modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 12:27:51
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
520 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 12:25:52
card
stringlengths
11
1.01M
paulonasc7/Taxi-v3
paulonasc7
2023-11-08T21:54:32Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T21:54:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="paulonasc7/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bartowski/opus-v0-7b-exl2
bartowski
2023-11-08T21:51:15Z
3
1
null
[ "text-generation", "en", "region:us" ]
text-generation
2023-11-08T20:24:54Z
--- language: - en pipeline_tag: text-generation quantized_by: bartowski --- ## Exllama v2 Quantizations of opus-v0-7b Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.7">turboderp's ExLlamaV2 v0.0.7</a> for quantization. Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Conversion was done using wikitext-103-raw-v1-test.parquet as calibration dataset. Original model: https://huggingface.co/dreamgen/opus-v0-7b <a href="https://huggingface.co/bartowski/opus-v0-7b-exl2/tree/4.0">4.0 bits per weight</a> <a href="https://huggingface.co/bartowski/opus-v0-7b-exl2/tree/6.0">6.0 bits per weight</a> <a href="https://huggingface.co/bartowski/opus-v0-7b-exl2/tree/8.0">8.0 bits per weight</a> ## Download instructions With git: ```shell git clone --single-branch --branch 4.0 https://huggingface.co/bartowski/opus-v0-7b-exl2 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `opus-v0-7b-exl2`: ```shell mkdir opus-v0-7b-exl2 huggingface-cli download bartowski/opus-v0-7b-exl2 --local-dir opus-v0-7b-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir opus-v0-7b-exl2 huggingface-cli download bartowski/opus-v0-7b-exl2 --revision 4.0 --local-dir opus-v0-7b-exl2 --local-dir-use-symlinks False ```
paulonasc7/q-FrozenLake-v1-4x4-noSlippery
paulonasc7
2023-11-08T21:36:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T21:36:15Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="paulonasc7/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
judy93536/distilroberta-base-reuters-bloomberg-ep30-ep20
judy93536
2023-11-08T21:34:00Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:judy93536/distilroberta-newsapi121k", "base_model:finetune:judy93536/distilroberta-newsapi121k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-08T13:39:02Z
--- license: apache-2.0 base_model: judy93536/distilroberta-base-reuters-bloomberg tags: - generated_from_trainer model-index: - name: distilroberta-base-reuters-bloomberg-ep30-ep20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-reuters-bloomberg-ep30-ep20 This model is a fine-tuned version of [judy93536/distilroberta-base-reuters-bloomberg](https://huggingface.co/judy93536/distilroberta-base-reuters-bloomberg) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.2115e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.3775 | 1.0 | 13905 | 1.3298 | | 1.4586 | 2.0 | 27810 | 1.4049 | | 1.5213 | 3.0 | 41715 | 1.4486 | | 1.5175 | 4.0 | 55620 | 1.4431 | | 1.5007 | 5.0 | 69525 | 1.4346 | | 1.4875 | 6.0 | 83430 | 1.4237 | | 1.4695 | 7.0 | 97335 | 1.4145 | | 1.4625 | 8.0 | 111240 | 1.4062 | | 1.4343 | 9.0 | 125145 | 1.3892 | | 1.4276 | 10.0 | 139050 | 1.3822 | | 1.4147 | 11.0 | 152955 | 1.3658 | | 1.3914 | 12.0 | 166860 | 1.3549 | | 1.3774 | 13.0 | 180765 | 1.3425 | | 1.3691 | 14.0 | 194670 | 1.3323 | | 1.3523 | 15.0 | 208575 | 1.3193 | | 1.3354 | 16.0 | 222480 | 1.3098 | | 1.3221 | 17.0 | 236385 | 1.2990 | | 1.3083 | 18.0 | 250290 | 1.2885 | | 1.3052 | 19.0 | 264195 | 1.2830 | | 1.2818 | 20.0 | 278100 | 1.2793 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
ArtiKitten/ppo-Huggy
ArtiKitten
2023-11-08T21:22:27Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-11-08T21:22:16Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ArtiKitten/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
oraul/pneumonia_SD_1
oraul
2023-11-08T21:08:20Z
2
2
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-11-08T18:40:30Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of pneumonia disease tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
MayIBorn/mrpc_qlora-llama-7b-init-svd-A_from_back
MayIBorn
2023-11-08T20:58:33Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "region:us" ]
null
2023-11-08T20:58:27Z
--- library_name: peft base_model: huggyllama/llama-7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
lmqg/mt5-small-koquad-qg-trimmed-50000
lmqg
2023-11-08T20:44:31Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-08T20:30:38Z
# Vocabulary Trimmed [lmqg/mt5-small-koquad-qg](https://huggingface.co/lmqg/mt5-small-koquad-qg): `lmqg/mt5-small-koquad-qg-trimmed-50000` This model is a trimmed version of [lmqg/mt5-small-koquad-qg](https://huggingface.co/lmqg/mt5-small-koquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-koquad-qg | lmqg/mt5-small-koquad-qg-trimmed-50000 | |:---------------------------|:---------------------------|:-----------------------------------------| | parameter_size_full | 300,165,504 | 95,264,128 | | parameter_size_embedding | 256,103,424 | 51,202,048 | | vocab_size | 250,101 | 50,002 | | compression_rate_full | 100.0 | 31.74 | | compression_rate_embedding | 100.0 | 19.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 50000 | 2 |
waldie/Yi-34B-GiftedConvo-merged-4bpw-h6-exl2
waldie
2023-11-08T20:44:25Z
8
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "dataset:NobodyExistsOnTheInternet/GiftedConvoBeforeEcons", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-08T19:53:59Z
--- license: mit datasets: - NobodyExistsOnTheInternet/GiftedConvoBeforeEcons --- Trained on over 20k instruct generated all by gpt-4 or humans Dataset features: 1000 long evolved conversations based off LIMA Subsection of correct PRM800k data Subsection of CamelAI's Physics and Chemistry data The model is trained with Qlora as well as Axolotl.
VanoInvestigations/bertin-gpt-j-6B-es-finetuned-BOE-summary-LoRA-8bit
VanoInvestigations
2023-11-08T20:27:18Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bertin-project/bertin-gpt-j-6B", "base_model:adapter:bertin-project/bertin-gpt-j-6B", "region:us" ]
null
2023-11-08T20:26:22Z
--- library_name: peft base_model: bertin-project/bertin-gpt-j-6B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.7.0.dev0
HeitorMatt/bert-finetuned-ner
HeitorMatt
2023-11-08T20:27:02Z
4
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-11-08T15:02:00Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9291714709273596 - name: Recall type: recall value: 0.9493436553349041 - name: F1 type: f1 value: 0.9391492549737784 - name: Accuracy type: accuracy value: 0.9860923058809677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Precision: 0.9292 - Recall: 0.9493 - F1: 0.9391 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0784 | 1.0 | 1756 | 0.0815 | 0.9080 | 0.9307 | 0.9192 | 0.9798 | | 0.0371 | 2.0 | 3512 | 0.0606 | 0.9287 | 0.9492 | 0.9388 | 0.9857 | | 0.0202 | 3.0 | 5268 | 0.0614 | 0.9292 | 0.9493 | 0.9391 | 0.9861 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
Laurent1/Mistral-7B-Instruct-v0.1-QLoRa-medical-QA
Laurent1
2023-11-08T20:25:01Z
18
1
peft
[ "peft", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1", "region:us" ]
null
2023-11-06T11:31:47Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.1 --- # Model Card for Mistral-7B-Instruct-v0.1-QLoRa-medical-QA ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/6489e1e3eb763749c663f40c/PUBFPpFxsrWRlkYzh7lwX.gif) <font color="FF0000" size="5"> <b> This is a QA model for answering medical questions<br /> </b></font> <br><b>Foundation Model : https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1 <br /> Dataset : https://huggingface.co/datasets/Laurent1/MedQuad-MedicalQnADataset_128tokens_max <br /></b> The model has been fine tuned with 2 x GPU T4 (RAM : 2 x 14.8GB) + CPU (RAM : 29GB). <br /> ## <b>Model Details</b> The model is based upon the foundation model : Mistral-7B-Instruct-v0.1.<br /> It has been tuned with Supervised Fine-tuning Trainer and PEFT LoRa.<br /> ### Librairies <ul> <li>bitsandbytes</li> <li>einops</li> <li>peft</li> <li>trl</li> <li>datasets</li> <li>transformers</li> <li>torch</li> </ul> ## <b>Bias, Risks, and Limitations</b> In order to reduce training duration, the model has been trained only with the first 5100 rows of the dataset.<br /> <font color="FF0000"> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.<br /> Generation of plausible yet incorrect factual information, termed hallucination, is an unsolved issue in large language models.<br /> </font> ## <b>Training Details</b> <ul> <li>per_device_train_batch_size = 1</li> <li>gradient_accumulation_steps = 16</li> <li>epoch = 5</li> <li>2 x GPU T4 (RAM : 14.8GB) + CPU (RAM : 29GB)</li> </ul> ### Notebook used for the training You can find it in the files and versions tab ### Training Data https://huggingface.co/datasets/Laurent1/MedQuad-MedicalQnADataset_128tokens_max #### Training Hyperparameters ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6489e1e3eb763749c663f40c/C6XTGVrn4D1Sj2kc9Dq2O.png) #### Times Training duration : 6287.4s
Laurent1/mpt-7b-instruct2-QLoRa-medical-QA
Laurent1
2023-11-08T20:22:35Z
1
0
adapter-transformers
[ "adapter-transformers", "medical", "dataset:Laurent1/MedQuad-MedicalQnADataset_128tokens_max", "license:apache-2.0", "region:us" ]
null
2023-11-04T07:29:40Z
--- license: apache-2.0 datasets: - Laurent1/MedQuad-MedicalQnADataset_128tokens_max library_name: adapter-transformers tags: - medical --- # Model Card for mpt-7b-instruct2-QLoRa-medical-QA ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/6489e1e3eb763749c663f40c/PUBFPpFxsrWRlkYzh7lwX.gif) <font color="FF0000" size="5"> <b> This is a QA model for answering medical questions<br /> </b></font> <br><b>Foundation Model : https://huggingface.co/ibm/mpt-7b-instruct2 <br /> Dataset : https://huggingface.co/datasets/Laurent1/MedQuad-MedicalQnADataset_128tokens_max <br /></b> The model has been fine tuned with 2 x GPU T4 (RAM : 2 x 14.8GB) + CPU (RAM : 29GB). <br /> ## <b>Model Details</b> The model is based upon the foundation model : ibm/mpt-7b-instruct2 (Apache 2.0 License).<br /> It has been tuned with Supervised Fine-tuning Trainer and PEFT LoRa.<br /> ### Librairies <ul> <li>bitsandbytes</li> <li>einops</li> <li>peft</li> <li>trl</li> <li>datasets</li> <li>transformers</li> <li>torch</li> </ul> ### Notebook used for the training You can find it in the files and versions tab or : https://colab.research.google.com/drive/14nxSP5UuJcnIJtEERyk5nehBL3W03FR3?hl=fr => Improvements can be achieved by increasing the number of steps and using the full dataset. <br /> ### Direct Use ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6489e1e3eb763749c663f40c/b1Vboznz82PwtN4rLNqGC.png) ## <b>Bias, Risks, and Limitations</b> In order to reduce training duration, the model has been trained only with the first 5100 rows of the dataset.<br /> <font color="FF0000"> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.<br /> Generation of plausible yet incorrect factual information, termed hallucination, is an unsolved issue in large language models.<br /> </font> ## <b>Training Details</b> <ul> <li>per_device_train_batch_size = 1</li> <li>gradient_accumulation_steps = 16</li> <li>epoch = 5</li> <li>2 x GPU T4 (RAM : 14.8GB) + CPU (RAM : 29GB)</li> </ul> ### Training Data https://huggingface.co/datasets/Laurent1/MedQuad-MedicalQnADataset_128tokens_max #### Training Hyperparameters ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6489e1e3eb763749c663f40c/C6XTGVrn4D1Sj2kc9Dq2O.png) #### Times Training duration : 6287.4s ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6489e1e3eb763749c663f40c/WTQ6v-ruMLF7IevXZDham.png)
LazzeKappa/L04
LazzeKappa
2023-11-08T20:14:46Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-11-02T09:57:21Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: L04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # L04 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3716 | 1.0 | 71 | 0.3512 | | 0.3324 | 2.0 | 142 | 0.3387 | | 0.2808 | 3.0 | 213 | 0.3339 | | 0.2974 | 4.0 | 284 | 0.3320 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
lmqg/mt5-small-dequad-qg-ae-trimmed-50000
lmqg
2023-11-08T20:12:10Z
4
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-08T01:25:14Z
# Vocabulary Trimmed [lmqg/mt5-small-dequad-qg-ae](https://huggingface.co/lmqg/mt5-small-dequad-qg-ae): `lmqg/mt5-small-dequad-qg-ae-trimmed-50000` This model is a trimmed version of [lmqg/mt5-small-dequad-qg-ae](https://huggingface.co/lmqg/mt5-small-dequad-qg-ae) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-dequad-qg-ae | lmqg/mt5-small-dequad-qg-ae-trimmed-50000 | |:---------------------------|:------------------------------|:--------------------------------------------| | parameter_size_full | 300,165,504 | 95,264,128 | | parameter_size_embedding | 256,103,424 | 51,202,048 | | vocab_size | 250,101 | 50,002 | | compression_rate_full | 100.0 | 31.74 | | compression_rate_embedding | 100.0 | 19.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | de | vocabtrimmer/mc4_validation | text | de | validation | 50000 | 2 |
kwagh20ite/pneumonia
kwagh20ite
2023-11-08T20:09:59Z
5
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-11-08T18:22:59Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of pneumonia disease tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
kariver/detr-resnet-50_adafactor_finetuned_food-roboflow
kariver
2023-11-08T20:08:44Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-11-08T19:45:00Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: detr-resnet-50_adafactor_finetuned_food-roboflow results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_adafactor_finetuned_food-roboflow This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.5062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.4038 | 1.52 | 50 | 5.7574 | | 5.3942 | 3.03 | 100 | 4.7285 | | 4.5081 | 4.55 | 150 | 3.8652 | | 3.6495 | 6.06 | 200 | 3.0781 | | 3.2792 | 7.58 | 250 | 2.8378 | | 3.0286 | 9.09 | 300 | 2.6613 | | 2.948 | 10.61 | 350 | 2.6172 | | 2.8826 | 12.12 | 400 | 2.5483 | | 2.7976 | 13.64 | 450 | 2.5062 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Youssef11/layoutlmv3-finetuned-cord_100
Youssef11
2023-11-08T19:53:03Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "base_model:microsoft/layoutlmv3-base", "base_model:finetune:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-11-08T18:30:41Z
--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9451851851851852 - name: Recall type: recall value: 0.9550898203592815 - name: F1 type: f1 value: 0.9501116902457185 - name: Accuracy type: accuracy value: 0.9596774193548387 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2033 - Precision: 0.9452 - Recall: 0.9551 - F1: 0.9501 - Accuracy: 0.9597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 0.9547 | 0.7300 | 0.7912 | 0.7593 | 0.8065 | | 1.2994 | 3.12 | 500 | 0.5497 | 0.8410 | 0.8630 | 0.8519 | 0.8714 | | 1.2994 | 4.69 | 750 | 0.3688 | 0.8846 | 0.9064 | 0.8954 | 0.9189 | | 0.3917 | 6.25 | 1000 | 0.3156 | 0.9152 | 0.9289 | 0.9220 | 0.9359 | | 0.3917 | 7.81 | 1250 | 0.2468 | 0.9326 | 0.9424 | 0.9375 | 0.9457 | | 0.2136 | 9.38 | 1500 | 0.2290 | 0.9299 | 0.9431 | 0.9365 | 0.9499 | | 0.2136 | 10.94 | 1750 | 0.2101 | 0.9429 | 0.9513 | 0.9471 | 0.9571 | | 0.1388 | 12.5 | 2000 | 0.2090 | 0.9380 | 0.9513 | 0.9446 | 0.9571 | | 0.1388 | 14.06 | 2250 | 0.2049 | 0.9423 | 0.9528 | 0.9475 | 0.9580 | | 0.111 | 15.62 | 2500 | 0.2033 | 0.9452 | 0.9551 | 0.9501 | 0.9597 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
fhieni/Vietnamese_VITS
fhieni
2023-11-08T19:52:17Z
0
1
null
[ "region:us" ]
null
2023-11-08T19:47:19Z
# Vietnamese Voice Clone ## Data Preparation ***If you use custom data*** - Config your custom data follow this format: - Create folder: DATA - Subfolder: DATA/wavs -> which contain <audio_id>.wav files inside - DATA/train.txt and DATA/val.txt: with format each line follow format: <audio_id><space>transcript - If you dont have transcript, please check wav2vec inference script ***If you try with VIVOS*** ``` wget http://ailab.hcmus.edu.vn/assets/vivos.tar.gz tar xzf vivos.tar.gz ``` ``` mkdir -p DATA/wavs scp -v vivos/*/waves/*/*.wav DATA/wavs ``` ``` cat vivos/test/prompts.txt > DATA/val.txt cat vivos/test/prompts.txt > DATA/train.txt cat vivos/train/prompts.txt >> DATA/train.txt ``` ## Install environment ``` conda create -y -n viclone python=3.8 conda activate viclone conda install cudatoolkit=11.3.1 cudnn=8.2.1 ``` ``` python -m pip install torch==1.12.0+cu116 torchvision==0.13.0+cu116 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu116 python -m pip install -r requirements.txt ``` ``` cd vits/monotonic_align mkdir monotonic_align python setup.py build_ext --inplace ``` ## Process data ``` python Step1_data_processing.py ``` ## Extract feature ``` python Step2_extract_feature.py ``` ## Train model ``` python train_ms.py -c configs/vivos.json -m vivos ``` ## Demo ```python app.py``` Then check port: http://127.0.0.1:7860/
BramVanroy/falcon-40b-ft-alpaca-dolly-dutch
BramVanroy
2023-11-08T19:43:19Z
25
4
transformers
[ "transformers", "safetensors", "falcon", "text-generation", "nl", "dataset:BramVanroy/alpaca-dolly-dutch", "base_model:tiiuae/falcon-40b", "base_model:finetune:tiiuae/falcon-40b", "doi:10.57967/hf/0864", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-07-06T10:22:49Z
--- language: - nl license: cc-by-nc-4.0 datasets: - BramVanroy/alpaca-dolly-dutch inference: false base_model: tiiuae/falcon-40b model-index: - name: falcon-7b-ft-alpaca-cleaned-dutch results: [] --- # falcon-40b-ft-alpaca-dolly-dutch ## Model description This model is a fine-tuned version of [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b) on the [BramVanroy/alpaca-dolly-dutch](https://huggingface.co/datasets/BramVanroy/alpaca-dolly-dutch) dataset. See the original [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b) for more information, intended use, and biases. ## Intended uses & limitations This model is intended as a (poor) baseline for Dutch generative LLMs. It by no means aims to provide SOTA performance and is specifically intended for research purposes and experimentation. ## Example usage In the example below, you see a query `Wat hoort er niet in dit rijtje thuis? Leg ook uit waarom.` ("What does not belong in the list? Explain why.") with given input "aap, muis, auto, vogel" ("monkey, mouse, car, bird"). The model "replies" (cut off due to `max_new_tokens`): > "Auto" hoort niet in het rijtje, omdat het geen levend wezen is. > Een auto is een voertuig dat wordt aangedreven door een motor en wordt gebruikt om mensen en goederen van de ene plaats naar de andere te verplaatsen. Het is een machine gemaakt door mensen, in tegenstelling tot levende wezens zoals een aap, een muis of een vogel. > Auto's zijn gemaakt van metalen, plastic en andere materialen, terwijl levende organismen bestaan uit cellen en weefsels. Auto's ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer def format_alpaca_sample(instruction: str, input_text: str): if len(input_text) >= 2: text = f'''Hieronder staat een instructie `Instruction` die een taak beschrijft, gecombineerd met een invoer `Input` die verdere context biedt. Schrijf een antwoord na `Response:` dat het verzoek op de juiste manier voltooit of beantwoordt. ### Instruction: {instruction} ### Input: {input_text} ### Response: ''' else: text = f'''Hieronder staat een instructie `Instruction` die een taak beschrijft. Schrijf een antwoord na `Response:` dat het verzoek op de juiste manier voltooit of beantwoordt. ### Instruction: {instruction} ### Response: ''' return text @torch.no_grad() def generate(model, tokenizer, instruction: str, input_text: str = ""): input_prompt = format_alpaca_sample(instruction, input_text) inputs = tokenizer([input_prompt], return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"].to(model.device), attention_mask=inputs["attention_mask"].to(model.device), max_new_tokens=128, temperature=0.4, num_beams=3, no_repeat_ngram_size=4, length_penalty=0.9, early_stopping=True, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ).detach().to("cpu")[0] return tokenizer.decode(generated_ids) model_name = "BramVanroy/falcon-40b-ft-alpaca-dolly-dutch" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit=True, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto" ) model.eval() instruction = "Wat hoort er niet in dit rijtje thuis? Leg ook uit waarom." input_text = "aap, muis, auto, vogel" generation = generate(model, tokenizer, instruction, input_text) ``` ## Citation If you want to refer to this model, you can cite the following: Vanroy, B. (2023). Falcon 40B Finetuned on Dutch Translations of Alpca and Dolly. https://doi.org/10.57967/hf/0864 ```bibtext @misc{vanroy2023falcon40b_instruct_dutch, author = { Vanroy, Bram }, title = { Falcon 40B Finetuned on Dutch Translations of Alpaca and Dolly}, year = 2023, url = { https://huggingface.co/BramVanroy/falcon-40b-ft-alpaca-dolly-dutch }, doi = { 10.57967/hf/0864 }, publisher = { Hugging Face } } ``` ## Training and evaluation data Trained on the synthetic [BramVanroy/alpaca-dolly-dutch](https://huggingface.co/datasets/BramVanroy/alpaca-dolly-dutch) instruction dataset. Therefore, commercial use of this model is forbidden. The model is intended for research purposes only. - [Dolly 15k](https://huggingface.co/datasets/BramVanroy/dolly-15k-dutch) (translated to Dutch) - [Alpaca cleaned](https://huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) (translated to Dutch) ## Training procedure Trained with LoRA and merged before upload. The adapters are in the `adapters` branch. Prompt template (where the input is optional and can be left out): ``` Hieronder staat een instructie `Instruction` die een taak beschrijft, gecombineerd met een invoer `Input` die verdere context biedt. Schrijf een antwoord na `Response:` dat het verzoek op de juiste manier voltooit of beantwoordt. ### Instruction: {instruction} ### Input: {input} ### Response: {response} ``` The loss was only calculated on the response prediction. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - num_epochs: 5 (but with early stopping) ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1656 | 0.16 | 20 | 1.0107 | | 0.9778 | 0.32 | 40 | 0.9711 | | 1.0424 | 0.49 | 60 | 0.9512 | | 0.9858 | 0.65 | 80 | 0.9415 | | 0.9457 | 0.81 | 100 | 0.9341 | | 1.0584 | 0.97 | 120 | 0.9277 | | 1.0284 | 1.14 | 140 | 0.9372 | | 0.8781 | 1.3 | 160 | 0.9295 | | 0.9531 | 1.46 | 180 | 0.9267 | | 0.9496 | 1.62 | 200 | 0.9226 | | 0.9178 | 1.78 | 220 | 0.9192 | | 1.0763 | 1.95 | 240 | 0.9154 | | 0.9561 | 2.11 | 260 | 0.9423 | | 0.7991 | 2.27 | 280 | 0.9368 | | 0.8503 | 2.43 | 300 | 0.9363 | | 0.8749 | 2.6 | 320 | 0.9299 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Pinguin/Vanellope
Pinguin
2023-11-08T19:31:16Z
23
5
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:cc", "region:us" ]
text-to-image
2023-11-08T19:30:47Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' parameters: negative_prompt: '-' output: url: images/image - 2023-09-26T161247.587.png - text: '-' parameters: negative_prompt: '-' output: url: images/image - 2023-09-26T152137.826.png - text: '-' parameters: negative_prompt: '-' output: url: images/image - 2023-09-26T145205.906.png - text: '-' parameters: negative_prompt: '-' output: url: images/image - 2023-09-26T143938.981.png - text: '-' parameters: negative_prompt: '-' output: url: images/image - 2023-09-26T143934.329.png - text: '-' parameters: negative_prompt: '-' output: url: images/image - 2023-09-26T143722.444.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Vanellope von Schweetz license: cc --- # Vanellope Von <Gallery /> ## Model description Vanellope von Schweetz from Disney. ## Trigger words You should use `Vanellope von Schweetz` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Pinguin/Vanellope/tree/main) them in the Files & versions tab.
ravisv73/mistral_7b-instruct-knowthyself
ravisv73
2023-11-08T19:28:02Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "endpoints_compatible", "region:us" ]
null
2023-11-08T17:03:23Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0
bartowski/LLaMA2-13B-TiefighterLR-exl2
bartowski
2023-11-08T19:22:11Z
0
0
null
[ "license:llama2", "region:us" ]
null
2023-11-08T06:25:18Z
--- license: llama2 quantized_by: bartowski --- ## Exllama v2 Quantizations of LLaMA2-13B-TiefighterLR Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.7">turboderp's ExLlamaV2 v0.0.7</a> for quantization. Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Conversion was done using wikitext-103-raw-v1-test.parquet as calibration dataset. Original model: https://huggingface.co/KoboldAI/LLaMA2-13B-TiefighterLR <a href="https://huggingface.co/bartowski/LLaMA2-13B-TiefighterLR-exl2/tree/3.75">3.75 bits per weight</a> <a href="https://huggingface.co/bartowski/LLaMA2-13B-TiefighterLR-exl2/tree/4.0">4.0 bits per weight</a> <a href="https://huggingface.co/bartowski/LLaMA2-13B-TiefighterLR-exl2/tree/4.25">4.25 bits per weight</a> <a href="https://huggingface.co/bartowski/LLaMA2-13B-TiefighterLR-exl2/tree/5.0">5.0 bits per weight</a> <a href="https://huggingface.co/bartowski/LLaMA2-13B-TiefighterLR-exl2/tree/6.0">6.0 bits per weight</a> <a href="https://huggingface.co/bartowski/LLaMA2-13B-TiefighterLR-exl2/tree/7.0">7.0 bits per weight</a> <a href="https://huggingface.co/bartowski/LLaMA2-13B-TiefighterLR-exl2/tree/8.0">8.0 bits per weight</a> ## Download instructions With git: ```shell git clone --single-branch --branch 4.0 https://huggingface.co/bartowski/LLaMA2-13B-TiefighterLR-exl2 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `LLaMA2-13B-TiefighterLR-exl2`: ```shell mkdir LLaMA2-13B-TiefighterLR-exl2 huggingface-cli download bartowski/LLaMA2-13B-TiefighterLR-exl2 --local-dir LLaMA2-13B-TiefighterLR-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir LLaMA2-13B-TiefighterLR-exl2 huggingface-cli download bartowski/LLaMA2-13B-TiefighterLR-exl2 --revision 4.0 --local-dir LLaMA2-13B-TiefighterLR-exl2 --local-dir-use-symlinks False ```
speechGenius/whisper-tiny-dv
speechGenius
2023-11-08T19:20:14Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_13_0", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-11-06T22:22:35Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - common_voice_13_0 model-index: - name: whisper-tiny-dv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-dv This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_13_0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:--------:| | No log | 0.71 | 5 | 3.2382 | 178.0488 | 176.0976 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hiba66/my-pet-dog-xzg
hiba66
2023-11-08T19:11:50Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-08T19:09:05Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-xzg Dreambooth model trained by hiba66 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: KMCT-158 Sample pictures of this concept: ![0](https://huggingface.co/hiba66/my-pet-dog-xzg/resolve/main/sample_images/xzg(1).jpg)
mrmegatelo/q-FrozenLake-v1-4x4-noSlippery
mrmegatelo
2023-11-08T19:09:59Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T19:09:56Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mrmegatelo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hpandana/rl_course_vizdoom_health_gathering_supreme
hpandana
2023-11-08T18:58:09Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T17:47:40Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.26 +/- 5.54 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r hpandana/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
toddwilson147/ppo-Huggy
toddwilson147
2023-11-08T18:49:02Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-11-08T18:48:57Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: toddwilson147/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lmqg/mt5-base-jaquad-qg-ae-trimmed-50000
lmqg
2023-11-08T18:32:36Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-08T15:17:36Z
# Vocabulary Trimmed [lmqg/mt5-base-jaquad-qg-ae](https://huggingface.co/lmqg/mt5-base-jaquad-qg-ae): `lmqg/mt5-base-jaquad-qg-ae-trimmed-50000` This model is a trimmed version of [lmqg/mt5-base-jaquad-qg-ae](https://huggingface.co/lmqg/mt5-base-jaquad-qg-ae) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-base-jaquad-qg-ae | lmqg/mt5-base-jaquad-qg-ae-trimmed-50000 | |:---------------------------|:-----------------------------|:-------------------------------------------| | parameter_size_full | 582,384,384 | 275,032,320 | | parameter_size_embedding | 384,155,136 | 76,803,072 | | vocab_size | 250,101 | 50,002 | | compression_rate_full | 100.0 | 47.23 | | compression_rate_embedding | 100.0 | 19.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 50000 | 2 |
maxwell-pi/effort
maxwell-pi
2023-11-08T18:27:22Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-11-08T18:27:18Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0
Oleg1963/55
Oleg1963
2023-11-08T18:07:14Z
0
0
adapter-transformers
[ "adapter-transformers", "art", "ru", "dataset:fka/awesome-chatgpt-prompts", "license:apache-2.0", "region:us" ]
null
2023-11-08T18:04:22Z
--- license: apache-2.0 datasets: - fka/awesome-chatgpt-prompts language: - ru metrics: - accuracy library_name: adapter-transformers tags: - art ---
elemosynov/ppo-SnowballTarget
elemosynov
2023-11-08T17:58:17Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-11-08T16:08:11Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: elemosynov/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
HarrisShen/llama2-compressed-notes-impression-50-50-epoch-4
HarrisShen
2023-11-08T17:54:16Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-11-08T17:54:14Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0
lmqg/mt5-small-esquad-qg-ae-trimmed-50000
lmqg
2023-11-08T17:29:58Z
4
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-08T01:30:41Z
# Vocabulary Trimmed [lmqg/mt5-small-esquad-qg-ae](https://huggingface.co/lmqg/mt5-small-esquad-qg-ae): `lmqg/mt5-small-esquad-qg-ae-trimmed-50000` This model is a trimmed version of [lmqg/mt5-small-esquad-qg-ae](https://huggingface.co/lmqg/mt5-small-esquad-qg-ae) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-esquad-qg-ae | lmqg/mt5-small-esquad-qg-ae-trimmed-50000 | |:---------------------------|:------------------------------|:--------------------------------------------| | parameter_size_full | 300,165,504 | 95,264,128 | | parameter_size_embedding | 256,103,424 | 51,202,048 | | vocab_size | 250,101 | 50,002 | | compression_rate_full | 100.0 | 31.74 | | compression_rate_embedding | 100.0 | 19.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 50000 | 2 |
lukasdrg/clinical_longformer_same_tokens_1epochs_50k
lukasdrg
2023-11-08T17:27:01Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "longformer", "fill-mask", "generated_from_trainer", "base_model:lukasdrg/clinical_longformer_same_tokens_1epochs", "base_model:finetune:lukasdrg/clinical_longformer_same_tokens_1epochs", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-08T14:16:37Z
--- base_model: lukasdrg/clinical_longformer_same_tokens_1epochs tags: - generated_from_trainer model-index: - name: clinical_longformer_same_tokens_1epochs_50k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical_longformer_same_tokens_1epochs_50k This model is a fine-tuned version of [lukasdrg/clinical_longformer_same_tokens_1epochs](https://huggingface.co/lukasdrg/clinical_longformer_same_tokens_1epochs) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9394 | 0.18 | 65 | 1.7768 | | 2.0258 | 0.37 | 130 | 1.7716 | | 2.0671 | 0.55 | 195 | 1.7761 | | 2.064 | 0.74 | 260 | 1.7355 | | 1.8052 | 0.92 | 325 | 1.7273 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
lmqg/mt5-small-itquad-qg-ae-trimmed-50000
lmqg
2023-11-08T17:26:29Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-08T05:51:56Z
# Vocabulary Trimmed [lmqg/mt5-small-itquad-qg-ae](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae): `lmqg/mt5-small-itquad-qg-ae-trimmed-50000` This model is a trimmed version of [lmqg/mt5-small-itquad-qg-ae](https://huggingface.co/lmqg/mt5-small-itquad-qg-ae) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-itquad-qg-ae | lmqg/mt5-small-itquad-qg-ae-trimmed-50000 | |:---------------------------|:------------------------------|:--------------------------------------------| | parameter_size_full | 300,165,504 | 95,264,128 | | parameter_size_embedding | 256,103,424 | 51,202,048 | | vocab_size | 250,101 | 50,002 | | compression_rate_full | 100.0 | 31.74 | | compression_rate_embedding | 100.0 | 19.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 50000 | 2 |
waldie/Trion-M-7b-8bpw-h8-exl2
waldie
2023-11-08T17:26:05Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "Mistral", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-08T16:58:36Z
--- license: apache-2.0 language: - en tags: - Mistral --- This is a gradient blockmerge (0.8,0.2) of two Mistral models. The logic model is a SLERP merge of https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B and https://huggingface.co/openchat/openchat_3.5 The prose model is a SLERP merge of https://huggingface.co/NousResearch/Nous-Capybara-7B-V1.9 and https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
llama-lang-adapt/llama-7b-wechsel-yo
llama-lang-adapt
2023-11-08T17:17:32Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-08T15:54:58Z
Base model: https://huggingface.co/meta-llama/Llama-2-7b-hf Embedding layer has been extended to account for added Yoruba vocabulary i.e. 32000 -> 46721. Embeddings initialized with Wechsel strategy.
