364 | 0.0845 | | 0.2816 | 4.0 | 872 | 0.6604 | 0.0986 | | 0.2744 | 5.0 | 1090 | 0.6627 | 0.0845 | | 0.2686 | 6.0 | 1308 | 0.6618 | 0.0986 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
LarryAIDraw/sinonGGO_sinonGGO
LarryAIDraw
2023-02-07T17:12:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-07T17:10:41Z
--- license: creativeml-openrail-m ---
Minghai/ivorish
Minghai
2023-02-07T17:05:21Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-07T17:05:21Z
--- license: creativeml-openrail-m ---
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_data_aug_stsb_256
gokuls
2023-02-07T17:03:40Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T16:11:58Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_stsb_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.17779903983231324 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_stsb_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 1.4500 - Pearson: 0.1761 - Spearmanr: 0.1778 - Combined Score: 0.1770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 0.5832 | 1.0 | 1259 | 1.5244 | 0.1737 | 0.1803 | 0.1770 | | 0.2202 | 2.0 | 2518 | 1.4500 | 0.1761 | 0.1778 | 0.1770 | | 0.1249 | 3.0 | 3777 | 1.4720 | 0.1743 | 0.1782 | 0.1762 | | 0.0822 | 4.0 | 5036 | 1.5790 | 0.1581 | 0.1658 | 0.1619 | | 0.0611 | 5.0 | 6295 | 1.4750 | 0.1850 | 0.1905 | 0.1878 | | 0.0477 | 6.0 | 7554 | 1.5776 | 0.1612 | 0.1694 | 0.1653 | | 0.0394 | 7.0 | 8813 | 1.5512 | 0.1648 | 0.1694 | 0.1671 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
DL82/remylacroix
DL82
2023-02-07T16:57:09Z
2
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-07T16:55:36Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: remylacroix --- ### remylacroix Dreambooth model trained by DL82 with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: remylacroix (use that on your prompt) ![remylacroix 0](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%281%29.jpg)![remylacroix 1](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%282%29.jpg)![remylacroix 2](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%283%29.jpg)![remylacroix 3](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%284%29.jpg)![remylacroix 4](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%285%29.jpg)![remylacroix 5](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%286%29.jpg)![remylacroix 6](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%287%29.jpg)![remylacroix 7](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%288%29.jpg)![remylacroix 8](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%289%29.jpg)![remylacroix 9](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%2810%29.jpg)![remylacroix 10](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%2811%29.jpg)![remylacroix 11](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%2812%29.jpg)![remylacroix 12](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%2813%29.jpg)![remylacroix 13](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%2814%29.jpg)![remylacroix 14](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%2815%29.jpg)![remylacroix 15](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%2816%29.jpg)![remylacroix 16](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%2817%29.jpg)![remylacroix 17](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%2818%29.jpg)![remylacroix 18](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%2819%29.jpg)![remylacroix 19](https://huggingface.co/DL82/remylacroix/resolve/main/concept_images/remylacroix_%2820%29.jpg)
sd-concepts-library/chaaya-2-0
sd-concepts-library
2023-02-07T16:54:10Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-02-07T16:54:03Z
--- license: mit --- ### Chaaya 2.0 on Stable Diffusion This is the `<skschaaya>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<skschaaya> 0](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/9.jpeg) ![<skschaaya> 1](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/6.jpeg) ![<skschaaya> 2](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/2.jpeg) ![<skschaaya> 3](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/4.jpeg) ![<skschaaya> 4](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/3.jpeg) ![<skschaaya> 5](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/0.jpeg) ![<skschaaya> 6](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/7.jpeg) ![<skschaaya> 7](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/8.jpeg) ![<skschaaya> 8](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/10.jpeg) ![<skschaaya> 9](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/1.jpeg) ![<skschaaya> 10](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/5.jpeg) ![<skschaaya> 11](https://huggingface.co/sd-concepts-library/chaaya-2-0/resolve/main/concept_images/11.jpeg)
virto/mt5-small-finetuned-rabbi-kook
virto
2023-02-07T16:48:26Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-07T15:10:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mt5-small-finetuned-rabbi-kook results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-rabbi-kook This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 223 | 6.4428 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.12.1 - Datasets 2.9.0 - Tokenizers 0.11.0
frangiral/Taxi-v3-Try1
frangiral
2023-02-07T16:13:39Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T16:13:37Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-Try1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="frangiral/Taxi-v3-Try1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jannikskytt/Reinforce-PixelCopter
jannikskytt
2023-02-07T16:13:10Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T16:13:06Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 14.20 +/- 8.35 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
RMAV/taxi-driver
RMAV
2023-02-07T16:10:54Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T15:49:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-driver results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="RMAV/taxi-driver", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Belldofers/BelldofersTestModel
Belldofers
2023-02-07T16:08:27Z
0
0
allennlp
[ "allennlp", "question-answering", "dataset:fka/awesome-chatgpt-prompts", "dataset:openwebtext", "dataset:Aunsiels/Quasimodo", "doi:10.57967/hf/0334", "region:us" ]
question-answering
2023-02-07T15:11:28Z
--- datasets: - fka/awesome-chatgpt-prompts - openwebtext - Aunsiels/Quasimodo pipeline_tag: question-answering library_name: allennlp metrics: - accuracy ---
RMAV/q-FrozenLake-v1-4x4-noSlippery
RMAV
2023-02-07T16:08:22Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T15:35:10Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="RMAV/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vvn0/ppo-SnowballTarget
vvn0
2023-02-07T15:52:25Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-07T15:52:19Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: vvn0/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kwangjin/novel_lora
kwangjin
2023-02-07T15:48:00Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-07T14:52:28Z
--- license: creativeml-openrail-m base_model: ../../../diffusers_ckpts/anythingv3/ instance_prompt: a photo of sks person tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - kwangjin/novel_lora These are LoRA adaption weights for ../../../diffusers_ckpts/anythingv3/. The weights were trained on a photo of sks person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
pearsonkyle/ArtPrompter
pearsonkyle
2023-02-07T15:46:13Z
27
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-18T05:09:34Z