crystal-technologies/CRYSTAL-R1
crystal-technologies
2023-11-08T17:16:58Z
0
0
null
[ "region:us" ]
null
2023-10-25T20:18:30Z
Run crystal.py Train LLM `pip install -e .` inside finetuning folder Install Speaker Identification `pip install .` and `pip install -r requirements/requirements_lightning.txt requirements/requirements_asr.txt`
Aioreus12/q-FrozenLake-v1-4x4-noSlippery
Aioreus12
2023-11-08T17:02:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T17:02:24Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="Aioreus12/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
nipet/q-FrozenLake-v1-4x4-noSlippery
nipet
2023-11-08T17:00:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T17:00:03Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="nipet/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hpandana/sb3ppo-LunarLander-v2
hpandana
2023-11-08T16:59:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T16:59:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.68 +/- 25.22 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lmqg/mt5-base-frquad-qg-ae-trimmed-50000
lmqg
2023-11-08T16:46:15Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-08T10:11:37Z
# Vocabulary Trimmed [lmqg/mt5-base-frquad-qg-ae](https://huggingface.co/lmqg/mt5-base-frquad-qg-ae): `lmqg/mt5-base-frquad-qg-ae-trimmed-50000` This model is a trimmed version of [lmqg/mt5-base-frquad-qg-ae](https://huggingface.co/lmqg/mt5-base-frquad-qg-ae) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-base-frquad-qg-ae | lmqg/mt5-base-frquad-qg-ae-trimmed-50000 | |:---------------------------|:-----------------------------|:-------------------------------------------| | parameter_size_full | 582,384,384 | 275,032,320 | | parameter_size_embedding | 384,155,136 | 76,803,072 | | vocab_size | 250,101 | 50,002 | | compression_rate_full | 100.0 | 47.23 | | compression_rate_embedding | 100.0 | 19.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | fr | vocabtrimmer/mc4_validation | text | fr | validation | 50000 | 2 |
Nooney27/ppo-Huggy
Nooney27
2023-11-08T16:39:44Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-11-08T16:39:37Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Nooney27/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
IMSyPP/hate_speech_en
IMSyPP
2023-11-08T16:32:03Z
863
15
transformers
[ "transformers", "pytorch", "bert", "text-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- widget: - text: "My name is Mark and I live in London. I am a postgraduate student at Queen Mary University." language: - en license: mit --- # Hate Speech Classifier for Social Media Content in English Language A monolingual model for hate speech classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model. ## Please cite: Kralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetič, I., & Zollo, F. (2022, July). __Handling disagreement in hate speech modelling__. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-08974-9_54 ## Tokenizer During training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference. ## Model output The model classifies each input into one of four distinct classes: * 0 - acceptable * 1 - inappropriate * 2 - offensive * 3 - violent Details on data acquisition and labeling including the Annotation guidelines: http://imsypp.ijs.si/wp-content/uploads/2021/12/IMSyPP_D2.2_multilingual-dataset.pdf
isek-ai/SDPrompt-RetNet-300M
isek-ai
2023-11-08T16:23:36Z
18
14
transformers
[ "transformers", "pytorch", "safetensors", "retnet", "text-generation", "generated_from_trainer", "custom_code", "en", "dataset:Gustavosta/Stable-Diffusion-Prompts", "dataset:FredZhang7/anime-prompts-180K", "license:mit", "autotrain_compatible", "region:us" ]
text-generation
2023-11-08T15:26:28Z
--- tags: - generated_from_trainer - retnet model-index: - name: sdprompt-retnet-300m results: [] license: mit datasets: - Gustavosta/Stable-Diffusion-Prompts - FredZhang7/anime-prompts-180K language: - en library_name: transformers pipeline_tag: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SDPrompt-RetNet-300M This model is a RetNet model trained from scratch using https://github.com/syncdoth/RetNet. It achieves the following results on the evaluation set: - Loss: 0.3616 ## Usage ``` pip install transformers safetensors timm ``` ```py from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer MODEL_NAME = "isek-ai/SDPrompt-RetNet-300M" DEVICE = "cuda" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, trust_remote_code=True, ).to(DEVICE) streamer = TextStreamer(tokenizer) prompt = "<s>1girl" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) _ = model.generate( inputs["input_ids"], max_new_tokens=256, do_sample=True, top_p=0.9, top_k=20, temperature=0.9, streamer=streamer, ) # <s> 1girl, absurdres, animal ear fluff, animal ears, bangs, bare shoulders, black hair, blue archive, blunt bangs, blush, closed mouth, collarbone, commentary request, eyes visible through hair, green eyes, hair between eyes, halo, hand on own face, hand up, highres, jacket, kisaki blue archive, long hair, long sleeves, looking at viewer, open clothes, open jacket, shinonome asu, simple background, solo, track jacket, upper body, white background, white jacket</s> ``` ## Model description This model is trained with Stable Diffusion prompts and Danbooru tags to generate prompts for image generation models. ## Training data - [Gustavosta/Stable-Diffusion-Prompts](https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts) - [FredZhang7/anime-prompts-180K](https://huggingface.co/datasets/FredZhang7/anime-prompts-180K) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.6714 | 0.03 | 1000 | 2.5787 | | 2.1551 | 0.07 | 2000 | 2.3981 | | 2.1439 | 0.1 | 3000 | 2.1160 | | 1.8406 | 0.14 | 4000 | 1.9138 | | 1.7485 | 0.17 | 5000 | 1.7847 | | 1.6417 | 0.21 | 6000 | 1.7120 | | 1.6084 | 0.24 | 7000 | 1.6055 | | 1.4805 | 0.28 | 8000 | 1.5946 | | 1.5524 | 0.31 | 9000 | 1.5027 | | 1.4425 | 0.35 | 10000 | 1.4876 | | 1.4007 | 0.38 | 11000 | 1.4364 | | 1.4637 | 0.42 | 12000 | 1.3896 | | 1.3211 | 0.45 | 13000 | 1.3968 | | 1.3246 | 0.49 | 14000 | 1.3403 | | 1.3461 | 0.52 | 15000 | 1.3156 | | 1.2897 | 0.56 | 16000 | 1.2977 | | 1.2748 | 0.59 | 17000 | 1.2823 | | 1.2424 | 0.62 | 18000 | 1.2649 | | 1.348 | 0.66 | 19000 | 1.2134 | | 1.1797 | 0.69 | 20000 | 1.2030 | | 1.2116 | 0.73 | 21000 | 1.2033 | | 1.1702 | 0.76 | 22000 | 1.1453 | | 1.1027 | 0.8 | 23000 | 1.1597 | | 1.1932 | 0.83 | 24000 | 1.1506 | | 1.3669 | 0.87 | 25000 | 1.1428 | | 1.0705 | 0.9 | 26000 | 1.1239 | | 1.1474 | 0.94 | 27000 | 1.1239 | | 1.0879 | 0.97 | 28000 | 1.1168 | | 0.9879 | 1.01 | 29000 | 1.0848 | | 0.9928 | 1.04 | 30000 | 1.0953 | | 0.9095 | 1.08 | 31000 | 1.1043 | | 1.0423 | 1.11 | 32000 | 1.0823 | | 0.9478 | 1.15 | 33000 | 1.0840 | | 0.9979 | 1.18 | 34000 | 1.0387 | | 1.0316 | 1.22 | 35000 | 1.0282 | | 1.0531 | 1.25 | 36000 | 1.0369 | | 0.919 | 1.28 | 37000 | 1.0398 | | 1.0596 | 1.32 | 38000 | 1.0410 | | 0.9076 | 1.35 | 39000 | 0.9889 | | 0.9698 | 1.39 | 40000 | 1.0004 | | 0.9633 | 1.42 | 41000 | 1.0038 | | 0.9622 | 1.46 | 42000 | 0.9933 | | 0.9809 | 1.49 | 43000 | 0.9805 | | 0.9496 | 1.53 | 44000 | 0.9755 | | 0.9435 | 1.56 | 45000 | 0.9759 | | 0.9337 | 1.6 | 46000 | 0.9615 | | 0.8844 | 1.63 | 47000 | 0.9524 | | 0.9039 | 1.67 | 48000 | 0.9567 | | 0.905 | 1.7 | 49000 | 0.9430 | | 0.9491 | 1.74 | 50000 | 0.9205 | | 0.8464 | 1.77 | 51000 | 0.9109 | | 0.9384 | 1.81 | 52000 | 0.9056 | | 0.8121 | 1.84 | 53000 | 0.8969 | | 0.8381 | 1.88 | 54000 | 0.8869 | | 0.8171 | 1.91 | 55000 | 0.8946 | | 0.9024 | 1.94 | 56000 | 0.8993 | | 0.84 | 1.98 | 57000 | 0.9011 | | 0.6702 | 2.01 | 58000 | 0.8876 | | 0.6278 | 2.05 | 59000 | 0.8716 | | 0.6876 | 2.08 | 60000 | 0.8546 | | 0.6754 | 2.12 | 61000 | 0.8639 | | 0.6479 | 2.15 | 62000 | 0.8425 | | 0.698 | 2.19 | 63000 | 0.8533 | | 0.708 | 2.22 | 64000 | 0.8407 | | 0.7021 | 2.26 | 65000 | 0.8160 | | 0.5881 | 2.29 | 66000 | 0.8251 | | 0.6181 | 2.33 | 67000 | 0.8205 | | 0.6789 | 2.36 | 68000 | 0.8066 | | 0.6452 | 2.4 | 69000 | 0.8037 | | 0.6483 | 2.43 | 70000 | 0.7915 | | 0.5868 | 2.47 | 71000 | 0.7864 | | 0.6257 | 2.5 | 72000 | 0.7895 | | 0.6593 | 2.53 | 73000 | 0.7718 | | 0.5957 | 2.57 | 74000 | 0.7490 | | 0.6351 | 2.6 | 75000 | 0.7481 | | 0.699 | 2.64 | 76000 | 0.7628 | | 0.566 | 2.67 | 77000 | 0.7590 | | 0.5892 | 2.71 | 78000 | 0.7628 | | 0.6052 | 2.74 | 79000 | 0.7633 | | 0.6494 | 2.78 | 80000 | 0.7588 | | 0.5917 | 2.81 | 81000 | 0.7118 | | 0.508 | 2.85 | 82000 | 0.6857 | | 0.523 | 2.88 | 83000 | 0.6738 | | 0.4894 | 2.92 | 84000 | 0.6713 | | 0.5096 | 2.95 | 85000 | 0.6625 | | 0.352 | 2.99 | 86000 | 0.6802 | | 0.3927 | 3.02 | 87000 | 0.6606 | | 0.3468 | 3.06 | 88000 | 0.6546 | | 0.3368 | 3.09 | 89000 | 0.6520 | | 0.352 | 3.12 | 90000 | 0.6495 | | 0.3613 | 3.16 | 91000 | 0.6324 | | 0.3501 | 3.19 | 92000 | 0.6227 | | 0.3269 | 3.23 | 93000 | 0.6091 | | 0.3583 | 3.26 | 94000 | 0.6153 | | 0.3278 | 3.3 | 95000 | 0.6178 | | 0.3216 | 3.33 | 96000 | 0.6208 | | 0.3383 | 3.37 | 97000 | 0.6195 | | 0.3326 | 3.4 | 98000 | 0.6088 | | 0.3081 | 3.44 | 99000 | 0.5956 | | 0.3459 | 3.47 | 100000 | 0.5840 | | 0.3139 | 3.51 | 101000 | 0.5712 | | 0.3087 | 3.54 | 102000 | 0.5677 | | 0.2798 | 3.58 | 103000 | 0.5566 | | 0.3166 | 3.61 | 104000 | 0.5332 | | 0.2981 | 3.65 | 105000 | 0.5333 | | 0.3027 | 3.68 | 106000 | 0.5276 | | 0.2815 | 3.72 | 107000 | 0.5024 | | 0.2294 | 3.75 | 108000 | 0.5081 | | 0.2452 | 3.78 | 109000 | 0.4824 | | 0.2733 | 3.82 | 110000 | 0.4695 | | 0.3001 | 3.85 | 111000 | 0.4627 | | 0.2322 | 3.89 | 112000 | 0.4580 | | 0.2362 | 3.92 | 113000 | 0.4402 | | 0.2488 | 3.96 | 114000 | 0.4263 | | 0.2449 | 3.99 | 115000 | 0.3999 | | 0.1798 | 4.03 | 116000 | 0.4038 | | 0.1956 | 4.06 | 117000 | 0.4037 | | 0.1831 | 4.1 | 118000 | 0.4040 | | 0.1802 | 4.13 | 119000 | 0.4039 | | 0.1641 | 4.17 | 120000 | 0.4029 | | 0.1769 | 4.2 | 121000 | 0.4016 | | 0.1564 | 4.24 | 122000 | 0.4026 | | 0.1552 | 4.27 | 123000 | 0.3988 | | 0.1806 | 4.31 | 124000 | 0.3995 | | 0.1783 | 4.34 | 125000 | 0.3995 | | 0.1736 | 4.38 | 126000 | 0.3940 | | 0.1657 | 4.41 | 127000 | 0.3913 | | 0.1598 | 4.44 | 128000 | 0.3871 | | 0.1599 | 4.48 | 129000 | 0.3831 | | 0.1606 | 4.51 | 130000 | 0.3776 | | 0.1639 | 4.55 | 131000 | 0.3754 | | 0.1736 | 4.58 | 132000 | 0.3742 | | 0.1653 | 4.62 | 133000 | 0.3703 | | 0.1708 | 4.65 | 134000 | 0.3681 | | 0.1729 | 4.69 | 135000 | 0.3674 | | 0.1564 | 4.72 | 136000 | 0.3660 | | 0.1734 | 4.76 | 137000 | 0.3641 | | 0.163 | 4.79 | 138000 | 0.3632 | | 0.1585 | 4.83 | 139000 | 0.3626 | | 0.1603 | 4.86 | 140000 | 0.3619 | | 0.1751 | 4.9 | 141000 | 0.3617 | | 0.1622 | 4.93 | 142000 | 0.3617 | | 0.161 | 4.97 | 143000 | 0.3617 | | 0.1541 | 5.0 | 144000 | 0.3616 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0
blossominkyung/ppo-Huggy
blossominkyung
2023-11-08T16:04:46Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-11-08T16:04:41Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: blossominkyung/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sandeeprao/Reinforce-polebalance
sandeeprao
2023-11-08T15:53:27Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T15:53:18Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-polebalance results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Vedarutvija/QnA
Vedarutvija
2023-11-08T15:42:29Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-classification", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-11-08T15:19:15Z
--- license: mit pipeline_tag: text-classification --- GPT2 model is fine tuned to train on the test set of the wiki_qa dataset for text classification.
Praga-6000/unit4b
Praga-6000
2023-11-08T15:33:09Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-10-27T06:30:28Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: unit4b results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 58.70 +/- 39.86 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
toddwilson147/ppo-LunarLander-v2
toddwilson147
2023-11-08T15:26:21Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T15:19:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.86 +/- 18.85 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LoneStriker/MistralLite-5.0bpw-h6-exl2
LoneStriker
2023-11-08T15:21:16Z
5
1
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-10-19T12:05:55Z
--- license: apache-2.0 inference: false --- # MistralLite Model MistralLite is a fine-tuned [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) language model, with enhanced capabilities of processing long context (up to 32K tokens). By utilizing an adapted Rotary Embedding and sliding window during fine-tuning, MistralLite is able to **perform significantly better on several long context retrieve and answering tasks**, while keeping the simple model structure of the original model. MistralLite is useful for applications such as long context line and topic retrieval, summarization, question-answering, and etc. MistralLite can be deployed on a single AWS `g5.2x` instance with Sagemaker [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) endpoint, making it suitable for applications that require high performance in resource-constrained environments. You can also serve the MistralLite model directly using TGI docker containers. Also, MistralLite supports other ways of serving like [vLLM](https://github.com/vllm-project/vllm), and you can use MistralLite in Python by using the [HuggingFace transformers](https://huggingface.co/docs/transformers/index) and [FlashAttention-2](https://github.com/Dao-AILab/flash-attention) library. MistralLite is similar to [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), and their similarities and differences are summarized below: |Model|Fine-tuned on long contexts| Max context length| RotaryEmbedding adaptation| Sliding Window Size| |----------|-------------:|------------:|-----------:|-----------:| | Mistral-7B-Instruct-v0.1 | up to 8K tokens | 32K | rope_theta = 10000 | 4096 | | MistralLite | up to 16K tokens | 32K | **rope_theta = 1000000** | **16384** | ## Motivation of Developing MistralLite Since the release of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), the model became increasingly popular because its strong performance on a wide range of benchmarks. But most of the benchmarks are evaluated on `short context`, and not much has been investigated on its performance on long context tasks. Then We evaluated `Mistral-7B-Instruct-v0.1` against benchmarks that are specifically designed to assess the capabilities of LLMs in handling longer context. Although the performance of the models on long context was fairly competitive on long context less than 4096 tokens, there were some limitations on its performance on longer context. Motivated by improving its performance on longer context, we finetuned the Mistral 7B model, and produced `Mistrallite`. The model managed to `significantly boost the performance of long context handling` over Mistral-7B-Instruct-v0.1. The detailed `long context evalutaion results` are as below: 1. [Topic Retrieval](https://lmsys.org/blog/2023-06-29-longchat/) |Model Name|Input length| Input length | Input length| Input length| Input length| |----------|-------------:|-------------:|------------:|-----------:|-----------:| | | 2851| 5568 |8313 | 11044 | 13780 | Mistral-7B-Instruct-v0.1 | 100% | 50% | 2% | 0% | 0% | | MistralLite | **100%** | **100%** | **100%** | **100%** | **98%** | 2. [Line Retrieval](https://lmsys.org/blog/2023-06-29-longchat/#longeval-results) |Model Name|Input length| Input length | Input length| Input length| Input length|Input length| |----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:| | | 3818| 5661 |7505 | 9354 | 11188 | 12657 | Mistral-7B-Instruct-v0.1 | **98%** | 62% | 42% | 42% | 32% | 30% | | MistralLite | **98%** | **92%** | **88%** | **76%** | **70%** | **60%** | 3. [Pass key Retrieval](https://github.com/epfml/landmark-attention/blob/main/llama/run_test.py#L101) |Model Name|Input length| Input length | Input length| Input length| |----------|-------------:|-------------:|------------:|-----------:| | | 3264| 5396 |8329 | 10197 | | Mistral-7B-Instruct-v0.1 | **100%** | 50% | 20% | 30% | | MistralLite | **100%** | **100%** | **100%** | **100%** | 4. [Question Answering with Long Input Texts](https://nyu-mll.github.io/quality/) |Model Name| Test set Accuracy | Hard subset Accuracy| |----------|-------------:|-------------:| | Mistral-7B-Instruct-v0.1 | 44.3% | 39.7% | | MistralLite | **64.4%** | **56.2%** | ### Example test on long context of 13400 tokens - Context is from [Amazon Aurora FAQs](https://aws.amazon.com/rds/aurora/faqs/) - Question: *please tell me how does pgvector help with Generative AI and give me some examples.* - Answer from MistralLite: ```code pgvector is an open-source extension for PostgreSQL supported by Amazon Aurora PostgreSQL-Compatible Edition. You can use pgvector to store, search, index, and query billions of embeddings that are generated from machine learning (ML) and artificial intelligence (AI) models in your database, such as those from Amazon Bedrock (limited preview) or Amazon SageMaker. A vector embedding is a numerical representation that represents the semantic meaning of content such as text, images, and video. With pgvector, you can query embeddings in your Aurora PostgreSQL database to perform efficient semantic similarity searches of these data types, represented as vectors, combined with other tabular data in Aurora. This enables the use of generative AI and other AI/ML systems for new types of applications such as personalized recommendations based on similar text descriptions or images, candidate match based on interview notes, customer service next best action recommendations based on successful transcripts or chat session dialogs, and more. ``` ## Model Details - **Developed by:** [AWS Contributors](https://github.com/orgs/aws-samples/teams/aws-prototype-ml-apac) - **Model type:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) - **Language:** English - **Finetuned from weights:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) - **Finetuned on data:** - [SLidingEncoder and Decoder (SLED)](https://huggingface.co/datasets/tau/sled) - [(Long) Natural Questions (NQ)](https://huggingface.co/datasets/togethercomputer/Long-Data-Collections#multi-passage-qa-from-natural-questions) - [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1) - **Supported Serving Framework:** - [Text-Generation-Inference 1.1.0](https://github.com/huggingface/text-generation-inference/tree/v1.1.0) - [vLLM](https://github.com/vllm-project/vllm) - [HuggingFace transformers](https://huggingface.co/docs/transformers/index) - [HuggingFace Text Generation Inference (TGI) container on SageMaker](https://github.com/awslabs/llm-hosting-container) - **Model License:** Apache 2.0 - **Contact:** [GitHub issues](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/issues) - **Inference Code** [Github Repo](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/) ## How to Use MistralLite from Python Code (HuggingFace transformers) ## **Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/huggingface-transformers/example_usage.ipynb). ### Install the necessary packages Requires: [transformers](https://pypi.org/project/transformers/) 4.34.0 or later, [flash-attn](https://pypi.org/project/flash-attn/) 2.3.1.post1 or later, and [accelerate](https://pypi.org/project/accelerate/) 0.23.0 or later. ```shell pip install transformers==4.34.0 pip install flash-attn==2.3.1.post1 --no-build-isolation pip install accelerate==0.23.0 ``` ### You can then try the following example code ```python from transformers import AutoModelForCausalLM, AutoTokenizer import transformers import torch model_id = "amazon/MistralLite" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, use_flash_attention_2=True, device_map="auto",) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, ) prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>" sequences = pipeline( prompt, max_new_tokens=400, do_sample=False, return_full_text=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"{seq['generated_text']}") ``` **Important** - Use the prompt template below for MistralLite: ``` <|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|> ``` ## How to Serve MistralLite on TGI ## **Important:** - For an end-to-end example Jupyter notebook using the native TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi/example_usage.ipynb). - If the **input context length is greater than 12K tokens**, it is recommended using a custom TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi-custom/example_usage.ipynb). ### Start TGI server ### Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell docker run -d --gpus all --shm-size 1g -p 443:80 -v $(pwd)/models:/data ghcr.io/huggingface/text-generation-inference:1.1.0 \ --model-id amazon/MistralLite \ --max-input-length 16000 \ --max-total-tokens 16384 \ --max-batch-prefill-tokens 16384 \ --trust-remote-code ``` ### Perform Inference ### Example Python code for inference with TGI (requires `text_generation` 0.6.1 or later): ```shell pip install text_generation==0.6.1 ``` ```python from text_generation import Client SERVER_PORT = 443 SERVER_HOST = "localhost" SERVER_URL = f"{SERVER_HOST}:{SERVER_PORT}" tgi_client = Client(f"http://{SERVER_URL}", timeout=60) def invoke_tgi(prompt, random_seed=1, max_new_tokens=400, print_stream=True, assist_role=True): if (assist_role): prompt = f"<|prompter|>{prompt}</s><|assistant|>" output = "" for response in tgi_client.generate_stream( prompt, do_sample=False, max_new_tokens=max_new_tokens, return_full_text=False, #temperature=None, #truncate=None, #seed=random_seed, #typical_p=0.2, ): if hasattr(response, "token"): if not response.token.special: snippet = response.token.text output += snippet if (print_stream): print(snippet, end='', flush=True) return output prompt = "What are the main challenges to support a long context for LLM?" result = invoke_tgi(prompt) ``` **Important** - When using MistralLite for inference for the first time, it may require a brief 'warm-up' period that can take 10s of seconds. However, subsequent inferences should be faster and return results in a more timely manner. This warm-up period is normal and should not affect the overall performance of the system once the initialisation period has been completed. ## How to Deploy MistralLite on Amazon SageMaker ## **Important:** - For an end-to-end example Jupyter notebook using the SageMaker built-in container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi/example_usage.ipynb). - If the **input context length is greater than 12K tokens**, it is recommended using a custom docker container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi-custom/example_usage.ipynb). ### Install the necessary packages Requires: [sagemaker](https://pypi.org/project/sagemaker/) 2.192.1 or later. ```shell pip install sagemaker==2.192.1 ``` ### Deploy the Model as A SageMaker Endpoint ### To deploy MistralLite on a SageMaker endpoint, please follow the example code as below. ```python import sagemaker from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri import time sagemaker_session = sagemaker.Session() region = sagemaker_session.boto_region_name role = sagemaker.get_execution_role() image_uri = get_huggingface_llm_image_uri( backend="huggingface", # or lmi region=region, version="1.1.0" ) model_name = "MistralLite-" + time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) hub = { 'HF_MODEL_ID':'amazon/MistralLite', 'HF_TASK':'text-generation', 'SM_NUM_GPUS':'1', "MAX_INPUT_LENGTH": '16000', "MAX_TOTAL_TOKENS": '16384', "MAX_BATCH_PREFILL_TOKENS": '16384', "MAX_BATCH_TOTAL_TOKENS": '16384', } model = HuggingFaceModel( name=model_name, env=hub, role=role, image_uri=image_uri ) predictor = model.deploy( initial_instance_count=1, instance_type="ml.g5.2xlarge", endpoint_name=model_name, ) ``` ### Perform Inference ### To call the endpoint, please follow the example code as below: ```python input_data = { "inputs": "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>", "parameters": { "do_sample": False, "max_new_tokens": 400, "return_full_text": False, #"typical_p": 0.2, #"temperature":None, #"truncate":None, #"seed": 1, } } result = predictor.predict(input_data)[0]["generated_text"] print(result) ``` or via [boto3](https://pypi.org/project/boto3/), and the example code is shown as below: ```python import boto3 import json def call_endpoint(client, prompt, endpoint_name, paramters): client = boto3.client("sagemaker-runtime") payload = {"inputs": prompt, "parameters": parameters} response = client.invoke_endpoint(EndpointName=endpoint_name, Body=json.dumps(payload), ContentType="application/json") output = json.loads(response["Body"].read().decode()) result = output[0]["generated_text"] return result client = boto3.client("sagemaker-runtime") parameters = { "do_sample": False, "max_new_tokens": 400, "return_full_text": False, #"typical_p": 0.2, #"temperature":None, #"truncate":None, #"seed": 1, } endpoint_name = predictor.endpoint_name prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>" result = call_endpoint(client, prompt, endpoint_name, parameters) print(result) ``` ## How to Serve MistralLite on vLLM ## Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). **Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/vllm/example_usage.ipynb). ### Using vLLM as a server ### When using vLLM as a server, pass the --model amazon/MistralLite parameter, for example: ```shell python3 -m vllm.entrypoints.api_server --model amazon/MistralLite ``` ### Using vLLM in Python Code ### When using vLLM from Python code, Please see the example code as below: ```python from vllm import LLM, SamplingParams prompts = [ "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>", ] sampling_params = SamplingParams(temperature=0, max_tokens=100) llm = LLM(model="amazon/MistralLite",) outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` ## Limitations ## Before using the MistralLite model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.
LoneStriker/MistralLite-6.0bpw-h6-exl2
LoneStriker
2023-11-08T15:21:04Z
9
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-10-19T12:12:33Z
--- license: apache-2.0 inference: false --- # MistralLite Model MistralLite is a fine-tuned [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) language model, with enhanced capabilities of processing long context (up to 32K tokens). By utilizing an adapted Rotary Embedding and sliding window during fine-tuning, MistralLite is able to **perform significantly better on several long context retrieve and answering tasks**, while keeping the simple model structure of the original model. MistralLite is useful for applications such as long context line and topic retrieval, summarization, question-answering, and etc. MistralLite can be deployed on a single AWS `g5.2x` instance with Sagemaker [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) endpoint, making it suitable for applications that require high performance in resource-constrained environments. You can also serve the MistralLite model directly using TGI docker containers. Also, MistralLite supports other ways of serving like [vLLM](https://github.com/vllm-project/vllm), and you can use MistralLite in Python by using the [HuggingFace transformers](https://huggingface.co/docs/transformers/index) and [FlashAttention-2](https://github.com/Dao-AILab/flash-attention) library. MistralLite is similar to [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), and their similarities and differences are summarized below: |Model|Fine-tuned on long contexts| Max context length| RotaryEmbedding adaptation| Sliding Window Size| |----------|-------------:|------------:|-----------:|-----------:| | Mistral-7B-Instruct-v0.1 | up to 8K tokens | 32K | rope_theta = 10000 | 4096 | | MistralLite | up to 16K tokens | 32K | **rope_theta = 1000000** | **16384** | ## Motivation of Developing MistralLite Since the release of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), the model became increasingly popular because its strong performance on a wide range of benchmarks. But most of the benchmarks are evaluated on `short context`, and not much has been investigated on its performance on long context tasks. Then We evaluated `Mistral-7B-Instruct-v0.1` against benchmarks that are specifically designed to assess the capabilities of LLMs in handling longer context. Although the performance of the models on long context was fairly competitive on long context less than 4096 tokens, there were some limitations on its performance on longer context. Motivated by improving its performance on longer context, we finetuned the Mistral 7B model, and produced `Mistrallite`. The model managed to `significantly boost the performance of long context handling` over Mistral-7B-Instruct-v0.1. The detailed `long context evalutaion results` are as below: 1. [Topic Retrieval](https://lmsys.org/blog/2023-06-29-longchat/) |Model Name|Input length| Input length | Input length| Input length| Input length| |----------|-------------:|-------------:|------------:|-----------:|-----------:| | | 2851| 5568 |8313 | 11044 | 13780 | Mistral-7B-Instruct-v0.1 | 100% | 50% | 2% | 0% | 0% | | MistralLite | **100%** | **100%** | **100%** | **100%** | **98%** | 2. [Line Retrieval](https://lmsys.org/blog/2023-06-29-longchat/#longeval-results) |Model Name|Input length| Input length | Input length| Input length| Input length|Input length| |----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:| | | 3818| 5661 |7505 | 9354 | 11188 | 12657 | Mistral-7B-Instruct-v0.1 | **98%** | 62% | 42% | 42% | 32% | 30% | | MistralLite | **98%** | **92%** | **88%** | **76%** | **70%** | **60%** | 3. [Pass key Retrieval](https://github.com/epfml/landmark-attention/blob/main/llama/run_test.py#L101) |Model Name|Input length| Input length | Input length| Input length| |----------|-------------:|-------------:|------------:|-----------:| | | 3264| 5396 |8329 | 10197 | | Mistral-7B-Instruct-v0.1 | **100%** | 50% | 20% | 30% | | MistralLite | **100%** | **100%** | **100%** | **100%** | 4. [Question Answering with Long Input Texts](https://nyu-mll.github.io/quality/) |Model Name| Test set Accuracy | Hard subset Accuracy| |----------|-------------:|-------------:| | Mistral-7B-Instruct-v0.1 | 44.3% | 39.7% | | MistralLite | **64.4%** | **56.2%** | ### Example test on long context of 13400 tokens - Context is from [Amazon Aurora FAQs](https://aws.amazon.com/rds/aurora/faqs/) - Question: *please tell me how does pgvector help with Generative AI and give me some examples.* - Answer from MistralLite: ```code pgvector is an open-source extension for PostgreSQL supported by Amazon Aurora PostgreSQL-Compatible Edition. You can use pgvector to store, search, index, and query billions of embeddings that are generated from machine learning (ML) and artificial intelligence (AI) models in your database, such as those from Amazon Bedrock (limited preview) or Amazon SageMaker. A vector embedding is a numerical representation that represents the semantic meaning of content such as text, images, and video. With pgvector, you can query embeddings in your Aurora PostgreSQL database to perform efficient semantic similarity searches of these data types, represented as vectors, combined with other tabular data in Aurora. This enables the use of generative AI and other AI/ML systems for new types of applications such as personalized recommendations based on similar text descriptions or images, candidate match based on interview notes, customer service next best action recommendations based on successful transcripts or chat session dialogs, and more. ``` ## Model Details - **Developed by:** [AWS Contributors](https://github.com/orgs/aws-samples/teams/aws-prototype-ml-apac) - **Model type:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) - **Language:** English - **Finetuned from weights:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) - **Finetuned on data:** - [SLidingEncoder and Decoder (SLED)](https://huggingface.co/datasets/tau/sled) - [(Long) Natural Questions (NQ)](https://huggingface.co/datasets/togethercomputer/Long-Data-Collections#multi-passage-qa-from-natural-questions) - [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1) - **Supported Serving Framework:** - [Text-Generation-Inference 1.1.0](https://github.com/huggingface/text-generation-inference/tree/v1.1.0) - [vLLM](https://github.com/vllm-project/vllm) - [HuggingFace transformers](https://huggingface.co/docs/transformers/index) - [HuggingFace Text Generation Inference (TGI) container on SageMaker](https://github.com/awslabs/llm-hosting-container) - **Model License:** Apache 2.0 - **Contact:** [GitHub issues](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/issues) - **Inference Code** [Github Repo](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/) ## How to Use MistralLite from Python Code (HuggingFace transformers) ## **Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/huggingface-transformers/example_usage.ipynb). ### Install the necessary packages Requires: [transformers](https://pypi.org/project/transformers/) 4.34.0 or later, [flash-attn](https://pypi.org/project/flash-attn/) 2.3.1.post1 or later, and [accelerate](https://pypi.org/project/accelerate/) 0.23.0 or later. ```shell pip install transformers==4.34.0 pip install flash-attn==2.3.1.post1 --no-build-isolation pip install accelerate==0.23.0 ``` ### You can then try the following example code ```python from transformers import AutoModelForCausalLM, AutoTokenizer import transformers import torch model_id = "amazon/MistralLite" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, use_flash_attention_2=True, device_map="auto",) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, ) prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>" sequences = pipeline( prompt, max_new_tokens=400, do_sample=False, return_full_text=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"{seq['generated_text']}") ``` **Important** - Use the prompt template below for MistralLite: ``` <|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|> ``` ## How to Serve MistralLite on TGI ## **Important:** - For an end-to-end example Jupyter notebook using the native TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi/example_usage.ipynb). - If the **input context length is greater than 12K tokens**, it is recommended using a custom TGI container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/tgi-custom/example_usage.ipynb). ### Start TGI server ### Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell docker run -d --gpus all --shm-size 1g -p 443:80 -v $(pwd)/models:/data ghcr.io/huggingface/text-generation-inference:1.1.0 \ --model-id amazon/MistralLite \ --max-input-length 16000 \ --max-total-tokens 16384 \ --max-batch-prefill-tokens 16384 \ --trust-remote-code ``` ### Perform Inference ### Example Python code for inference with TGI (requires `text_generation` 0.6.1 or later): ```shell pip install text_generation==0.6.1 ``` ```python from text_generation import Client SERVER_PORT = 443 SERVER_HOST = "localhost" SERVER_URL = f"{SERVER_HOST}:{SERVER_PORT}" tgi_client = Client(f"http://{SERVER_URL}", timeout=60) def invoke_tgi(prompt, random_seed=1, max_new_tokens=400, print_stream=True, assist_role=True): if (assist_role): prompt = f"<|prompter|>{prompt}</s><|assistant|>" output = "" for response in tgi_client.generate_stream( prompt, do_sample=False, max_new_tokens=max_new_tokens, return_full_text=False, #temperature=None, #truncate=None, #seed=random_seed, #typical_p=0.2, ): if hasattr(response, "token"): if not response.token.special: snippet = response.token.text output += snippet if (print_stream): print(snippet, end='', flush=True) return output prompt = "What are the main challenges to support a long context for LLM?" result = invoke_tgi(prompt) ``` **Important** - When using MistralLite for inference for the first time, it may require a brief 'warm-up' period that can take 10s of seconds. However, subsequent inferences should be faster and return results in a more timely manner. This warm-up period is normal and should not affect the overall performance of the system once the initialisation period has been completed. ## How to Deploy MistralLite on Amazon SageMaker ## **Important:** - For an end-to-end example Jupyter notebook using the SageMaker built-in container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi/example_usage.ipynb). - If the **input context length is greater than 12K tokens**, it is recommended using a custom docker container, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/sagemaker-tgi-custom/example_usage.ipynb). ### Install the necessary packages Requires: [sagemaker](https://pypi.org/project/sagemaker/) 2.192.1 or later. ```shell pip install sagemaker==2.192.1 ``` ### Deploy the Model as A SageMaker Endpoint ### To deploy MistralLite on a SageMaker endpoint, please follow the example code as below. ```python import sagemaker from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri import time sagemaker_session = sagemaker.Session() region = sagemaker_session.boto_region_name role = sagemaker.get_execution_role() image_uri = get_huggingface_llm_image_uri( backend="huggingface", # or lmi region=region, version="1.1.0" ) model_name = "MistralLite-" + time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) hub = { 'HF_MODEL_ID':'amazon/MistralLite', 'HF_TASK':'text-generation', 'SM_NUM_GPUS':'1', "MAX_INPUT_LENGTH": '16000', "MAX_TOTAL_TOKENS": '16384', "MAX_BATCH_PREFILL_TOKENS": '16384', "MAX_BATCH_TOTAL_TOKENS": '16384', } model = HuggingFaceModel( name=model_name, env=hub, role=role, image_uri=image_uri ) predictor = model.deploy( initial_instance_count=1, instance_type="ml.g5.2xlarge", endpoint_name=model_name, ) ``` ### Perform Inference ### To call the endpoint, please follow the example code as below: ```python input_data = { "inputs": "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>", "parameters": { "do_sample": False, "max_new_tokens": 400, "return_full_text": False, #"typical_p": 0.2, #"temperature":None, #"truncate":None, #"seed": 1, } } result = predictor.predict(input_data)[0]["generated_text"] print(result) ``` or via [boto3](https://pypi.org/project/boto3/), and the example code is shown as below: ```python import boto3 import json def call_endpoint(client, prompt, endpoint_name, paramters): client = boto3.client("sagemaker-runtime") payload = {"inputs": prompt, "parameters": parameters} response = client.invoke_endpoint(EndpointName=endpoint_name, Body=json.dumps(payload), ContentType="application/json") output = json.loads(response["Body"].read().decode()) result = output[0]["generated_text"] return result client = boto3.client("sagemaker-runtime") parameters = { "do_sample": False, "max_new_tokens": 400, "return_full_text": False, #"typical_p": 0.2, #"temperature":None, #"truncate":None, #"seed": 1, } endpoint_name = predictor.endpoint_name prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>" result = call_endpoint(client, prompt, endpoint_name, parameters) print(result) ``` ## How to Serve MistralLite on vLLM ## Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). **Important** - For an end-to-end example Jupyter notebook, please refer to [this link](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/MistralLite/vllm/example_usage.ipynb). ### Using vLLM as a server ### When using vLLM as a server, pass the --model amazon/MistralLite parameter, for example: ```shell python3 -m vllm.entrypoints.api_server --model amazon/MistralLite ``` ### Using vLLM in Python Code ### When using vLLM from Python code, Please see the example code as below: ```python from vllm import LLM, SamplingParams prompts = [ "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>", ] sampling_params = SamplingParams(temperature=0, max_tokens=100) llm = LLM(model="amazon/MistralLite",) outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` ## Limitations ## Before using the MistralLite model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.
Vedarutvija/output
Vedarutvija
2023-11-08T15:18:24Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-classification", "generated_from_trainer", "dataset:wiki_qa", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-11-08T15:18:05Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer datasets: - wiki_qa model-index: - name: output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the wiki_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.8781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9106 | 0.08 | 200 | 0.7699 | | 0.9505 | 0.16 | 400 | 0.6965 | | 0.8446 | 0.24 | 600 | 0.7000 | | 0.8765 | 0.31 | 800 | 0.6573 | | 0.7792 | 0.39 | 1000 | 0.7359 | | 0.9293 | 0.47 | 1200 | 0.6926 | | 0.9715 | 0.55 | 1400 | 0.7032 | | 0.8898 | 0.63 | 1600 | 0.7208 | | 1.0288 | 0.71 | 1800 | 0.6954 | | 0.7782 | 0.79 | 2000 | 0.6629 | | 0.9419 | 0.86 | 2200 | 0.7061 | | 0.7138 | 0.94 | 2400 | 0.7086 | | 0.9334 | 1.02 | 2600 | 0.6752 | | 0.9274 | 1.1 | 2800 | 0.7142 | | 0.7217 | 1.18 | 3000 | 0.7227 | | 0.74 | 1.26 | 3200 | 0.6896 | | 0.9408 | 1.34 | 3400 | 0.7039 | | 0.8503 | 1.41 | 3600 | 0.7456 | | 0.8816 | 1.49 | 3800 | 0.7226 | | 0.7751 | 1.57 | 4000 | 0.7182 | | 0.8669 | 1.65 | 4200 | 0.6904 | | 1.059 | 1.73 | 4400 | 0.7131 | | 0.8442 | 1.81 | 4600 | 0.7063 | | 0.9162 | 1.89 | 4800 | 0.7128 | | 0.9022 | 1.96 | 5000 | 0.7249 | | 0.9427 | 2.04 | 5200 | 0.7333 | | 0.9122 | 2.12 | 5400 | 0.6852 | | 0.8159 | 2.2 | 5600 | 0.6950 | | 0.9489 | 2.28 | 5800 | 0.7137 | | 0.9976 | 2.36 | 6000 | 0.7101 | | 0.9305 | 2.44 | 6200 | 0.7059 | | 0.6405 | 2.51 | 6400 | 0.7167 | | 0.9515 | 2.59 | 6600 | 0.6875 | | 0.7186 | 2.67 | 6800 | 0.7057 | | 0.9221 | 2.75 | 7000 | 0.6805 | | 0.9118 | 2.83 | 7200 | 0.7011 | | 0.9784 | 2.91 | 7400 | 0.6936 | | 0.7532 | 2.99 | 7600 | 0.7046 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
AntoineD/camembert_causal_language_modeling_tools
AntoineD
2023-11-08T15:16:03Z
16
0
transformers
[ "transformers", "pytorch", "camembert", "text-generation", "generated_from_trainer", "base_model:almanach/camembert-base", "base_model:finetune:almanach/camembert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-11-08T14:40:06Z
--- license: mit base_model: camembert-base tags: - generated_from_trainer model-index: - name: camembert_causal_language_modeling_tools results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert_causal_language_modeling_tools This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 5 | 2.8891 | | No log | 2.0 | 10 | 2.1063 | | No log | 3.0 | 15 | 1.8117 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.1
blossominkyung/ppo-LunarLander-v2
blossominkyung
2023-11-08T15:09:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T15:06:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.50 +/- 25.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
KDenis/bert-base-banking77-pt2
KDenis
2023-11-08T15:01:04Z
0
0
keras
[ "keras", "ru", "license:apache-2.0", "region:us" ]
null
2023-11-08T14:17:36Z
--- license: apache-2.0 language: - ru library_name: keras ---
KoboldAI/llama2-tokenizer
KoboldAI
2023-11-08T15:00:47Z
0
2
null
[ "license:llama2", "region:us" ]
null
2023-11-08T14:56:08Z
--- license: llama2 --- This is a copy of the llama2 tokenizer for use as a fallback tokenizer for KoboldAI, optimized with defaults for text completion. We aim to keep this copy functional / identical to the upstream llama2 tokenizer with minor differences in its defaults. In case of differences a more functional copy is chosen.
Abhinandpv/dog
Abhinandpv
2023-11-08T15:00:38Z
15
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-08T14:55:22Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### DOG Dreambooth model trained by Abhinandpv following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: LBS-575 Sample pictures of this concept:
DarkyMan/un-captcha
DarkyMan
2023-11-08T14:52:59Z
6
2
tf-keras
[ "tf-keras", "ocr", "computer vision", "object detection", "image-to-text", "license:cc0-1.0", "region:us" ]
image-to-text
2023-06-22T06:52:40Z
--- tags: - ocr - computer vision - object detection - image-to-text license: - cc0-1.0 ---
microsoft/speecht5_tts
microsoft
2023-11-08T14:37:23Z
139,858
728
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "audio", "text-to-speech", "dataset:libritts", "arxiv:2110.07205", "arxiv:1910.09700", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-02-02T12:56:54Z
--- license: mit tags: - audio - text-to-speech datasets: - libritts --- # SpeechT5 (TTS task) SpeechT5 model fine-tuned for speech synthesis (text-to-speech) on LibriTTS. This model was introduced in [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. SpeechT5 was first released in [this repository](https://github.com/microsoft/SpeechT5/), [original weights](https://huggingface.co/mechanicalsea/speecht5-tts). The license used is [MIT](https://github.com/microsoft/SpeechT5/blob/main/LICENSE). ## Model Description Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification. - **Developed by:** Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. - **Shared by [optional]:** [Matthijs Hollemans](https://huggingface.co/Matthijs) - **Model type:** text-to-speech - **Language(s) (NLP):** [More Information Needed] - **License:** [MIT](https://github.com/microsoft/SpeechT5/blob/main/LICENSE) - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [https://github.com/microsoft/SpeechT5/] - **Paper:** [https://arxiv.org/pdf/2110.07205.pdf] - **Blog Post:** [https://huggingface.co/blog/speecht5] - **Demo:** [https://huggingface.co/spaces/Matthijs/speecht5-tts-demo] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## 🤗 Transformers Usage You can run SpeechT5 TTS locally with the 🤗 Transformers library. 1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers), sentencepiece, soundfile and datasets(optional): ``` pip install --upgrade pip pip install --upgrade transformers sentencepiece datasets[audio] ``` 2. Run inference via the `Text-to-Speech` (TTS) pipeline. You can access the SpeechT5 model via the TTS pipeline in just a few lines of code! ```python from transformers import pipeline from datasets import load_dataset import soundfile as sf synthesiser = pipeline("text-to-speech", "microsoft/speecht5_tts") embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # You can replace this embedding with your own as well. speech = synthesiser("Hello, my dog is cooler than you!", forward_params={"speaker_embeddings": speaker_embedding}) sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"]) ``` 3. Run inference via the Transformers modelling code - You can use the processor + generate code to convert text into a mono 16 kHz speech waveform for more fine-grained control. ```python from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from datasets import load_dataset import torch import soundfile as sf from datasets import load_dataset processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") inputs = processor(text="Hello, my dog is cute.", return_tensors="pt") # load xvector containing speaker's voice characteristics from a dataset embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) sf.write("speech.wav", speech.numpy(), samplerate=16000) ``` ### Fine-tuning the Model Refer to [this Colab notebook](https://colab.research.google.com/drive/1i7I5pzBcU3WDFarDnzweIj4-sVVoIUFJ) for an example of how to fine-tune SpeechT5 for TTS on a different dataset or a new language. ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> You can use this model for speech synthesis. See the [model hub](https://huggingface.co/models?search=speecht5) to look for fine-tuned versions on a task that interests you. ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> LibriTTS ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [optional] Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. ### Training hyperparameters - **Precision:** [More Information Needed] <!--fp16, bf16, fp8, fp32 --> - **Regime:** [More Information Needed] <!--mixed precision or not --> ### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification. # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ```bibtex @inproceedings{ao-etal-2022-speecht5, title = {{S}peech{T}5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing}, author = {Ao, Junyi and Wang, Rui and Zhou, Long and Wang, Chengyi and Ren, Shuo and Wu, Yu and Liu, Shujie and Ko, Tom and Li, Qing and Zhang, Yu and Wei, Zhihua and Qian, Yao and Li, Jinyu and Wei, Furu}, booktitle = {Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, month = {May}, year = {2022}, pages={5723--5738}, } ``` # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> - **text-to-speech** to synthesize audio # More Information [optional] [More Information Needed] # Model Card Authors [optional] Disclaimer: The team releasing SpeechT5 did not write a model card for this model so this model card has been written by the Hugging Face team. # Model Card Contact [More Information Needed]
CODR/dog
CODR
2023-11-08T14:21:20Z
0
0
null
[ "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-08T14:20:06Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### Dog Dreambooth model trained by CODR following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: LBS-275 Sample pictures of this concept:
owanr/ghc-google-t5-v1_1-large-inter_model-dataset-frequency-human_annots_str
owanr
2023-11-08T14:17:40Z
0
0
null
[ "generated_from_trainer", "base_model:google/t5-v1_1-large", "base_model:finetune:google/t5-v1_1-large", "license:apache-2.0", "region:us" ]
null
2023-11-08T14:17:39Z
--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: ghc-google-t5-v1_1-large-inter_model-dataset-frequency-human_annots_str results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ghc-google-t5-v1_1-large-inter_model-dataset-frequency-human_annots_str This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.5863 | 1.0 | 345 | 2.2862 | | 1.9673 | 2.0 | 690 | 2.0705 | | 1.7865 | 3.0 | 1035 | 1.8048 | | 0.0714 | 4.0 | 1380 | 0.0459 | | 0.0618 | 5.0 | 1725 | 0.0456 | | 0.0596 | 6.0 | 2070 | 0.0476 | | 0.0532 | 7.0 | 2415 | 0.0438 | | 0.0503 | 8.0 | 2760 | 0.0405 | | 0.048 | 9.0 | 3105 | 0.0377 | | 0.0462 | 10.0 | 3450 | 0.0455 | | 0.036 | 11.0 | 3795 | 0.0358 | | 0.0447 | 12.0 | 4140 | 0.0355 | | 0.0416 | 13.0 | 4485 | 0.0351 | | 0.0413 | 14.0 | 4830 | 0.0331 | | 0.0409 | 15.0 | 5175 | 0.0320 | | 0.0411 | 16.0 | 5520 | 0.0333 | | 0.0363 | 17.0 | 5865 | 0.0322 | | 0.0378 | 18.0 | 6210 | 0.0329 | | 0.0345 | 19.0 | 6555 | 0.0312 | | 0.0328 | 20.0 | 6900 | 0.0311 | | 0.0392 | 21.0 | 7245 | 0.0303 | | 0.0392 | 22.0 | 7590 | 0.0296 | | 0.0353 | 23.0 | 7935 | 0.0300 | | 0.0331 | 24.0 | 8280 | 0.0299 | | 0.0306 | 25.0 | 8625 | 0.0290 | | 0.0313 | 26.0 | 8970 | 0.0294 | | 0.0303 | 27.0 | 9315 | 0.0296 | | 0.0378 | 28.0 | 9660 | 0.0292 | | 0.0358 | 29.0 | 10005 | 0.0292 | | 0.0328 | 30.0 | 10350 | 0.0292 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
just097/roberta-base-lora-comma-placement-r-8-alpha-32
just097
2023-11-08T14:16:05Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:FacebookAI/roberta-base", "base_model:adapter:FacebookAI/roberta-base", "region:us" ]
null
2023-11-08T14:16:03Z
--- library_name: peft base_model: roberta-base --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.0
GabSo/santacoder-finetuned-robot3
GabSo
2023-11-08T14:05:31Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "custom_code", "base_model:bigcode/santacoder", "base_model:finetune:bigcode/santacoder", "license:bigcode-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-08T13:52:57Z
--- license: bigcode-openrail-m base_model: bigcode/santacoder tags: - generated_from_trainer model-index: - name: santacoder-finetuned-robot3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # santacoder-finetuned-robot3 This model is a fine-tuned version of [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.05 | 1 | 1.6250 | | No log | 0.1 | 2 | 2.1620 | | No log | 0.15 | 3 | 1.7060 | | No log | 0.2 | 4 | 1.7167 | | No log | 0.25 | 5 | 1.0462 | | No log | 0.3 | 6 | 1.2153 | | No log | 0.35 | 7 | 1.0301 | | No log | 0.4 | 8 | 0.9399 | | No log | 0.45 | 9 | 1.0030 | | 1.4139 | 0.5 | 10 | 0.8322 | | 1.4139 | 0.55 | 11 | 0.7111 | | 1.4139 | 0.6 | 12 | 0.7151 | | 1.4139 | 0.65 | 13 | 0.6482 | | 1.4139 | 0.7 | 14 | 0.6228 | | 1.4139 | 0.75 | 15 | 0.6105 | | 1.4139 | 0.8 | 16 | 0.5827 | | 1.4139 | 0.85 | 17 | 0.5791 | | 1.4139 | 0.9 | 18 | 0.5726 | | 1.4139 | 0.95 | 19 | 0.5696 | | 0.5282 | 1.0 | 20 | 0.5689 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
AliMokh/q-FrozenLake-v1-4x4-noSlippery
AliMokh
2023-11-08T13:55:37Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T13:55:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="AliMokh/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
lukasdrg/clinical_longformer_same_tokens_1epochs
lukasdrg
2023-11-08T13:51:49Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "longformer", "fill-mask", "generated_from_trainer", "base_model:lukasdrg/clinical_longformer_same_tokens_240k", "base_model:finetune:lukasdrg/clinical_longformer_same_tokens_240k", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-08T12:44:18Z
--- base_model: lukasdrg/clinical_longformer_same_tokens_240k tags: - generated_from_trainer model-index: - name: clinical_longformer_same_tokens_1epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical_longformer_same_tokens_1epochs This model is a fine-tuned version of [lukasdrg/clinical_longformer_same_tokens_240k](https://huggingface.co/lukasdrg/clinical_longformer_same_tokens_240k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2181 | 0.49 | 65 | 1.8425 | | 2.0426 | 0.97 | 130 | 1.8395 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
owanr/ghc-google-t5-v1_1-large-intra_model-frequency-model_annots_str_mse
owanr
2023-11-08T13:50:14Z
0
0
null
[ "generated_from_trainer", "base_model:google/t5-v1_1-large", "base_model:finetune:google/t5-v1_1-large", "license:apache-2.0", "region:us" ]
null
2023-11-08T13:50:12Z
--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: ghc-google-t5-v1_1-large-intra_model-frequency-model_annots_str_mse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ghc-google-t5-v1_1-large-intra_model-frequency-model_annots_str_mse This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Train Loss: 3.6351 - Loss: nan - Losses: [4, 5, 3, 5, 4, 2, 4, 4, 5, 5, 3, 4, 4, 2, 4, 9, 3, 5, 4, 3, 6, 5, 4, 5, 4, 6, 5, 6, 5, 4, 4, 2, 5, 4, 5, 4, 4, 3, 5, 5, 5, 4, 2, 6, 4, 5, 2, 4, 4, 3, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 4, 2, 3, 2, 5, 16, 4, 3, 6, 5, 4, 3, 4, 2, 3, 5, 4, 2, 5, 2, 4, 4, 5, 4, 5, 4, 2, 4, 6, 4, 5, 6, 5, 5, 5, 4, 4, 4, 6, 4, 4, 4, 7, 2, 3, 3, 2, 5, 6, 6, 5, 2, 5, 3, 4, 4, 3, 4, 5, 2, 4, 9, 3, 5, 3, 3, 2, 3, 5, 5, 6, 4, 2, 4, 3, 7, 3, 3, 3, 2, 3, 2, 4, 4, 6, 4, 4, 2, 4, 6, 4, 4, 5, 5, 5, 4, 2, 4, 5, 4, 4, 5, 4, 2, 5, 3, 2, 5, 6, 5, 4, 2, 4, 5, 3, 4, 2, 4, 4, 3, 4, 5, 3, 7, 5, 5, 5, 2, 3, 3, 5, 2, 3, 2, 3, 4, 3, 5, 4, 5, 3, 3, 4, 5, 2, 4, 4, 4, 2, 2, 29, 4, 3, 3, 5, 4, 3, 4, 3, 4, 5, 2, 4, 3, 5, 2, 6, 2, 5, 3, 3, 4, 5, 6, 5, 5, 4, 5, 3, 2, 2, 5, 4, 3, 2, 4, 4, 4, 4, 5, 5, 5, 3, 4, 4, 5, 4, 9, 3, 4, 4, 4, 1, 5, 13.5, 4, 5, 4, 4, 4, 4, 4, 5, 5, 9, 6, 2, 5, 4, 4, 5, 6, 5, 5, 3, 4, 3, 3, 3, 4, 2, 4, 2, 3, 3, 2, 2, 4, 2, 3, 1, 3, 2, 5, 3, 5, 4, 3, 4, 3, 2, 4, 4, 3, 2, 4, 4, 5, 3, 5, 4, 4, 3, 3, 4, 3, 3, 2, 5, 5, 2, 6, 5, 3, 4, 4, 4, 3, 2, 3, 3, 3, 3, 4, 2, 1, 4, 4, 4, 3, 4, 3, 4, 2, 3, 4, 3, 4, 7, 3, 4, 4, 3, 2, 2, 4, 3, 4, 3, 4, 2, 4, 3, 2, 2, 4, 1, 4, 1, 4, 3, 4, 5, 3, 3, 2, 4, 1, 5, 4, 4, 3, 2, 3, 2, 4, 3, 5, 2, 1, 2, 2, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 5, 4, 2, 2, 4, 2, 3, 3, 4, 3, 2, 4, 5, 4, 3, 4, 4, 1, 3, 3, 3, 4, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 4, 3, 9, 3, 3, 3, 4, 5, 3, 1, 3, 4, 1, 3, 2, 3, 2, 5, 2, 3, 2, 2, 3, 2, 2, 1, 3, 4, 4, 3, 3, 2, 3, 3, 3, 5, 1, 5, 5, 4, 9, 3, 4, 3, 4, 5, 3, 2, 3, 7, 3, 3, 2, 5, 3, 3, 5, 3, 3, 3, 3, 2, 2, 3, 1, 3, 2, 5, 4, 3, 4, 4, 2, 2, 3, 3, 2, 4, 4, 3, 4, 3, 2, 4, 4, 0, 3, 4, 2, 3, 3, 2, 5, 4, 2, 2, 4, 1, 2, 4, 2, 5, 3, 2, 2, 5, 3, 4, 9, 5, 2, 2, 5, 4, 2, 2, 4, 4, 5, 5, 2, 4, 3, 4, 4, 6, 5, 2, 2, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 2, 4, 2, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 2, 5, 3, 4, 3, 4, 4, 5, 3, 2, 4, 4, 3, 3, 2, 2, 4, 3, 4, 4, 3, 4, 4, 3, 3, 3, 4, 4, 4, 2, 4, 3, 4, 2, 5, 2, 4, 2, 4, 4, 3, 2, 4, 5, 4, 4, 4, 5, 3, 4, 4, 2, 3, 4, 3, 3, 4, 5, 2, 4, 4, 4, 2, 4, 2, 3, 4, 4, 4, 5, 4, 2, 4, 4, 4, 3, 2, 4, 3, 2, 3, 4, 3, 4, 2, 12, 4, 2, 3, 4, 4, 4, 9, 3, 5, 2, 4, 2, 2, 4, 4, 4, 4, 4, 3, 4, 4, 2, 4, 4, 4, 2, 3, 3, 4, 4, 4, 3, 2, 5, 4, 2, 4, 5, 3, 4, 3, 2, 4, 4, 2, 4, 4, 9, 3, 3, 4, 2, 4, 2, 2, 2, 3, 2, 4, 2, 4, 9, 2, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 6, 4, 2, 3, 2, 3, 3, 3, 3, 4, 2, 4, 2, 4, 3, 4, 4, 4, 4, 2, 3, 4, 4, 4, 4, 4, 5, 4, 2, 4, 5, 4, 2, 2, 3, 3, 3, 5, 5, 4, 3, 4, 4, 2, 2, 4, 4, 4, 2, 4, 4, 3, 4, 3, 6, 5, 3, 3, 4, 4, 5, 5, 4, 4, 4, 3, 4, 3, 2, 4, 5, 3, 6, 5, 9, 4, 4, 4, 2, 4, 6, 5, 3, 4, 4, 4, 4, 4, 4, 5, 3, 3, 5, 5, 4, 6, 4, 4, 5, 4, 3, 5, 9, 2, 5, 4, 3, 4, 2, 4, 4, 4, 4, 2, 5, 5, 4, 2, 2, 5, 5, 5, 5, 3, 5, 3, 3, 3, 2, 2, 4, 4, 9, 4, 9, 5, 4, 5, 4, 5, 4, 3, 4, 2, 5, 5, 5, 4, 4, 3, 2, 4, 4, 3, 2, 4, 5, 5, 4, 5, 4, 2, 2, 5, 4, 2, 4, 6, 4, 2, 5, 2, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 3, 3, 2, 3, 3, 5, 3, 29, 6, 4, 3, 4, 4, 4, 4, 9, 4, 4, 9, 5, 4, 5, 2, 5, 5, 6, 3, 3, 4, 2, 4, 2, 2, 3, 4, 5, 2, 2, 2, 4, 4, 4, 3, 5, 4, 3, 4, 4, 3, 4, 3, 3, 3, 2, 4, 2, 5, 2, 5, 6, 4, 4, 2, 3, 3, 3, 4, 2, 3, 4, 6, 4, 5, 4, 3, 3, 3, 4, 4, 2, 2, 4, 2, 4, 3, 4, 4, 5, 4, 4, 3, 4, 4, 4, 2, 4, 3, 2, 2, 3, 2, 3, 3, 4, 4, 4, 3, 3, 3, 2, 4, 4, 5, 7, 4, 6, 9, 3, 2, 5, 4, 4, 5, 2, 3, 3, 3, 4, 5, 2, 4, 5, 4, 4, 4, 6, 4, 3, 5, 3, 2, 4, 4, 3, 2, 5, 6, 6, 4, 5, 4, 4, 4, 3, 2, 2, 5, 5, 1, 2, 4, 3, 4, 2, 2, 4, 1, 5, 2, 5, 4, 2, 2, 3, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 3, 4, 4, 4, 4, 2, 4, 0, 2, 2, 3, 2, 3, 4, 2, 4, 3, 4, 4, 4, 2, 4, 5, 3, 3, 2, 1, 2, 2, 4, 4, 3, 5, 2, 35, 2, 2, 4, 2, 2, 4, 2, 4, 2, 0, 4, 4, 3, 2, 3, 5, 3, 1, 2, 4, 3, 4, 3, 4, 4, 2, 3, 4, 4, 2, 4, 3, 2, 3, 3, 2, 4, 2, 3, 2, 4, 1, 2, 4, 5, 4, 3, 4, 2, 2, 3, 3, 4, 4, 4, 3, 2, 2, 2, 4, 0, 4, 4, 3, 4, 2, 2, 0, 4, 3, 4, 2, 3, 3, 1, 2, 3, 3, 2, 9, 4, 4, 2, 5, 4, 4, 4, 3, 1, 9, 2, 0, 2, 3, 5, 3, 5, 2, 2, 4, 2, 3, 3, 3, 3, 3, 2, 9, 4, 4, 4, 4, 3, 2, 3, 3, 3, 1, 2, 5, 24, 4, 4, 4, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 3, 3, 2, 4, 3, 3, 1, 3, 2, 2, 3, 4, 2, 4, 3, 2, 4, 2, 3, 2, 3, 3, 2, 4, 2, 2, 2, 3, 1, 2, 1, 5, 4, 5, 4, 4, 2, 2, 3, 3, 3, 4, 1, 2, 3, 4, 4, 4, 2, 2, 4, 5, 3, 3, 4, 2, 4, 5, 3, 2, 3, 5, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Train Loss | Validation Loss | Losses | |:-------------:|:-----:|:----:|:----------:|:---------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 6.2864 | 1.0 | 345 | 8.2298 | 6.5479 | [3, 9.0, 9.9, 4, 5, 4, 2, 13.5, 13.5, 16.200000000000003, 9.9, 13.5, 14.4, 4, 8, 14.4, 15.3, 12.600000000000001, 8, 6, 8, 10.8, 10.8, 13.5, 4, 4, 4, 4, 4, 11.700000000000001, 5, 13.5, 3, 11.700000000000001, 14.4, 4, 4, 9.900000000000002, 10.8, 4, 12.600000000000001, 5, 13.5, 4, 13.5, 4, 4, 3, 14.4, 4, 13.5, 4, 14.4, 9.900000000000002, 9.9, 14.4, 3, 11.7, 9.900000000000002, 4, 4, 3, 10, 7, 4, 9.9, 4, 4, 13.5, 3, 5, 14.4, 5, 4, 3, 4, 13.5, 4, 16.200000000000003, 15.3, 6.3, 9.9, 4, 8, 14.4, 14.4, 3, 2, 5, 4, 4, 16.200000000000003, 13.5, 11.700000000000001, 13.5, 5, 13.5, 4, 13.5, 4, 13.5, 13.5, 14.4, 4, 9.9, 4, 4, 4, 2, 12.600000000000001, 15.3, 12.600000000000001, 9.900000000000002, 10.8, 10.8, 14.4, 4, 5, 4, 13.5, 15.3, 4, 4, 4, 9.900000000000002, 5, 13.5, 8, 4, 9, 14.4, 10.8, 4, 12.600000000000001, 2, 7, 14.4, 13.5, 9.9, 6, 9, 13.5, 15, 3, 8, 4, 10.8, 4, 4, 4, 5, 14.4, 7, 5, 12.600000000000001, 9, 14.4, 4, 14.4, 4, 9.0, 9, 14.4, 9.900000000000002, 12.600000000000001, 4, 4, 7, 4, 13.5, 12.600000000000001, 4, 4, 4, 6, 14.4, 9.900000000000002, 13.5, 6, 3, 9.0, 3, 9.900000000000002, 9, 15.3, 4, 9.9, 13.5, 4, 4, 4, 4, 4, 12.600000000000001, 4, 13.5, 13.5, 9.9, 4, 4, 13.5, 10.8, 3, 5, 10.8, 12.600000000000001, 4, 9.900000000000002, 12.600000000000001, 4, 5, 13.5, 13.5, 4, 4, 9.9, 12.600000000000001, 5, 15.3, 12.600000000000001, 10.8, 13.5, 4, 4, 5, 15.3, 13.5, 4, 4, 10.8, 9.900000000000002, 9.9, 14.4, 13.5, 14.4, 14.4, 4, 15.3, 2, 4, 12.600000000000001, 9.900000000000002, 13.5, 4, 13.5, 14.4, 10.8, 9.900000000000002, 13.5, 4, 4, 9.900000000000002, 5, 4, 9.9, 4, 4, 4, 14.4, 4, 5, 10.8, 14.4, 13.5, 9.900000000000002, 15.3, 12.600000000000001, 13.5, 14.4, 19.8, 4, 5, 2, 12.600000000000001, 9.900000000000002, 4, 7, 13.5, 14.4, 5, 4, 4, 14.4, 12.600000000000001, 4, 13.5, 5, 13.5, 6, 10.8, 9.9, 9, 13.5, 13.5, 5, 4, 9.900000000000002, 4, 3, 13.5, 8.1, 5, 4, 4, 9, 12.600000000000001, 5, 13.5, 5, 10.8, 12.600000000000001, 4, 5, 10.8, 10.8, 5, 5, 13.5, 9.9, 9.900000000000002, 4, 8, 4, 13.5, 15.3, 15.3, 4, 9.900000000000002, 4, 4, 5, 4, 3, 5, 7, 9.9, 4, 4, 5, 8, 5, 4, 4, 13.5, 4, 2, 4, 4, 2, 8, 4, 12.600000000000001, 9.900000000000002, 2, 3, 12.600000000000001, 9.900000000000002, 5, 9.900000000000002, 7, 12.600000000000001, 4, 6, 7, 4, 13.5, 5, 13.5, 2, 9, 9, 4, 6, 9.900000000000002, 5, 4, 13.5, 15.3, 17.1, 9.900000000000002, 13.5, 4, 7, 10.8, 6, 4, 5, 14.4, 14.4, 7, 4, 11.700000000000001, 4, 5, 4, 9.0, 9, 8, 9.900000000000002, 14.4, 5, 5, 12.600000000000001, 4, 5, 4, 12.600000000000001, 9, 4, 4, 12.600000000000001, 6, 10.8, 9, 4, 7, 4, 4, 8, 13.5, 10.8, 5, 5, 9, 4, 4, 14.4, 4, 9.900000000000002, 12.600000000000001, 7, 12.600000000000001, 13.5, 4, 13.5, 4, 13.5, 3, 6.3, 9, 3, 9.900000000000002, 4, 9.0, 9.9, 7, 10.8, 5, 9.9, 9.900000000000002, 2, 2, 13.5, 7, 13.5, 2, 3, 13.5, 5, 14.4, 7, 9.900000000000002, 9.900000000000002, 4, 4, 5, 9, 6, 4, 6, 4, 14.4, 14.4, 4, 5, 2, 8, 4, 4, 4, 14.4, 9.9, 5, 10.8, 13.5, 14.4, 13.5, 4, 7, 4, 4, 5, 12.600000000000001, 4, 4, 4, 3, 4, 5, 5, 13.5, 4, 13.5, 6, 5, 4, 14.4, 4, 4, 5, 13.5, 8, 6, 4, 11.700000000000001, 9.900000000000002, 13.5, 5, 4, 10.8, 13.5, 4, 4, 13.5, 15.3, 3, 5, 5, 3, 13.5, 9, 14.4, 6, 12.600000000000001, 3, 4, 10.8, 14.4, 3, 6, 8, 5, 4, 5, 13.5, 11.700000000000001, 9, 4, 10.8, 5, 4, 7, 12.600000000000001, 9.900000000000002, 14.4, 4, 13.5, 5.4, 8, 14.4, 14.4, 12.600000000000001, 9.9, 8, 14.4, 8, 13.5, 11.700000000000001, 4, 5, 9, 11, 4, 10, 4, 4, 13.5, 4, 10.8, 5, 5, 5, 9.9, 6, 13.5, 14.4, 8, 9.9, 7, 4, 9, 4, 13.5, 4, 4, 12.600000000000001, 4, 10.8, 14.4, 14.4, 12.600000000000001, 4, 4, 4, 11.7, 7, 4, 5, 5, 9.900000000000002, 14.4, 4, 9, 4, 5, 5, 6, 10.8, 9.900000000000002, 9.9, 10.8, 12.600000000000001, 8, 15.3, 12.600000000000001, 4, 5, 4, 4, 4, 4, 4, 6, 4, 4, 13.5, 4, 12.600000000000001, 4, 4, 4, 4, 12.600000000000001, 9.900000000000002, 9, 2, 14.4, 6, 12.600000000000001, 4, 14.4, 7, 13.5, 4, 9.900000000000002, 13.5, 4, 13.5, 14.4, 14.4, 9.9, 4, 13.5, 4, 5, 9.9, 12.600000000000001, 4, 6, 12.600000000000001, 5, 4, 4, 4, 14.4, 4, 4, 4, 4, 4, 12, 9.9, 5, 8, 15.3, 9, 14.4, 3, 14.4, 9, 4, 4, 9, 9.900000000000002, 4, 7, 4, 14.4, 4, 9.900000000000002, 7, 4, 4, 7, 3, 12.600000000000001, 4, 4, 13.5, 4, 5, 4, 5, 13.5, 9.9, 13.5, 4, 4, 7, 6, 13.5, 9.900000000000002, 5, 9.900000000000002, 4, 13.5, 12.600000000000001, 7, 9.9, 13.5, 4, 7, 9.0, 4, 13.5, 4, 6, 4, 9.9, 5, 13.5, 9, 13.5, 4, 6.3, 4, 14.4, 11.700000000000001, 12.600000000000001, 4, 12.600000000000001, 13.5, 14.4, 10.8, 12.600000000000001, 4, 4, 4, 13.5, 8, 9.900000000000002, 13.5, 4, 4, 5, 4, 13.5, 8, 3, 13.5, 10.8, 13.5, 8, 9.900000000000002, 9, 11.700000000000001, 4, 4, 14.4, 14.4, 4, 2, 5, 13.5, 5, 14.4, 10.8, 5, 13.5, 4, 9.900000000000002, 4, 12.600000000000001, 5, 9, 4, 4, 10.8, 5, 13.5, 13.5, 4, 9, 9.900000000000002, 6, 14.4, 14.4, 4, 8, 9.9, 4, 10.8, 5, 4, 9, 4, 4, 4, 13.5, 9, 11.700000000000001, 13.5, 6, 13.5, 4, 16.200000000000003, 4, 13.5, 3, 4, 5, 14.4, 15.3, 12.600000000000001, 13.5, 5, 8, 7, 4, 12.600000000000001, 14.4, 4, 4, 13.5, 14.4, 13.5, 14.4, 4, 13.5, 10.8, 13.5, 14.4, 9.900000000000002, 7, 9.9, 12.600000000000001, 10.8, 13.5, 13.5, 5, 5, 4, 7, 5, 10.8, 14.4, 6, 9.900000000000002, 4, 13.5, 4, 4, 9, 12.600000000000001, 14.4, 5, 4, 14.4, 2, 7, 3, 4, 13.5, 4, 7, 4, 6, 9.9, 14.4, 14.4, 9.9, 7, 4, 4, 10.8, 9.900000000000002, 9.9, 4, 8, 4, 9, 4, 14.4, 14.4, 9, 5, 4, 9.9, 13.5, 9.0, 13.5, 8, 13.5, 4, 4, 4, 4, 12.600000000000001, 4, 14.4, 4, 9.900000000000002, 5, 9.900000000000002, 13.5, 7.2, 3, 10.8, 14.4, 14.4, 4, 7, 13.5, 10.8, 14.4, 5, 9.900000000000002, 4, 5, 3, 11.700000000000001, 14.4, 4, 4, 9.900000000000002, 14.4, 9, 4, 13.5, 4, 12.600000000000001, 12.600000000000001, 12.600000000000001, 3, 2, 13.5, 4, 13.5, 4, 13.5, 5, 6, 14.4, 13.5, 14.4, 10.8, 14.4, 6, 13.5, 4, 13.5, 4, 4, 14.4, 13.5, 12.600000000000001, 4, 7, 4, 13.5, 7, 14.4, 13.5, 11.700000000000001, 4, 4, 3, 4, 4, 4, 14.4, 5, 15.3, 5, 6, 8, 9.9, 10.8, 7, 15.3, 9.9, 4, 4, 12.600000000000001, 4, 13.5, 12.600000000000001, 9.900000000000002, 5, 14.4, 4, 12.600000000000001, 13.5, 10.8, 5, 7, 13.5, 8, 15, 5, 10.8, 8, 5, 13.5, 12.600000000000001, 13.5, 12.600000000000001, 12.600000000000001, 9, 11.7, 6, 13.5, 11.700000000000001, 5, 12.600000000000001, 4, 4, 4, 10.8, 4, 2, 4, 9.9, 14.4, 10.8, 4, 4, 5, 12.600000000000001, 4, 7, 4, 4, 4, 13.5, 13.5, 3, 12.600000000000001, 13.5, 4, 5, 4, 4, 9, 14.4, 13.5, 8, 4, 9.9, 3, 12.600000000000001, 13.5, 14.4, 16.200000000000003, 4, 4, 2, 13.5, 14.4, 5, 4, 4, 4, 8, 9.900000000000002, 7, 5, 6, 13.5, 13.5, 7, 12.600000000000001, 4, 12.600000000000001, 14.4, 11.700000000000001, 4, 4, 13.5, 9, 7, 12.600000000000001, 6, 5, 10.8, 4, 7, 10.8, 2, 2, 4, 13.5, 9, 2, 2, 13.5, 5, 4, 4, 4, 4, 4, 13.5, 4, 13.5, 4, 14.4, 4, 4, 4, 3, 3, 4, 4, 4, 6, 14.4, 13.5, 9.900000000000002, 8, 12.600000000000001, 8, 12.600000000000001, 13.5, 5, 7, 9, 4, 4, 8, 4, 10.8, 7, 6, 4, 7, 9, 4, 4, 3, 4, 13.5, 5, 11.700000000000001, 15.3, 10, 5, 13.5, 3, 10.8, 2, 14.4, 14.4, 4, 13.5, 9.900000000000002, 14.4, 6, 7, 13.5, 9.9, 5, 4, 10.8, 4, 13.5, 14.4, 6.3, 9.900000000000002, 7, 14.4, 12.600000000000001, 4, 13.5, 13.5, 4, 12.600000000000001, 8, 14.4, 8.1, 4, 9, 7, 12.600000000000001, 6, 5, 4, 7, 9.9, 11.700000000000001, 4, 5, 4, 9.900000000000002, 4, 4, 14.4, 13.5, 4, 4, 13.5, 7, 10.8, 6, 5, 13.5, 4, 4, 9.900000000000002, 9, 5, 9.900000000000002, 4, 4, 10.8, 6.3, 12.600000000000001, 9, 4, 13.5, 14.4, 5, 12.600000000000001, 9.0, 13.5, 2, 13.5, 4, 5, 2, 10.8, 4, 8, 7, 9, 14.4, 4, 9.900000000000002, 2, 6, 5, 10.8, 8, 4, 4, 13.5, 9, 4, 7, 13.5, 4, 7, 4, 7, 13.5, 14.4, 4, 12.600000000000001, 4, 9.9, 15.3, 6, 9, 6, 4, 4, 9.900000000000002, 4, 13.5, 5, 9.0, 6, 14.4, 13.5, 4, 14.4, 4, 5, 5, 4, 12.600000000000001, 4, 7, 4, 4, 7, 4, 4, 4, 10.8, 13.5, 13.5, 13.5, 5, 9, 4, 6, 14.4, 13.5, 13.5, 4, 4, 4, 7, 4, 11.700000000000001, 4, 11.7, 14.4, 9.900000000000002, 4, 5, 13.5, 12.600000000000001, 5, 4, 13.5, 8, 14.4, 9.900000000000002, 4, 4, 14.4, 3, 9, 14.4, 4, 9, 4, 4, 4, 13.5, 4, 7, 5, 4, 8, 4, 13.5, 13.5, 13.5, 5, 4, 9.9, 12.600000000000001, 11.700000000000001, 13.5, 13.5, 13.5, 4, 3, 4, 5, 12.600000000000001, 4, 2, 10.8, 9] | | 5.331 | 2.0 | 690 | 11.4411 | 5.4505 | [9.900000000000002, 5, 13.5, 4, 12.600000000000001, 13.5, 11.700000000000001, 13.5, 13.5, 16.200000000000003, 13.5, 13.5, 14.4, 14.4, 13.5, 14.4, 15.3, 12.600000000000001, 14.4, 15.3, 15.3, 10.8, 14.4, 4, 14.4, 13.5, 14.4, 13.5, 14.4, 11.700000000000001, 12.600000000000001, 13.5, 9.900000000000002, 11.700000000000001, 4, 13.5, 13.5, 3, 10.8, 14.4, 5, 10.8, 13.5, 14.4, 13.5, 13.5, 13.5, 9.900000000000002, 14.4, 13.5, 13.5, 14.4, 14.4, 3, 4, 14.4, 9.900000000000002, 4, 9.900000000000002, 13.5, 14.4, 9.900000000000002, 13.5, 13.5, 4, 13.5, 13.5, 14.4, 13.5, 3, 12.600000000000001, 4, 5, 14.4, 9.900000000000002, 15.3, 13.5, 4, 16.200000000000003, 15.3, 3, 13.5, 13.5, 14.4, 14.4, 14.4, 9.900000000000002, 10.8, 10.8, 15.3, 12.600000000000001, 16.200000000000003, 13.5, 11.700000000000001, 13.5, 5, 13.5, 14.4, 13.5, 13.5, 13.5, 13.5, 14.4, 4, 13.5, 13.5, 13.5, 14.4, 2, 12.600000000000001, 15.3, 5, 9.900000000000002, 4, 7, 14.4, 14.4, 12.600000000000001, 4, 13.5, 15.3, 14.4, 13.5, 14.4, 3, 14.4, 13.5, 14.4, 14.4, 5, 14.4, 10.8, 13.5, 12.600000000000001, 10.8, 5, 14.4, 4, 13.5, 13.5, 13.5, 13.5, 12.600000000000001, 9.900000000000002, 13.5, 4, 10.8, 13.5, 13.5, 14.4, 12.600000000000001, 4, 12.600000000000001, 12.600000000000001, 12.600000000000001, 14.4, 14.4, 13.5, 14.4, 15.3, 12.600000000000001, 13.5, 14.4, 9.900000000000002, 12.600000000000001, 4, 13.5, 14.4, 14.4, 13.5, 12.600000000000001, 13.5, 13.5, 13.5, 10.8, 4, 3, 13.5, 11.700000000000001, 3, 12.600000000000001, 9.900000000000002, 9.900000000000002, 14.4, 15.3, 15.3, 4, 4, 13.5, 4, 13.5, 13.5, 15.3, 12.600000000000001, 4, 4, 13.5, 13.5, 13.5, 13.5, 4, 14.4, 9.900000000000002, 10.8, 10.8, 12.600000000000001, 14.4, 9.900000000000002, 12.600000000000001, 14.4, 12.600000000000001, 13.5, 13.5, 14.4, 3, 4, 12.600000000000001, 13.5, 