--- license: mit tags: - generated_from_trainer model-index: - name: ArtPrompter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # [ArtPrompter](https://pearsonkyle.github.io/Art-Prompter/) A [gpt2](https://huggingface.co/gpt2) powered predictive algorithm for making descriptive text prompts for A.I. image generators (e.g. MidJourney, Stable Diffusion, ArtBot, etc). The model was trained on a custom dataset containing 666K unique prompts from MidJourney. Simply start a prompt and let the algorithm suggest ways to finish it. ![](https://huggingface.co/pearsonkyle/ArtPrompter/resolve/main/starry_night.gif) [![Art Prompter Basic](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1HQOtD2LENTeXEaxHUfIhDKUaPIGd6oTR?usp=sharing) ```python from transformers import pipeline prompter = pipeline('text-generation',model='pearsonkyle/ArtPrompter', tokenizer='gpt2') texts = prompter('A portal to a galaxy, view with', max_length=30, num_return_sequences=5) for i in range(5): print(texts[i]['generated_text']+'\n') ``` ## Intended uses & limitations Build sick prompts and lots of them.. use it to [make animations](https://colab.research.google.com/drive/1Ooe7c87xGMa9oG5BDrFVzYqJLvnoKcyZ?usp=sharing) or a discord bot that can interact with MidJourney. [![](https://pearsonkyle.github.io/Art-Prompter/images/discord_bot.png)](https://discord.gg/3S8Taqa2Xy) ## Examples - *The entire universe is a simulation,a confessional with a smiling guy fawkes mask, symmetrical, inviting,hyper realistic* - *a pug disguised as a teacher. Setting is a class room* - *I wish I had an angel For one moment of love I wish I had your angel Your Virgin Mary undone Im in love with my desire Burning angelwings to dust* - *The heart of a galaxy, surrounded by stars, magnetic fields, big bang, cinestill 800T,black background, hyper detail, 8k, black* ## Training procedure ~30 hours of finetune on RTX3070 with 666K unique prompts ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1 - Tokenizers 0.13.2
BhavyaMuni/model-v4
BhavyaMuni
2023-02-07T15:44:43Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-07T14:57:12Z
--- tags: - generated_from_trainer model-index: - name: model-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model-v4 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4686 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001372 - train_batch_size: 8 - eval_batch_size: 8 - seed: 448538920 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6681 | 1.0 | 217 | 1.4124 | | 1.7025 | 2.0 | 434 | 1.4686 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
Sakil/bertfined_finetunedmodel_fakenews
Sakil
2023-02-07T15:31:53Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-02-07T15:21:22Z
--- license: apache-2.0 language: - en library_name: transformers pipeline_tag: text-generation ---
LouisDT/videomae-base-finetuned-ucf1012bovi-subset
LouisDT
2023-02-07T15:22:22Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-02-02T16:21:05Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf1012bovi-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf1012bovi-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5322 - Accuracy: 0.7812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 120 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5824 | 0.25 | 30 | 0.5322 | 0.7812 | | 0.6914 | 1.25 | 60 | 0.5260 | 0.7812 | | 0.5257 | 2.25 | 90 | 0.5900 | 0.7812 | | 0.6191 | 3.25 | 120 | 0.5305 | 0.7812 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Krud/microsoft_xtremedistil-l12-h384-uncased-TriviaQA
Krud
2023-02-07T15:18:46Z
3
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-02-07T15:04:45Z
--- license: mit tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [microsoft/xtremedistil-l12-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l12-h384-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
franjamonga/translate
franjamonga
2023-02-07T15:10:58Z
5
3
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "es", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-02-07T15:05:42Z
--- language: - es - en tags: - translation license: apache-2.0 --- ### spa-eng * source group: Spanish * target group: English * OPUS readme: [spa-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-eng/README.md) * model: transformer * source language(s): spa * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-08-18.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-eng/opus-2020-08-18.zip) * test set translations: [opus-2020-08-18.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-eng/opus-2020-08-18.test.txt) * test set scores: [opus-2020-08-18.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-eng/opus-2020-08-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009-spaeng.spa.eng | 30.6 | 0.570 | | news-test2008-spaeng.spa.eng | 27.9 | 0.553 | | newstest2009-spaeng.spa.eng | 30.4 | 0.572 | | newstest2010-spaeng.spa.eng | 36.1 | 0.614 | | newstest2011-spaeng.spa.eng | 34.2 | 0.599 | | newstest2012-spaeng.spa.eng | 37.9 | 0.624 | | newstest2013-spaeng.spa.eng | 35.3 | 0.609 | | Tatoeba-test.spa.eng | 59.6 | 0.739 | ### System Info: - hf_name: spa-eng - source_languages: spa - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['es', 'en'] - src_constituents: {'spa'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-eng/opus-2020-08-18.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-eng/opus-2020-08-18.test.txt - src_alpha3: spa - tgt_alpha3: eng - short_pair: es-en - chrF2_score: 0.7390000000000001 - bleu: 59.6 - brevity_penalty: 0.9740000000000001 - ref_len: 79376.0 - src_name: Spanish - tgt_name: English - train_date: 2020-08-18 00:00:00 - src_alpha2: es - tgt_alpha2: en - prefer_old: False - long_pair: spa-eng - helsinki_git_sha: d2f0910c89026c34a44e331e785dec1e0faa7b82 - transformers_git_sha: f7af09b4524b784d67ae8526f0e2fcc6f5ed0de9 - port_machine: brutasse - port_time: 2020-08-24-18:20
VladDe/Reinforce-copter
VladDe
2023-02-07T15:05:18Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T14:50:18Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-copter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 9.50 +/- 6.52 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
LLukas22/bert-base-uncased-embedding-step-scheduler
LLukas22
2023-02-07T15:02:27Z
4
1
sentence-transformers
[ "sentence-transformers", "pytorch", "tensorboard", "bert", "feature-extraction", "sentence-similarity", "transformers", "generated_from_trainer", "dataset:squad", "license:cc-by-nc-4.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-07T14:02:57Z
--- license: cc-by-nc-4.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - generated_from_trainer datasets: - squad --- # bert-base-uncased-embedding-step-scheduler This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [squad](https://huggingface.co/datasets/squad) dataset. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('LLukas22/bert-base-uncased-embedding-step-scheduler') embeddings = model.encode(sentences) print(embeddings) ``` ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2E-05 - per device batch size: 26 - effective batch size: 26 - seed: 42 - optimizer: AdamW with betas (0.9,0.999) and eps 1E-08 - weight decay: 1E-02 - D-Adaptation: False - Warmup: False - number of epochs: 3 - mixed_precision_training: bf16 ## Training results | Epoch | Train Loss | Validation Loss | | ----- | ---------- | --------------- | | 0 | 0.0647 | 0.0876 | | 1 | 0.0328 | 0.0826 | | 2 | 0.0298 | 0.082 | ## Evaluation results | Epoch | top_1 | top_3 | top_5 | top_10 | top_25 | | ----- | ----- | ----- | ----- | ----- | ----- | | 0 | 0.586 | 0.778 | 0.843 | 0.911 | 0.968 | | 1 | 0.596 | 0.792 | 0.853 | 0.917 | 0.969 | | 2 | 0.595 | 0.794 | 0.854 | 0.917 | 0.97 | ## Framework versions - Transformers: 4.25.1 - PyTorch: 1.13.1 - PyTorch Lightning: 1.8.6 - Datasets: 2.7.1 - Tokenizers: 0.12.1 - Sentence Transformers: 2.2.2 ## Additional Information This model was trained as part of my Master's Thesis **'Evaluation of transformer based language models for use in service information systems'**. The source code is available on [Github](https://github.com/LLukas22/Master).
acampillos/q-FrozenLake-v1-4x4-noSlippery
acampillos
2023-02-07T14:59:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T14:59:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="acampillos/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NihiLicA/q-FrozenLake-v1-4x4-noSlippery
NihiLicA
2023-02-07T14:57:47Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T14:57:44Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="NihiLicA/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Liapunov/a2c-AntBulletEnv-v0
Liapunov
2023-02-07T14:56:46Z
5
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T14:55:41Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 717.26 +/- 62.68 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Snim/taxi_DRLCourse
Snim
2023-02-07T14:33:47Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T14:33:38Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_DRLCourse results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Snim/taxi_DRLCourse", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Mayhem50/sgpt-bloom-560m-nli-v3
Mayhem50
2023-02-07T14:19:06Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bloom", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-07T07:43:45Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3076 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 150, 'do_lower_case': False}) with Transformer model: BloomModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
zuzhe/Mecha-model
zuzhe
2023-02-07T14:15:56Z
0
27
null
[ "license:openrail", "region:us" ]
null
2023-02-06T13:04:10Z
--- license: openrail --- The mecha model needs low cfg, such as 3.5-7. Because the training set has only the upper body, it can only be partially stable, Forgive me for not doing well, Thanks to QQ friends for their long-term help and teaching. Thank you again Thank Mr. Lin for his training set BY昂扬 Use vae with high saturation Real mechanical texture Realistic Metal details Dirt, dust, damage and wear, battle damage Mecha model ![00128-2979547151-masterpiece, best quality,a robot like figure holding a sword and a sword blade in his hand, with a dark background behind it,re.png](https://s3.amazonaws.com/moonup/production/uploads/1675779113241-635e14681453686fae2cee93.png) ![00140-1723062173-masterpiece, best quality,a robot like figure holding a sword and a sword blade in his hand, with a dark background behind it,re.png](https://s3.amazonaws.com/moonup/production/uploads/1675779172904-635e14681453686fae2cee93.png) ![00144-1374981145-Golden Saints Aquarius, digital supertech armor, Masterpiece, high quality, mecha of sacred elements, light blue and gold color.png](https://s3.amazonaws.com/moonup/production/uploads/1675779248967-635e14681453686fae2cee93.png) ![00158-4224246046-Have lightning in your hand,Golden Saints Aquarius, digital supertech armor, Masterpiece, high quality, mecha of sacred elements.png](https://s3.amazonaws.com/moonup/production/uploads/1675779248168-635e14681453686fae2cee93.png) ![00160-4224246048-Have lightning in your hand,Golden Saints Aquarius, digital supertech armor, Masterpiece, high quality, mecha of sacred elements.png](https://s3.amazonaws.com/moonup/production/uploads/1675779249119-635e14681453686fae2cee93.png) ![00165-2033913887-Humanoid tiger warrior, angel mech, a pair of wings behind, personification, vista shooting, panorama, lightning element, future.png](https://s3.amazonaws.com/moonup/production/uploads/1675779248905-635e14681453686fae2cee93.png) ![00179-3654835925-Deadpool in Iron Man Suit, Black and Red, Metallic Features, 8k Future, Vals, Octane rendering, Unreal Engine 5, Diffraction Gra.png](https://s3.amazonaws.com/moonup/production/uploads/1675779247914-635e14681453686fae2cee93.png) ![00163-3292642141-Deadpool in ironman armour, black and red color, metal feature, 8k Futuristic, VFX, octane render, unreal engine 5, Diffraction.png](https://s3.amazonaws.com/moonup/production/uploads/1675779339062-635e14681453686fae2cee93.png) ![00175-781040957-Deadpool in ironman armour, black and red color, metal feature, 8k Futuristic, VFX, octane render, unreal engine 5, Diffraction.png](https://s3.amazonaws.com/moonup/production/uploads/1675779338495-635e14681453686fae2cee93.png) ![00177-3654835923-Deadpool in Iron Man Suit, Black and Red, Metallic Features, 8k Future, Vals, Octane rendering, Unreal Engine 5, Diffraction Gra.png](https://s3.amazonaws.com/moonup/production/uploads/1675779339289-635e14681453686fae2cee93.png)
nlpaumom/tinybert_hotpotqa
nlpaumom
2023-02-07T14:08:21Z
3
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-02-03T13:27:36Z
--- tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [huawei-noah/TinyBERT_General_6L_768D](https://huggingface.co/huawei-noah/TinyBERT_General_6L_768D) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
azaazato/ppo-Huggy
azaazato
2023-02-07T13:57:08Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-07T13:57:01Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: azaazato/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hakuto/sybian_LoRA
hakuto
2023-02-07T13:56:52Z
0
7
null
[ "region:us" ]
null
2023-02-05T12:29:34Z
1girl, riding on a sybian か woman riding on a sybian 辺りで出せると思います。 メタデータの中に使ったキャプションが入ってます。
fathyshalab/clinic-kitchen_and_dining-roberta-domain-adaptation
fathyshalab
2023-02-07T13:49:04Z
9
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-07T13:48:46Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/clinic-kitchen_and_dining-roberta-domain-adaptation This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/clinic-kitchen_and_dining-roberta-domain-adaptation") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
quackquack22/Gloria_Sato_LoRa
quackquack22
2023-02-07T13:42:46Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-07T13:41:07Z
--- license: creativeml-openrail-m --- You may put 'molly mcgee' to prompt in Stable Diffusion WebUI. I make this with the model abyssOrangeMix2.
jordiclive/flan-t5-11b-summarizer-filtered
jordiclive
2023-02-07T13:13:59Z
127
16
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "summarization", "extractive", "summary", "abstractive", "multi-task", "document summary", "en", "dataset:jordiclive/scored_summarization_datasets", "dataset:jordiclive/wikipedia-summary-dataset", "license:apache-2.0", "license:bsd-3-clause", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-02-07T12:05:57Z
--- language: - en license: - apache-2.0 - bsd-3-clause tags: - summarization - extractive - summary - abstractive - multi-task - document summary datasets: - jordiclive/scored_summarization_datasets - jordiclive/wikipedia-summary-dataset metrics: - rouge --- # Multi-purpose Summarizer (Fine-tuned 11B google/flan-t5-xxl on several Summarization datasets) <a href="https://colab.research.google.com/drive/1fNOfy7oHYETI_KzJSz8JrhYohFBBl0HY"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> A fine-tuned version of [google/flan-t5-xxl](https://huggingface.co/google/flan-t5-xxl) on various summarization datasets (xsum, wikihow, cnn_dailymail/3.0.0, samsum, scitldr/AIC, billsum, TLDR, wikipedia-summary) 70% of the data was also filtered with the use of the [contriever](https://github.com/facebookresearch/contriever) with a cosine similarity between text and summary of 0.6 as threshold. Goal: a model that can be used for a general-purpose summarizer for academic and general usage. Control over the type of summary can be given by varying the instruction prepended to the source document. The result works well on lots of text, although trained with a max source length of 512 tokens and 150 max summary length. --- ## Usage Check the colab notebook for desired usage. **The model expects a prompt prepended to the source document to indicate the type of summary**, this model was trained with a large (100s) variety of prompts: ``` . example_prompts = { "social": "Produce a short summary of the following social media post:", "ten": "Summarize the following article in 10-20 words:", "5": "Summarize the following article in 0-5 words:", "100": "Summarize the following article in about 100 words:", "summary": "Write a ~ 100 word summary of the following text:", "short": "Provide a short summary of the following article:", } ``` The model has also learned for the length of the summary to be specified in words by a range "x-y words" or e.g. "~/approximately/about/ x words." Prompts should be formatted with a colon at the end so that the input to the model is formatted as e.g. "Summarize the following: \n\n {input_text}" After `pip install transformers` run the following code: This pipeline will run slower and not have some of the tokenization parameters as the colab. ```python from transformers import pipeline summarizer = pipeline("summarization", "jordiclive/flan-t5-11b-summarizer-filtered", torch_dtype=torch.bfloat16) raw_document = 'You must be 18 years old to live or work in New York State...' prompt = "Summarize the following article in 10-20 words:" results = summarizer( f"{prompt} \n\n {raw_document}", num_beams=5, min_length=5, no_repeat_ngram_size=3, truncation=True, max_length=512, ) ``` --- ## Training procedure - Training was done in BF16, deepspeed stage 2 with CPU offload for 1 epoch with val loss monitored. ## Hardware - GPU count 8 NVIDIA A100-SXM4-80GB - CPU count 48 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - effective_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - warmup_steps: 2000 - num_epochs: 4 ### Framework versions - Transformers 4.24.0 - Pytorch 1.9.1+cu111 - Deepspeed 0.7.4 - Pytorch-lightning 1.8.1
zlicastro/zl-poca-SoccerTwos
zlicastro
2023-02-07T13:04:15Z
15
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-07T13:04:07Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: zlicastro/zl-poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pneubauer/basic-Reinforce-Pixelcopter-PLE-v0
pneubauer
2023-02-07T12:59:03Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T12:58:54Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: basic-Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 16.30 +/- 10.95 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
facebook/mask2former-swin-large-coco-panoptic
facebook
2023-02-07T12:46:36Z
126,035
29
transformers
[ "transformers", "pytorch", "mask2former", "vision", "image-segmentation", "dataset:coco", "arxiv:2112.01527", "arxiv:2107.06278", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2023-01-02T16:24:12Z
--- license: other tags: - vision - image-segmentation datasets: - coco widget: - src: http://images.cocodataset.org/val2017/000000039769.jpg example_title: Cats --- # Mask2Former Mask2Former model trained on COCO panoptic segmentation (large-sized version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation ](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/). Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA, [MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/mask2former_architecture.png) ## Intended uses & limitations You can use this particular checkpoint for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python import requests import torch from PIL import Image from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation # load Mask2Former fine-tuned on COCO panoptic segmentation processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-large-coco-panoptic") model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-coco-panoptic") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # model predicts class_queries_logits of shape `(batch_size, num_queries)` # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` class_queries_logits = outputs.class_queries_logits masks_queries_logits = outputs.masks_queries_logits # you can pass them to processor for postprocessing result = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] # we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs) predicted_panoptic_map = result["segmentation"] ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former).