15.3, 16.200000000000003, 14.4, 4, 4, 14.4, 10.8, 15.3, 13.5, 13.5, 9.900000000000002, 10.8, 9.900000000000002, 4, 14.4, 4, 14.4, 14.4, 13.5, 15.3, 10.8, 13.5, 12.600000000000001, 9.900000000000002, 4, 14.4, 4, 14.4, 4, 9.900000000000002, 13.5, 14.4, 14.4, 9.900000000000002, 18.0, 4, 13.5, 14.4, 13.5, 6, 14.4, 14.4, 10.8, 14.4, 14.4, 13.5, 9.900000000000002, 15.3, 5, 4, 14.4, 13.5, 4, 12.600000000000001, 10.8, 5, 9.900000000000002, 13.5, 14.4, 13.5, 14.4, 12.600000000000001, 17.1, 15.3, 14.4, 12.600000000000001, 14.4, 4, 12.600000000000001, 13.5, 11.700000000000001, 10.8, 4, 14.4, 13.5, 4, 9.900000000000002, 15.3, 9.900000000000002, 13.5, 9.900000000000002, 13.5, 11.700000000000001, 4, 13.5, 13.5, 13.5, 12.600000000000001, 12.600000000000001, 13.5, 13.5, 10.8, 12.600000000000001, 14.4, 12.600000000000001, 5, 14.4, 12.600000000000001, 12.600000000000001, 13.5, 4, 3, 13.5, 12.600000000000001, 13.5, 13.5, 15.3, 15.3, 14.4, 9.900000000000002, 15.3, 13.5, 12.600000000000001, 14.4, 9.900000000000002, 12.600000000000001, 11.700000000000001, 13.5, 4, 15.3, 9.900000000000002, 13.5, 12.600000000000001, 14.4, 13.5, 13.5, 4, 10.8, 14.4, 13.5, 2, 4, 13.5, 12.600000000000001, 9.900000000000002, 10.8, 9.900000000000002, 5, 9.900000000000002, 16.200000000000003, 9.900000000000002, 13.5, 12.600000000000001, 14.4, 13.5, 14.4, 13.5, 13.5, 12.600000000000001, 13.5, 10.8, 13.5, 5, 13.5, 14.4, 9.900000000000002, 5, 4, 13.5, 15.3, 17.1, 9.900000000000002, 13.5, 14.4, 11.700000000000001, 10.8, 9.900000000000002, 13.5, 5, 14.4, 14.4, 15.3, 13.5, 11.700000000000001, 14.4, 12.600000000000001, 13.5, 12.600000000000001, 12.600000000000001, 12.600000000000001, 3, 4, 5, 12.600000000000001, 5, 13.5, 14.4, 13.5, 12.600000000000001, 13.5, 13.5, 13.5, 4, 10.8, 10.8, 14.4, 4, 4, 4, 4, 14.4, 4, 4, 14.4, 12.600000000000001, 4, 15.3, 14.4, 14.4, 13.5, 9.900000000000002, 5, 13.5, 12.600000000000001, 13.5, 13.5, 13.5, 16.200000000000003, 13.5, 9.900000000000002, 9.900000000000002, 14.4, 3, 9.900000000000002, 14.4, 12.600000000000001, 4, 12.600000000000001, 14.4, 12.600000000000001, 13.5, 3, 10.8, 10.8, 4, 11.700000000000001, 13.5, 11.700000000000001, 9.900000000000002, 13.5, 5, 14.4, 14.4, 9.900000000000002, 9.900000000000002, 4, 14.4, 12.600000000000001, 12.600000000000001, 9.900000000000002, 14.4, 11.700000000000001, 4, 14.4, 4, 4, 12.600000000000001, 2, 4, 13.5, 4, 14.4, 4, 4, 4, 4, 13.5, 14.4, 13.5, 13.5, 4, 13.5, 4, 10.8, 12.600000000000001, 13.5, 13.5, 13.5, 9.900000000000002, 14.4, 12.600000000000001, 12.600000000000001, 13.5, 12.600000000000001, 13.5, 6, 12.600000000000001, 14.4, 14.4, 13.5, 13.5, 12.600000000000001, 13.5, 12.600000000000001, 11.700000000000001, 13.5, 11.700000000000001, 9.900000000000002, 13.5, 12.600000000000001, 15.3, 10.8, 4, 14.4, 13.5, 13.5, 15.3, 9.900000000000002, 12.600000000000001, 12.600000000000001, 9.900000000000002, 13.5, 12.600000000000001, 14.4, 11.700000000000001, 12.600000000000001, 9.900000000000002, 4, 14.4, 14.4, 9.900000000000002, 2, 13.5, 12.600000000000001, 13.5, 12.600000000000001, 13.5, 11.700000000000001, 13.5, 4, 14.4, 12.600000000000001, 13.5, 13.5, 12.600000000000001, 9.900000000000002, 14.4, 4, 13.5, 4, 5, 14.4, 14.4, 12.600000000000001, 4, 13.5, 14.4, 13.5, 13.5, 11.700000000000001, 4, 12.600000000000001, 12.600000000000001, 9.900000000000002, 13.5, 4, 13.5, 14.4, 13.5, 14.4, 14.4, 12.600000000000001, 12.600000000000001, 5, 4, 10.8, 4, 14.4, 13.5, 4, 14.4, 13.5, 12.600000000000001, 13.5, 13.5, 13.5, 13.5, 12.600000000000001, 15.3, 14.4, 14.4, 14.4, 12.600000000000001, 13.5, 4, 13.5, 15.3, 12.600000000000001, 13.5, 12.600000000000001, 12.600000000000001, 9.900000000000002, 14.4, 13.5, 12.600000000000001, 14.4, 5, 12.600000000000001, 11.700000000000001, 14.4, 9.900000000000002, 13.5, 14.4, 12.600000000000001, 13.5, 15.3, 5, 14.4, 12.600000000000001, 13.5, 13.5, 13.5, 14.4, 4, 11.700000000000001, 14.4, 13.5, 13.5, 4, 5, 14.4, 14.4, 13.5, 13.5, 12.600000000000001, 9.900000000000002, 14.4, 10.8, 4, 9.900000000000002, 12.600000000000001, 14.4, 4, 13.5, 13.5, 13.5, 3, 13.5, 14.4, 5, 14.4, 14.4, 4, 14.4, 4, 15.3, 9.900000000000002, 13.5, 12.600000000000001, 4, 5, 5, 12.600000000000001, 13.5, 13.5, 4, 4, 4, 4, 14.4, 14.4, 4, 4, 4, 12.600000000000001, 4, 15.3, 12.600000000000001, 14.4, 9.900000000000002, 14.4, 10.8, 15.3, 14.4, 15.3, 3, 13.5, 13.5, 14.4, 14.4, 13.5, 3, 3, 13.5, 14.4, 14.4, 9.900000000000002, 12.600000000000001, 13.5, 14.4, 13.5, 15.3, 12.600000000000001, 4, 12.600000000000001, 13.5, 13.5, 13.5, 4, 13.5, 5, 13.5, 13.5, 9.900000000000002, 12.600000000000001, 9.900000000000002, 4, 13.5, 12.600000000000001, 14.4, 13.5, 4, 14.4, 12.600000000000001, 5, 15.3, 4, 14.4, 11.700000000000001, 13.5, 13.5, 12.600000000000001, 13.5, 12.600000000000001, 4, 13.5, 3, 13.5, 14.4, 11.700000000000001, 12.600000000000001, 13.5, 5, 13.5, 14.4, 10.8, 12.600000000000001, 14.4, 4, 13.5, 13.5, 4, 9.900000000000002, 13.5, 13.5, 13.5, 12.600000000000001, 15.3, 13.5, 14.4, 9.900000000000002, 13.5, 14.4, 13.5, 9.900000000000002, 3, 14.4, 11.700000000000001, 15.3, 13.5, 14.4, 14.4, 13.5, 10.8, 12.600000000000001, 13.5, 5, 14.4, 10.8, 12.600000000000001, 4, 13.5, 9.900000000000002, 4, 12.600000000000001, 10.8, 14.4, 13.5, 4, 10.8, 12.600000000000001, 13.5, 13.5, 13.5, 13.5, 9.900000000000002, 11.700000000000001, 14.4, 14.4, 13.5, 13.5, 4, 13.5, 10.8, 12.600000000000001, 13.5, 13.5, 4, 13.5, 14.4, 13.5, 13.5, 11.700000000000001, 13.5, 11.700000000000001, 13.5, 13.5, 4, 4, 13.5, 9.900000000000002, 13.5, 12.600000000000001, 14.4, 15.3, 12.600000000000001, 13.5, 4, 14.4, 9.900000000000002, 14.4, 12.600000000000001, 14.4, 4, 14.4, 13.5, 14.4, 4, 14.4, 14.4, 13.5, 14.4, 4, 14.4, 9.900000000000002, 4, 13.5, 12.600000000000001, 10.8, 13.5, 13.5, 5, 12.600000000000001, 14.4, 13.5, 12.600000000000001, 14.4, 14.4, 6, 9.900000000000002, 13.5, 13.5, 14.4, 13.5, 5, 12.600000000000001, 14.4, 12.600000000000001, 4, 14.4, 10.8, 13.5, 9.900000000000002, 4, 13.5, 4, 9.900000000000002, 13.5, 13.5, 13.5, 14.4, 14.4, 13.5, 4, 14.4, 13.5, 14.4, 3, 4, 14.4, 4, 13.5, 13.5, 13.5, 14.4, 14.4, 13.5, 5, 13.5, 4, 13.5, 12.600000000000001, 13.5, 13.5, 13.5, 14.4, 13.5, 13.5, 13.5, 12.600000000000001, 4, 14.4, 13.5, 9.900000000000002, 13.5, 9.900000000000002, 13.5, 10.8, 9.900000000000002, 5, 14.4, 14.4, 15.3, 3, 13.5, 10.8, 14.4, 12.600000000000001, 9.900000000000002, 14.4, 12.600000000000001, 9.900000000000002, 11.700000000000001, 14.4, 13.5, 13.5, 3, 14.4, 13.5, 13.5, 4, 13.5, 12.600000000000001, 12.600000000000001, 5, 9.900000000000002, 2, 13.5, 21.6, 13.5, 13.5, 13.5, 12.600000000000001, 17.1, 14.4, 4, 14.4, 2, 14.4, 14.4, 13.5, 13.5, 13.5, 14.4, 9.000000000000002, 14.4, 13.5, 5, 13.5, 14.4, 13.5, 13.5, 11.700000000000001, 14.4, 13.5, 11.700000000000001, 13.5, 14.4, 9.900000000000002, 13.5, 14.4, 14.4, 14.4, 12.600000000000001, 15.3, 12.600000000000001, 11.700000000000001, 4, 13.5, 10.8, 11.700000000000001, 15.3, 13.5, 15.3, 13.5, 5, 13.5, 13.5, 12.600000000000001, 9.900000000000002, 4, 4, 13.5, 12.600000000000001, 13.5, 5, 5, 13.5, 13.5, 9.900000000000002, 13.5, 5, 14.4, 14.4, 12.600000000000001, 13.5, 12.600000000000001, 4, 12.600000000000001, 12.600000000000001, 13.5, 4, 4, 13.5, 11.700000000000001, 5, 12.600000000000001, 14.4, 13.5, 13.5, 10.8, 13.5, 11.700000000000001, 13.5, 13.5, 14.4, 4, 13.5, 4, 12.600000000000001, 12.600000000000001, 14.4, 13.5, 4, 14.4, 13.5, 13.5, 13.5, 9.900000000000002, 12.600000000000001, 13.5, 14.4, 12.600000000000001, 14.4, 14.4, 14.4, 14.4, 13.5, 4, 14.4, 13.5, 9.900000000000002, 12.600000000000001, 13.5, 14.4, 4, 13.5, 14.4, 10.8, 13.5, 14.4, 17.1, 13.5, 14.4, 15.3, 15.3, 9.900000000000002, 2, 12.600000000000001, 5, 13.5, 13.5, 13.5, 12.600000000000001, 13.5, 5, 14.4, 11.700000000000001, 5, 14.4, 4, 14.4, 13.5, 5, 11.700000000000001, 12.600000000000001, 14.4, 14.4, 4, 14.4, 10.8, 10.8, 14.4, 13.5, 4, 10.8, 10.8, 4, 12.600000000000001, 13.5, 14.4, 13.5, 13.5, 14.4, 13.5, 4, 13.5, 13.5, 14.4, 13.5, 14.4, 14.4, 9.900000000000002, 9.900000000000002, 4, 14.4, 14.4, 4, 14.4, 4, 9.900000000000002, 15.3, 5, 12.600000000000001, 12.600000000000001, 13.5, 12.600000000000001, 14.4, 13.5, 13.5, 15.3, 4, 14.4, 10.8, 13.5, 18.9, 13.5, 13.5, 13.5, 4, 13.5, 9.900000000000002, 13.5, 13.5, 9.900000000000002, 11.700000000000001, 15.3, 9.900000000000002, 12.600000000000001, 13.5, 3, 10.8, 10.8, 4, 4, 16.200000000000003, 13.5, 9.900000000000002, 14.4, 13.5, 13.5, 13.5, 13.5, 12.600000000000001, 13.5, 14.4, 4, 13.5, 14.4, 9.900000000000002, 9.900000000000002, 4, 14.4, 12.600000000000001, 13.5, 4, 13.5, 4, 12.600000000000001, 14.4, 14.4, 6, 4, 4, 5, 12.600000000000001, 11.700000000000001, 12.600000000000001, 13.5, 14.4, 13.5, 11.700000000000001, 13.5, 12.600000000000001, 13.5, 9.900000000000002, 13.5, 15.3, 14.4, 13.5, 15.3, 14.4, 4, 2, 10.8, 11.700000000000001, 15.3, 13.5, 13.5, 13.5, 9.900000000000002, 10.8, 12.600000000000001, 9.900000000000002, 4, 4, 4, 3, 12.600000000000001, 4, 13.5, 13.5, 14.4, 12.600000000000001, 5, 5, 13.5, 10.8, 4, 14.4, 12.600000000000001, 11.700000000000001, 14.4, 14.4, 13.5, 5, 13.5, 14.4, 13.5, 9.900000000000002, 10.8, 4, 12.600000000000001, 10.8, 13.5, 13.5, 13.5, 13.5, 13.5, 4, 14.4, 13.5, 13.5, 15.3, 14.4, 4, 13.5, 4, 4, 12.600000000000001, 13.5, 13.5, 15.3, 11.700000000000001, 12.600000000000001, 13.5, 13.5, 13.5, 9.900000000000002, 4, 13.5, 12.600000000000001, 5, 10.8, 4, 4, 14.4, 4, 15.3, 12.600000000000001, 4, 14.4, 12.600000000000001, 14.4, 13.5, 13.5, 13.5, 13.5, 4, 13.5, 13.5, 14.4, 4, 13.5, 13.5, 12.600000000000001, 4, 14.4, 11.700000000000001, 14.4, 13.5, 4, 4, 4, 14.4, 13.5, 13.5, 11.700000000000001, 13.5, 15.3, 14.4, 9.900000000000002, 15.3, 12.600000000000001, 13.5, 12.600000000000001, 12.600000000000001, 13.5, 13.5, 13.5, 14.4, 9.900000000000002, 13.5, 14.4, 14.4, 9.900000000000002, 14.4, 14.4, 13.5, 14.4, 13.5, 15.3, 13.5, 13.5, 13.5, 4, 5, 14.4, 14.4, 13.5, 13.5, 13.5, 13.5, 12.600000000000001, 14.4, 13.5, 12.600000000000001, 11.700000000000001, 13.5, 13.5, 13.5, 13.5, 9.900000000000002, 13.5, 12.600000000000001, 12.600000000000001, 14.4, 10.8, 4, 14.4] | | 0.2958 | 3.0 | 1035 | 4.0196 | 0.2725 | [3, 5, 4, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 4, 2, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 6, 4, 3, 4, 4, 4, 4, 4, 3, 2, 2, 4, 5, 5, 4, 6, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 5, 3, 4, 7, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 4, 5, 4, 2, 4, 5, 2, 5, 4, 4, 4, 6, 4, 4, 5, 3, 4, 4, 2, 4, 4, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 3, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 5, 4, 3, 5, 4, 5, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 2, 3, 4, 4, 4, 4, 4, 4, 5, 2, 4, 5, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 5, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 5, 2, 5, 3, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 6, 2, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 2, 4, 4, 4, 4, 5, 5, 4, 4, 2, 5, 4, 5, 5, 4, 5, 5, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 5, 4, 3, 5, 2, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 2, 2, 4, 2, 4, 4, 5, 3, 2, 3, 5, 3, 5, 3, 4, 5, 4, 6, 4, 4, 4, 5, 4, 2, 4, 5, 4, 4, 3, 5, 4, 4, 4, 4, 3, 4, 4, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 4, 5, 4, 5, 5, 5, 3, 4, 5, 5, 5, 4, 5, 4, 5, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 3, 5, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 5, 4, 5, 4, 5, 4, 3, 2, 2, 4, 2, 4, 2, 3, 4, 5, 4, 4, 3, 3, 4, 4, 5, 5, 3, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 4, 4, 3, 4, 5, 5, 4, 5, 4, 6, 5, 4, 4, 4, 4, 5, 4, 5, 6, 4, 6, 3, 4, 5, 4, 2, 4, 4, 4, 4, 4, 3, 5, 5, 3, 4, 5, 4, 6, 5, 3, 4, 4, 4, 3, 2, 4, 5, 4, 5, 4, 6, 4, 4, 4, 5, 4, 4, 5, 3, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 2, 4, 5, 5, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 2, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 4, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 3, 4, 2, 4, 3, 5, 4, 4, 7, 4, 4, 3, 4, 4, 5, 4, 5, 4, 4, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 3, 4, 2, 4, 4, 4, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 5, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 6, 4, 3, 5, 3, 4, 4, 5, 4, 4, 4, 4, 5, 5, 4, 4, 4, 6, 4, 4, 5, 4, 5, 4, 4, 3, 4, 4, 2, 5, 4, 5, 4, 4, 2, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 4, 3, 4, 4, 4, 3, 3, 4, 2, 4, 4, 4, 4, 4, 2, 5, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 4, 4, 2, 5, 4, 4, 4, 4, 3, 2, 4, 4, 4, 4, 4, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 6, 4, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 4, 4, 5, 5, 4, 5, 4, 4, 2, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 3, 4, 3, 4, 2, 3, 5, 4, 4, 4, 3, 4, 2, 4, 5, 3, 4, 5, 3, 2, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 5, 5, 3, 2, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 2, 4, 6, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 2, 4, 4, 6, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 6, 4, 4, 2, 6, 4, 4, 4, 4, 5, 4, 4, 5, 3, 4, 4, 4, 5, 4, 5, 5, 4, 4, 3, 4, 5, 4, 4, 5, 4, 5, 4, 5, 5, 4, 4, 4, 4, 2, 5, 5, 4, 4, 4, 7, 4, 2, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 4, 4, 4, 2, 4, 4, 5, 4, 4, 4, 4, 3, 2, 5, 5, 4, 4, 4, 5, 3, 5, 4, 2, 5, 4, 4, 4, 4, 5, 6, 5, 4, 4, 4, 4, 2, 2, 4, 4, 4, 2, 2, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 2, 4, 6, 4, 4, 4, 4, 4, 3, 4, 4, 3, 2, 4, 3, 5, 4, 3, 2, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 6, 4, 4, 5, 5, 6, 5, 4, 4, 4, 6, 4, 5, 4, 3, 4, 4, 4, 4, 4, 4, 4, 2, 2, 6, 5, 4, 4, 4, 3, 2, 5, 3, 4, 4, 4, 3, 5, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 5, 2, 4, 4, 4, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 6, 5, 4, 4, 4, 3, 4, 4, 5, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 6, 4, 4, 4, 3, 4, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 6, 4, 4, 4, 4, 3, 4, 5, 5, 4, 2, 4, 5] | | 0.2884 | 4.0 | 1380 | 4.0269 | 0.2645 | [3, 5, 4, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 6, 4, 3, 4, 4, 4, 4, 4, 3, 2, 2, 4, 5, 5, 4, 6, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 5, 3, 4, 7, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 4, 5, 4, 2, 4, 5, 2, 5, 4, 4, 4, 6, 4, 4, 5, 3, 4, 4, 2, 4, 4, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 3, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 5, 4, 3, 5, 4, 5, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 2, 3, 4, 4, 4, 4, 4, 4, 5, 2, 4, 5, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 5, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 5, 2, 5, 3, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 6, 2, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 2, 4, 4, 4, 4, 5, 5, 4, 4, 2, 5, 4, 5, 5, 4, 5, 5, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 5, 4, 3, 5, 2, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 5, 3, 2, 3, 5, 3, 5, 3, 4, 5, 4, 6, 4, 4, 4, 5, 4, 2, 4, 5, 4, 4, 3, 5, 4, 4, 4, 4, 3, 4, 4, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 4, 5, 4, 5, 5, 5, 3, 4, 5, 5, 5, 4, 5, 4, 5, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 3, 5, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 5, 4, 5, 4, 5, 4, 3, 2, 2, 4, 2, 4, 2, 3, 4, 5, 4, 4, 3, 3, 4, 4, 5, 5, 3, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 4, 4, 3, 4, 5, 5, 4, 5, 4, 6, 5, 4, 4, 4, 4, 5, 4, 5, 6, 4, 6, 3, 4, 5, 4, 2, 4, 4, 4, 4, 4, 3, 5, 5, 3, 4, 5, 4, 6, 5, 3, 4, 4, 4, 3, 2, 4, 5, 4, 5, 4, 6, 4, 4, 4, 5, 4, 4, 5, 3, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 2, 4, 5, 5, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 5, 5, 3, 4, 4, 5, 4, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 4, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 3, 4, 2, 4, 3, 5, 4, 4, 7, 4, 4, 3, 4, 4, 5, 4, 5, 4, 4, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 3, 4, 2, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 5, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 6, 4, 3, 5, 3, 4, 4, 5, 4, 4, 4, 4, 5, 5, 4, 4, 4, 6, 4, 4, 5, 4, 5, 4, 4, 3, 4, 4, 2, 5, 4, 5, 4, 4, 2, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 4, 3, 4, 4, 4, 3, 3, 4, 2, 4, 4, 4, 4, 4, 2, 5, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 4, 4, 2, 5, 4, 4, 4, 4, 3, 2, 4, 4, 4, 4, 4, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 6, 4, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 4, 4, 5, 5, 4, 5, 4, 4, 2, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 7, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 3, 4, 3, 4, 2, 3, 5, 4, 4, 4, 3, 4, 2, 4, 5, 3, 4, 5, 3, 2, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 5, 5, 3, 2, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 2, 4, 6, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 2, 4, 4, 6, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 6, 4, 4, 2, 6, 4, 4, 4, 4, 5, 4, 4, 5, 3, 4, 4, 4, 5, 4, 5, 5, 4, 4, 3, 4, 5, 4, 4, 5, 4, 5, 4, 5, 5, 4, 4, 4, 4, 2, 5, 5, 4, 4, 4, 7, 4, 2, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 4, 4, 4, 2, 4, 4, 5, 4, 4, 4, 4, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 2, 5, 4, 4, 4, 4, 5, 6, 5, 4, 4, 4, 4, 2, 2, 4, 4, 4, 2, 2, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 2, 4, 6, 4, 4, 4, 4, 4, 3, 4, 4, 3, 2, 4, 3, 5, 4, 3, 2, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 6, 4, 4, 5, 5, 6, 5, 4, 4, 4, 6, 4, 5, 4, 3, 4, 4, 4, 4, 4, 4, 4, 2, 2, 6, 5, 4, 4, 4, 3, 2, 5, 3, 4, 4, 4, 3, 5, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 5, 2, 4, 4, 4, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 6, 5, 4, 4, 4, 3, 4, 4, 5, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 6, 4, 4, 4, 3, 4, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 6, 4, 4, 4, 4, 3, 4, 5, 5, 4, 2, 4, 5] | | 0.2646 | 5.0 | 1725 | 3.6306 | 0.2607 | [3, 5, 4, 4, 5, 4, 0, 4, 4, 4, 3, 4, 2, 4, 3, 4, 4, 5, 4, 6, 4, 2, 4, 4, 2, 4, 2, 4, 4, 0, 4, 4, 3, 6, 4, 3, 3, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 2, 4, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 2, 3, 2, 4, 4, 6, 4, 3, 3, 3, 4, 2, 2, 3, 2, 2, 2, 5, 5, 4, 6, 3, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 5, 4, 5, 3, 4, 6, 4, 2, 4, 2, 4, 4, 2, 3, 2, 3, 5, 4, 2, 4, 5, 2, 2, 3, 4, 1, 5, 4, 4, 4, 6, 4, 3, 5, 2, 4, 3, 2, 4, 3, 4, 4, 2, 5, 5, 5, 4, 4, 3, 4, 4, 5, 4, 4, 3, 5, 3, 3, 2, 2, 4, 5, 4, 4, 3, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 4, 2, 4, 4, 4, 5, 4, 4, 4, 3, 4, 4, 4, 2, 3, 2, 2, 5, 2, 3, 4, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 2, 4, 4, 3, 2, 3, 4, 4, 4, 4, 4, 4, 5, 1, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 3, 4, 4, 4, 2, 5, 3, 4, 4, 4, 4, 4, 5, 4, 6, 2, 4, 4, 4, 4, 3, 2, 3, 3, 2, 4, 2, 4, 4, 4, 4, 5, 4, 4, 4, 2, 5, 2, 5, 5, 4, 4, 5, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 2, 5, 2, 4, 3, 4, 3, 4, 5, 2, 4, 4, 2, 2, 2, 3, 1, 4, 3, 5, 3, 2, 3, 5, 3, 4, 3, 4, 5, 2, 6, 4, 4, 4, 5, 4, 2, 4, 5, 3, 4, 3, 4, 2, 3, 2, 4, 3, 4, 2, 6, 2, 3, 4, 4, 4, 4, 4, 4, 6, 2, 4, 4, 5, 5, 5, 3, 4, 5, 5, 4, 4, 4, 4, 5, 4, 3, 3, 2, 2, 2, 4, 4, 4, 4, 3, 4, 3, 4, 4, 5, 4, 2, 2, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 4, 2, 3, 2, 5, 3, 5, 4, 5, 4, 3, 2, 1, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 3, 3, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 4, 4, 4, 3, 3, 2, 4, 4, 4, 5, 4, 6, 5, 2, 4, 4, 3, 5, 4, 5, 5, 3, 6, 2, 3, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 4, 6, 4, 3, 4, 4, 4, 3, 0, 4, 5, 4, 4, 4, 5, 4, 3, 4, 4, 3, 4, 5, 3, 2, 4, 4, 4, 5, 2, 2, 5, 4, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 4, 4, 2, 4, 2, 4, 5, 5, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 2, 4, 3, 4, 4, 2, 5, 3, 5, 5, 3, 4, 3, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 4, 2, 5, 4, 3, 4, 2, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 4, 3, 4, 2, 4, 4, 5, 4, 4, 4, 4, 3, 4, 5, 3, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 2, 4, 4, 5, 2, 2, 5, 4, 3, 2, 2, 4, 4, 4, 3, 3, 4, 2, 4, 3, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 3, 4, 4, 3, 3, 5, 6, 4, 3, 5, 3, 4, 3, 4, 2, 3, 3, 2, 5, 5, 2, 4, 4, 5, 4, 3, 5, 3, 5, 4, 3, 2, 4, 2, 2, 5, 4, 5, 4, 4, 2, 5, 2, 2, 4, 3, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 2, 4, 3, 3, 4, 0, 4, 3, 4, 4, 4, 2, 4, 4, 5, 4, 1, 5, 4, 4, 3, 3, 4, 2, 4, 3, 2, 2, 5, 3, 4, 4, 4, 3, 0, 4, 4, 4, 4, 4, 3, 2, 5, 4, 4, 3, 3, 2, 4, 4, 6, 4, 6, 3, 4, 4, 4, 3, 3, 4, 5, 4, 4, 5, 4, 4, 4, 3, 4, 5, 2, 3, 4, 3, 4, 3, 5, 4, 4, 4, 4, 4, 3, 2, 4, 5, 1, 4, 4, 5, 5, 2, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 3, 4, 2, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 4, 7, 3, 4, 4, 2, 3, 4, 3, 5, 2, 4, 4, 3, 4, 3, 4, 1, 3, 5, 4, 2, 4, 3, 4, 1, 4, 4, 3, 2, 5, 3, 2, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 2, 4, 4, 4, 4, 4, 5, 5, 4, 4, 2, 2, 4, 6, 4, 3, 3, 2, 4, 4, 4, 5, 4, 5, 4, 3, 2, 4, 4, 6, 4, 2, 2, 4, 4, 4, 2, 5, 2, 5, 6, 4, 3, 2, 6, 2, 4, 4, 4, 5, 4, 4, 5, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 3, 5, 3, 5, 5, 4, 4, 4, 4, 0, 5, 5, 2, 3, 3, 7, 4, 0, 4, 4, 4, 4, 3, 2, 5, 4, 2, 4, 4, 4, 4, 4, 3, 3, 5, 4, 2, 5, 2, 2, 4, 4, 3, 2, 2, 3, 3, 5, 4, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 2, 3, 2, 5, 5, 4, 3, 4, 5, 4, 5, 4, 0, 5, 4, 3, 4, 4, 5, 5, 5, 4, 4, 4, 4, 2, 2, 2, 3, 4, 2, 1, 4, 5, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 3, 2, 2, 3, 3, 3, 4, 2, 3, 4, 4, 3, 4, 5, 5, 5, 4, 5, 4, 4, 3, 2, 3, 4, 2, 3, 5, 3, 4, 3, 4, 4, 3, 4, 4, 3, 2, 4, 3, 5, 4, 2, 2, 2, 2, 4, 2, 4, 3, 4, 4, 4, 4, 4, 5, 4, 2, 2, 4, 4, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 6, 4, 4, 5, 5, 6, 5, 3, 2, 4, 6, 3, 5, 4, 3, 4, 4, 2, 4, 4, 4, 4, 2, 1, 6, 4, 4, 4, 3, 3, 2, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 4, 5, 4, 2, 4, 4, 5, 0, 4, 4, 4, 5, 4, 6, 4, 3, 2, 4, 4, 2, 3, 3, 3, 3, 4, 2, 4, 4, 3, 4, 2, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 3, 4, 3, 4, 3, 5, 5, 1, 4, 4, 4, 4, 4, 5, 4, 2, 5, 2, 4, 4, 4, 4, 2, 4, 3, 4, 4, 4, 4, 5, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 6, 4, 2, 4, 3, 4, 4, 4, 5, 5, 4, 4, 4, 4, 3, 4, 2, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 5, 4, 4, 4, 3, 3, 4, 5, 2, 4, 5, 5, 4, 3, 4, 4, 3, 4, 5, 4, 2, 1, 2, 5] | | 0.2738 | 6.0 | 2070 | 3.9753 | 0.2541 | [3, 5, 4, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 4, 2, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 2, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 6, 4, 3, 4, 4, 4, 4, 2, 3, 2, 2, 4, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 5, 3, 4, 7, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 4, 5, 4, 2, 4, 5, 1, 5, 4, 4, 4, 6, 4, 4, 5, 3, 4, 4, 2, 4, 4, 4, 5, 2, 5, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 3, 5, 4, 4, 4, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 5, 2, 3, 5, 4, 5, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 3, 4, 2, 2, 4, 4, 3, 2, 3, 4, 4, 4, 4, 4, 4, 5, 2, 4, 5, 3, 4, 4, 4, 4, 4, 3, 4, 2, 4, 3, 5, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 5, 3, 4, 4, 4, 5, 2, 5, 3, 4, 4, 4, 4, 5, 3, 4, 4, 5, 4, 4, 5, 4, 6, 2, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 2, 4, 4, 4, 4, 5, 5, 4, 4, 2, 5, 4, 5, 5, 4, 5, 5, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 5, 4, 3, 5, 2, 4, 4, 4, 3, 4, 5, 2, 4, 4, 4, 2, 4, 4, 2, 4, 4, 5, 3, 2, 3, 5, 3, 5, 3, 4, 5, 4, 6, 4, 4, 4, 5, 4, 2, 4, 5, 4, 4, 3, 5, 4, 4, 4, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 7, 4, 6, 2, 5, 4, 5, 6, 5, 3, 4, 5, 5, 5, 4, 5, 4, 5, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 2, 4, 4, 3, 5, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 5, 4, 6, 4, 5, 4, 3, 2, 2, 4, 2, 4, 2, 3, 4, 5, 4, 4, 3, 3, 4, 2, 5, 5, 3, 4, 6, 4, 4, 4, 4, 5, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 4, 4, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 4, 4, 4, 5, 4, 5, 6, 4, 6, 3, 4, 5, 4, 2, 4, 4, 4, 4, 4, 3, 5, 5, 3, 4, 6, 4, 6, 5, 3, 4, 4, 4, 3, 2, 4, 5, 4, 5, 4, 6, 4, 4, 4, 5, 4, 4, 5, 3, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 2, 4, 5, 5, 3, 4, 4, 4, 2, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 2, 4, 5, 4, 4, 4, 4, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 4, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 3, 4, 2, 4, 3, 5, 2, 4, 7, 4, 4, 3, 4, 4, 5, 4, 5, 4, 4, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 3, 4, 2, 4, 4, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 4, 4, 3, 5, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 6, 4, 3, 5, 3, 4, 4, 5, 4, 4, 4, 2, 5, 5, 2, 4, 4, 6, 4, 4, 5, 4, 5, 4, 4, 3, 4, 4, 2, 5, 4, 5, 4, 4, 2, 5, 2, 2, 4, 4, 4, 3, 4, 4, 4, 5, 3, 4, 4, 3, 4, 4, 4, 3, 3, 4, 2, 4, 3, 4, 4, 4, 2, 5, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 4, 2, 5, 4, 4, 4, 4, 3, 2, 4, 4, 4, 4, 4, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 6, 4, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 4, 4, 5, 5, 4, 5, 4, 2, 2, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 6, 5, 4, 4, 4, 7, 4, 4, 4, 4, 3, 4, 4, 5, 4, 4, 4, 3, 4, 3, 4, 1, 3, 5, 4, 4, 4, 3, 4, 2, 4, 5, 3, 4, 5, 3, 2, 4, 4, 4, 3, 2, 4, 4, 4, 4, 5, 5, 5, 3, 2, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 2, 4, 6, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 2, 4, 4, 6, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 6, 4, 4, 2, 6, 4, 4, 4, 4, 5, 4, 4, 5, 3, 4, 4, 4, 5, 4, 5, 5, 4, 4, 3, 4, 5, 4, 4, 5, 4, 5, 4, 5, 5, 4, 4, 4, 4, 2, 5, 5, 4, 4, 4, 7, 4, 2, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 2, 4, 3, 5, 4, 4, 4, 4, 4, 2, 4, 4, 5, 4, 4, 2, 4, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 2, 5, 4, 4, 4, 4, 5, 6, 5, 4, 4, 4, 4, 2, 2, 4, 4, 4, 2, 2, 4, 5, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 2, 4, 6, 4, 4, 4, 4, 4, 3, 4, 4, 3, 2, 4, 3, 5, 4, 3, 2, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 6, 4, 4, 5, 5, 6, 5, 4, 4, 4, 6, 4, 5, 4, 3, 4, 4, 4, 4, 4, 4, 4, 2, 2, 6, 5, 4, 4, 4, 3, 2, 5, 3, 4, 4, 4, 3, 5, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 5, 0, 4, 4, 4, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 6, 5, 4, 4, 4, 3, 4, 4, 5, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 4, 4, 4, 6, 4, 4, 4, 3, 4, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 3, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 6, 4, 4, 4, 4, 3, 4, 5, 5, 4, 1, 4, 5] | | 0.3151 | 7.0 | 2415 | 3.6887 | 0.2493 | [3, 5, 4, 4, 5, 4, 0, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 5, 4, 6, 4, 2, 4, 4, 2, 4, 2, 4, 4, 0, 4, 4, 3, 6, 4, 4, 3, 3, 1, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 3, 2, 3, 4, 2, 3, 4, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 2, 3, 2, 4, 4, 6, 4, 3, 4, 4, 4, 4, 2, 3, 2, 2, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 3, 2, 3, 5, 4, 2, 4, 5, 2, 2, 4, 4, 1, 5, 4, 4, 4, 6, 4, 3, 5, 3, 4, 4, 2, 4, 3, 4, 4, 2, 5, 5, 5, 2, 4, 4, 4, 4, 5, 4, 4, 3, 5, 4, 3, 2, 2, 4, 5, 4, 4, 3, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 3, 4, 4, 4, 2, 3, 2, 2, 5, 2, 3, 5, 2, 5, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 2, 4, 4, 3, 2, 3, 4, 2, 3, 4, 4, 4, 5, 1, 4, 5, 3, 4, 2, 4, 2, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 4, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 3, 4, 4, 4, 2, 5, 3, 4, 4, 4, 4, 4, 5, 4, 6, 2, 4, 4, 3, 4, 3, 2, 3, 4, 2, 4, 2, 4, 4, 4, 4, 5, 5, 4, 4, 2, 5, 2, 5, 5, 2, 4, 5, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 3, 5, 2, 3, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 2, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 4, 6, 4, 4, 4, 5, 4, 2, 4, 5, 3, 4, 3, 5, 2, 3, 4, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 4, 5, 5, 5, 4, 4, 4, 5, 4, 4, 4, 2, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 5, 3, 2, 2, 4, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 2, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 4, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 3, 3, 2, 5, 5, 4, 5, 4, 6, 5, 2, 4, 4, 3, 5, 4, 5, 5, 4, 6, 3, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 4, 6, 4, 3, 4, 2, 4, 3, 0, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 3, 4, 5, 3, 2, 4, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 0, 3, 5, 5, 3, 4, 4, 4, 2, 4, 2, 4, 5, 5, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 2, 5, 3, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 3, 4, 4, 4, 6, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 2, 7, 4, 3, 3, 4, 2, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 4, 3, 2, 2, 4, 2, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 3, 4, 4, 3, 4, 5, 6, 4, 3, 5, 3, 4, 3, 5, 2, 3, 3, 2, 5, 5, 2, 4, 4, 5, 4, 3, 5, 4, 5, 4, 3, 2, 4, 2, 2, 5, 4, 5, 4, 4, 1, 5, 2, 2, 4, 3, 4, 3, 4, 3, 4, 5, 3, 4, 2, 3, 4, 4, 4, 3, 3, 4, 0, 4, 3, 4, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 2, 4, 4, 4, 4, 4, 4, 2, 5, 4, 4, 4, 4, 2, 4, 4, 6, 3, 6, 4, 4, 4, 4, 3, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 4, 5, 2, 4, 4, 4, 4, 3, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 1, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 4, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 4, 1, 3, 4, 4, 2, 4, 3, 4, 1, 4, 4, 3, 2, 5, 3, 2, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 2, 4, 4, 4, 4, 4, 5, 5, 4, 4, 2, 2, 4, 6, 4, 4, 4, 2, 4, 4, 4, 5, 4, 5, 4, 3, 2, 4, 4, 6, 4, 2, 3, 4, 4, 4, 2, 5, 4, 5, 6, 4, 4, 2, 6, 2, 4, 4, 4, 5, 4, 4, 5, 3, 4, 4, 4, 4, 3, 4, 5, 4, 4, 3, 4, 5, 2, 4, 4, 4, 5, 3, 5, 5, 4, 4, 4, 4, 0, 5, 5, 2, 4, 3, 7, 4, 0, 4, 4, 4, 4, 4, 4, 5, 5, 2, 4, 4, 4, 4, 4, 3, 3, 5, 4, 2, 5, 2, 2, 4, 2, 3, 2, 2, 3, 3, 5, 4, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 2, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 4, 6, 5, 4, 4, 4, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 4, 4, 4, 4, 4, 4, 2, 4, 3, 4, 4, 2, 2, 3, 3, 4, 4, 4, 3, 4, 4, 3, 4, 5, 5, 4, 4, 5, 4, 4, 4, 2, 3, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 2, 2, 2, 4, 2, 4, 3, 2, 4, 4, 4, 4, 5, 4, 2, 4, 4, 4, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 6, 4, 4, 5, 5, 6, 5, 3, 2, 4, 6, 4, 5, 4, 3, 4, 4, 2, 4, 4, 4, 4, 2, 2, 6, 4, 4, 4, 4, 3, 2, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 5, 0, 2, 4, 4, 5, 4, 6, 4, 3, 2, 4, 5, 2, 3, 3, 3, 3, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 3, 4, 3, 4, 3, 5, 5, 1, 4, 4, 4, 4, 4, 5, 4, 2, 5, 2, 4, 4, 4, 3, 2, 4, 4, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 2, 4, 3, 4, 5, 4, 4, 5, 4, 4, 4, 4, 3, 4, 2, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 5, 4, 4, 4, 3, 4, 4, 5, 2, 4, 5, 6, 4, 4, 4, 4, 3, 4, 5, 5, 4, 1, 2, 5] | | 0.2519 | 8.0 | 2760 | 3.8781 | 0.2469 | [3, 5, 4, 4, 5, 4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 4, 2, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 3, 2, 3, 4, 4, 3, 4, 4, 4, 4, 4, 2, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 6, 4, 3, 4, 4, 4, 4, 4, 3, 2, 2, 4, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 4, 4, 5, 3, 4, 4, 2, 4, 4, 4, 5, 2, 5, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 2, 2, 5, 2, 3, 5, 2, 5, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 4, 4, 4, 3, 2, 3, 4, 4, 4, 4, 4, 4, 5, 1, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 4, 3, 5, 3, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 4, 4, 4, 5, 2, 5, 3, 4, 4, 4, 2, 5, 3, 4, 4, 5, 4, 4, 5, 4, 6, 2, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 2, 4, 4, 4, 4, 5, 5, 4, 4, 2, 5, 4, 5, 5, 2, 5, 5, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 5, 3, 2, 3, 5, 3, 5, 3, 4, 5, 4, 6, 4, 4, 4, 5, 4, 2, 4, 5, 3, 2, 3, 5, 2, 4, 4, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 4, 5, 5, 5, 4, 5, 4, 5, 4, 4, 4, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 2, 4, 4, 3, 5, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 5, 4, 5, 4, 5, 4, 3, 2, 2, 4, 2, 4, 0, 3, 4, 5, 4, 4, 3, 3, 4, 4, 5, 5, 3, 4, 6, 4, 4, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 4, 4, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 4, 4, 4, 5, 4, 5, 6, 4, 6, 3, 4, 5, 4, 1, 4, 2, 4, 4, 4, 3, 5, 5, 3, 4, 5, 4, 6, 5, 3, 4, 4, 4, 3, 0, 4, 5, 4, 5, 4, 5, 4, 4, 4, 5, 3, 4, 5, 3, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 2, 4, 4, 2, 4, 5, 5, 3, 4, 4, 4, 2, 4, 2, 4, 5, 5, 5, 4, 2, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 2, 4, 5, 4, 4, 4, 4, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 4, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 3, 3, 4, 4, 5, 4, 5, 4, 4, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 2, 5, 4, 3, 2, 2, 4, 4, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 4, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 6, 4, 3, 5, 3, 4, 3, 5, 2, 3, 4, 4, 5, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 4, 4, 3, 4, 4, 2, 5, 4, 5, 4, 4, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 4, 3, 3, 4, 2, 4, 3, 4, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 4, 2, 5, 4, 4, 4, 4, 3, 2, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 6, 4, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 4, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 4, 4, 5, 4, 4, 4, 3, 4, 3, 4, 1, 3, 5, 4, 4, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 2, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 2, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 2, 4, 6, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 2, 4, 4, 6, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 6, 4, 4, 2, 6, 4, 4, 4, 4, 5, 4, 4, 5, 3, 4, 4, 4, 4, 4, 5, 5, 4, 4, 3, 4, 5, 4, 4, 5, 4, 5, 3, 5, 5, 4, 4, 4, 4, 0, 5, 5, 4, 4, 4, 7, 4, 2, 4, 4, 4, 4, 4, 4, 5, 5, 2, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 5, 4, 4, 4, 2, 4, 4, 2, 4, 3, 5, 4, 4, 3, 4, 4, 2, 4, 4, 5, 4, 4, 2, 2, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 2, 5, 4, 4, 4, 4, 5, 6, 5, 4, 4, 4, 4, 2, 2, 4, 3, 4, 2, 2, 4, 5, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 2, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 3, 2, 4, 3, 5, 4, 2, 2, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 6, 4, 4, 5, 5, 6, 5, 4, 4, 4, 6, 4, 5, 4, 3, 4, 4, 2, 4, 4, 4, 4, 2, 2, 6, 4, 4, 4, 4, 3, 2, 4, 3, 4, 4, 2, 3, 5, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 5, 2, 4, 4, 4, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 6, 5, 4, 4, 4, 3, 4, 4, 5, 5, 1, 4, 4, 4, 4, 4, 5, 4, 4, 5, 2, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 4, 4, 4, 6, 4, 4, 4, 3, 4, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 6, 4, 4, 4, 4, 3, 4, 5, 5, 4, 1, 2, 5] | | 0.2625 | 9.0 | 3105 | 3.7148 | 0.2447 | [3, 5, 4, 4, 5, 4, 0, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 4, 0, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 3, 2, 3, 4, 2, 3, 4, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 4, 3, 5, 3, 4, 4, 2, 4, 3, 4, 5, 2, 5, 5, 5, 2, 2, 4, 4, 4, 5, 4, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 2, 2, 5, 2, 3, 5, 2, 5, 4, 4, 2, 3, 4, 4, 4, 2, 4, 4, 4, 3, 4, 2, 2, 4, 4, 3, 2, 3, 4, 2, 3, 2, 4, 4, 5, 1, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 4, 3, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 3, 4, 2, 4, 2, 5, 3, 4, 2, 4, 4, 4, 5, 4, 6, 2, 4, 4, 3, 4, 3, 2, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 2, 5, 4, 5, 5, 2, 4, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 3, 4, 4, 2, 2, 4, 2, 4, 4, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 4, 6, 4, 4, 4, 5, 4, 2, 4, 5, 3, 2, 3, 5, 2, 4, 4, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 3, 2, 2, 4, 4, 3, 5, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 2, 4, 2, 4, 0, 3, 3, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 1, 5, 4, 4, 4, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 4, 5, 4, 5, 6, 4, 6, 3, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 5, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 4, 4, 4, 5, 3, 4, 5, 3, 2, 4, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 4, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 4, 5, 4, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 4, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 3, 3, 4, 4, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 4, 3, 2, 2, 4, 2, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 6, 4, 3, 5, 3, 4, 3, 5, 2, 3, 4, 2, 5, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 4, 3, 3, 4, 2, 2, 5, 4, 5, 4, 4, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 3, 3, 3, 4, 0, 4, 3, 4, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 4, 2, 4, 4, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 4, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 3, 1, 3, 4, 4, 2, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 2, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 1, 4, 4, 4, 4, 4, 5, 5, 4, 4, 2, 2, 4, 6, 4, 4, 4, 2, 4, 4, 4, 5, 4, 5, 4, 3, 0, 4, 4, 6, 4, 2, 3, 4, 4, 4, 4, 5, 4, 5, 6, 4, 4, 2, 6, 2, 4, 2, 4, 5, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 4, 4, 5, 3, 5, 5, 4, 4, 4, 4, 0, 5, 5, 2, 4, 4, 7, 4, 2, 4, 4, 2, 4, 4, 4, 5, 5, 2, 4, 4, 4, 4, 4, 3, 3, 5, 4, 4, 5, 2, 4, 2, 2, 4, 2, 2, 4, 3, 5, 3, 4, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 2, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 4, 6, 5, 4, 4, 4, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 4, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 4, 4, 4, 2, 3, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 2, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 4, 4, 5, 5, 6, 5, 4, 2, 4, 6, 4, 5, 4, 3, 4, 4, 2, 4, 4, 4, 4, 2, 2, 6, 4, 3, 4, 4, 3, 2, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 5, 0, 2, 4, 4, 5, 4, 6, 4, 3, 2, 4, 5, 2, 3, 4, 3, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 4, 4, 4, 4, 4, 5, 4, 4, 5, 2, 4, 4, 4, 3, 2, 4, 4, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 4, 4, 3, 2, 5, 4, 4, 5, 4, 4, 4, 4, 3, 4, 2, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 5, 2, 4, 5, 6, 4, 4, 3, 4, 3, 4, 5, 5, 4, 1, 2, 5] | | 0.2651 | 10.0 | 3450 | 3.6060 | 0.2428 | [3, 5, 4, 4, 5, 4, 0, 3, 4, 4, 4, 4, 2, 4, 4, 4, 2, 5, 4, 6, 4, 2, 4, 4, 2, 4, 2, 4, 4, 0, 5, 4, 3, 6, 4, 4, 3, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 2, 2, 3, 4, 2, 3, 3, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 2, 3, 5, 4, 2, 4, 5, 2, 1, 4, 5, 1, 5, 4, 4, 4, 6, 3, 3, 5, 3, 4, 3, 2, 4, 3, 4, 4, 2, 5, 5, 5, 2, 2, 4, 4, 4, 5, 3, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 3, 4, 4, 4, 2, 3, 1, 2, 5, 2, 3, 5, 2, 5, 4, 4, 2, 3, 4, 4, 4, 2, 3, 4, 4, 3, 4, 2, 2, 4, 4, 3, 2, 3, 4, 2, 3, 2, 2, 4, 5, 1, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 3, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 2, 4, 2, 4, 2, 5, 3, 4, 2, 4, 4, 4, 5, 3, 6, 2, 4, 4, 3, 4, 3, 2, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 2, 5, 2, 5, 5, 2, 4, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 3, 5, 2, 3, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 1, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 2, 6, 2, 4, 4, 5, 4, 2, 3, 5, 3, 2, 3, 5, 2, 3, 2, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 2, 4, 4, 4, 4, 2, 4, 4, 4, 5, 3, 2, 2, 4, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 2, 5, 4, 5, 2, 5, 4, 3, 2, 2, 4, 2, 4, 0, 3, 3, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 1, 5, 4, 4, 3, 3, 2, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 3, 5, 4, 5, 6, 4, 6, 2, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 4, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 3, 4, 2, 5, 3, 4, 4, 3, 2, 4, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 0, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 2, 4, 3, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 3, 3, 4, 2, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 2, 3, 2, 1, 4, 2, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 3, 3, 4, 5, 6, 4, 3, 5, 3, 4, 3, 5, 2, 3, 3, 2, 5, 4, 2, 4, 4, 5, 4, 3, 5, 4, 5, 4, 3, 2, 4, 2, 2, 5, 4, 5, 4, 4, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 3, 2, 3, 4, 2, 3, 3, 3, 4, 0, 4, 3, 4, 4, 4, 2, 4, 4, 5, 4, 1, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 3, 2, 4, 3, 6, 3, 6, 4, 4, 4, 4, 3, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 4, 5, 2, 4, 4, 4, 4, 3, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 1, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 3, 1, 3, 4, 4, 2, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 2, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 1, 3, 4, 4, 4, 4, 5, 5, 4, 4, 2, 1, 4, 6, 4, 4, 4, 2, 4, 4, 4, 5, 4, 5, 4, 3, 0, 4, 4, 6, 4, 2, 3, 3, 4, 4, 2, 5, 4, 5, 6, 4, 4, 2, 6, 2, 4, 2, 4, 5, 4, 4, 5, 2, 4, 2, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 4, 4, 5, 3, 5, 4, 4, 4, 4, 4, 0, 5, 5, 2, 4, 3, 7, 4, 0, 4, 4, 2, 4, 4, 2, 5, 4, 2, 4, 4, 4, 4, 4, 3, 3, 5, 4, 2, 5, 2, 2, 2, 2, 4, 2, 2, 4, 3, 5, 3, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 2, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 4, 6, 5, 4, 4, 4, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 4, 3, 4, 4, 3, 4, 5, 5, 4, 4, 5, 2, 4, 4, 2, 3, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 2, 2, 4, 4, 2, 4, 3, 4, 4, 4, 4, 4, 5, 4, 2, 2, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 4, 4, 5, 5, 6, 5, 3, 2, 3, 6, 4, 5, 4, 3, 4, 4, 2, 4, 4, 4, 4, 2, 2, 6, 4, 3, 4, 3, 3, 1, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 5, 0, 2, 4, 3, 5, 4, 6, 4, 3, 2, 4, 5, 2, 3, 4, 3, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 4, 4, 4, 4, 4, 5, 4, 2, 5, 2, 4, 4, 4, 3, 2, 4, 3, 2, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 2, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 3, 4, 2, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 5, 2, 4, 4, 3, 3, 3, 5, 2, 4, 5, 5, 4, 3, 3, 4, 3, 4, 5, 4, 4, 1, 2, 5] | | 0.2597 | 11.0 | 3795 | 3.7750 | 0.2421 | [3, 5, 4, 4, 5, 4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 4, 0, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 3, 2, 3, 4, 4, 3, 4, 4, 4, 4, 3, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 4, 5, 2, 2, 4, 5, 2, 5, 4, 4, 4, 6, 4, 4, 5, 3, 4, 4, 2, 4, 3, 4, 5, 2, 5, 5, 5, 4, 2, 4, 4, 4, 5, 3, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 2, 2, 5, 2, 3, 5, 2, 5, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 2, 4, 4, 3, 2, 3, 4, 4, 3, 2, 4, 4, 5, 2, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 4, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 3, 4, 2, 4, 2, 5, 3, 4, 2, 4, 4, 4, 5, 4, 6, 2, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 2, 5, 4, 5, 5, 2, 4, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 3, 4, 4, 2, 2, 4, 2, 4, 4, 5, 3, 2, 3, 5, 3, 5, 3, 4, 5, 4, 6, 4, 4, 4, 5, 4, 2, 4, 5, 4, 2, 3, 5, 2, 4, 4, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 3, 2, 2, 4, 4, 3, 5, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 2, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 4, 6, 4, 2, 2, 2, 5, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 1, 5, 4, 4, 3, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 4, 4, 3, 5, 4, 5, 6, 4, 6, 3, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 5, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 4, 4, 4, 5, 4, 4, 5, 3, 2, 4, 4, 4, 5, 4, 4, 5, 4, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 4, 5, 4, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 4, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 3, 3, 4, 4, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 2, 5, 4, 3, 2, 2, 4, 4, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 3, 4, 4, 5, 6, 4, 3, 5, 3, 4, 3, 5, 2, 3, 4, 4, 5, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 4, 3, 3, 4, 4, 2, 5, 4, 5, 4, 4, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 3, 3, 3, 4, 0, 4, 3, 4, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 4, 2, 4, 4, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 4, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 4, 1, 3, 5, 4, 4, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 2, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 2, 4, 4, 4, 4, 4, 5, 5, 4, 4, 2, 2, 4, 6, 4, 4, 4, 2, 4, 4, 4, 5, 4, 5, 4, 4, 0, 4, 4, 6, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 6, 4, 4, 2, 6, 4, 4, 4, 4, 5, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 5, 4, 5, 3, 5, 5, 4, 4, 4, 4, 0, 5, 5, 2, 4, 4, 7, 4, 2, 4, 4, 4, 4, 4, 4, 5, 5, 2, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 5, 2, 4, 2, 2, 4, 4, 2, 4, 3, 5, 3, 4, 3, 4, 4, 2, 4, 4, 5, 4, 4, 2, 2, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 4, 6, 5, 4, 4, 4, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 2, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 4, 4, 5, 5, 6, 5, 4, 4, 4, 6, 4, 5, 4, 3, 4, 4, 2, 4, 4, 4, 4, 2, 2, 6, 4, 3, 4, 4, 3, 2, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 5, 2, 2, 4, 4, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 4, 5, 5, 1, 4, 4, 4, 4, 4, 5, 4, 4, 5, 2, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 4, 4, 3, 4, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 5, 4, 4, 4, 4, 4, 4, 5, 2, 4, 5, 6, 4, 4, 4, 4, 3, 4, 5, 5, 4, 1, 2, 5] | | 0.2525 | 12.0 | 4140 | 3.6023 | 0.2407 | [3, 5, 4, 4, 5, 4, 0, 3, 4, 4, 4, 4, 2, 4, 4, 4, 2, 5, 2, 6, 4, 2, 4, 4, 2, 4, 2, 4, 2, 0, 5, 4, 3, 6, 4, 4, 4, 3, 1, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 3, 2, 3, 3, 5, 2, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 2, 3, 5, 4, 2, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 3, 3, 5, 3, 4, 3, 2, 4, 3, 4, 4, 2, 5, 5, 5, 2, 2, 4, 4, 4, 5, 3, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 1, 2, 5, 2, 3, 5, 2, 5, 4, 4, 2, 2, 4, 4, 4, 2, 3, 4, 4, 3, 4, 2, 2, 4, 4, 3, 1, 3, 4, 2, 3, 2, 2, 4, 5, 1, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 3, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 2, 4, 2, 4, 2, 5, 3, 3, 2, 4, 4, 4, 5, 3, 6, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 1, 5, 2, 5, 5, 2, 4, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 3, 5, 2, 3, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 1, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 2, 6, 2, 4, 4, 5, 4, 2, 3, 5, 3, 2, 3, 5, 2, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 2, 4, 4, 4, 4, 2, 4, 4, 5, 5, 3, 2, 2, 4, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 2, 5, 4, 5, 2, 5, 4, 3, 2, 1, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 1, 5, 4, 4, 3, 3, 2, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 3, 5, 4, 5, 6, 4, 6, 2, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 4, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 3, 4, 2, 5, 3, 4, 5, 3, 2, 4, 3, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 0, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 2, 4, 3, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 3, 3, 4, 4, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 4, 3, 2, 1, 4, 2, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 3, 3, 4, 5, 6, 4, 3, 5, 3, 4, 3, 5, 2, 3, 4, 2, 5, 4, 2, 4, 4, 5, 4, 3, 5, 4, 5, 4, 3, 2, 4, 2, 2, 5, 4, 5, 4, 4, 1, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 3, 3, 3, 4, 0, 4, 3, 4, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 3, 2, 4, 3, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 4, 5, 2, 4, 4, 4, 2, 3, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 1, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 3, 1, 3, 4, 4, 2, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 2, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 1, 3, 4, 4, 4, 4, 5, 5, 4, 4, 2, 1, 4, 6, 4, 4, 4, 2, 4, 2, 3, 5, 4, 5, 4, 3, 0, 4, 4, 6, 4, 2, 3, 4, 4, 4, 2, 5, 4, 5, 6, 2, 4, 2, 6, 2, 4, 2, 4, 5, 4, 4, 5, 2, 4, 2, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 2, 4, 4, 5, 3, 5, 4, 4, 4, 4, 4, 0, 5, 5, 2, 4, 4, 7, 4, 0, 4, 4, 2, 4, 4, 2, 5, 4, 2, 4, 4, 4, 4, 4, 3, 3, 5, 3, 4, 5, 2, 2, 2, 2, 4, 2, 2, 4, 3, 5, 3, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 2, 3, 1, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 4, 6, 5, 4, 4, 4, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 4, 3, 2, 4, 3, 4, 5, 5, 4, 4, 5, 2, 4, 4, 2, 3, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 2, 2, 4, 4, 2, 4, 3, 2, 4, 4, 4, 4, 5, 4, 2, 2, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 4, 4, 5, 5, 6, 5, 3, 2, 3, 6, 4, 5, 4, 3, 4, 4, 2, 4, 4, 4, 4, 1, 2, 6, 4, 3, 4, 3, 3, 1, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 5, 0, 2, 4, 3, 5, 4, 6, 4, 3, 2, 4, 5, 2, 3, 4, 3, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 4, 4, 4, 4, 4, 5, 4, 2, 5, 2, 4, 4, 4, 3, 2, 4, 3, 2, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 2, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 3, 4, 2, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 5, 2, 4, 4, 3, 3, 4, 5, 2, 4, 5, 5, 4, 4, 3, 4, 3, 4, 5, 4, 4, 1, 2, 5] | | 0.2223 | 13.0 | 4485 | 3.6611 | 0.2400 | [3, 5, 4, 4, 5, 4, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 2, 0, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 2, 2, 3, 4, 2, 3, 3, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 2, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 3, 3, 5, 3, 4, 3, 2, 4, 3, 4, 4, 2, 5, 5, 5, 2, 2, 4, 2, 4, 5, 3, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 1, 2, 5, 2, 3, 5, 2, 5, 4, 4, 2, 3, 4, 4, 4, 2, 4, 4, 4, 3, 4, 2, 2, 4, 4, 3, 2, 3, 4, 2, 3, 2, 2, 4, 5, 2, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 3, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 3, 4, 2, 4, 2, 5, 3, 3, 2, 4, 4, 4, 5, 3, 6, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 2, 5, 2, 5, 5, 2, 4, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 1, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 2, 6, 4, 4, 4, 5, 4, 2, 4, 5, 4, 2, 3, 5, 2, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 4, 4, 4, 4, 4, 2, 4, 4, 5, 5, 3, 2, 2, 4, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 1, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 1, 5, 4, 4, 3, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 3, 5, 4, 5, 6, 4, 6, 3, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 5, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 3, 4, 2, 5, 4, 4, 5, 3, 2, 4, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 2, 5, 4, 4, 4, 2, 5, 4, 5, 4, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 3, 3, 4, 4, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 4, 3, 2, 1, 4, 2, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 3, 3, 4, 5, 6, 4, 3, 5, 3, 4, 3, 5, 2, 3, 4, 2, 5, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 4, 3, 3, 4, 2, 2, 5, 4, 5, 4, 4, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 3, 3, 3, 4, 0, 4, 3, 4, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 4, 2, 4, 3, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 4, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 3, 1, 3, 4, 4, 4, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 2, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 2, 3, 4, 4, 4, 4, 5, 5, 4, 4, 2, 1, 4, 6, 4, 4, 4, 2, 4, 4, 4, 5, 4, 5, 4, 3, 0, 4, 4, 6, 4, 4, 3, 3, 4, 4, 2, 5, 4, 5, 6, 2, 4, 2, 6, 2, 4, 2, 4, 5, 4, 4, 5, 2, 4, 2, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 5, 4, 5, 3, 5, 4, 4, 4, 4, 4, 0, 5, 5, 2, 4, 4, 7, 4, 0, 4, 4, 2, 4, 4, 2, 5, 5, 2, 4, 4, 4, 4, 4, 3, 3, 5, 4, 4, 5, 2, 2, 2, 2, 4, 2, 2, 4, 3, 5, 3, 4, 3, 4, 2, 2, 4, 4, 5, 4, 2, 2, 2, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 4, 6, 5, 4, 4, 4, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 2, 4, 4, 2, 3, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 2, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 2, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 4, 4, 5, 5, 6, 5, 3, 2, 3, 6, 4, 5, 4, 3, 4, 4, 2, 4, 2, 4, 4, 2, 2, 6, 4, 3, 4, 3, 3, 2, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 4, 2, 4, 4, 5, 0, 2, 4, 3, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 3, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 4, 4, 4, 4, 4, 5, 4, 4, 5, 2, 4, 4, 4, 3, 2, 4, 3, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 4, 4, 3, 2, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 2, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 5, 4, 4, 4, 3, 4, 4, 5, 2, 4, 5, 5, 4, 4, 4, 4, 3, 4, 5, 5, 4, 1, 2, 5] | | 0.2697 | 14.0 | 4830 | 3.7351 | 0.2398 | [3, 5, 4, 4, 5, 4, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 4, 0, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 3, 2, 3, 4, 4, 3, 4, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 3, 3, 5, 3, 4, 3, 2, 4, 3, 4, 5, 2, 5, 5, 5, 4, 2, 4, 4, 4, 5, 3, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 1, 2, 5, 2, 3, 5, 2, 5, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 2, 4, 4, 3, 2, 3, 4, 2, 4, 2, 4, 4, 5, 2, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 4, 3, 5, 3, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 3, 4, 2, 4, 2, 5, 3, 4, 2, 4, 4, 4, 5, 4, 6, 2, 4, 4, 3, 4, 3, 4, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 2, 5, 4, 5, 5, 2, 5, 5, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 1, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 5, 2, 6, 4, 4, 4, 5, 4, 2, 4, 5, 4, 2, 3, 5, 2, 4, 4, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 2, 2, 4, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 2, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 1, 5, 4, 4, 3, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 3, 5, 4, 5, 6, 4, 6, 3, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 5, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 6, 4, 4, 4, 5, 4, 4, 5, 3, 2, 4, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 4, 5, 4, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 3, 3, 4, 4, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 4, 3, 2, 1, 4, 4, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 6, 4, 3, 5, 3, 4, 3, 5, 2, 3, 4, 2, 5, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 4, 3, 3, 4, 4, 2, 5, 4, 5, 4, 4, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 3, 3, 3, 4, 0, 4, 3, 2, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 4, 2, 4, 4, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 4, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 2, 3, 4, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 4, 1, 3, 5, 4, 4, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 2, 4, 4, 4, 3, 2, 4, 4, 3, 4, 5, 5, 5, 3, 2, 4, 4, 4, 4, 4, 5, 5, 4, 4, 2, 2, 4, 6, 4, 4, 4, 2, 4, 4, 4, 5, 4, 5, 4, 3, 0, 4, 4, 6, 4, 4, 3, 4, 4, 4, 4, 5, 4, 5, 6, 4, 4, 2, 6, 2, 4, 4, 4, 5, 4, 4, 5, 2, 4, 4, 4, 5, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 5, 4, 5, 3, 5, 4, 4, 4, 4, 4, 2, 5, 5, 2, 4, 4, 7, 4, 2, 4, 4, 2, 4, 4, 2, 5, 5, 2, 4, 4, 4, 4, 4, 3, 3, 5, 4, 4, 5, 2, 2, 2, 2, 4, 4, 2, 4, 3, 5, 3, 4, 3, 4, 2, 2, 4, 4, 5, 4, 4, 2, 2, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 5, 6, 5, 4, 4, 4, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 2, 4, 4, 2, 4, 4, 2, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 1, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 4, 4, 5, 5, 6, 5, 3, 2, 4, 6, 4, 5, 4, 3, 4, 4, 2, 4, 4, 4, 4, 2, 2, 6, 4, 3, 4, 3, 3, 2, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 3, 2, 4, 4, 5, 0, 2, 4, 4, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 4, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 3, 2, 4, 4, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 4, 4, 3, 2, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 5, 4, 4, 4, 4, 4, 4, 5, 2, 4, 5, 6, 4, 4, 4, 4, 3, 4, 5, 5, 4, 1, 2, 5] | | 0.2467 | 15.0 | 5175 | 3.6626 | 0.2392 | [3, 5, 4, 4, 5, 4, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 2, 0, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 3, 2, 3, 4, 2, 3, 4, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 2, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 3, 3, 5, 3, 4, 3, 2, 4, 3, 4, 4, 2, 5, 5, 5, 2, 2, 4, 4, 4, 5, 3, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 1, 2, 5, 2, 3, 5, 2, 5, 4, 4, 2, 3, 4, 4, 4, 2, 4, 4, 4, 3, 4, 2, 2, 4, 4, 3, 1, 3, 4, 2, 4, 2, 2, 4, 5, 2, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 3, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 2, 4, 2, 4, 2, 5, 3, 4, 2, 5, 4, 4, 5, 4, 6, 2, 4, 4, 3, 4, 3, 2, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 1, 5, 2, 5, 5, 2, 4, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 1, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 2, 6, 2, 4, 4, 5, 4, 2, 4, 5, 4, 2, 3, 5, 2, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 4, 4, 4, 4, 4, 2, 4, 4, 5, 5, 3, 2, 2, 4, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 1, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 1, 5, 4, 4, 3, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 3, 5, 4, 5, 6, 4, 6, 3, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 5, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 3, 4, 2, 5, 4, 4, 5, 3, 2, 4, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 2, 4, 4, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 3, 3, 4, 4, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 4, 3, 2, 1, 4, 2, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 6, 4, 3, 5, 3, 4, 3, 5, 2, 3, 4, 2, 5, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 4, 3, 3, 4, 2, 2, 5, 4, 5, 4, 4, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 3, 3, 3, 4, 0, 4, 3, 2, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 4, 2, 4, 3, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 2, 5, 2, 4, 4, 4, 4, 3, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 3, 1, 3, 4, 4, 4, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 2, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 2, 3, 4, 4, 4, 4, 5, 5, 4, 4, 2, 1, 4, 6, 4, 4, 4, 2, 4, 4, 4, 5, 4, 5, 4, 3, 0, 4, 4, 6, 4, 4, 3, 4, 4, 4, 2, 5, 4, 4, 6, 4, 4, 2, 6, 2, 4, 2, 4, 5, 4, 4, 5, 2, 4, 2, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 5, 4, 5, 3, 5, 4, 4, 4, 4, 4, 2, 5, 5, 2, 4, 4, 7, 4, 0, 4, 4, 2, 4, 4, 2, 5, 5, 2, 4, 4, 4, 4, 4, 3, 