yizhangliu/poca-SoccerTwos-v3
yizhangliu
2023-02-07T12:35:23Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-07T12:35:18Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: yizhangliu/poca-SoccerTwos-v3 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
JFelixFF/Test
JFelixFF
2023-02-07T12:32:48Z
0
0
null
[ "license:cc-by-nc-sa-2.0", "region:us" ]
null
2023-02-07T12:32:48Z
--- license: cc-by-nc-sa-2.0 ---
cfalholt/PPO-PyramidsTraining
cfalholt
2023-02-07T12:22:42Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-07T12:22:36Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: cfalholt/PPO-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
pfunk/Pong-v4-DQPN_p2-seed1
pfunk
2023-02-07T12:22:25Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T12:22:05Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 2.90 +/- 5.96 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p2.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p2]" python -m cleanrl_utils.enjoy --exp-name DQPN_p2 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p2 --start-policy-f 2000 --end-policy-f 2000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 2000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p2', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 2000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
vvn0/Reinforce-CartPole-v1
vvn0
2023-02-07T12:14:03Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T12:13:55Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vaibhav9/mini5-qa
vaibhav9
2023-02-07T12:09:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-02-07T12:07:52Z
--- tags: - generated_from_trainer model-index: - name: mini5-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini5-qa This model is a fine-tuned version of [mrm8488/bert-mini-5-finetuned-squadv2](https://huggingface.co/mrm8488/bert-mini-5-finetuned-squadv2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 52 | 0.5957 | | No log | 2.0 | 104 | 0.5762 | | No log | 3.0 | 156 | 0.5918 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
yashas123/finetuning-sentiment-model
yashas123
2023-02-07T12:09:00Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T09:41:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8566666666666667 - name: F1 type: f1 value: 0.858085808580858 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.7491 - Accuracy: 0.8567 - F1: 0.8581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mili7522/q-FrozenLake-v1-4x4-noSlippery
mili7522
2023-02-07T12:06:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T12:06:10Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mili7522/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
pfunk/Pong-v4-DQPN_p10_e0.50-seed1
pfunk
2023-02-07T12:05:25Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T12:05:05Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 3.90 +/- 7.75 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p10_e0.50.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p10_e0.50]" python -m cleanrl_utils.enjoy --exp-name DQPN_p10_e0.50 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_e0.50-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_e0.50-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_e0.50-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p10_e0.50 --start-policy-f 10000 --end-policy-f 1000 --evaluation-fraction 0.50 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.5, 'exp_name': 'DQPN_p10_e0.50', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 10000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
Erwanlbv/Reinforce-hPix-4.15
Erwanlbv
2023-02-07T12:03:13Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T12:03:06Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-hPix-4.15 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 21.67 +/- 20.71 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vaibhav9/DistilBert-qa
vaibhav9
2023-02-07T12:00:16Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-28T04:59:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-qa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 52 | 3.6935 | | No log | 2.0 | 104 | 3.1373 | | No log | 3.0 | 156 | 3.0243 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mallycrip/SpaceInvadersNoFrameskip-v4-dqn_atari_e-2
mallycrip
2023-02-07T11:59:36Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T11:59:29Z
--- tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 705.50 +/- 237.55 name: mean_reward verified: false --- # DQN **SpaceInvadersNoFrameskip-v4** # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 100000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'env_id': 'SpaceInvadersNoFrameskip-v4', 'exp_name': 'dqn_atari_e', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'mallycrip', 'learning_rate': 0.0001, 'learning_starts': 80000, 'save_model': False, 'seed': 1, 'start_e': 1, 'target_network_frequency': 1000, 'tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': False, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
anuoluwa/dqn-SpaceInvadersNoFrameskip-v4
anuoluwa
2023-02-07T11:58:07Z
9
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T11:57:29Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga anuoluwa -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga anuoluwa -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga anuoluwa ``` ## Hyperparameters ```python OrderedDict([('batch_size', 16), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 6), ('gradient_steps', 1), ('learning_rate', 0.03), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
justinheyne/Dj
justinheyne
2023-02-07T11:55:50Z
0
0
null
[ "dataset:fka/awesome-chatgpt-prompts", "license:openrail", "region:us" ]
null
2023-02-07T11:54:58Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts metrics: - accuracy ---
BachNgoH/ppo-Pyramids
BachNgoH
2023-02-07T10:53:52Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-07T10:53:47Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: BachNgoH/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
marcoyang/sherpa-ncnn-conv-emformer-transducer-small-2023-02-07
marcoyang
2023-02-07T10:45:18Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-02-07T10:38:01Z
--- license: apache-2.0 --- This model is trained on `LibriSpeech` dataset and can only be used for English ASR. It's a very small model, which means it is suitable for embedded devices.
Classacre/classacre-solo-levelling-art-style-test
Classacre
2023-02-07T10:37:54Z
1
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-07T10:33:29Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Classacre/solo-levelling-art-style-test Dreambooth model trained by Classacre with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/Classacre/classacre-solo-levelling-art-style-test/resolve/main/sample_images/grid-0013.png)
moshew/distilbilstm-finetuned-sst-2-english
moshew
2023-02-07T10:31:42Z
0
2
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-12-20T06:21:53Z
--- library_name: keras --- x100 smaller with less than 0.5 accuracy drop vs. distilbert-base-uncased-finetuned-sst-2-english ## Model description 2 Layers Bilstm model finetuned on SST-2 and distlled from RoBERTa teacher distilbert-base-uncased-finetuned-sst-2-english: 92.2 accuracy, 67M parameters moshew/distilbilstm-finetuned-sst-2-english: 91.9 accuracy, 0.66M parameters ## How to get started with the model Example on SST-2 test dataset classification: ​​ ```python !pip install datasets from datasets import load_dataset import numpy as np from sklearn.metrics import accuracy_score from keras.preprocessing.text import Tokenizer from keras.utils import pad_sequences import tensorflow as tf from huggingface_hub import from_pretrained_keras from datasets import load_dataset sst2 = load_dataset("SetFit/sst2") augmented_sst2_dataset = load_dataset("jmamou/augmented-glue-sst2") # Tokenize our training data tokenizer = Tokenizer(num_words=10000) tokenizer.fit_on_texts(augmented_sst2_dataset['train']['sentence']) # Encode test data sentences into sequences test_sequences = tokenizer.texts_to_sequences(sst2['test']['text']) # Pad the test sequences test_padded = pad_sequences(test_sequences, padding = 'post', truncating = 'post', maxlen=64) reloaded_model = from_pretrained_keras('moshew/distilbilstm-finetuned-sst-2-english') #Evaluate model on SST2 test data (GLUE) pred=reloaded_model.predict(test_padded) pred_bin = np.argmax(pred,1) accuracy_score(pred_bin, sst2['test']['label']) 0.9187259747391543 reloaded_model.summary() Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 64)] 0 embedding (Embedding) (None, 64, 50) 500000 bidirectional (Bidirectiona (None, 64, 128) 58880 l) bidirectional_1 (Bidirectio (None, 128) 98816 nal) dropout (Dropout) (None, 128) 0 dense (Dense) (None, 2) 258 ================================================================= Total params: 657,954 Trainable params: 657,954 Non-trainable params: 0 _________________________________________________________________ ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 0.0010000000474974513 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