3, 5, 4, 4, 5, 2, 2, 2, 2, 4, 2, 2, 4, 3, 5, 3, 4, 3, 4, 2, 2, 4, 4, 5, 4, 2, 2, 2, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 5, 6, 5, 4, 4, 4, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 2, 4, 4, 2, 3, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 1, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 2, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 4, 4, 5, 5, 6, 5, 3, 2, 4, 6, 4, 5, 4, 3, 4, 4, 2, 4, 2, 4, 4, 2, 2, 6, 4, 3, 4, 3, 3, 2, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 3, 2, 4, 4, 5, 0, 2, 4, 3, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 3, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 4, 4, 4, 4, 4, 5, 4, 4, 5, 2, 4, 4, 4, 3, 2, 4, 3, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 4, 4, 3, 2, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 2, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 5, 4, 4, 4, 3, 4, 4, 5, 2, 4, 5, 5, 4, 4, 3, 4, 3, 4, 5, 5, 4, 1, 2, 5] | | 0.2366 | 16.0 | 5520 | 3.6538 | 0.2385 | [3, 5, 4, 4, 5, 4, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 4, 0, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 2, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 3, 3, 5, 3, 4, 3, 2, 4, 3, 4, 4, 2, 5, 5, 5, 2, 2, 4, 2, 4, 5, 3, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 1, 2, 5, 2, 3, 5, 2, 5, 4, 4, 2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 1, 2, 4, 4, 3, 1, 3, 4, 2, 4, 2, 2, 4, 5, 2, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 3, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 3, 4, 2, 4, 2, 5, 3, 3, 2, 5, 4, 4, 5, 4, 6, 2, 4, 4, 3, 4, 3, 2, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 1, 5, 2, 5, 4, 2, 4, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 1, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 2, 6, 2, 4, 4, 5, 4, 2, 3, 5, 4, 2, 3, 5, 2, 4, 4, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 7, 4, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 2, 4, 4, 4, 4, 2, 4, 4, 5, 5, 3, 2, 2, 4, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 1, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 1, 5, 4, 4, 3, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 3, 5, 4, 5, 6, 4, 6, 3, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 5, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 3, 4, 2, 5, 4, 4, 5, 3, 2, 4, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 4, 4, 4, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 3, 3, 4, 4, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 4, 3, 2, 1, 4, 2, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 3, 3, 4, 5, 6, 4, 3, 5, 3, 4, 3, 4, 2, 3, 4, 2, 5, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 4, 3, 3, 4, 2, 2, 5, 4, 5, 4, 2, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 3, 3, 3, 2, 0, 4, 3, 2, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 4, 2, 4, 3, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 2, 5, 2, 4, 4, 4, 4, 3, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 3, 1, 3, 4, 4, 4, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 0, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 2, 3, 4, 4, 4, 4, 5, 5, 4, 4, 2, 1, 4, 6, 4, 4, 4, 2, 4, 4, 3, 5, 3, 5, 4, 3, 0, 4, 4, 6, 4, 4, 3, 4, 4, 4, 2, 5, 4, 4, 6, 4, 4, 2, 6, 2, 4, 2, 4, 5, 4, 4, 5, 2, 4, 2, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 5, 4, 5, 3, 5, 4, 4, 4, 4, 4, 2, 5, 5, 2, 4, 4, 7, 4, 0, 4, 4, 2, 4, 4, 2, 5, 5, 2, 4, 4, 4, 4, 4, 3, 3, 5, 3, 4, 5, 2, 2, 2, 2, 4, 2, 2, 4, 3, 5, 3, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 2, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 5, 6, 5, 4, 4, 4, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 2, 4, 4, 2, 3, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 1, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 2, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 4, 4, 5, 5, 6, 5, 3, 2, 3, 6, 4, 5, 4, 3, 4, 4, 2, 4, 2, 4, 4, 2, 2, 6, 4, 3, 4, 3, 3, 1, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 3, 2, 4, 4, 5, 0, 2, 4, 3, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 4, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 2, 4, 4, 4, 4, 5, 4, 4, 5, 2, 4, 4, 4, 3, 2, 4, 3, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 4, 4, 3, 2, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 5, 4, 4, 4, 4, 4, 4, 5, 2, 4, 5, 5, 4, 4, 3, 4, 3, 4, 5, 5, 4, 1, 2, 5] | | 0.2254 | 17.0 | 5865 | 3.6408 | 0.2376 | [3, 5, 4, 4, 5, 4, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 2, 0, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 2, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 3, 3, 5, 3, 4, 3, 2, 4, 3, 4, 4, 2, 5, 5, 5, 2, 2, 4, 2, 4, 5, 3, 4, 3, 5, 4, 3, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 1, 2, 5, 2, 3, 5, 2, 5, 4, 4, 2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 1, 2, 4, 4, 3, 1, 3, 4, 2, 4, 2, 2, 4, 5, 2, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 3, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 3, 4, 2, 4, 2, 5, 3, 3, 2, 5, 4, 4, 5, 4, 6, 2, 4, 4, 3, 4, 3, 2, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 1, 5, 2, 5, 4, 2, 4, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 1, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 2, 6, 2, 4, 4, 5, 4, 2, 3, 5, 4, 2, 3, 5, 2, 4, 4, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 2, 4, 4, 4, 4, 4, 4, 4, 5, 5, 3, 2, 2, 4, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 1, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 1, 5, 4, 4, 3, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 3, 5, 4, 5, 6, 4, 6, 2, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 5, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 3, 4, 2, 5, 4, 4, 5, 3, 2, 4, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 0, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 4, 4, 4, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 2, 7, 4, 3, 3, 4, 4, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 4, 3, 2, 1, 4, 2, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 3, 3, 4, 5, 6, 4, 3, 5, 3, 4, 3, 4, 2, 3, 3, 2, 5, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 4, 3, 3, 4, 2, 2, 5, 4, 5, 4, 2, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 3, 3, 3, 2, 0, 4, 3, 2, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 4, 2, 4, 3, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 2, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 3, 1, 3, 4, 4, 4, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 0, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 2, 3, 4, 4, 4, 4, 5, 5, 4, 4, 2, 1, 4, 6, 4, 4, 4, 2, 4, 4, 3, 5, 3, 5, 4, 3, 0, 4, 4, 6, 4, 4, 3, 4, 4, 4, 2, 5, 4, 4, 6, 2, 4, 2, 6, 2, 4, 2, 4, 5, 4, 4, 5, 2, 4, 2, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 5, 4, 5, 3, 5, 4, 4, 4, 4, 4, 2, 5, 5, 2, 4, 4, 7, 4, 0, 4, 4, 2, 4, 4, 2, 5, 5, 2, 4, 4, 4, 4, 4, 3, 3, 5, 3, 4, 5, 2, 2, 2, 2, 4, 2, 2, 4, 3, 5, 3, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 2, 3, 1, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 5, 6, 5, 4, 4, 4, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 2, 4, 4, 2, 3, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 1, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 2, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 4, 4, 5, 5, 6, 5, 3, 2, 3, 6, 4, 5, 4, 3, 4, 2, 2, 4, 2, 4, 4, 1, 2, 6, 4, 3, 4, 3, 3, 1, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 3, 2, 4, 4, 5, 0, 2, 4, 3, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 3, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 4, 4, 4, 4, 4, 5, 4, 2, 5, 2, 4, 4, 4, 3, 2, 4, 3, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 4, 4, 3, 2, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 5, 4, 4, 4, 4, 4, 4, 5, 2, 4, 5, 5, 4, 4, 3, 4, 3, 4, 5, 4, 4, 1, 2, 5] | | 0.2676 | 18.0 | 6210 | 3.6575 | 0.2371 | [3, 5, 4, 4, 5, 4, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 2, 0, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 2, 3, 4, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 2, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 2, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 3, 3, 5, 3, 4, 3, 2, 4, 3, 4, 5, 4, 5, 5, 5, 2, 2, 4, 4, 4, 5, 4, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 1, 2, 5, 2, 3, 5, 2, 5, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 1, 2, 4, 4, 3, 1, 3, 4, 2, 4, 2, 2, 4, 5, 2, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 3, 4, 4, 4, 2, 4, 2, 4, 3, 2, 5, 3, 2, 4, 4, 5, 1, 5, 3, 4, 2, 4, 2, 5, 3, 3, 2, 5, 4, 4, 5, 4, 6, 2, 4, 4, 3, 4, 3, 2, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 1, 5, 2, 5, 4, 2, 5, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 1, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 2, 6, 2, 4, 4, 5, 4, 2, 3, 5, 4, 2, 3, 5, 2, 4, 4, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 2, 4, 4, 4, 4, 4, 4, 4, 5, 5, 3, 2, 2, 4, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 2, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 1, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 1, 5, 4, 4, 3, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 3, 5, 4, 5, 6, 4, 6, 3, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 5, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 3, 4, 2, 5, 4, 4, 5, 3, 2, 4, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 4, 4, 4, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 3, 3, 4, 4, 4, 2, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 4, 3, 2, 2, 4, 2, 4, 3, 3, 4, 2, 4, 4, 2, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 3, 4, 4, 5, 6, 4, 3, 5, 3, 4, 3, 4, 2, 3, 3, 2, 5, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 4, 3, 3, 4, 2, 2, 5, 4, 5, 4, 2, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 3, 3, 2, 4, 0, 4, 3, 2, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 4, 2, 4, 3, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 4, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 2, 4, 3, 3, 1, 3, 5, 2, 4, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 0, 4, 4, 4, 3, 2, 4, 4, 3, 4, 5, 5, 5, 3, 2, 4, 4, 4, 4, 4, 5, 5, 4, 4, 2, 2, 4, 6, 4, 4, 4, 2, 4, 4, 4, 5, 3, 5, 4, 3, 0, 4, 4, 6, 4, 4, 3, 4, 4, 4, 2, 5, 4, 4, 6, 4, 4, 2, 6, 2, 4, 2, 4, 5, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 5, 4, 5, 3, 5, 4, 4, 4, 4, 4, 2, 5, 5, 2, 4, 4, 7, 4, 0, 4, 4, 2, 4, 4, 2, 5, 5, 2, 4, 4, 4, 4, 4, 4, 3, 5, 4, 4, 5, 2, 2, 2, 2, 4, 4, 2, 4, 3, 5, 3, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 2, 3, 2, 5, 5, 3, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 5, 6, 5, 4, 4, 2, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 2, 4, 4, 2, 4, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 3, 3, 0, 4, 3, 5, 4, 2, 1, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 2, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 4, 4, 5, 5, 6, 5, 3, 2, 3, 6, 4, 5, 4, 3, 4, 2, 2, 4, 4, 4, 4, 2, 2, 6, 4, 3, 4, 3, 3, 1, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 3, 2, 4, 4, 5, 0, 2, 4, 3, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 4, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 2, 4, 4, 4, 4, 5, 4, 2, 5, 4, 4, 4, 4, 3, 2, 4, 3, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 4, 4, 3, 2, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 3, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 5, 4, 4, 4, 4, 4, 4, 5, 2, 4, 5, 5, 4, 4, 3, 4, 3, 4, 5, 5, 4, 1, 2, 5] | | 0.267 | 19.0 | 6555 | 3.6415 | 0.2383 | [3, 5, 4, 4, 5, 4, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 6, 4, 2, 4, 4, 4, 4, 2, 4, 2, 0, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 3, 2, 3, 3, 5, 2, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, 2, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 3, 3, 5, 3, 4, 3, 2, 4, 3, 4, 4, 2, 5, 5, 5, 2, 2, 4, 2, 4, 5, 3, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 1, 2, 5, 2, 3, 5, 2, 5, 4, 4, 2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 1, 2, 4, 4, 3, 1, 3, 4, 2, 4, 2, 2, 4, 5, 2, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 3, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 3, 4, 2, 4, 2, 5, 3, 3, 2, 4, 4, 4, 5, 4, 6, 2, 4, 4, 3, 4, 3, 2, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 1, 5, 2, 5, 4, 2, 4, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 1, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 2, 6, 2, 4, 4, 5, 4, 2, 3, 5, 4, 2, 3, 5, 2, 4, 4, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 2, 4, 4, 4, 4, 2, 4, 4, 5, 5, 3, 2, 2, 4, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 4, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 1, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 1, 5, 4, 4, 3, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 3, 5, 4, 5, 6, 4, 6, 2, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 5, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 3, 4, 2, 5, 4, 4, 5, 3, 2, 4, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 4, 4, 4, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 4, 7, 4, 3, 3, 4, 4, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 4, 3, 2, 1, 4, 2, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 3, 4, 4, 5, 6, 4, 3, 5, 3, 4, 3, 4, 2, 3, 4, 2, 5, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 4, 3, 3, 4, 2, 2, 5, 4, 5, 4, 2, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 3, 3, 3, 2, 0, 4, 3, 2, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 4, 2, 4, 3, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 2, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 4, 1, 3, 5, 4, 4, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 0, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 2, 3, 4, 4, 4, 4, 5, 5, 4, 4, 2, 1, 4, 6, 4, 4, 4, 2, 4, 4, 3, 5, 3, 5, 4, 3, 0, 4, 4, 6, 4, 4, 3, 4, 4, 4, 2, 5, 4, 5, 6, 2, 4, 2, 6, 2, 4, 2, 4, 5, 4, 4, 5, 2, 4, 2, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 5, 4, 5, 3, 5, 4, 4, 4, 4, 4, 2, 5, 5, 2, 4, 4, 7, 4, 0, 4, 4, 2, 4, 4, 2, 5, 5, 2, 4, 4, 4, 4, 4, 3, 3, 5, 3, 4, 5, 2, 2, 2, 2, 4, 2, 2, 4, 3, 5, 3, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 2, 3, 1, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 5, 6, 5, 4, 4, 2, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 2, 4, 4, 2, 3, 4, 2, 4, 5, 4, 4, 3, 2, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 1, 2, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 2, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 4, 4, 5, 5, 6, 5, 3, 2, 4, 6, 4, 5, 4, 3, 4, 2, 2, 4, 2, 4, 4, 1, 2, 6, 4, 3, 4, 3, 3, 1, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 3, 2, 4, 4, 5, 0, 2, 4, 3, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 3, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 2, 4, 4, 4, 4, 5, 4, 2, 5, 2, 4, 4, 4, 3, 2, 4, 3, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 4, 4, 3, 2, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 3, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 5, 4, 4, 4, 4, 4, 4, 5, 2, 4, 5, 5, 4, 4, 3, 4, 3, 4, 5, 4, 4, 1, 2, 5] | | 0.2588 | 20.0 | 6900 | 3.6125 | 0.2387 | [3, 5, 4, 4, 5, 4, 0, 3, 4, 4, 4, 4, 2, 4, 4, 4, 2, 5, 4, 6, 4, 2, 2, 4, 4, 4, 2, 4, 2, 0, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 4, 4, 3, 2, 3, 5, 4, 2, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 3, 3, 5, 3, 4, 3, 2, 4, 3, 4, 4, 2, 5, 5, 5, 2, 2, 4, 2, 4, 5, 3, 4, 3, 5, 4, 4, 2, 2, 4, 5, 4, 4, 4, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 1, 2, 5, 2, 3, 5, 2, 5, 4, 4, 2, 3, 4, 4, 4, 2, 4, 4, 4, 3, 4, 1, 2, 4, 4, 3, 1, 3, 4, 2, 3, 2, 2, 4, 5, 2, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 3, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 2, 4, 2, 4, 2, 5, 3, 3, 2, 5, 4, 4, 5, 4, 6, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 1, 5, 2, 5, 4, 2, 4, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 1, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 2, 6, 2, 4, 4, 5, 4, 2, 3, 5, 4, 2, 3, 5, 2, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 3, 6, 2, 5, 4, 4, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 2, 4, 4, 4, 4, 4, 4, 4, 5, 5, 3, 2, 2, 4, 4, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 2, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 1, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 1, 5, 4, 4, 3, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 3, 5, 4, 5, 6, 4, 6, 2, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 5, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 3, 4, 2, 5, 4, 4, 5, 3, 2, 2, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 4, 4, 4, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 2, 4, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 2, 7, 4, 3, 3, 4, 2, 4, 2, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 5, 2, 2, 5, 4, 3, 2, 1, 4, 2, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 3, 3, 4, 5, 6, 4, 3, 5, 3, 4, 3, 4, 2, 3, 3, 2, 5, 4, 2, 4, 4, 5, 4, 3, 5, 4, 5, 4, 3, 3, 4, 2, 2, 5, 4, 5, 4, 2, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 4, 3, 3, 3, 2, 0, 4, 3, 2, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 4, 2, 4, 3, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 2, 5, 2, 4, 4, 4, 2, 4, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 4, 2, 3, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 3, 1, 3, 4, 4, 2, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 0, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 2, 3, 4, 4, 4, 4, 5, 5, 4, 4, 2, 1, 4, 6, 4, 4, 4, 2, 4, 2, 3, 5, 3, 5, 4, 3, 0, 4, 4, 6, 4, 4, 3, 4, 4, 4, 2, 5, 4, 4, 6, 2, 4, 2, 6, 2, 4, 2, 4, 5, 4, 4, 5, 2, 4, 2, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 5, 4, 5, 3, 5, 4, 4, 4, 4, 4, 2, 5, 5, 2, 4, 4, 7, 4, 0, 4, 4, 2, 4, 4, 2, 5, 5, 2, 4, 4, 4, 4, 4, 3, 3, 5, 3, 4, 5, 2, 2, 2, 2, 4, 2, 2, 4, 3, 5, 3, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 2, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 4, 6, 5, 4, 4, 2, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 2, 4, 4, 2, 3, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 1, 2, 4, 4, 2, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 2, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 2, 4, 5, 5, 6, 5, 3, 2, 3, 6, 4, 5, 4, 3, 4, 2, 2, 4, 2, 4, 4, 2, 2, 6, 4, 3, 4, 3, 3, 1, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 3, 2, 4, 4, 5, 0, 2, 4, 3, 5, 4, 6, 4, 3, 2, 4, 5, 2, 4, 4, 3, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 2, 4, 4, 4, 4, 5, 4, 2, 5, 2, 4, 4, 4, 3, 2, 4, 3, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 4, 4, 3, 2, 5, 4, 5, 5, 4, 4, 4, 4, 3, 4, 2, 5, 3, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 5, 4, 4, 4, 4, 4, 4, 5, 2, 4, 5, 5, 4, 4, 3, 4, 3, 4, 5, 4, 4, 1, 2, 5] | | 0.2311 | 21.0 | 7245 | 3.6125 | 0.2377 | [3, 5, 4, 4, 5, 4, 0, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 6, 4, 2, 2, 4, 4, 4, 2, 4, 2, 0, 5, 4, 3, 6, 4, 4, 4, 3, 2, 4, 5, 2, 4, 2, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3, 4, 2, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 3, 2, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 2, 3, 2, 1, 2, 5, 5, 4, 6, 4, 5, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 5, 3, 4, 6, 4, 2, 4, 4, 4, 2, 4, 3, 2, 3, 5, 4, 2, 4, 5, 2, 2, 4, 5, 1, 5, 4, 4, 4, 6, 3, 3, 5, 3, 4, 3, 2, 4, 3, 4, 4, 2, 5, 5, 5, 2, 2, 4, 4, 4, 5, 3, 4, 3, 5, 4, 3, 2, 2, 4, 5, 4, 4, 3, 2, 4, 3, 4, 6, 3, 5, 3, 3, 4, 5, 2, 4, 4, 3, 2, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 2, 3, 1, 2, 5, 2, 3, 5, 2, 5, 4, 4, 2, 3, 4, 4, 4, 2, 4, 4, 4, 3, 4, 1, 2, 4, 4, 3, 1, 3, 4, 2, 3, 2, 2, 4, 5, 2, 4, 5, 3, 4, 2, 4, 4, 4, 3, 4, 2, 2, 3, 5, 3, 4, 2, 3, 4, 4, 4, 2, 4, 2, 4, 3, 4, 5, 3, 2, 4, 4, 5, 1, 5, 3, 4, 2, 4, 2, 5, 3, 3, 2, 5, 4, 4, 5, 3, 6, 2, 4, 4, 3, 4, 3, 2, 3, 4, 3, 4, 2, 4, 4, 4, 3, 5, 5, 4, 4, 1, 5, 2, 5, 4, 2, 4, 5, 4, 4, 3, 4, 4, 4, 4, 4, 2, 4, 3, 2, 4, 5, 2, 3, 5, 2, 4, 4, 2, 3, 4, 5, 2, 3, 4, 2, 2, 2, 4, 1, 4, 3, 5, 3, 2, 3, 5, 3, 5, 3, 4, 4, 2, 6, 2, 4, 4, 5, 4, 2, 3, 5, 4, 2, 3, 5, 2, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 5, 4, 4, 4, 4, 6, 2, 5, 4, 5, 5, 5, 3, 2, 5, 5, 5, 4, 5, 4, 5, 3, 4, 4, 2, 2, 1, 2, 4, 4, 4, 4, 2, 4, 4, 5, 5, 3, 2, 2, 4, 3, 3, 5, 4, 5, 4, 3, 4, 4, 4, 3, 3, 2, 3, 3, 2, 5, 4, 5, 4, 5, 4, 3, 2, 1, 4, 2, 4, 0, 3, 4, 5, 2, 4, 3, 3, 4, 2, 5, 5, 3, 2, 6, 4, 2, 2, 2, 5, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 4, 1, 5, 3, 4, 3, 3, 4, 5, 5, 4, 5, 4, 6, 5, 2, 2, 4, 3, 5, 4, 5, 6, 4, 6, 2, 4, 5, 4, 1, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 5, 2, 6, 5, 3, 4, 2, 4, 3, 0, 4, 5, 4, 5, 4, 5, 3, 4, 2, 5, 4, 4, 4, 3, 2, 2, 4, 4, 5, 2, 4, 5, 4, 4, 2, 4, 4, 2, 3, 5, 5, 3, 4, 3, 4, 2, 4, 2, 4, 5, 5, 5, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 2, 2, 4, 4, 4, 4, 2, 5, 4, 5, 5, 3, 4, 4, 5, 2, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 5, 2, 5, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 5, 2, 2, 4, 4, 5, 3, 4, 1, 4, 3, 5, 2, 2, 7, 4, 3, 3, 4, 4, 4, 4, 5, 4, 2, 4, 4, 3, 4, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 2, 5, 4, 3, 2, 1, 4, 2, 4, 3, 3, 4, 2, 4, 4, 3, 3, 4, 2, 2, 3, 5, 4, 2, 4, 4, 5, 4, 5, 4, 4, 3, 3, 4, 5, 6, 4, 3, 5, 3, 4, 3, 4, 2, 3, 3, 2, 5, 4, 2, 4, 4, 5, 4, 4, 5, 4, 5, 4, 3, 3, 4, 2, 2, 5, 4, 5, 4, 2, 2, 5, 2, 2, 4, 3, 4, 3, 4, 4, 4, 5, 3, 4, 2, 3, 4, 2, 3, 3, 3, 2, 0, 4, 3, 2, 4, 4, 2, 4, 4, 5, 4, 2, 5, 4, 4, 3, 4, 5, 2, 4, 3, 2, 2, 5, 4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 3, 4, 2, 5, 4, 4, 4, 3, 2, 4, 3, 6, 3, 6, 4, 4, 4, 4, 4, 3, 4, 5, 4, 4, 5, 4, 4, 2, 3, 2, 5, 2, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 2, 3, 2, 4, 5, 2, 4, 4, 5, 5, 4, 4, 5, 4, 4, 6, 3, 4, 4, 2, 4, 5, 5, 2, 5, 4, 2, 2, 4, 3, 4, 3, 2, 3, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 3, 4, 2, 4, 4, 4, 4, 4, 2, 4, 5, 4, 3, 4, 7, 4, 4, 4, 4, 3, 3, 4, 5, 2, 4, 4, 3, 4, 3, 3, 1, 3, 4, 4, 4, 4, 3, 4, 1, 4, 4, 3, 4, 5, 3, 0, 4, 4, 4, 3, 2, 4, 3, 3, 4, 5, 5, 5, 3, 2, 3, 4, 4, 4, 3, 5, 5, 4, 4, 2, 1, 4, 6, 4, 4, 4, 2, 4, 4, 3, 5, 3, 5, 4, 3, 0, 4, 4, 6, 4, 4, 3, 4, 4, 4, 2, 5, 4, 4, 6, 2, 4, 2, 6, 2, 4, 2, 4, 5, 4, 4, 5, 2, 4, 2, 4, 4, 4, 4, 5, 4, 4, 3, 4, 5, 2, 4, 5, 4, 5, 3, 5, 4, 4, 4, 4, 4, 2, 5, 5, 2, 4, 4, 7, 4, 0, 4, 4, 2, 4, 4, 2, 5, 5, 2, 4, 4, 4, 4, 4, 4, 3, 5, 3, 4, 5, 2, 2, 2, 2, 4, 2, 2, 4, 3, 5, 3, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 2, 3, 2, 5, 5, 4, 4, 4, 5, 4, 5, 4, 0, 5, 4, 4, 4, 4, 4, 6, 5, 4, 4, 2, 4, 2, 2, 2, 3, 4, 2, 2, 4, 5, 3, 4, 4, 4, 4, 4, 2, 3, 3, 4, 4, 2, 2, 3, 3, 3, 2, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 2, 4, 4, 2, 3, 4, 2, 4, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 0, 4, 3, 5, 4, 2, 1, 2, 4, 4, 2, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 2, 4, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 5, 2, 2, 6, 2, 4, 5, 5, 6, 5, 3, 2, 3, 6, 4, 5, 4, 3, 4, 2, 2, 4, 4, 4, 4, 2, 2, 6, 4, 3, 4, 3, 3, 1, 4, 3, 4, 4, 2, 2, 5, 4, 4, 4, 4, 5, 5, 5, 3, 2, 4, 4, 5, 0, 2, 4, 3, 5, 4, 6, 4, 3, 2, 4, 5, 2, 3, 4, 3, 3, 4, 2, 2, 4, 4, 2, 4, 4, 4, 4, 4, 5, 3, 4, 4, 6, 5, 4, 4, 4, 3, 4, 3, 5, 5, 1, 2, 4, 4, 4, 4, 5, 4, 2, 5, 2, 4, 4, 4, 3, 2, 4, 3, 4, 4, 4, 4, 5, 4, 2, 6, 4, 4, 4, 4, 4, 2, 4, 4, 6, 4, 4, 4, 3, 2, 4, 4, 5, 5, 4, 4, 4, 4, 3, 4, 2, 5, 3, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 5, 4, 4, 4, 3, 4, 4, 5, 2, 4, 5, 5, 4, 4, 3, 4, 3, 4, 5, 4, 4, 1, 2, 5] | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.6.1 - Tokenizers 0.14.1
botcon/LUKE_squad_finetuned_qa_tf32
botcon
2023-11-08T13:44:07Z
3
0
transformers
[ "transformers", "pytorch", "luke", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2023-10-31T06:25:38Z
Source code attached with training optimization. Trained on 3 epochs without PEFT (took about 2 hours).
Anton-k/my_awesome_opus_books_model
Anton-k
2023-11-08T13:44:03Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-08T13:36:53Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: my_awesome_opus_books_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books config: en-ru split: train args: en-ru metrics: - name: Bleu type: bleu value: 0.0895 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 2.2508 - Bleu: 0.0895 - Gen Len: 18.564 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 2.6604 | 1.0 | 875 | 2.2957 | 0.0676 | 18.5823 | | 2.4471 | 2.0 | 1750 | 2.2508 | 0.0895 | 18.564 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
gh1407/llama_7B_finetuned
gh1407
2023-11-08T13:35:23Z
0
0
null
[ "safetensors", "en", "license:mit", "region:us" ]
null
2023-11-08T13:27:32Z
--- license: mit language: - en ---
AntoineD/camembert_classification_tools_qlora
AntoineD
2023-11-08T13:25:28Z
3
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "generated_from_trainer", "base_model:almanach/camembert-base", "base_model:finetune:almanach/camembert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-07T14:14:50Z
--- license: mit base_model: camembert-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: camembert_classification_tools_qlora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert_classification_tools_qlora This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7844 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 5 | 2.0913 | 0.05 | | No log | 2.0 | 10 | 2.1000 | 0.05 | | No log | 3.0 | 15 | 2.0985 | 0.1 | | No log | 4.0 | 20 | 2.0854 | 0.15 | | No log | 5.0 | 25 | 2.0667 | 0.275 | | No log | 6.0 | 30 | 2.0459 | 0.35 | | No log | 7.0 | 35 | 2.0092 | 0.325 | | No log | 8.0 | 40 | 1.9610 | 0.375 | | No log | 9.0 | 45 | 1.9182 | 0.4 | | No log | 10.0 | 50 | 1.8769 | 0.425 | | No log | 11.0 | 55 | 1.8349 | 0.425 | | No log | 12.0 | 60 | 1.7894 | 0.425 | | No log | 13.0 | 65 | 1.7395 | 0.425 | | No log | 14.0 | 70 | 1.6914 | 0.425 | | No log | 15.0 | 75 | 1.6472 | 0.45 | | No log | 16.0 | 80 | 1.6029 | 0.45 | | No log | 17.0 | 85 | 1.5619 | 0.475 | | No log | 18.0 | 90 | 1.5190 | 0.5 | | No log | 19.0 | 95 | 1.4621 | 0.575 | | No log | 20.0 | 100 | 1.4180 | 0.55 | | No log | 21.0 | 105 | 1.3786 | 0.575 | | No log | 22.0 | 110 | 1.3384 | 0.575 | | No log | 23.0 | 115 | 1.2975 | 0.625 | | No log | 24.0 | 120 | 1.2561 | 0.65 | | No log | 25.0 | 125 | 1.2164 | 0.675 | | No log | 26.0 | 130 | 1.1839 | 0.675 | | No log | 27.0 | 135 | 1.1602 | 0.65 | | No log | 28.0 | 140 | 1.1304 | 0.625 | | No log | 29.0 | 145 | 1.1029 | 0.625 | | No log | 30.0 | 150 | 1.0744 | 0.625 | | No log | 31.0 | 155 | 1.0482 | 0.625 | | No log | 32.0 | 160 | 1.0197 | 0.675 | | No log | 33.0 | 165 | 0.9967 | 0.725 | | No log | 34.0 | 170 | 0.9793 | 0.725 | | No log | 35.0 | 175 | 0.9640 | 0.725 | | No log | 36.0 | 180 | 0.9502 | 0.675 | | No log | 37.0 | 185 | 0.9390 | 0.65 | | No log | 38.0 | 190 | 0.9183 | 0.7 | | No log | 39.0 | 195 | 0.8987 | 0.725 | | No log | 40.0 | 200 | 0.8817 | 0.775 | | No log | 41.0 | 205 | 0.8684 | 0.725 | | No log | 42.0 | 210 | 0.8611 | 0.7 | | No log | 43.0 | 215 | 0.8607 | 0.7 | | No log | 44.0 | 220 | 0.8592 | 0.7 | | No log | 45.0 | 225 | 0.8471 | 0.725 | | No log | 46.0 | 230 | 0.8306 | 0.725 | | No log | 47.0 | 235 | 0.8189 | 0.75 | | No log | 48.0 | 240 | 0.8136 | 0.725 | | No log | 49.0 | 245 | 0.8142 | 0.7 | | No log | 50.0 | 250 | 0.8092 | 0.7 | | No log | 51.0 | 255 | 0.8053 | 0.75 | | No log | 52.0 | 260 | 0.7995 | 0.75 | | No log | 53.0 | 265 | 0.7917 | 0.75 | | No log | 54.0 | 270 | 0.7901 | 0.725 | | No log | 55.0 | 275 | 0.7910 | 0.7 | | No log | 56.0 | 280 | 0.7904 | 0.7 | | No log | 57.0 | 285 | 0.7884 | 0.7 | | No log | 58.0 | 290 | 0.7863 | 0.7 | | No log | 59.0 | 295 | 0.7851 | 0.7 | | No log | 60.0 | 300 | 0.7844 | 0.7 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.1
minhnb/ssbc_model_spearman_6_labels
minhnb
2023-11-08T13:23:49Z
4
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-05T07:38:59Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: minhnb/ssbc_model_spearman_6_labels results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # minhnb/ssbc_model_spearman_6_labels This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5172 - Validation Loss: 0.8063 - Train Spearmanr: 0.7720 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2480, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Spearmanr | Epoch | |:----------:|:---------------:|:---------------:|:-----:| | 1.0413 | 0.8895 | 0.7040 | 0 | | 0.7772 | 0.7950 | 0.7667 | 1 | | 0.6662 | 0.7876 | 0.7737 | 2 | | 0.5827 | 0.8054 | 0.7721 | 3 | | 0.5172 | 0.8063 | 0.7720 | 4 | ### Framework versions - Transformers 4.35.0 - TensorFlow 2.14.0 - Datasets 2.14.6 - Tokenizers 0.14.1
alfredowh/Reinforce-CartPole-v1
alfredowh
2023-11-08T13:20:28Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T13:20:18Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Daniil-plotnikov/deepvision-5-0
Daniil-plotnikov
2023-11-08T13:11:52Z
6
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-06T18:26:59Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### DeepVision-5.0 Good base model! More realistic!