KarolK/distilbert-base-uncased-finetuned-emotion
KarolK
2023-02-07T10:27:02Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T09:47:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.901 - name: F1 type: f1 value: 0.8975803523323151 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3399 - Accuracy: 0.901 - F1: 0.8976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.5129 | 0.8465 | 0.8300 | | 0.7331 | 2.0 | 250 | 0.3399 | 0.901 | 0.8976 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0 - Datasets 2.8.0 - Tokenizers 0.10.3
jannikskytt/dqn-SpaceInvadersNoFrameskip-v4
jannikskytt
2023-02-07T10:21:30Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T10:20:45Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 659.00 +/- 302.20 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jannikskytt -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jannikskytt -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jannikskytt ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
DigitalUmuganda/Kinyarwanda_YourTTS
DigitalUmuganda
2023-02-07T10:19:35Z
8
1
transformers
[ "transformers", "text-to-speech", "rw", "arxiv:2112.02418", "endpoints_compatible", "region:us" ]
text-to-speech
2023-02-02T23:33:43Z
--- language: - rw pipeline_tag: text-to-speech --- ## Model Description <!-- Provide a longer summary of what this model is. --> This model is an end-to-end deep-learning-based Kinyarwanda Text-to-Speech (TTS). Due to its zero-shot learning capabilities, new voices can be introduced with 1min speech. The model was trained using the Coqui's TTS library, and the YourTTS[1] architecture. It was trained on 67 hours of Kinyarwanda bible data, for 100 epochs. ## Data Sources <!-- Provide the basic links for the model. --> - **Audio data:** [www.faithcomesbyhearing.com, version -> Common Language Version audio Old Testament] - **Text data:** [www.bible.com, version -> Bibiliya Ijambo ry'imana(BIR)(only the Old Testament was used)] # Usage <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> Install the Coqui's TTS library: ``` pip install git+https://github.com/coqui-ai/TTS@0910cb76bcd85df56bf43654bb31427647cdfd0d#egg=TTS ``` Download the files from this repo, then run: ``` tts --text "text" --model_path model.pth --encoder_path SE_checkpoint.pth.tar --encoder_config_path config_se.json --config_path config.json --speakers_file_path speakers.pth --speaker_wav conditioning_audio.wav --out_path out.wav ``` Where the conditioning audio is a wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder, you can give multiple file paths. The d_vectors is computed as their average. # References <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information should go in this section. --> [1] [YourTTS paper](https://arxiv.org/pdf/2112.02418.pdf)
ShirinP/t5-small-finetuned-dialogsum
ShirinP
2023-02-07T10:05:23Z
31
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-25T04:33:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-dialogsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-dialogsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2771 - Rouge1: 36.5788 - Rouge2: 13.75 - Rougel: 30.9066 - Rougelsum: 32.8118 - Gen Len: 18.846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4705 | 1.0 | 4154 | 1.3514 | 34.3952 | 11.8123 | 28.9797 | 31.003 | 18.76 | | 1.418 | 2.0 | 8308 | 1.3023 | 35.904 | 12.9905 | 30.3195 | 32.1809 | 18.83 | | 1.3933 | 3.0 | 12462 | 1.2832 | 36.1796 | 13.6096 | 30.6577 | 32.5292 | 18.884 | | 1.3875 | 4.0 | 16616 | 1.2771 | 36.5788 | 13.75 | 30.9066 | 32.8118 | 18.846 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
sd-dreambooth-library/solo-levelling-art-style
sd-dreambooth-library
2023-02-07T10:05:19Z
21
14
diffusers
[ "diffusers", "tensorboard", "license:mit", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-11-10T08:32:31Z
--- license: mit --- ### Solo Levelling Art Style on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### model by Classacre This your the Stable Diffusion model fine-tuned the Solo Levelling Art Style concept taught to Stable Diffusion with Dreambooth. You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) This is my first model, criticism and advice is welcome. Discord: "Classacre#1028" This model is inspired by @ogkalu and his comic-diffusion model (https://huggingface.co/ogkalu/Comic-Diffusion). I think its pretty cool and you should check it out. I've made this model out of admiration towards Jang-Sung Rak (DUBU) who recently passed away. This model is not perfect, and will never be perfect as the original artists art is irreplaceable. ### Version 2.1 ### - This new model uses the anythingv3.0 model as its base instead of the SD 1.5. This adds more dynamic backgrounds to the generations but strays abit away from the original style. - Characters and people are the same as V2 and have been improved to better reflect Jang-Sung Raks art style. - Action generations are often better in 2:1 ratios or 2:2 (1024 x 1024) generations. They are often incomplete in 512x512 generations. - The calm model simmilar to version 2.0 is a good general model and may be better than the action model when generating. Play around with the instance prompts mentioned below and see what you prefer. The calm and action models have been combined into 1 ckpt file. I've changed the naming scheme to better match the progress of the model e.g. this versions CKPT is called sololevellingV2.1 It can be used by modifying the `instance_prompt(s)`: **SLCalm** and **SLAction** This model was trained using 20 total images (10 for calm scenes and 10 for action scenes). 2000 total training steps (1e-6). Text encoder trained for 250 steps (1e-6.). Text encoder concept training steps 533. 71 conceptualization (realisation) images. This model still suffers from text/ chat bubbles but can be mitigated by adding it to the negative prompts (same as version 2.0). ### Version 2.0 ### This is a massive improvement from the first version. I've split the model into two different models, one for non action generations (SoloLevellingCalm.ckpt) and one for action generations (SoloLevellingAction.ckpt). I plan on merging the two into one model in the future once I understand how to do captions. The calm (SoloLevellingCalm.ckpt) version of the model is great for general generation using most prompts, it was trained using non action images taken from the solo leveling manhwa. **Important Prompt Additions:** Add these prompts to make the generations look remotely like the solo levelling art style and to maintain consistency. Positive prompts: anime, manhwa, beautiful, 8k Negative prompts: chat bubble, chat bubbles, ugly This model suffers from chat bubbles and added VFX words in its generations, it can often be mitigated by inputting the negative prompts in the Important prompt additions but it is not perfect. Sampler and CFG settings are identical to Version 1.0. ### Version 1.0 ### It can be used by modifying the `instance_prompt(s)`: **sololeveling** This model was trained using 71 training images, 14200 total training steps, model saved every 3550 steps (25%) and text encoder was trained up to 35%. Made using Stable Diffusion v1.5 as the base model. The final model struggles to do calm / peaceful environments as it was trained on mainly cinematic action scenes - this leads to style bleeding where the ai creates action sequences from seemingly calm and peaceful prompts. Earlier models don't seem to have this problem albeit they are not as sharp and do not reproduce the style as accurately. Negative prompts seem to lessen the effects of action sequences in the final model, however they are not as natural as older models. Another thing to mention is that the model struggles at drawing eyes in action sequences, you may be able to play with the prompt to get eyes to show up though. A comparison between the different model versions can be seen below: Sampler used: DDIM CFG: 7 Prompt: man holding a sword, black hair, muscular, in a library, cinematic, full color, fighting a