alperengozeten/distilbert-turkish-emotion
alperengozeten
2023-11-08T12:51:52Z
4
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:dbmdz/distilbert-base-turkish-cased", "base_model:finetune:dbmdz/distilbert-base-turkish-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-08T12:51:36Z
--- license: mit base_model: dbmdz/distilbert-base-turkish-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1938 - Accuracy: 0.9592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9211 | 0.07 | 100 | 1.8456 | 0.3225 | | 1.6177 | 0.14 | 200 | 1.2261 | 0.5982 | | 0.8794 | 0.21 | 300 | 0.4865 | 0.8638 | | 0.428 | 0.27 | 400 | 0.3350 | 0.8991 | | 0.3189 | 0.34 | 500 | 0.2934 | 0.9128 | | 0.2869 | 0.41 | 600 | 0.2728 | 0.9219 | | 0.2776 | 0.48 | 700 | 0.2529 | 0.9267 | | 0.2334 | 0.55 | 800 | 0.2609 | 0.9303 | | 0.2314 | 0.62 | 900 | 0.2157 | 0.9369 | | 0.2381 | 0.69 | 1000 | 0.1924 | 0.9431 | | 0.2574 | 0.75 | 1100 | 0.2476 | 0.9260 | | 0.2068 | 0.82 | 1200 | 0.1919 | 0.9429 | | 0.241 | 0.89 | 1300 | 0.1865 | 0.9417 | | 0.1894 | 0.96 | 1400 | 0.2022 | 0.9453 | | 0.1791 | 1.03 | 1500 | 0.2078 | 0.9448 | | 0.1131 | 1.1 | 1600 | 0.1995 | 0.9493 | | 0.1082 | 1.17 | 1700 | 0.2074 | 0.9498 | | 0.1088 | 1.23 | 1800 | 0.2139 | 0.9467 | | 0.1123 | 1.3 | 1900 | 0.2086 | 0.9481 | | 0.1083 | 1.37 | 2000 | 0.1964 | 0.9498 | | 0.1318 | 1.44 | 2100 | 0.1872 | 0.9503 | | 0.1016 | 1.51 | 2200 | 0.2005 | 0.9486 | | 0.1415 | 1.58 | 2300 | 0.1918 | 0.9507 | | 0.1292 | 1.64 | 2400 | 0.1848 | 0.9520 | | 0.0939 | 1.71 | 2500 | 0.1870 | 0.9539 | | 0.1301 | 1.78 | 2600 | 0.1950 | 0.9525 | | 0.1415 | 1.85 | 2700 | 0.1955 | 0.9501 | | 0.1474 | 1.92 | 2800 | 0.1797 | 0.9556 | | 0.1169 | 1.99 | 2900 | 0.1767 | 0.9577 | | 0.0562 | 2.06 | 3000 | 0.1847 | 0.9563 | | 0.0653 | 2.12 | 3100 | 0.1839 | 0.9584 | | 0.0431 | 2.19 | 3200 | 0.1853 | 0.9565 | | 0.0289 | 2.26 | 3300 | 0.1922 | 0.9572 | | 0.0507 | 2.33 | 3400 | 0.1989 | 0.9582 | | 0.0475 | 2.4 | 3500 | 0.2009 | 0.9573 | | 0.0434 | 2.47 | 3600 | 0.1959 | 0.9580 | | 0.0479 | 2.54 | 3700 | 0.1942 | 0.9585 | | 0.0421 | 2.6 | 3800 | 0.1986 | 0.9578 | | 0.0496 | 2.67 | 3900 | 0.1947 | 0.9577 | | 0.0452 | 2.74 | 4000 | 0.1938 | 0.9594 | | 0.0329 | 2.81 | 4100 | 0.1936 | 0.9594 | | 0.0568 | 2.88 | 4200 | 0.1934 | 0.9584 | | 0.0441 | 2.95 | 4300 | 0.1938 | 0.9592 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
kwwww/bert-base-uncased-test_1_200
kwwww
2023-11-08T12:48:34Z
0
0
peft
[ "peft", "pytorch", "region:us" ]
null
2023-11-08T07:44:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
robkayinto/t5-large_PREFIX_TUNING_SEQ2SEQ
robkayinto
2023-11-08T12:47:49Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:google-t5/t5-large", "base_model:adapter:google-t5/t5-large", "region:us" ]
null
2023-11-08T12:12:29Z
--- library_name: peft base_model: t5-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.0
EMaghakyan/fashion-clip
EMaghakyan
2023-11-08T12:44:50Z
5
1
transformers
[ "transformers", "pytorch", "safetensors", "clip", "zero-shot-image-classification", "vision", "language", "fashion", "ecommerce", "en", "license:mit", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2023-11-08T09:52:35Z
--- license: mit tags: - vision - language - fashion - ecommerce library_name: transformers language: - en widget: - src: https://cdn-images.farfetch-contents.com/19/76/05/56/19760556_44221665_1000.jpg candidate_labels: black shoe, red shoe, a cat example_title: Black Shoe --- [![Youtube Video](https://img.shields.io/badge/youtube-video-red)](https://www.youtube.com/watch?v=uqRSc-KSA1Y) [![HuggingFace Model](https://img.shields.io/badge/HF%20Model-Weights-yellow)](https://huggingface.co/patrickjohncyh/fashion-clip) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Z1hAxBnWjF76bEi9KQ6CMBBEmI_FVDrW?usp=sharing) [![Medium Blog Post](https://raw.githubusercontent.com/aleen42/badges/master/src/medium.svg)](https://towardsdatascience.com/teaching-clip-some-fashion-3005ac3fdcc3) [![Open in Streamlit](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://huggingface.co/spaces/vinid/fashion-clip-app) # This is a fork of patrickjohncyh/fashion-clip # Model Card: Fashion CLIP Disclaimer: The model card adapts the model card from [here](https://huggingface.co/openai/clip-vit-base-patch32). ## Model Details UPDATE (10/03/23): We have updated the model! We found that [laion/CLIP-ViT-B-32-laion2B-s34B-b79K](https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K) checkpoint (thanks [Bin](https://www.linkedin.com/in/bin-duan-56205310/)!) worked better than original OpenAI CLIP on Fashion. We thus fine-tune a newer (and better!) version of FashionCLIP (henceforth FashionCLIP 2.0), while keeping the architecture the same. We postulate that the perofrmance gains afforded by `laion/CLIP-ViT-B-32-laion2B-s34B-b79K` are due to the increased training data (5x OpenAI CLIP data). Our [thesis](https://www.nature.com/articles/s41598-022-23052-9), however, remains the same -- fine-tuning `laion/CLIP` on our fashion dataset improved zero-shot perofrmance across our benchmarks. See the below table comparing weighted macro F1 score across models. | Model | FMNIST | KAGL | DEEP | | ------------- | ------------- | ------------- | ------------- | | OpenAI CLIP | 0.66 | 0.63 | 0.45 | | FashionCLIP | 0.74 | 0.67 | 0.48 | | Laion CLIP | 0.78 | 0.71 | 0.58 | | FashionCLIP 2.0 | __0.83__ | __0.73__ | __0.62__ | --- FashionCLIP is a CLIP-based model developed to produce general product representations for fashion concepts. Leveraging the pre-trained checkpoint (ViT-B/32) released by [OpenAI](https://github.com/openai/CLIP), we train FashionCLIP on a large, high-quality novel fashion dataset to study whether domain specific fine-tuning of CLIP-like models is sufficient to produce product representations that are zero-shot transferable to entirely new datasets and tasks. FashionCLIP was not developed for model deplyoment - to do so, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within. ### Model Date March 2023 ### Model Type The model uses a ViT-B/32 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained, starting from a pre-trained checkpoint, to maximize the similarity of (image, text) pairs via a contrastive loss on a fashion dataset containing 800K products. ### Documents - [FashionCLIP Github Repo](https://github.com/patrickjohncyh/fashion-clip) - [FashionCLIP Paper](https://www.nature.com/articles/s41598-022-23052-9) ## Data The model was trained on (image, text) pairs obtained from the Farfecth dataset[^1 Awaiting official release.], an English dataset comprising over 800K fashion products, with more than 3K brands across dozens of object types. The image used for encoding is the standard product image, which is a picture of the item over a white background, with no humans. The text used is a concatenation of the _highlight_ (e.g., “stripes”, “long sleeves”, “Armani”) and _short description_ (“80s styled t-shirt”)) available in the Farfetch dataset. ## Limitations, Bias and Fiarness We acknowledge certain limitations of FashionCLIP and expect that it inherits certain limitations and biases present in the original CLIP model. We do not expect our fine-tuning to significantly augment these limitations: we acknowledge that the fashion data we use makes explicit assumptions about the notion of gender as in "blue shoes for a woman" that inevitably associate aspects of clothing with specific people. Our investigations also suggest that the data used introduces certain limitations in FashionCLIP. From the textual modality, given that most captions derived from the Farfetch dataset are long, we observe that FashionCLIP may be more performant in longer queries than shorter ones. From the image modality, FashionCLIP is also biased towards standard product images (centered, white background). Model selection, i.e. selecting an appropariate stopping critera during fine-tuning, remains an open challenge. We observed that using loss on an in-domain (i.e. same distribution as test) validation dataset is a poor selection critera when out-of-domain generalization (i.e. across different datasets) is desired, even when the dataset used is relatively diverse and large. ## Citation ``` @Article{Chia2022, title="Contrastive language and vision learning of general fashion concepts", author="Chia, Patrick John and Attanasio, Giuseppe and Bianchi, Federico and Terragni, Silvia and Magalh{\~a}es, Ana Rita and Goncalves, Diogo and Greco, Ciro and Tagliabue, Jacopo", journal="Scientific Reports", year="2022", month="Nov", day="08", volume="12", number="1", abstract="The steady rise of online shopping goes hand in hand with the development of increasingly complex ML and NLP models. While most use cases are cast as specialized supervised learning problems, we argue that practitioners would greatly benefit from general and transferable representations of products. In this work, we build on recent developments in contrastive learning to train FashionCLIP, a CLIP-like model adapted for the fashion industry. We demonstrate the effectiveness of the representations learned by FashionCLIP with extensive tests across a variety of tasks, datasets and generalization probes. We argue that adaptations of large pre-trained models such as CLIP offer new perspectives in terms of scalability and sustainability for certain types of players in the industry. Finally, we detail the costs and environmental impact of training, and release the model weights and code as open source contribution to the community.", issn="2045-2322", doi="10.1038/s41598-022-23052-9", url="https://doi.org/10.1038/s41598-022-23052-9" } ```
nickapch/distilbert-base-uncased-finetuned-imdb
nickapch
2023-11-08T12:43:25Z
4
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-08T11:16:45Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-imdb results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: accuracy: 0.93148 - name: F1 type: f1 value: f1: 0.9314719475700824 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2799 - Accuracy: {'accuracy': 0.93148} - F1: {'f1': 0.9314719475700824} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------------------:|:--------------------------:| | 0.2376 | 1.0 | 1563 | 0.2966 | {'accuracy': 0.8966} | {'f1': 0.8959598583205258} | | 0.1671 | 2.0 | 3126 | 0.2331 | {'accuracy': 0.92996} | {'f1': 0.9299430382567873} | | 0.0993 | 3.0 | 4689 | 0.2799 | {'accuracy': 0.93148} | {'f1': 0.9314719475700824} | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
TheBloke/LLaMA2-13B-TiefighterLR-GGUF
TheBloke
2023-11-08T12:42:04Z
261
5
transformers
[ "transformers", "gguf", "llama", "base_model:KoboldAI/LLaMA2-13B-TiefighterLR", "base_model:quantized:KoboldAI/LLaMA2-13B-TiefighterLR", "license:llama2", "region:us" ]
null
2023-11-08T11:57:20Z
--- base_model: KoboldAI/LLaMA2-13B-TiefighterLR inference: false license: llama2 model_creator: KoboldAI model_name: Llama2 13B TiefighterLR model_type: llama prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Llama2 13B TiefighterLR - GGUF - Model creator: [KoboldAI](https://huggingface.co/KoboldAI) - Original model: [Llama2 13B TiefighterLR](https://huggingface.co/KoboldAI/LLaMA2-13B-TiefighterLR) <!-- description start --> ## Description This repo contains GGUF format model files for [KoboldAI's Llama2 13B TiefighterLR](https://huggingface.co/KoboldAI/LLaMA2-13B-TiefighterLR). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF) * [KoboldAI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/KoboldAI/LLaMA2-13B-TiefighterLR) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [llama2-13b-tiefighterlr.Q2_K.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes | | [llama2-13b-tiefighterlr.Q3_K_S.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss | | [llama2-13b-tiefighterlr.Q3_K_M.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss | | [llama2-13b-tiefighterlr.Q3_K_L.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss | | [llama2-13b-tiefighterlr.Q4_0.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama2-13b-tiefighterlr.Q4_K_S.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss | | [llama2-13b-tiefighterlr.Q4_K_M.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended | | [llama2-13b-tiefighterlr.Q5_0.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama2-13b-tiefighterlr.Q5_K_S.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended | | [llama2-13b-tiefighterlr.Q5_K_M.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended | | [llama2-13b-tiefighterlr.Q6_K.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss | | [llama2-13b-tiefighterlr.Q8_0.gguf](https://huggingface.co/TheBloke/LLaMA2-13B-TiefighterLR-GGUF/blob/main/llama2-13b-tiefighterlr.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/LLaMA2-13B-TiefighterLR-GGUF and below it, a specific filename to download, such as: llama2-13b-tiefighterlr.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/LLaMA2-13B-TiefighterLR-GGUF llama2-13b-tiefighterlr.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/LLaMA2-13B-TiefighterLR-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/LLaMA2-13B-TiefighterLR-GGUF llama2-13b-tiefighterlr.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m llama2-13b-tiefighterlr.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/LLaMA2-13B-TiefighterLR-GGUF", model_file="llama2-13b-tiefighterlr.Q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: KoboldAI's Llama2 13B TiefighterLR # LLaMA2-13B-TiefighterLR TiefighterLR is a merged model achieved trough merging two different lora's on top of a well established existing merge. This LR version contains Less Rodeo, merged at 3% from the original 5% reducing its second person adventure bias. Testers found this model to understand your own character and instruction prompts better, at the sacrifice of lowering its own writing bias/style. To achieve this the following recipe was used: * We begin with the base model Undi95/Xwin-MLewd-13B-V0.2 which is a well established merge, contrary to the name this model does not have a strong NSFW bias. * Then we applied the PocketDoc/Dans-RetroRodeo-13b lora which is a finetune on the Choose your own Adventure datasets from our Skein model. * After applying this lora we merged the original model with the newly created PocketDoc/Dans-RetroRodeo-13b merge at 3% to weaken the newly introduced adventure bias. * The resulting merge was used as a new base model to which we applied Blackroot/Llama-2-13B-Storywriter-LORA and repeated the same trick, this time at 10%. This means this model contains the following ingredients from their upstream models for as far as we can track them: - Undi95/Xwin-MLewd-13B-V0.2 - - Undi95/ReMM-S-Light (base/private) - Undi95/CreativeEngine - Brouz/Slerpeno - - elinas/chronos-13b-v2 - jondurbin/airoboros-l2-13b-2.1 - NousResearch/Nous-Hermes-Llama2-13b+nRuaif/Kimiko-v2 LORA - CalderaAI/13B-Legerdemain-L2+lemonilia/limarp-llama2-v2 LORA - - KoboldAI/LLAMA2-13B-Holodeck-1 - NousResearch/Nous-Hermes-13b - OpenAssistant/llama2-13b-orca-8k-3319 - ehartford/WizardLM-1.0-Uncensored-Llama2-13b - Henk717/spring-dragon - The-Face-Of-Goonery/Huginn-v3-13b - zattio770/120-Days-of-LORA-v2-13B - PygmalionAI/pygmalion-2-13b - Undi95/StoryTelling - TokenBender/sakhi_13B_roleplayer_NSFW_chat_adapter - nRuaif/Kimiko-v2-13B - The-Face-Of-Goonery/Huginn-13b-FP16 - lemonilia/LimaRP-Llama2-13B-v3-EXPERIMENT - Xwin-LM/Xwin-LM-13B-V0.2 - PocketDoc/Dans-RetroRodeo-13b - Blackroot/Llama-2-13B-Storywriter-LORA # Usage This model is meant to be creative, If you let it improvise you get better results than if you drown it in details. ## Story Writing Regular story writing in the traditional way is supported, simply copy paste your story and continue writing. Optionally use an instruction in memory or an authors note to guide the direction of your story. ### Generate a story on demand To generate stories on demand you can use an instruction (tested in the Alpaca format) such as "Write a novel about X, use chapters and dialogue" this will generate a story. The format can vary between generations depending on how the model chooses to begin, either write what you want as shown in the earlier example or write the beginning of the story yourself so the model can follow your style. A few retries can also help if the model gets it wrong. ## Chatbots and persona's Unlike the original Tiefighter this model is better at handling existing Character Cards as long as they do not contain a lot of second person writing or second person introductions (You), setting > as a custom stop sequence can help fix potential mistakes, as well as turning multi-line replies off. You can also use instructions to create your characters. For example, you can put this in memory in regular chat mode: ``` ### Instruction: Generate a conversation between Alice and Henk where they discuss language models. In this conversation Henk is excited to teach Alice about Tiefighter. ### Response: ``` Because the model is a merge of a variety of models, it should support a broad range of instruct formats, or plain chat mode. If you have a particular favourite try it, otherwise we recommend to either use the regular chat mode or Alpaca's format. ## Instruct Prompting This model features various instruct models on a variety of instruction styles, when testing the model we have used Alpaca for our own tests. If you prefer a different format chances are it can work. During instructions we have observed that in some cases the adventure data can leak, it may also be worth experimenting using > as the prefix for a user command to remedy this. But this may result in a stronger fiction bias. Keep in mind that while this model can be used as a factual instruct model, the focus was on fiction. Information provided by the model can be made up. ## Adventuring and Adventure Games This model contains a lora that was trained on the same adventure dataset as the KoboldAI Skein model. Adventuring is best done using an small introduction to the world and your objective while using the > prefix for a user command (KoboldAI's adventure mode). It is possible that the model does not immediately pick up on what you wish to do and does not engage in its Adventure mode behaviour right away. Simply manually correct the output to trim excess dialogue or other undesirable behaviour and continue to submit your actions using the appropriate mode. The model should pick up on this style quickly and will correctly follow this format within 3 turns. ## Discovered something cool and want to engage with us? Join our community at https://koboldai.org/discord ! ### This model would not be possible without the awesome work from: Undi95, PocketDoc, Blackroot, Brouz, The Face of Goonery, zattio770, PygmalionAI, TokenBender, nRuaif, lemonilia and Xwin-LM. <!-- original-model-card end -->
just097/roberta-base-lora-comma-placement
just097
2023-11-08T12:36:25Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:FacebookAI/roberta-base", "base_model:adapter:FacebookAI/roberta-base", "region:us" ]
null
2023-11-07T19:07:25Z
--- library_name: peft base_model: roberta-base --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.0
1aurent/mobilenetv2_100.tiatoolbox-pcam
1aurent
2023-11-08T12:31:18Z
16
0
timm
[ "timm", "safetensors", "image-classification", "feature-extraction", "biology", "cancer", "histology", "TIA", "tiatoolbox", "dataset:1aurent/PatchCamelyon", "license:cc0-1.0", "region:us" ]
image-classification
2023-11-08T12:28:13Z
--- tags: - image-classification - feature-extraction - timm - biology - cancer - histology - TIA - tiatoolbox library_name: timm pipeline_tag: image-classification license: cc0-1.0 datasets: - 1aurent/PatchCamelyon --- # Model card for mobilenetv2_100.tiatoolbox-pcam A MobileNet-v2 image classification model. \ Trained by [Tissue Image Analytics (TIA) Centre](https://warwick.ac.uk/fac/cross_fac/tia/) on "pcam" histology patches. ![](https://raw.githubusercontent.com/TissueImageAnalytics/tiatoolbox/develop/docs/tiatoolbox-logo.png) ## Model Details - **Model Type:** Image classification / Feature backbone - **Model Stats:** - Params (M): 2.26 - Image size: 96 x 96 x 3 - **Dataset**: [Patch Camelyon (PCam)](https://github.com/basveeling/pcam/) - **Original:** https://github.com/TissueImageAnalytics/tiatoolbox - **License**: [Creative Commons Zero v1.0 Universal](https://creativecommons.org/publicdomain/zero/1.0/legalcode) ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import torch.nn as nn import timm # get example histology image img = Image.open( urlopen( "https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif" ) ) # load model from the hub model = timm.create_model( model_name="hf-hub:1aurent/mobilenetv2_100.tiatoolbox-pcam", pretrained=True, ).eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) data = transforms(img).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor output = model(data) # output is a (batch_size, num_features) shaped tensor ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import torch.nn as nn import timm # get example histology image img = Image.open( urlopen( "https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif" ) ) # load model from the hub model = timm.create_model( model_name="hf-hub:1aurent/mobilenetv2_100.tiatoolbox-pcam", pretrained=True, num_classes=0, ).eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) data = transforms(img).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor output = model(data) # output is a (batch_size, num_features) shaped tensor ``` ## Citation ```bibtex @article{Pocock2022, author = {Pocock, Johnathan and Graham, Simon and Vu, Quoc Dang and Jahanifar, Mostafa and Deshpande, Srijay and Hadjigeorghiou, Giorgos and Shephard, Adam and Bashir, Raja Muhammad Saad and Bilal, Mohsin and Lu, Wenqi and Epstein, David and Minhas, Fayyaz and Rajpoot, Nasir M and Raza, Shan E Ahmed}, doi = {10.1038/s43856-022-00186-5}, issn = {2730-664X}, journal = {Communications Medicine}, month = {sep}, number = {1}, pages = {120}, publisher = {Springer US}, title = {{TIAToolbox as an end-to-end library for advanced tissue image analytics}}, url = {https://www.nature.com/articles/s43856-022-00186-5}, volume = {2}, year = {2022} } ```
MAGAer13/mplug-owl2-llama2-7b
MAGAer13
2023-11-08T12:17:33Z
5,875
22
transformers
[ "transformers", "pytorch", "mplug_owl2", "transformer", "mPLUG", "Multimodal", "ChatGPT", "GPT", "Alibaba", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-11-02T10:02:34Z
--- tasks: - multimodal-dialogue studios: - damo/mPLUG-Owl model-type: - mplug-owl2 domain: - multi-modal frameworks: - pytorch backbone: - transformer containers: license: apache-2.0 language: - en tags: - transformer - mPLUG - Multimodal - ChatGPT - GPT - Alibaba --- # mPLUG-Owl2 ![Training paradigm and model overview](assets/mplug_owl2_radar.png)
owanr/SChem5Labels-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str
owanr
2023-11-08T12:15:06Z
0
0
null
[ "generated_from_trainer", "base_model:google/t5-v1_1-large", "base_model:finetune:google/t5-v1_1-large", "license:apache-2.0", "region:us" ]
null
2023-11-05T22:26:09Z
--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: SChem5Labels-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SChem5Labels-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 19.7945 | 1.0 | 25 | 24.1161 | | 18.755 | 2.0 | 50 | 19.9773 | | 18.2706 | 3.0 | 75 | 11.6905 | | 16.8867 | 4.0 | 100 | 10.8195 | | 15.645 | 5.0 | 125 | 10.3424 | | 12.6568 | 6.0 | 150 | 9.3585 | | 10.9942 | 7.0 | 175 | 9.1290 | | 9.2494 | 8.0 | 200 | 8.8652 | | 8.4954 | 9.0 | 225 | 8.5857 | | 8.1042 | 10.0 | 250 | 8.4259 | | 7.8977 | 11.0 | 275 | 8.3043 | | 7.8384 | 12.0 | 300 | 8.1858 | | 7.7411 | 13.0 | 325 | 7.9134 | | 7.3565 | 14.0 | 350 | 7.6255 | | 7.2074 | 15.0 | 375 | 7.3867 | | 7.0111 | 16.0 | 400 | 7.2259 | | 6.9705 | 17.0 | 425 | 7.1460 | | 6.8314 | 18.0 | 450 | 7.0866 | | 6.7505 | 19.0 | 475 | 7.0398 | | 6.6081 | 20.0 | 500 | 6.9983 | | 6.7054 | 21.0 | 525 | 6.9523 | | 6.5904 | 22.0 | 550 | 6.9090 | | 6.4272 | 23.0 | 575 | 6.5798 | | 0.9712 | 24.0 | 600 | 0.7144 | | 0.7214 | 25.0 | 625 | 0.6178 | | 0.6687 | 26.0 | 650 | 0.6174 | | 0.6565 | 27.0 | 675 | 0.6148 | | 0.6602 | 28.0 | 700 | 0.6140 | | 0.6449 | 29.0 | 725 | 0.6121 | | 0.648 | 30.0 | 750 | 0.6133 | | 0.6425 | 31.0 | 775 | 0.6154 | | 0.6505 | 32.0 | 800 | 0.6115 | | 0.661 | 33.0 | 825 | 0.6128 | | 0.6482 | 34.0 | 850 | 0.6108 | | 0.6501 | 35.0 | 875 | 0.6137 | | 0.6436 | 36.0 | 900 | 0.6086 | | 0.6377 | 37.0 | 925 | 0.6107 | | 0.6275 | 38.0 | 950 | 0.6116 | | 0.6254 | 39.0 | 975 | 0.6113 | | 0.6357 | 40.0 | 1000 | 0.6091 | | 0.6443 | 41.0 | 1025 | 0.6095 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
lmqg/mt5-base-koquad-qg-trimmed-50000
lmqg
2023-11-08T12:06:20Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-07T22:00:07Z
# Vocabulary Trimmed [lmqg/mt5-base-koquad-qg](https://huggingface.co/lmqg/mt5-base-koquad-qg): `lmqg/mt5-base-koquad-qg-trimmed-50000` This model is a trimmed version of [lmqg/mt5-base-koquad-qg](https://huggingface.co/lmqg/mt5-base-koquad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-base-koquad-qg | lmqg/mt5-base-koquad-qg-trimmed-50000 | |:---------------------------|:--------------------------|:----------------------------------------| | parameter_size_full | 582,384,384 | 275,032,320 | | parameter_size_embedding | 384,155,136 | 76,803,072 | | vocab_size | 250,101 | 50,002 | | compression_rate_full | 100.0 | 47.23 | | compression_rate_embedding | 100.0 | 19.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 50000 | 2 |
TheBloke/Psyfighter-13B-GGUF
TheBloke
2023-11-08T12:04:44Z
1,814
9
transformers
[ "transformers", "gguf", "llama", "base_model:jebcarter/Psyfighter-13B", "base_model:quantized:jebcarter/Psyfighter-13B", "license:llama2", "region:us" ]
null
2023-11-08T11:55:53Z
--- base_model: jebcarter/Psyfighter-13B inference: false license: llama2 model_creator: Jeb Carter model_name: Psyfighter 13B model_type: llama prompt_template: '{prompt} ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Psyfighter 13B - GGUF - Model creator: [Jeb Carter](https://huggingface.co/jebcarter) - Original model: [Psyfighter 13B](https://huggingface.co/jebcarter/Psyfighter-13B) <!-- description start --> ## Description This repo contains GGUF format model files for [Jeb Carter's Psyfighter 13B](https://huggingface.co/jebcarter/Psyfighter-13B). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Psyfighter-13B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Psyfighter-13B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF) * [Jeb Carter's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jebcarter/Psyfighter-13B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Unknown ``` {prompt} ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [psyfighter-13b.Q2_K.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes | | [psyfighter-13b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss | | [psyfighter-13b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss | | [psyfighter-13b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss | | [psyfighter-13b.Q4_0.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [psyfighter-13b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss | | [psyfighter-13b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended | | [psyfighter-13b.Q5_0.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [psyfighter-13b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended | | [psyfighter-13b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended | | [psyfighter-13b.Q6_K.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss | | [psyfighter-13b.Q8_0.gguf](https://huggingface.co/TheBloke/Psyfighter-13B-GGUF/blob/main/psyfighter-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Psyfighter-13B-GGUF and below it, a specific filename to download, such as: psyfighter-13b.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Psyfighter-13B-GGUF psyfighter-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Psyfighter-13B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Psyfighter-13B-GGUF psyfighter-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m psyfighter-13b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Psyfighter-13B-GGUF", model_file="psyfighter-13b.Q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Jeb Carter's Psyfighter 13B ``` merge_method: task_arithmetic base_model: TheBloke/Llama-2-13B-fp16 models: - model: TheBloke/Llama-2-13B-fp16 - model: KoboldAI/LLaMA2-13B-Tiefighter parameters: weight: 1.0 - model: chaoyi-wu/MedLLaMA_13B parameters: weight: 0.01 - model: Doctor-Shotgun/llama-2-13b-chat-limarp-v2-merged parameters: weight: 0.02 dtype: float16 ``` This model was made possible thanks to the Compute provided by the KoboldAI community. <!-- original-model-card end -->
marialcasimiro/tatoeba-opus-2021-02-22-eng-fra
marialcasimiro
2023-11-08T11:44:55Z
4
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "en", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-11-08T11:43:57Z
--- language: - en - fr tags: - translation license: apache-2.0 --- ### eng-fra * source language name: English * target language name: French * OPUS readme: [README.md](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-fra/README.md) * model: transformer-align * source language code: en * target language code: fr * dataset: opus * release date: 2021-02-22 * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2021-02-22.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-fra/opus-2021-02-22.zip/eng-fra/opus-2021-02-22.zip) * Training data: * fra-eng: Tatoeba-train (180923857) * Validation data: * eng-fra: Tatoeba-dev, 250098 * total-size-shuffled: 249757 * devset-selected: top 5000 lines of Tatoeba-dev.src.shuffled! * Test data: * newsdiscussdev2015-enfr.eng-fra: 1500/27986 * newsdiscusstest2015-enfr.eng-fra: 1500/28027 * newssyscomb2009.eng-fra: 502/12334 * news-test2008.eng-fra: 2051/52685 * newstest2009.eng-fra: 2525/69278 * newstest2010.eng-fra: 2489/66043 * newstest2011.eng-fra: 3003/80626 * newstest2012.eng-fra: 3003/78011 * newstest2013.eng-fra: 3000/70037 * Tatoeba-test.eng-fra: 10000/80769 * tico19-test.eng-fra: 2100/64655 * test set translations file: [test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-fra/opus-2021-02-22.zip/eng-fra/opus-2021-02-22.test.txt) * test set scores file: [eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-fra/opus-2021-02-22.zip/eng-fra/opus-2021-02-22.eval.txt) * BLEU-scores |Test set|score| |---|---| |Tatoeba-test.eng-fra|50.8| |tico19-test.eng-fra|41.8| |newsdiscusstest2015-enfr.eng-fra|40.8| |newstest2011.eng-fra|34.6| |newsdiscussdev2015-enfr.eng-fra|33.9| |newstest2013.eng-fra|33.5| |newstest2010.eng-fra|33.0| |newstest2012.eng-fra|32.0| |newssyscomb2009.eng-fra|30.0| |newstest2009.eng-fra|29.9| |news-test2008.eng-fra|27.5| * chr-F-scores |Test set|score| |---|---| |Tatoeba-test.eng-fra|0.671| |newsdiscusstest2015-enfr.eng-fra|0.649| |tico19-test.eng-fra|0.638| |newstest2011.eng-fra|0.614| |newsdiscussdev2015-enfr.eng-fra|0.606| |newstest2010.eng-fra|0.599| |newstest2012.eng-fra|0.593| |newstest2013.eng-fra|0.591| |newssyscomb2009.eng-fra|0.587| |newstest2009.eng-fra|0.58| |news-test2008.eng-fra|0.556| ### System Info: * hf_name: eng-fra * source_languages: en * target_languages: fr * opus_readme_url: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-fra/opus-2021-02-22.zip/README.md * original_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['en', 'fr'] * src_constituents: ['eng'] * tgt_constituents: ['fra'] * src_multilingual: False * tgt_multilingual: False * helsinki_git_sha: 6faf2dab0b7b01a0e08a114dbacbb7deac54988d * transformers_git_sha: e9a6c72b5edfb9561a981959b0e7c62d8ab9ef6c * port_machine: 146-193-182-187.edr.inesc.pt * port_time: 2023-11-08-11:42
AIBridgeEngine/Ben-3B-Biddinginformation-v0.1
AIBridgeEngine
2023-11-08T11:41:14Z
0
0
null
[ "license:lgpl-3.0", "region:us" ]
null
2023-11-08T11:38:13Z
--- license: lgpl-3.0 --- Neural network to predict distribution af hands in bridge based on the bidding.
mangeshdiyewar/Llama-2-7b-chat-hf-fine-tuned-adapters_translation
mangeshdiyewar
2023-11-08T11:40:48Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-11-07T08:25:40Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
Felladrin/onnx-flan-alpaca-base
Felladrin
2023-11-08T11:33:36Z
9
0
transformers.js
[ "transformers.js", "onnx", "t5", "text2text-generation", "license:apache-2.0", "region:us" ]
text2text-generation
2023-11-08T11:13:33Z
--- license: apache-2.0 library_name: "transformers.js" --- INT8 ONNX version of [declare-lab/flan-alpaca-base](https://huggingface.co/declare-lab/flan-alpaca-base) to use with [Transformers.js](https://huggingface.co/docs/transformers.js).