man (https://i.imgur.com/MBjzUVI.jpg) man eating food in the subway station, sololeveling, happy, cinematic, golden hour (https://i.imgur.com/L3MB4Ka.jpg) In my opinion this model runs best using the DDIM sampler, however I'm still pretty new to experimenting samplers and my opinion about this may change in the future. Please experiment with the different samplers yourself and choose what you believe is best. The model in 106560 steps may be better than the final model. Here are the images used for training this concept: sololeveling ![sololeveling 0](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(1).jpeg) ![sololeveling 1](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(2).jpeg) ![sololeveling 2](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(3).jpeg) ![sololeveling 3](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(4).jpeg) ![sololeveling 4](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(5).jpeg) ![sololeveling 5](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(6).jpeg) ![sololeveling 6](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(7).jpeg) ![sololeveling 7](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(8).jpeg) ![sololeveling 8](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(9).jpeg) ![sololeveling 9](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(10).jpeg) ![sololeveling 10](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(11).jpeg) ![sololeveling 11](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(12).jpeg) ![sololeveling 12](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(13).jpeg) ![sololeveling 13](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(14).jpeg) ![sololeveling 14](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(15).jpeg) ![sololeveling 15](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(16).jpeg) ![sololeveling 16](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(17).jpeg) ![sololeveling 17](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(18).jpeg) ![sololeveling 18](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(19).jpeg) ![sololeveling 19](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(20).jpeg) ![sololeveling 20](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(21).jpeg) ![sololeveling 21](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(22).jpeg) ![sololeveling 22](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(23).jpeg) ![sololeveling 23](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(24).jpeg) ![sololeveling 24](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(25).jpeg) ![sololeveling 25](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(26).jpeg) ![sololeveling 26](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(27).jpeg) ![sololeveling 27](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(28).jpeg) ![sololeveling 28](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(29).jpeg) ![sololeveling 29](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(30).jpeg) ![sololeveling 30](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(31).jpeg) ![sololeveling 31](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(32).jpeg) ![sololeveling 32](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(33).jpeg) ![sololeveling 33](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(34).jpeg) ![sololeveling 34](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(35).jpeg) ![sololeveling 35](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(36).jpeg) ![sololeveling 36](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(37).jpeg) ![sololeveling 37](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(38).jpeg) ![sololeveling 38](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(39).jpeg) ![sololeveling 39](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(40).jpeg) ![sololeveling 40](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(41).jpeg) ![sololeveling 41](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(42).jpeg) ![sololeveling 42](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(43).jpeg) ![sololeveling 43](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(44).jpeg) ![sololeveling 44](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(45).jpeg) ![sololeveling 45](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(46).jpeg) ![sololeveling 46](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(47).jpeg) ![sololeveling 47](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(48).jpeg) ![sololeveling 48](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(49).jpeg) ![sololeveling 49](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(50).jpeg) ![sololeveling 50](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(51).jpeg) ![sololeveling 51](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(52).jpeg) ![sololeveling 52](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(53).jpeg) ![sololeveling 53](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(54).jpeg) ![sololeveling 54](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(55).jpeg) ![sololeveling 55](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(56).jpeg) ![sololeveling 56](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(57).jpeg) ![sololeveling 57](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(58).jpeg) ![sololeveling 58](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(59).jpeg) ![sololeveling 59](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(60).jpeg) ![sololeveling 60](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(61).jpeg) ![sololeveling 61](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(62).jpeg) ![sololeveling 62](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(63).jpeg) ![sololeveling 63](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(64).jpeg) ![sololeveling 64](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(65).jpeg) ![sololeveling 65](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(66).jpeg) ![sololeveling 66](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(67).jpeg) ![sololeveling 67](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(68).jpeg) ![sololeveling 68](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(69).jpeg) ![sololeveling 69](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(70).jpeg) ![sololeveling 70](https://huggingface.co/sd-dreambooth-library/solo-levelling-art-style/resolve/main/concept_images/sololeveling_(71).jpeg)
BachNgoH/ppo-SnowballTarget
BachNgoH
2023-02-07T09:56:50Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-07T09:56:44Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: BachNgoH/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ahjim0m0/ppo-Huggy
ahjim0m0
2023-02-07T09:33:40Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-07T09:33:33Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ahjim0m0/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
MaCoCu/BERTovski
MaCoCu
2023-02-07T09:24:34Z
20
1
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "feature-extraction", "BERTovski", "MaCoCu", "bg", "mk", "multilingual", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-11T08:17:04Z
--- language: - bg - mk - multilingual license: cc0-1.0 tags: - BERTovski - MaCoCu --- # Model description **BERTovski** is a large pre-trained language model trained on Bulgarian and Macedonian texts. It was trained from scratch using the RoBERTa architecture. It was developed as part of the [MaCoCu](https://macocu.eu/) project. The main developer is [Rik van Noord](https://www.rikvannoord.nl/) from the University of Groningen. BERTovski was trained on 74GB of text, which is equal to just over 7 billion tokens. It was trained for 300,000 steps with a batch size of 2,048, which was approximately 30 epochs. The training and fine-tuning procedures are described in detail on our [Github repo](https://github.com/macocu/LanguageModels). We aim to train this model for even longer, so keep an eye out for newer versions! # How to use ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("RVN/BERTovski") model = AutoModel.from_pretrained("RVN/BERTovski") # PyTorch model = TFAutoModel.from_pretrained("RVN/BERTovski") # Tensorflow ``` # Data For training, we used all Bulgarian and Macedonian data that was present in the [MaCoCu](https://macocu.eu/), Oscar, mc4 and Wikipedia corpora. In a manual analysis we found that for Oscar and mc4, if the data did not come from the corresponding domain (.bg or .mk), it was often (badly) machine translated. Therefore, we opted to only use data that originally came from a .bg or .mk domain. After de-duplicating the data, we were left with a total of 54.5 GB of Bulgarian and 9 GB of Macedonian text. Since there was quite a bit more Bulgarian data, we simply doubled the Macedonian data during training. We trained a shared vocabulary of 32,000 pieces on a subset of the data in which the Bulgarian/Macedonian split was 50/50. # Benchmark performance We tested performance of BERTovski on benchmarks of XPOS, UPOS and NER. For Bulgarian, we used the data from the [Universal Dependencies](https://universaldependencies.org/) project. For Macedonian, we used the data sets created in the [babushka-bench](https://github.com/clarinsi/babushka-bench/) project. We also tested on a Google (Bulgarian) and human (Macedonian) translated version of the COPA data set (for details see our [Github repo](https://github.com/RikVN/COPA)). We compare performance to the strong multi-lingual models XLMR-base and XLMR-large. For details regarding the fine-tuning procedure you can checkout our [Github](https://github.com/macocu/LanguageModels). Scores are averages of three runs, except for COPA, for which we use 10 runs. We use the same hyperparameter settings for all models for UPOS/XPOS/NER, for COPA we optimized the learning rate on the dev set. ## Bulgarian | | **UPOS** | **UPOS** | **XPOS** | **XPOS** | **NER** | **NER** | **COPA** | |-----------------|:--------:|:--------:|:--------:|:--------:|:-------:|:--------:|:--------:| | | **Dev** | **Test** | **Dev** | **Test** | **Dev** | **Test** | **Test** | | **XLM-R-base** | 99.2 | 99.4 | 98.0 | 98.3 | 93.2 | 92.9 | 56.9 | | **XLM-R-large** | 99.3 | 99.4 | 97.4 | 97.7 | 93.7 | 93.5 | 53.1 | | **BERTovski** | 98.8 | 99.1 | 97.6 | 97.8 | 93.5 | 93.3 | 51.7 | ## Macedonian | | **UPOS** | **UPOS** | **XPOS** | **XPOS** | **NER** | **NER** | **COPA** | |-----------------|:--------:|:--------:|:--------:|:--------:|:-------:|:--------:|:--------:| | | **Dev** | **Test** | **Dev** | **Test** | **Dev** | **Test** | **Test** | | **XLM-R-base** | 98.3 | 98.6 | 97.3 | 97.1 | 92.8 | 94.8 | 55.3 | | **XLM-R-large** | 98.3 | 98.7 | 97.7 | 97.5 | 93.3 | 95.1 | 52.5 | | **BERTovski** | 97.8 | 98.1 | 96.4 | 96.0 | 92.8 | 94.6 | 51.8 | # Acknowledgements Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC). The authors received funding from the European Union's Connecting Europe Facility 2014- 2020 - CEF Telecom, under Grant Agreement No.INEA/CEF/ICT/A2020/2278341 (MaCoCu). # Citation If you use this model, please cite the following paper: ```bibtex @inproceedings{non-etal-2022-macocu, title = "{M}a{C}o{C}u: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages", author = "Ba{\~n}{\'o}n, Marta and Espl{\`a}-Gomis, Miquel and Forcada, Mikel L. and Garc{\'\i}a-Romero, Cristian and Kuzman, Taja and Ljube{\v{s}}i{\'c}, Nikola and van Noord, Rik and Sempere, Leopoldo Pla and Ram{\'\i}rez-S{\'a}nchez, Gema and Rupnik, Peter and Suchomel, V{\'\i}t and Toral, Antonio and van der Werff, Tobias and Zaragoza, Jaume", booktitle = "Proceedings of the 23rd Annual Conference of the European Association for Machine Translation", month = jun, year = "2022", address = "Ghent, Belgium", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2022.eamt-1.41", pages = "303--304" } ```
Erwanlbv/Reinforce-model-500
Erwanlbv
2023-02-07T09:23:01Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T09:22:40Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-model-500 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Airic/rpg
Airic
2023-02-07T09:13:04Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-07T04:14:16Z
--- license: creativeml-openrail-m ---
raw-vitor/henry
raw-vitor
2023-02-07T09:11:31Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-07T09:00:25Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### henry Dreambooth model trained by raw-vitor with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_data_aug_rte_256
gokuls
2023-02-07T09:04:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T08:43:04Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_rte_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.4981949458483754 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_rte_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.5461 - Accuracy: 0.4982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3321 | 1.0 | 568 | 0.5461 | 0.4982 | | 0.288 | 2.0 | 1136 | 0.5692 | 0.4910 | | 0.2847 | 3.0 | 1704 | 0.5578 | 0.4982 | | 0.283 | 4.0 | 2272 | 0.5487 | 0.4946 | | 0.2822 | 5.0 | 2840 | 0.5564 | 0.4982 | | 0.2813 | 6.0 | 3408 | 0.5508 | 0.5235 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
gyeoldere/DeBERTa-finetuned-SNLI
gyeoldere
2023-02-07T08:42:01Z
1
0
transformers
[ "transformers", "pytorch", "deberta", "generated_from_trainer", "dataset:snli", "license:mit", "endpoints_compatible", "region:us" ]
null
2023-02-01T08:39:44Z
--- license: mit tags: - generated_from_trainer datasets: - snli model-index: - name: DeBERTa-finetuned-SNLI results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DeBERTa-finetuned-SNLI This model is a fine-tuned version of [gyeoldere/DeBERTa-finetuned-SNLI](https://huggingface.co/gyeoldere/DeBERTa-finetuned-SNLI) on the snli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_data_aug_qqp_256
gokuls
2023-02-07T08:41:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-06T15:34:44Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_sa_GLUE_Experiment_logit_kd_data_aug_qqp_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.6342567400445214 - name: F1 type: f1 value: 0.014791125324805117 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_data_aug_qqp_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.7043 - Accuracy: 0.6343 - F1: 0.0148 - Combined Score: 0.3245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:--------------:| | 0.8369 | 1.0 | 29671 | 0.7043 | 0.6343 | 0.0148 | 0.3245 | | 0.7448 | 2.0 | 59342 | 0.7161 | 0.6355 | 0.0216 | 0.3286 | | 0.7106 | 3.0 | 89013 | 0.7067 | 0.6466 | 0.0843 | 0.3655 | | 0.6924 | 4.0 | 118684 | 0.7200 | 0.6401 | 0.0477 | 0.3439 | | 0.6812 | 5.0 | 148355 | 0.7109 | 0.6424 | 0.0609 | 0.3517 | | 0.6734 | 6.0 | 178026 | 0.7092 | 0.6440 | 0.0696 | 0.3568 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
iubeda/ppo-Huggy
iubeda
2023-02-07T08:34:28Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-07T08:34:21Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: iubeda/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
roapple10/ppo-SnowballTarget
roapple10
2023-02-07T08:28:46Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-07T08:25:54Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/ThomasSimonini/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: roapple10/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sayakpaul/segformer-b0-scene-parse-150-lora
sayakpaul
2023-02-07T08:23:11Z
2
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "license:other", "endpoints_compatible", "region:us" ]
null
2023-02-07T05:58:13Z
--- license: other tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150-lora This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 32 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
maskip/pretrained-m-bert-100
maskip
2023-02-07T08:01:53Z
1
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-02-07T07:55:00Z
--- tags: - generated_from_keras_callback model-index: - name: pretrained-m-bert-100 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-m-bert-100 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.7003 - Validation Loss: 15.3566 - Epoch: 99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-04, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.2669 | 10.9400 | 0 | | 7.8880 | 10.8967 | 1 | | 6.8580 | 11.5024 | 2 | | 6.4321 | 11.5023 | 3 | | 6.2235 | 11.2212 | 4 | | 6.0038 | 11.3128 | 5 | | 5.9881 | 11.3604 | 6 | | 5.4409 | 11.6872 | 7 | | 5.2113 | 11.5379 | 8 | | 5.2660 | 12.0264 | 9 | | 5.2330 | 11.7627 | 10 | | 5.1121 | 12.2919 | 11 | | 5.2126 | 12.6272 | 12 | | 5.2086 | 11.3478 | 13 | | 5.2459 | 12.2183 | 14 | | 5.0035 | 11.7580 | 15 | | 4.9613 | 12.4852 | 16 | | 5.0312 | 12.4627 | 17 | | 5.0073 | 13.6309 | 18 | | 5.4284 | 12.7799 | 19 | | 5.3100 | 12.6417 | 20 | | 5.0765 | 12.7851 | 21 | | 5.2276 | 13.3828 | 22 | | 5.1986 | 12.7421 | 23 | | 4.8935 | 12.8679 | 24 | | 4.6959 | 12.9201 | 25 | | 5.4161 | 13.4416 | 26 | | 5.2459 | 14.0112 | 27 | | 5.2781 | 13.2740 | 28 | | 5.5104 | 12.8646 | 29 | | 5.5024 | 13.7514 | 30 | | 5.6284 | 13.7125 | 31 | | 5.8452 | 13.6332 | 32 | | 5.5767 | 13.8019 | 33 | | 5.6444 | 13.4279 | 34 | | 5.5551 | 13.2666 | 35 | | 5.5421 | 13.5996 | 36 | | 5.5246 | 13.1686 | 37 | | 5.5233 | 13.3788 | 38 | | 5.6011 | 13.4038 | 39 | | 5.3695 | 13.5241 | 40 | | 5.5061 | 13.6035 | 41 | | 5.4534 | 13.8652 | 42 | | 5.4222 | 13.4525 | 43 | | 5.4408 | 13.6572 | 44 | | 5.6683 | 13.7671 | 45 | | 5.7137 | 14.1255 | 46 | | 5.6777 | 14.4026 | 47 | | 5.6776 | 14.3435 | 48 | | 5.8337 | 14.3650 | 49 | | 5.8583 | 14.2897 | 50 | | 5.6849 | 14.6518 | 51 | | 5.7112 | 14.5420 | 52 | | 5.7281 | 13.9947 | 53 | | 5.9154 | 14.3210 | 54 | | 5.6742 | 13.8867 | 55 | | 5.8674 | 14.2819 | 56 | | 5.7128 | 14.5811 | 57 | | 5.7091 | 14.2113 | 58 | | 5.7479 | 14.4418 | 59 | | 5.7632 | 13.9566 | 60 | | 5.6443 | 14.1394 | 61 | | 5.6794 | 14.5981 | 62 | | 5.6450 | 14.5139 | 63 | | 5.6935 | 14.3309 | 64 | | 5.7443 | 14.3540 | 65 | | 5.7014 | 14.7472 | 66 | | 5.7407 | 14.4245 | 67 | | 5.9023 | 14.4602 | 68 | | 5.9222 | 14.6654 | 69 | | 5.6813 | 14.3179 | 70 | | 5.6505 | 14.1670 | 71 | | 5.8407 | 14.2520 | 72 | | 5.6683 | 14.1696 | 73 | | 5.6880 | 15.1198 | 74 | | 5.8254 | 14.2783 | 75 | | 5.7758 | 14.5934 | 76 | | 5.7180 | 14.4779 | 77 | | 5.7348 | 14.3955 | 78 | | 5.6680 | 14.0637 | 79 | | 5.7029 | 14.6120 | 80 | | 5.7088 | 14.3396 | 81 | | 5.7215 | 14.5878 | 82 | | 5.5987 | 15.0465 | 83 | | 5.7613 | 14.7521 | 84 | | 5.7670 | 14.9828 | 85 | | 5.7954 | 14.6714 | 86 | | 5.6080 | 15.2686 | 87 | | 5.7493 | 14.8772 | 88 | | 5.6884 | 14.4567 | 89 | | 5.6932 | 14.3316 | 90 | | 5.7152 | 15.2725 | 91 | | 5.6548 | 15.0855 | 92 | | 5.6196 | 14.8487 | 93 | | 5.7889 | 14.7169 | 94 | | 5.5958 | 14.9320 | 95 | | 5.7047 | 14.8829 | 96 | | 5.5637 | 14.8704 | 97 | | 5.6375 | 14.7917 | 98 | | 5.7003 | 15.3566 | 99 | ### Framework versions - Transformers 4.27.0.dev0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
imflash217/a2c-AntBulletEnv-v0
imflash217
2023-02-07T07:59:42Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T07:58:29Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1902.19 +/- 153.27 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_128
gokuls
2023-02-07T07:30:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T06:57:42Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.14084507042253522 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5913 - Accuracy: 0.1408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3404 | 1.0 | 435 | 0.5913 | 0.1408 | | 0.3027 | 2.0 | 870 | 0.5985 | 0.1127 | | 0.2935 | 3.0 | 1305 | 0.6351 | 0.1127 | | 0.2884 | 4.0 | 1740 | 0.6013 | 0.0986 | | 0.2838 | 5.0 | 2175 | 0.6154 | 0.0986 | | 0.2788 | 6.0 | 2610 | 0.6608 | 0.0845 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
eshwarprasadS/ppo-Huggy
eshwarprasadS
2023-02-07T07:27:38Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-02-07T07:27:31Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: eshwarprasadS/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lucataco/pokemon-lora
lucataco
2023-02-07T06:59:13Z
4
2
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-02-06T23:04:35Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/lucataco/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_stsb_128
gokuls
2023-02-07T06:56:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-07T00:30:23Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_stsb_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.15823601400463258 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_stsb_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 1.4602 - Pearson: 0.1596 - Spearmanr: 0.1582 - Combined Score: 0.1589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------:|:--------------:| | 0.5444 | 1.0 | 2518 | 1.4965 | 0.1589 | 0.1763 | 0.1676 | | 0.3254 | 2.0 | 5036 | 1.5276 | 0.1502 | 0.1674 | 0.1588 | | 0.2847 | 3.0 | 7554 | 1.5430 | 0.1587 | 0.1680 | 0.1634 | | 0.2376 | 4.0 | 10072 | 1.6906 | 0.1669 | 0.1786 | 0.1728 | | 0.1741 | 5.0 | 12590 | 1.4788 | 0.1662 | 0.1725 | 0.1694 | | 0.1315 | 6.0 | 15108 | 1.5662 | 0.1640 | 0.1700 | 0.1670 | | 0.1055 | 7.0 | 17626 | 1.5100 | 0.1663 | 0.1698 | 0.1680 | | 0.0879 | 8.0 | 20144 | 1.4602 | 0.1596 | 0.1582 | 0.1589 | | 0.0739 | 9.0 | 22662 | 1.6612 | 0.1584 | 0.1621 | 0.1603 | | 0.0632 | 10.0 | 25180 | 1.5825 | 0.1489 | 0.1547 | 0.1518 | | 0.0548 | 11.0 | 27698 | 1.5946 | 0.1421 | 0.1461 | 0.1441 | | 0.0473 | 12.0 | 30216 | 1.6515 | 0.1526 | 0.1548 | 0.1537 | | 0.0415 | 13.0 | 32734 | 1.6544 | 0.1506 | 0.1478 | 0.1492 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
BruceLin/whisper-small-Chinese-HK
BruceLin
2023-02-07T06:48:48Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-05T05:31:37Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
pfunk/Pong-v4-DQPN_p10_pt0.1-seed1
pfunk
2023-02-07T06:47:49Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T06:47:29Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 5.90 +/- 4.99 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p10_pt0.1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p10_pt0.1]" python -m cleanrl_utils.enjoy --exp-name DQPN_p10_pt0.1 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_pt0.1-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_pt0.1-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p10_pt0.1-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p10_pt0.1 --start-policy-f 10000 --end-policy-f 10000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 10000, 'env_id': 'Pong-v4', 'evaluation_fraction': 1.0, 'exp_name': 'DQPN_p10_pt0.1', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 0.1, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 10000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
LowGI/STT_Model_9
LowGI
2023-02-07T06:43:58Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-07T03:02:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: STT_Model_9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # STT_Model_9 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2506 - Wer: 0.1718 ## Model description More information needed ## Intended uses & limitations More information needed ## Dataset info - Name: LJSpeech - Source: https://www.kaggle.com/datasets/mathurinache/the-lj-speech-dataset - Total audios (in Google Drive): 1420 - Total transcripts (in Google Drive): 13100 - No. of rows selected: 500 - Train-test ratio: 70:30 - No. of training set: 350 - No. of testing set: 150 ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 4.55 | 200 | 2.9217 | 0.9846 | | No log | 9.09 | 400 | 1.2293 | 0.7093 | | 2.3111 | 13.64 | 600 | 0.3885 | 0.3602 | | 2.3111 | 18.18 | 800 | 0.3123 | 0.3097 | | 0.2471 | 22.73 | 1000 | 0.3094 | 0.2737 | | 0.2471 | 27.27 | 1200 | 0.3007 | 0.2537 | | 0.2471 | 31.82 | 1400 | 0.2650 | 0.2008 | | 0.0853 | 36.36 | 1600 | 0.2599 | 0.1884 | | 0.0853 | 40.91 | 1800 | 0.2462 | 0.1734 | | 0.0344 | 45.45 | 2000 | 0.2663 | 0.1730 | | 0.0344 | 50.0 | 2200 | 0.2506 | 0.1718 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
CoreyMorris/poca-SoccerTwos-football-is-life
CoreyMorris
2023-02-07T05:35:01Z
34
1
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-07T05:34:53Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: CoreyMorris/poca-SoccerTwos-football-is-life 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sayakpaul/vit-base-patch16-224-in21k-finetuned-lora-food101
sayakpaul
2023-02-07T05:27:14Z
49
2
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-07T02:43:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-lora-food101 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.96 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-lora-food101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.1448 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 9 | 0.5069 | 0.896 | | 2.1627 | 2.0 | 18 | 0.1891 | 0.946 | | 0.3451 | 3.0 | 27 | 0.1448 | 0.96 | | 0.2116 | 4.0 | 36 | 0.1509 | 0.958 | | 0.1711 | 5.0 | 45 | 0.1498 | 0.958 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
ernie-ai/document-language-class-ar-en-zh
ernie-ai
2023-02-07T05:19:39Z
22
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-07T05:19:28Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: document-language-class-ar-en-zh results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8111110925674438 --- # document-language-class-ar-en-zh Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### abstract art lines ![abstract art lines](images/abstract_art_lines.jpg) #### arabic document ![arabic document](images/arabic_document.jpg) #### chinese document ![chinese document](images/chinese_document.jpg) #### english document ![english document](images/english_document.jpg)