brightfarmns/taxi-v3
brightfarmns
2023-11-08T11:06:01Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T10:57:32Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="brightfarmns/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
narensymb/mistral-finetune
narensymb
2023-11-08T10:54:22Z
0
0
null
[ "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2023-11-08T10:52:14Z
--- license: apache-2.0 base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ tags: - generated_from_trainer model-index: - name: mistral-finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-finetune This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 ### Training results ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
juliajoanna/sdxl-flintstones_finetuning_on_lora_pretrained-one_hot_encoding_2
juliajoanna
2023-11-08T10:53:50Z
0
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "base_model:juliajoanna/sdxl-one_hot_encoding", "base_model:finetune:juliajoanna/sdxl-one_hot_encoding", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-08T02:06:25Z
--- license: creativeml-openrail-m base_model: juliajoanna/sdxl-one_hot_encoding dataset: None tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers inference: true --- # Text-to-image finetuning - juliajoanna/sdxl-flintstones_finetuning_on_lora_pretrained-one_hot_encoding_2 This pipeline was finetuned from **juliajoanna/sdxl-one_hot_encoding** on the **None** dataset. Below are some example images generated with the finetuned pipeline using the following prompt: Fred is driving a car: ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
ryantaw/distilbert-base-uncased-finetuned
ryantaw
2023-11-08T10:50:50Z
44
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-04T13:59:19Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0319 - Accuracy: 0.6038 - F1 Score: 0.5960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.0136026165598675e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | No log | 1.0 | 186 | 1.0319 | 0.6038 | 0.5960 | | No log | 2.0 | 372 | 0.9585 | 0.5930 | 0.5890 | | 1.0352 | 3.0 | 558 | 0.9438 | 0.5795 | 0.5791 | | 1.0352 | 4.0 | 744 | 0.9726 | 0.5957 | 0.5966 | | 1.0352 | 5.0 | 930 | 1.0109 | 0.5876 | 0.5870 | | 0.6438 | 6.0 | 1116 | 1.1121 | 0.5795 | 0.5775 | | 0.6438 | 7.0 | 1302 | 1.1804 | 0.5714 | 0.5711 | | 0.6438 | 8.0 | 1488 | 1.2388 | 0.5741 | 0.5754 | | 0.3747 | 9.0 | 1674 | 1.2941 | 0.5714 | 0.5708 | | 0.3747 | 10.0 | 1860 | 1.3156 | 0.5714 | 0.5707 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
AntoineD/camembert_classification_tools
AntoineD
2023-11-08T10:43:03Z
90
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "generated_from_trainer", "base_model:almanach/camembert-base", "base_model:finetune:almanach/camembert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-07T13:49:33Z
--- license: mit base_model: camembert-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: camembert_classification_tools results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert_classification_tools This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6969 - Accuracy: 0.775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 5 | 2.0733 | 0.2 | | No log | 2.0 | 10 | 2.0478 | 0.275 | | No log | 3.0 | 15 | 1.9161 | 0.45 | | No log | 4.0 | 20 | 1.7607 | 0.425 | | No log | 5.0 | 25 | 1.5895 | 0.575 | | No log | 6.0 | 30 | 1.4201 | 0.625 | | No log | 7.0 | 35 | 1.2944 | 0.675 | | No log | 8.0 | 40 | 1.2193 | 0.75 | | No log | 9.0 | 45 | 1.0974 | 0.775 | | No log | 10.0 | 50 | 1.0429 | 0.825 | | No log | 11.0 | 55 | 0.9602 | 0.8 | | No log | 12.0 | 60 | 0.9059 | 0.8 | | No log | 13.0 | 65 | 0.8365 | 0.825 | | No log | 14.0 | 70 | 0.9396 | 0.725 | | No log | 15.0 | 75 | 0.8271 | 0.8 | | No log | 16.0 | 80 | 0.7762 | 0.8 | | No log | 17.0 | 85 | 0.7847 | 0.8 | | No log | 18.0 | 90 | 0.7012 | 0.8 | | No log | 19.0 | 95 | 0.6971 | 0.8 | | No log | 20.0 | 100 | 0.7186 | 0.775 | | No log | 21.0 | 105 | 0.7946 | 0.725 | | No log | 22.0 | 110 | 0.7721 | 0.725 | | No log | 23.0 | 115 | 0.7642 | 0.725 | | No log | 24.0 | 120 | 0.7298 | 0.75 | | No log | 25.0 | 125 | 0.7191 | 0.75 | | No log | 26.0 | 130 | 0.6978 | 0.775 | | No log | 27.0 | 135 | 0.6913 | 0.8 | | No log | 28.0 | 140 | 0.6949 | 0.775 | | No log | 29.0 | 145 | 0.6961 | 0.775 | | No log | 30.0 | 150 | 0.6969 | 0.775 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.1
owanr/SBIC-google-t5-v1_1-large-intra_model-frequency-human_annots_str_mse
owanr
2023-11-08T10:40:38Z
0
0
null
[ "generated_from_trainer", "base_model:google/t5-v1_1-large", "base_model:finetune:google/t5-v1_1-large", "license:apache-2.0", "region:us" ]
null
2023-11-08T10:40:37Z
--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: SBIC-google-t5-v1_1-large-intra_model-frequency-human_annots_str_mse results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SBIC-google-t5-v1_1-large-intra_model-frequency-human_annots_str_mse This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Train Loss: 2.6984 - Loss: 0.3735 - Losses: [3, 2, 5, 2, 2, 2, 4, 2, 2, 2, 2, 3, 5, 2, 3, 2, 4, 2, 3, 2, 5, 4, 5, 2, 2, 5, 4, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 4, 2, 2, 2, 2, 5, 3, 2, 2, 3, 2, 5, 2, 4, 2, 4, 2, 2, 3, 4, 2, 2, 4, 2, 3, 5, 2, 3, 2, 4, 2, 2, 2, 4, 2, 4, 5, 4, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 3, 5, 2, 4, 2, 2, 2, 2, 4, 5, 3, 5, 2, 2, 2, 2, 2, 4, 4, 2, 2, 3, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 3, 2, 3, 5, 3, 2, 2, 4, 3, 2, 2, 2, 4, 2, 2, 2, 5, 5, 2, 2, 5, 4, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 4, 5, 5, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 2, 3, 2, 5, 4, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 5, 2, 4, 3, 2, 4, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 3, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 5, 4, 5, 2, 2, 2, 4, 2, 2, 4, 5, 2, 2, 5, 3, 2, 2, 2, 2, 2, 3, 3, 5, 5, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 2, 2, 5, 3, 5, 3, 3, 5, 2, 4, 2, 2, 3, 2, 4, 2, 4, 2, 2, 3, 3, 2, 2, 5, 2, 5, 2, 2, 2, 2, 3, 4, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 4, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 4, 2, 5, 2, 5, 2, 5, 4, 2, 2, 2, 5, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 4, 5, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 5, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 5, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 5, 3, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 5, 3, 2, 2, 2, 2, 5, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 4, 2, 4, 2, 2, 2, 4, 2, 5, 2, 2, 2, 5, 2, 5, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 3, 2, 3, 4, 2, 2, 5, 2, 3, 2, 4, 2, 5, 5, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 5, 4, 5, 2, 2, 2, 5, 5, 2, 4, 2, 2, 5, 2, 3, 2, 4, 2, 5, 2, 4, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 5, 3, 2, 2, 2, 3, 2, 4, 2, 4, 4, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 3, 3, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 3, 4, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 5, 3, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 4, 5, 2, 3, 2, 5, 2, 2, 3, 3, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 5, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 3, 5, 2, 3, 2, 2, 4, 3, 2, 3, 2, 2, 2, 3, 2, 5, 2, 5, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 5, 2, 2, 2, 2, 3, 4, 3, 4, 4, 2, 4, 2, 3, 3, 2, 2, 2, 2, 3, 5, 2, 2, 2, 5, 5, 2, 2, 2, 3, 5, 4, 5, 2, 5, 2, 2, 5, 4, 4, 2, 4, 4, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 2, 5, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 5, 5, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 4, 2, 3, 2, 5, 3, 3, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 5, 2, 4, 3, 2, 4, 2, 2, 3, 2, 3, 3, 3, 2, 2, 2, 2, 2, 4, 5, 3, 2, 4, 2, 2, 2, 2, 4, 3, 5, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 5, 2, 2, 4, 2, 4, 2, 2, 3, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 2, 5, 4, 2, 4, 4, 2, 2, 2, 2, 2, 2, 4, 3, 2, 3, 2, 2, 2, 2, 4, 4, 2, 2, 2, 5, 2, 2, 2, 5, 2, 3, 5, 4, 2, 2, 2, 3, 5, 2, 5, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 5, 2, 3, 4, 2, 2, 4, 2, 3, 5, 3, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 3, 5, 2, 2, 4, 5, 2, 2, 2, 2, 4, 2, 5, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 5, 4, 5, 2, 2, 2, 4, 2, 2, 2, 5, 5, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 3, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 5, 2, 3, 2, 2, 2, 2, 5, 4, 3, 2, 3, 2, 5, 2, 2, 2, 5, 2, 5, 2, 2, 2, 4, 5, 5, 2, 3, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 3, 5, 2, 5, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 5, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 5, 3, 2, 2, 2, 5, 2, 2, 2, 5, 4, 5, 2, 2, 4, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 3, 2, 2, 2, 3, 2, 5, 2, 2, 2, 2, 2, 5, 5, 5, 2, 4, 2, 5, 2, 2, 3, 3, 4, 4, 5, 2, 3, 2, 4, 3, 2, 4, 4, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 5, 2, 5, 2, 4, 2, 3, 3, 5, 3, 2, 4, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 3, 4, 2, 4, 4, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 5, 2, 5, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 3, 4, 5, 2, 2, 2, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 2, 3, 4, 2, 5, 2, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 5, 2, 2, 2, 2, 4, 5, 4, 4, 2, 3, 2, 5, 4, 2, 3, 2, 2, 2, 2, 3, 4, 2, 2, 5, 2, 4, 3, 2, 2, 2] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Train Loss | Validation Loss | Losses | |:-------------:|:-----:|:-----:|:----------:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 7.5029 | 1.0 | 392 | 5.7585 | 8.2091 | [2, 5.4, 5.4, 3, 2, 10.8, 0, 5.4, 5.4, 8.100000000000001, 7.2, 5.4, 9.0, 5.4, 7.2, 0, 6.300000000000001, 1.8, 5.4, 6.300000000000001, 5.4, 10.8, 7.2, 4, 5.4, 0, 3, 0, 9.0, 5.4, 5.4, 0, 8.100000000000001, 7.2, 4, 6.300000000000001, 9.9, 0, 9.9, 5.4, 10.8, 3, 5.4, 7.2, 5.4, 5.4, 6.300000000000001, 8.100000000000001, 5.4, 5.4, 3, 5.4, 5.4, 5.4, 10.8, 3, 3, 10.8, 7.2, 5.4, 8.100000000000001, 8.100000000000001, 5.4, 0, 7.2, 10.8, 3, 5.4, 9.0, 2, 5.4, 2, 5.4, 9.0, 3, 2, 5.4, 3, 7.2, 0, 3, 8.100000000000001, 5.4, 8.100000000000001, 10.8, 8.100000000000001, 3, 9.9, 5.4, 5.4, 3, 5.4, 3, 7.2, 3, 9.0, 5.4, 5, 2, 3, 3, 5.4, 10.8, 0, 3, 3, 5.4, 4, 10.8, 5.4, 10.8, 5.4, 5.4, 10.8, 5.4, 4, 1, 2, 5.4, 5.4, 5.4, 5.4, 2, 3, 5.4, 7.2, 9.0, 1, 7.2, 4, 10.8, 3, 10.8, 6.300000000000001, 5.4, 10.8, 2, 2, 7.2, 10.8, 2, 6.300000000000001, 9.9, 5.4, 9.0, 2, 5.4, 3, 3, 9.0, 5.4, 9.9, 3, 5.4, 9.9, 6.300000000000001, 5.4, 9.9, 5.4, 5.4, 0, 0, 6, 0, 5.4, 10.8, 10.8, 2, 5.4, 10.8, 5.4, 2, 5.4, 10.8, 0, 9.9, 5.4, 4, 8.100000000000001, 3, 9.0, 10.8, 10.8, 7.2, 9.0, 3, 2, 6.300000000000001, 10.8, 5.4, 0, 3, 10.8, 10.8, 3, 9.0, 7.2, 2, 9.0, 3, 10.8, 6.300000000000001, 2, 9.0, 2, 6.300000000000001, 3, 5.4, 5.4, 8.100000000000001, 5.4, 8.100000000000001, 2, 9.9, 9.0, 9.9, 10.8, 5.4, 10.8, 2, 5.4, 0, 6.300000000000001, 3, 4.5, 10.8, 8.100000000000001, 5.4, 7.2, 6.300000000000001, 10.8, 10.8, 5.4, 10.8, 5.4, 10.8, 5.4, 2, 10.8, 6.300000000000001, 9.9, 5, 3, 1, 3, 5.4, 3, 8.100000000000001, 7.2, 8.100000000000001, 2, 5.4, 3, 3, 2, 2, 9.0, 7.2, 5.4, 5.4, 6.300000000000001, 10.8, 5.4, 7.2, 5.4, 3, 0, 5.4, 5.4, 1, 5.4, 9.9, 5.4, 0, 3, 5.4, 5.4, 10.8, 7.2, 5.4, 3, 3, 6.300000000000001, 5.4, 0, 7.2, 7.2, 6.300000000000001, 5.4, 5.4, 5.4, 3, 10.8, 5.4, 6.300000000000001, 7.2, 7.2, 10.8, 3, 2, 9.9, 6, 10.8, 5.4, 0, 9.0, 3, 10.8, 2, 3, 5.4, 5.4, 9.0, 3, 2, 3, 5.4, 0, 2, 2, 0, 4, 2, 5.4, 1, 5.4, 6.300000000000001, 3, 2, 1, 7.2, 3, 5.4, 9.0, 10.8, 2, 5.4, 10.8, 5.4, 3, 5.4, 7.2, 10.8, 2, 6.300000000000001, 3, 3, 4, 5.4, 10.8, 0, 3, 6.300000000000001, 8.100000000000001, 5.4, 5.4, 0, 2, 1, 4, 5.4, 10.8, 10.8, 5.4, 5.4, 6.300000000000001, 10.8, 8.100000000000001, 8.100000000000001, 3, 5.4, 7.2, 10.8, 5.4, 9.9, 9.9, 6.300000000000001, 10.8, 3, 0, 8.100000000000001, 2, 9.9, 3, 10.8, 5.4, 5.4, 2, 10.8, 7.2, 9.0, 0, 9.0, 3, 10.8, 3, 7.2, 2, 5.4, 8.100000000000001, 7.2, 2, 9.0, 5.4, 2, 7.2, 4, 7.2, 10.8, 5.4, 3, 3, 5.4, 5.4, 9.0, 6.300000000000001, 6, 7.2, 5.4, 5.4, 3, 9.0, 5.4, 5.4, 2, 6, 5.4, 6.300000000000001, 5.4, 5.4, 5.4, 9.0, 9.0, 5.4, 10.8, 10.8, 9.0, 5.4, 8.100000000000001, 3, 4, 3, 1, 7.2, 5.4, 9.0, 6.300000000000001, 3, 9.0, 9.0, 9.9, 2, 10.8, 7.2, 9.9, 7.2, 5.4, 10.8, 9.0, 5.4, 0, 5.4, 10.8, 8.100000000000001, 10.8, 4, 5.4, 10.8, 5.4, 7.2, 5.4, 5.4, 2, 2, 9.9, 6.300000000000001, 3, 2, 3, 5.4, 3, 5.4, 5.4, 5.4, 10.8, 10.8, 3, 5.4, 9.9, 5.4, 9.0, 3, 16, 3, 1, 2, 6.300000000000001, 1, 8.100000000000001, 3, 5.4, 9.0, 3, 5.4, 5.4, 10.8, 3, 5.4, 5.4, 3, 8.100000000000001, 5.4, 4, 10.8, 3, 5.4, 8.100000000000001, 5.4, 2, 9.0, 5.4, 5.4, 10.8, 1, 5.4, 5.4, 10.8, 2, 9.9, 5.4, 3, 5.4, 2, 7.2, 8.100000000000001, 2, 10.8, 2, 7.2, 5.4, 9.0, 9.9, 3, 3, 10.8, 10.8, 5.4, 4, 7.2, 5.4, 5.4, 5.4, 3, 1, 5, 10.8, 3, 10.8, 3, 6.300000000000001, 3, 3, 5.4, 6.300000000000001, 1, 10.8, 7.2, 9.0, 9.0, 2, 5.4, 5.4, 7.2, 10.8, 10.8, 8.100000000000001, 0, 7.2, 3, 3, 5.4, 6.300000000000001, 9.9, 5.4, 3, 10.8, 5.4, 0, 5.4, 5.4, 10.8, 5.4, 14, 5.4, 10.8, 10.8, 9.0, 10.8, 10.8, 10.8, 3, 2, 6.300000000000001, 8.100000000000001, 2, 5.4, 10.8, 5.4, 10.8, 7.2, 4, 10.8, 5.4, 5.4, 10.8, 5, 5.4, 2, 5.4, 5.4, 5.4, 8.100000000000001, 1, 2, 10.8, 3, 0, 6.300000000000001, 5.4, 8.100000000000001, 10.8, 9.0, 10.8, 8.100000000000001, 5.4, 3, 8.100000000000001, 1, 5.4, 3, 1, 10.8, 3, 0, 3, 4, 6.300000000000001, 5.4, 5.4, 9.9, 5.4, 10.8, 7.2, 10.8, 9.0, 5.4, 2, 5.4, 10.8, 3, 9.9, 3, 5.4, 2, 0, 6.300000000000001, 3, 10.8, 0, 7.2, 4, 5.4, 9.0, 5.4, 5.4, 1, 5.4, 3, 5.4, 3, 9.9, 5.4, 5.4, 5.4, 10.8, 5.4, 5.4, 7.2, 5.4, 5.4, 7.2, 10.8, 7.2, 9.9, 10.8, 6.300000000000001, 5.4, 5.4, 7.2, 2, 0, 10.8, 6.300000000000001, 10.8, 5.4, 3, 2, 7.2, 5.4, 6.300000000000001, 3, 5.4, 8.100000000000001, 5.4, 10.8, 5.4, 0, 7.2, 9.0, 7.2, 5.4, 10.8, 0, 5.4, 7.2, 8.100000000000001, 7.2, 5.4, 9.9, 5.4, 5.4, 9.0, 3, 9.0, 6.300000000000001, 6.300000000000001, 6.300000000000001, 5.4, 10.8, 5.4, 6.300000000000001, 5.4, 5.4, 3, 5.4, 5.4, 10.8, 5.4, 5.4, 4, 5.4, 10.8, 2, 2, 7.2, 5.4, 2, 5.4, 5.4, 10.8, 10.8, 8.100000000000001, 4, 4, 10.8, 3, 2, 7.2, 10.8, 2, 9.0, 3, 1, 3, 3, 0, 5.4, 5.4, 3, 2, 5.4, 7.2, 9.0, 5.4, 1, 0, 10.8, 5.4, 5.4, 5.4, 5.4, 5.4, 2, 0, 5.4, 4, 2, 2, 9.0, 9.0, 5.4, 5.4, 5.4, 2, 9.0, 5.4, 3, 9.0, 0, 2, 9.9, 7.2, 5.4, 5.4, 9.0, 10.8, 9.0, 3, 5.4, 10.8, 4, 6.300000000000001, 5.4, 10.8, 6.300000000000001, 3, 5.4, 5.4, 6.300000000000001, 5.4, 4, 10.8, 7.2, 3, 5.4, 5.4, 5.4, 7.2, 7.2, 0, 10.8, 1, 5.4, 6.300000000000001, 10.8, 2, 10.8, 0, 4, 8, 7.2, 10.8, 10.8, 7.2, 10.8, 10.8, 5.4, 7.2, 5.4, 3, 5.4, 2, 5.4, 5.4, 5.4, 3, 10.8, 5.4, 10.8, 10.8, 5.4, 2, 3, 10.8, 6.300000000000001, 3, 5.4, 5.4, 8.100000000000001, 3, 5.4, 10.8, 10.8, 9.9, 6.300000000000001, 3, 6.300000000000001, 10.8, 6.300000000000001, 8.100000000000001, 3, 2, 5.4, 1.8, 3, 11, 2, 10.8, 8.100000000000001, 5.4, 5.4, 5.4, 3, 3, 7.2, 5.4, 10.8, 3, 9.9, 10.8, 10.8, 10.8, 5.4, 5.4, 5.4, 3, 8.100000000000001, 0, 3, 5.4, 5.4, 5.4, 6.300000000000001, 3, 3, 4, 3, 5.4, 6.300000000000001, 8.100000000000001, 5.4, 7.2, 5.4, 7.2, 5.4, 10.8, 0, 2, 5.4, 2, 5.4, 8.100000000000001, 0, 18, 3, 1, 9.0, 7.2, 5.4, 0, 10.8, 3, 3, 9.0, 3, 6.300000000000001, 0, 9.0, 3, 2, 3, 6.300000000000001, 7.2, 5.4, 10.8, 3, 5.4, 3, 5.4, 10.8, 5.4, 0, 5.4, 5.4, 5.4, 8.100000000000001, 2, 4, 5.4, 3, 2, 5.4, 5.4, 7.2, 5.4, 5.4, 3, 5.4, 5.4, 9.9, 5.4, 6.300000000000001, 0, 9.0, 3, 5.4, 5.4, 9.0, 5.4, 5.4, 10.8, 5.4, 3, 9.0, 5.4, 10.8, 7.2, 4, 3, 6.300000000000001, 5.4, 9.0, 2, 0, 3, 6.300000000000001, 7.2, 10.8, 2, 7.2, 5.4, 5.4, 5.4, 3, 10.8, 10.8, 5.4, 10.8, 3, 5.4, 10.8, 5.4, 7.2, 8, 6.300000000000001, 8.100000000000001, 9.0, 5.4, 9.9, 9.0, 3, 0, 9.0, 6.300000000000001, 5.4, 3, 7.2, 5.4, 9.0, 5.4, 1, 5.4, 3, 0, 3, 5.4, 5.4, 8.100000000000001, 2, 5.4, 8, 7.2, 2, 10.8, 4, 6.300000000000001, 10.8, 6.300000000000001, 5.4, 1, 9.9, 2, 7.2, 0, 5.4, 3, 5.4, 4, 5.4, 3, 2, 3, 10.8, 7.2, 5.4, 9.0, 10.8, 7.2, 5.4, 10.8, 3, 9.0, 5.4, 3, 3, 10.8, 7.2, 6.300000000000001, 1, 4, 3, 5.4, 10.8, 5.4, 10.8, 2, 3, 7.2, 6.300000000000001, 3, 2, 8.100000000000001, 3, 10.8, 6.300000000000001, 7.2, 9.9, 3, 9.0, 3, 5.4, 8, 4, 0, 5.4, 9.9, 5.4, 7.2, 3, 9.9, 3, 5.4, 3, 3, 7.2, 3, 7.2, 10.8, 5.4, 3, 9.9, 5.4, 0, 0, 3, 10.8, 10.8, 2, 5.4, 8.100000000000001, 7.2, 3, 5.4, 6.300000000000001, 5.4, 5.4, 2, 4, 3, 5.4, 5.4, 9.0, 0, 5.4, 3, 9.9, 3, 5.4, 0, 10.8, 6.300000000000001, 5.4, 10.8, 6.300000000000001, 2, 10.8, 0, 7.2, 8.100000000000001, 7.2, 3, 8.100000000000001, 10.8, 7.2, 5.4, 3, 0, 6.300000000000001, 1, 3, 5.4, 5.4, 6.300000000000001, 5.4, 3, 6.300000000000001, 3, 5.4, 3, 5.4, 5.4, 5.4, 5.4, 5.4, 10.8, 5.4, 5.4, 0, 10.8, 7.2, 5.4, 2, 1, 5.4, 3, 2, 9.9, 9.0, 7.2, 3, 5.4, 3, 3, 5.4, 3, 5.4, 5.4, 6, 2, 10.8, 4, 0, 10.8, 3, 3, 5.4, 6.300000000000001, 5.4, 8.100000000000001, 5.4, 0, 3, 10.8, 5.4, 9.9, 9.9, 1, 6.300000000000001, 0, 0, 10.8, 18, 10.8, 0, 3, 3, 3, 10.8, 2, 10.8, 3, 5.4, 2, 1, 2, 10.8, 5.4, 3, 5.4, 3, 9, 9.0, 6.300000000000001, 7.2, 8.100000000000001, 5.4, 5.4, 2, 7.2, 5.4, 7.2, 6.300000000000001, 6.3, 7.2, 3, 9.0, 5.4, 3, 9.0, 5.4, 9.9, 5.4, 5.4, 8.100000000000001, 10.8, 2, 2, 10.8, 10.8, 5.4, 5.4, 5.4, 3, 7.2, 5.4, 5.4, 1, 5.4, 3, 5.4, 5.4, 5.4, 3, 7.2, 10.8, 1, 5.4, 10.8, 6.300000000000001, 3, 3, 3, 9.0, 5.4, 5.4, 10.8, 2, 14, 2, 5.4, 3, 9.9, 8.100000000000001, 0, 5.4, 5.4, 1, 5.4, 6.300000000000001, 7.2, 5.4, 6.300000000000001, 10.8, 5.4, 10.8, 3, 5.4, 3, 5.4, 10.8, 5.4, 9.9, 5.4, 10.8, 9.0, 3, 10.8, 5.4, 3, 9.0, 5.4, 5.4, 7.2, 6.300000000000001, 10.8, 0, 4, 0, 5.4, 6.300000000000001, 3, 5.4, 5.4, 3, 5.4, 3, 6.300000000000001, 0, 5.4, 6.300000000000001, 5.4, 3, 5.4, 10.8, 3, 5.4, 5.4, 5.4, 2, 1, 5.4, 6.3, 10.8, 10.8, 3, 5.4, 5.4, 7.2, 10.8, 3, 5, 2, 5.4, 3, 7.2, 10.8, 3, 3, 13, 8.100000000000001, 3, 6.300000000000001, 10.8, 5.4, 10.8, 6.300000000000001, 3, 10.8, 5.4, 5.4, 10.8, 10.8, 0, 7.2, 9.9, 6.300000000000001, 7.2, 10.8, 3, 5.4, 8.100000000000001, 5.4, 7.2, 1.8, 5.4, 5.4, 3, 6.300000000000001, 5.4, 5.4, 5.4, 10.8, 3, 5.4, 9.9, 8.100000000000001, 7.2, 0, 7.2, 3, 5.4, 10.8, 6.300000000000001, 2, 1, 5.4, 5.4, 7.2, 0, 0, 10.8, 10.8, 3, 10.8, 1, 4, 3, 5.4, 2, 7.2, 10.8, 10.8, 3, 3, 2, 5.4, 5.4, 10.8, 10.8, 5.4, 4, 6.300000000000001, 9.9, 3, 0, 8.100000000000001, 6.300000000000001, 0, 5.4, 5.4, 5.4, 2, 1, 9.9, 2, 3, 0, 10.8, 7.2, 5.4, 6.300000000000001, 9.0, 6.300000000000001, 7.2, 5.4, 5.4, 3, 5.4, 2, 3, 5.4, 3, 9.0, 5.4, 0, 7.2, 5.4, 9.9, 6.300000000000001, 0, 10.8, 5.4, 6.300000000000001, 3, 2, 3, 10.8, 10.8, 5.4, 9.9, 5.4, 3, 6.300000000000001, 3, 9.9, 9.9, 3, 7.2, 0, 3, 8.100000000000001, 0, 10.8, 6.300000000000001, 5.4, 7.2, 9.0, 9.0, 3, 5.4, 5.4, 5.4, 3, 7.2, 9.9, 5.4, 10.8, 0, 7.2, 3, 7.2, 2, 5.4, 8.100000000000001] | | 0.5314 | 2.0 | 784 | 2.7538 | 0.4400 | [4, 2, 2, 2, 3, 4, 4, 2, 2, 3, 3, 2, 3, 2, 5, 4, 5, 2, 5, 2, 2, 4, 2, 2, 2, 4, 2, 4, 3, 2, 2, 4, 3, 2, 4, 2, 4, 4, 4, 2, 4, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 4, 2, 2, 3, 3, 2, 4, 3, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 4, 4, 3, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 3, 4, 2, 4, 5, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 3, 3, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 4, 2, 5, 2, 4, 4, 4, 2, 4, 3, 2, 3, 4, 4, 2, 3, 2, 3, 2, 4, 2, 4, 2, 4, 4, 2, 3, 2, 2, 4, 2, 4, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 4, 3, 4, 4, 2, 2, 3, 2, 4, 2, 2, 3, 4, 3, 2, 2, 2, 4, 4, 2, 4, 2, 4, 2, 2, 4, 2, 4, 4, 2, 3, 2, 2, 2, 3, 3, 3, 5, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 3, 2, 3, 5, 4, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 5, 3, 4, 4, 3, 2, 4, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 4, 3, 2, 2, 2, 2, 2, 4, 4, 2, 5, 3, 2, 2, 4, 4, 3, 4, 2, 4, 4, 2, 2, 2, 4, 3, 3, 2, 5, 2, 4, 2, 4, 4, 2, 4, 2, 4, 3, 3, 4, 2, 4, 2, 2, 2, 4, 2, 4, 4, 3, 2, 4, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 4, 2, 4, 2, 5, 2, 2, 2, 3, 2, 4, 2, 2, 2, 4, 4, 2, 2, 3, 5, 2, 2, 2, 2, 2, 3, 3, 2, 4, 4, 4, 2, 3, 3, 4, 2, 4, 3, 2, 3, 2, 2, 3, 3, 4, 2, 4, 2, 4, 3, 2, 4, 4, 2, 4, 5, 4, 3, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 3, 2, 5, 2, 4, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 4, 4, 2, 2, 3, 2, 2, 3, 2, 2, 4, 4, 2, 2, 4, 3, 4, 2, 3, 2, 2, 3, 4, 3, 4, 2, 3, 2, 3, 4, 2, 5, 4, 4, 2, 4, 3, 2, 2, 2, 3, 3, 2, 4, 2, 4, 2, 2, 2, 5, 2, 2, 3, 4, 3, 3, 3, 4, 5, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 4, 4, 3, 4, 2, 2, 5, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 2, 5, 2, 2, 3, 4, 2, 4, 2, 4, 2, 2, 4, 4, 3, 4, 3, 2, 2, 3, 4, 2, 2, 3, 4, 3, 4, 2, 4, 2, 2, 2, 4, 5, 4, 2, 4, 3, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 4, 2, 4, 2, 3, 2, 5, 3, 2, 2, 5, 2, 3, 5, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 2, 5, 2, 4, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 4, 2, 4, 2, 3, 2, 2, 4, 4, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 5, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 4, 4, 4, 4, 4, 2, 2, 2, 4, 3, 4, 3, 4, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 3, 4, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 3, 2, 2, 2, 3, 4, 2, 2, 4, 4, 3, 4, 2, 2, 2, 4, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 4, 3, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 4, 2, 4, 4, 2, 3, 2, 4, 2, 2, 2, 2, 3, 2, 2, 4, 4, 4, 5, 3, 5, 4, 2, 3, 2, 2, 2, 2, 2, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 4, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 3, 2, 2, 2, 4, 4, 2, 2, 3, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 5, 2, 3, 2, 2, 4, 3, 2, 3, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 3, 3, 2, 4, 3, 2, 4, 3, 2, 2, 3, 3, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 4, 2, 4, 2, 2, 3, 4, 2, 3, 4, 5, 2, 2, 4, 2, 2, 3, 3, 4, 2, 2, 3, 4, 2, 2, 4, 4, 3, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 3, 3, 2, 4, 2, 2, 4, 2, 4, 4, 2, 4, 4, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 4, 2, 3, 2, 2, 3, 4, 3, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 3, 3, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 4, 4, 4, 3, 2, 2, 2, 2, 3, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 2, 3, 3, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 3, 2, 5, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 3, 4, 3, 2, 4, 2, 2, 5, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 4, 3, 2, 4, 2, 2, 2, 4, 3, 2, 2, 4, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 2, 2, 4, 2, 5, 2, 5, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 2, 4, 5, 4, 3, 2, 2, 3, 2, 2, 2, 5, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 4, 4, 4, 4, 2, 3, 4, 2, 2, 4, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 2, 4, 3, 2, 5, 2, 2, 3, 3, 2, 2, 2, 4, 4, 4, 4, 2, 4, 3, 4, 2, 2, 3, 5, 4, 2, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 4, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 3, 3, 3, 4, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 5, 2, 4, 4, 2, 2, 4, 2, 3, 4, 4, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 2, 4, 3, 2, 5, 5] | | 0.4419 | 3.0 | 1176 | 2.6969 | 0.4427 | [4, 2, 2, 2, 3, 4, 4, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 3, 2, 2, 4, 3, 2, 4, 2, 4, 4, 4, 2, 4, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 4, 2, 2, 3, 3, 2, 4, 3, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 4, 3, 2, 4, 2, 2, 2, 2, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 4, 4, 3, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 4, 2, 4, 2, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 3, 3, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 2, 2, 4, 4, 4, 2, 4, 3, 2, 3, 4, 4, 2, 3, 2, 3, 2, 4, 2, 4, 2, 4, 4, 2, 3, 2, 2, 4, 2, 4, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 4, 3, 4, 4, 2, 4, 3, 2, 4, 2, 2, 3, 4, 3, 2, 2, 2, 4, 4, 2, 4, 2, 4, 2, 2, 4, 2, 4, 4, 2, 3, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 4, 3, 2, 4, 2, 4, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 3, 4, 4, 3, 2, 4, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 4, 2, 2, 2, 3, 4, 3, 2, 2, 2, 4, 2, 4, 4, 2, 2, 3, 2, 2, 4, 4, 3, 4, 2, 4, 4, 2, 2, 2, 4, 3, 3, 2, 2, 2, 4, 2, 4, 4, 2, 4, 2, 4, 3, 3, 4, 2, 4, 2, 2, 2, 4, 2, 4, 4, 3, 2, 4, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 4, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 4, 4, 4, 2, 3, 3, 4, 2, 4, 3, 2, 3, 2, 2, 3, 3, 4, 2, 4, 2, 4, 3, 2, 4, 4, 2, 4, 2, 4, 3, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 3, 2, 3, 2, 4, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 4, 4, 2, 2, 3, 2, 2, 3, 2, 2, 4, 4, 2, 2, 4, 3, 4, 2, 3, 2, 2, 3, 4, 3, 4, 2, 3, 2, 3, 4, 2, 2, 4, 4, 2, 4, 3, 2, 2, 2, 3, 3, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 4, 3, 3, 3, 4, 2, 2, 2, 4, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 4, 4, 3, 4, 4, 4, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 4, 2, 4, 2, 2, 3, 4, 3, 4, 3, 2, 2, 3, 4, 2, 2, 3, 4, 3, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 4, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 4, 2, 4, 2, 3, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 4, 2, 3, 2, 2, 3, 2, 2, 4, 4, 3, 4, 4, 4, 2, 2, 2, 4, 3, 4, 3, 4, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 3, 4, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 3, 2, 2, 2, 3, 4, 2, 2, 4, 4, 3, 4, 2, 2, 2, 4, 4, 4, 2, 2, 4, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 4, 3, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 2, 3, 2, 4, 2, 2, 2, 2, 3, 2, 2, 4, 4, 4, 2, 3, 2, 4, 2, 3, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 4, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 3, 2, 2, 2, 4, 4, 2, 2, 3, 2, 3, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 3, 2, 2, 4, 3, 2, 3, 4, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 4, 2, 3, 3, 2, 4, 3, 2, 4, 3, 2, 2, 3, 3, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 3, 4, 2, 3, 4, 2, 2, 2, 4, 2, 2, 3, 3, 4, 2, 2, 3, 4, 2, 2, 4, 4, 3, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 4, 3, 2, 2, 2, 2, 3, 3, 2, 4, 2, 3, 4, 2, 3, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 3, 3, 2, 4, 2, 2, 4, 2, 4, 4, 2, 4, 4, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 4, 2, 3, 2, 2, 3, 4, 3, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 3, 3, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 3, 2, 2, 2, 2, 3, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 2, 3, 3, 4, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 3, 4, 3, 2, 4, 4, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 4, 3, 2, 2, 4, 3, 4, 2, 2, 2, 4, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 2, 4, 2, 4, 3, 2, 2, 3, 4, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 4, 4, 4, 2, 4, 2, 3, 4, 2, 2, 4, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 2, 4, 3, 2, 2, 4, 2, 3, 3, 2, 2, 2, 4, 4, 4, 4, 2, 4, 3, 4, 2, 2, 3, 3, 4, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 4, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 4, 3, 3, 4, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 3, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 3, 4, 4, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 2, 4, 3, 2, 2, 4] | | 0.4587 | 4.0 | 1568 | 2.8146 | 0.4146 | [4, 2, 2, 2, 3, 4, 2, 2, 5, 3, 3, 2, 3, 2, 3, 4, 5, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 5, 5, 5, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 5, 2, 3, 3, 2, 3, 2, 3, 5, 2, 2, 5, 4, 4, 2, 3, 2, 3, 4, 3, 2, 3, 5, 2, 5, 2, 5, 3, 2, 3, 2, 2, 2, 2, 5, 2, 4, 4, 3, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 3, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 3, 3, 2, 2, 5, 3, 2, 3, 5, 2, 4, 2, 5, 3, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 4, 2, 3, 4, 2, 3, 4, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 4, 2, 5, 5, 2, 3, 5, 3, 2, 4, 3, 4, 2, 2, 2, 3, 5, 4, 5, 5, 3, 4, 3, 2, 2, 2, 4, 2, 2, 2, 5, 2, 5, 2, 2, 5, 4, 4, 5, 3, 5, 2, 5, 4, 5, 3, 5, 2, 2, 2, 3, 3, 3, 2, 2, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 5, 5, 2, 2, 2, 3, 2, 2, 2, 2, 5, 4, 2, 2, 5, 2, 2, 4, 3, 2, 3, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 5, 4, 2, 2, 3, 2, 3, 2, 2, 2, 3, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 5, 4, 2, 2, 4, 4, 2, 2, 5, 2, 4, 4, 3, 5, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 5, 2, 4, 5, 4, 5, 5, 3, 2, 2, 3, 2, 2, 4, 5, 5, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 3, 2, 2, 5, 2, 2, 2, 3, 3, 2, 4, 2, 4, 5, 3, 4, 3, 2, 4, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 4, 2, 4, 5, 2, 4, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 4, 5, 3, 5, 3, 2, 3, 2, 2, 3, 3, 2, 5, 3, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 5, 2, 3, 2, 4, 3, 2, 2, 4, 3, 5, 2, 2, 3, 4, 2, 3, 2, 2, 3, 4, 4, 2, 2, 3, 2, 3, 4, 2, 5, 4, 2, 5, 4, 3, 2, 2, 2, 3, 3, 2, 4, 5, 2, 5, 2, 5, 5, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 4, 2, 4, 2, 2, 5, 2, 5, 2, 4, 2, 5, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 3, 2, 4, 2, 5, 2, 2, 4, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 3, 2, 5, 3, 2, 3, 2, 2, 2, 2, 5, 2, 3, 2, 4, 4, 2, 3, 2, 2, 2, 2, 2, 3, 5, 2, 4, 4, 2, 5, 2, 2, 2, 4, 2, 3, 2, 2, 3, 5, 5, 2, 5, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 2, 4, 2, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 3, 5, 3, 5, 4, 2, 4, 4, 3, 4, 2, 2, 4, 2, 2, 4, 2, 2, 3, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 3, 5, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 5, 2, 3, 3, 2, 2, 5, 3, 4, 5, 5, 4, 2, 4, 4, 2, 5, 2, 4, 2, 4, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 3, 2, 4, 2, 2, 5, 2, 4, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 4, 5, 2, 2, 5, 2, 2, 3, 2, 2, 4, 4, 4, 2, 3, 2, 2, 2, 4, 5, 4, 2, 2, 2, 4, 4, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 3, 4, 4, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 5, 2, 5, 4, 2, 2, 5, 4, 2, 3, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 3, 2, 5, 4, 3, 2, 4, 2, 2, 2, 2, 4, 5, 2, 5, 2, 4, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 4, 3, 2, 5, 2, 3, 2, 2, 4, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 2, 2, 5, 2, 5, 4, 2, 2, 4, 5, 2, 4, 2, 4, 2, 2, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 3, 2, 3, 2, 3, 2, 5, 4, 5, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 2, 3, 2, 2, 4, 3, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 5, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 4, 3, 5, 2, 2, 3, 4, 5, 3, 2, 2, 2, 5, 2, 2, 4, 5, 2, 5, 4, 2, 2, 2, 2, 3, 5, 2, 4, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 5, 2, 2, 5, 2, 2, 4, 2, 2, 5, 3, 4, 2, 5, 4, 2, 2, 2, 4, 5, 2, 4, 2, 2, 4, 4, 2, 3, 4, 2, 4, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 4, 3, 2, 2, 4, 3, 3, 3, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 5, 5, 2, 2, 5, 4, 2, 2, 2, 2, 5, 4, 4, 3, 2, 2, 2, 2, 2, 2, 4, 5, 3, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 5, 5, 3, 2, 3, 3, 2, 2, 5, 2, 2, 4, 5, 4, 2, 5, 3, 2, 2, 3, 5, 3, 5, 2, 3, 2, 4, 2, 2, 2, 2, 5, 5, 3, 4, 2, 2, 3, 2, 2, 2, 5, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 2, 2, 3, 2, 5, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 5, 2, 5, 2, 5, 2, 5, 5, 2, 2, 5, 2, 2, 2, 4, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 4, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 4, 5, 2, 3, 4, 2, 2, 5, 2, 5, 2, 2, 4, 3, 2, 2, 4, 2, 4, 2, 4, 5, 4, 3, 3, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 2, 5, 2, 2, 2, 3, 3, 3, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 4, 2, 2, 2, 5, 4, 2, 2, 2, 2, 4, 3, 5, 2, 2, 2, 3, 2, 2, 5, 2, 2, 3, 3, 2, 2, 2, 5, 5, 2, 4, 2, 2, 2, 2, 2, 5, 4, 2, 5] | | 0.3887 | 5.0 | 1960 | 2.7762 | 0.3929 | [4, 2, 2, 2, 3, 4, 2, 2, 2, 4, 3, 2, 3, 2, 5, 4, 5, 2, 5, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 3, 4, 2, 2, 3, 2, 5, 2, 3, 3, 2, 3, 2, 3, 5, 2, 2, 5, 4, 4, 2, 3, 2, 3, 2, 3, 2, 3, 5, 2, 5, 2, 5, 3, 2, 3, 2, 2, 4, 2, 5, 2, 4, 2, 3, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 5, 2, 2, 4, 5, 2, 4, 3, 3, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 5, 3, 3, 2, 2, 5, 3, 2, 3, 5, 2, 3, 2, 5, 3, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 4, 5, 2, 2, 2, 3, 2, 3, 2, 4, 3, 4, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 3, 4, 5, 3, 5, 2, 2, 4, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 5, 5, 4, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 4, 2, 2, 2, 3, 5, 4, 4, 2, 3, 4, 4, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 2, 2, 4, 3, 5, 2, 5, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 5, 2, 4, 2, 4, 5, 2, 3, 2, 2, 3, 2, 2, 2, 5, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 5, 2, 2, 2, 3, 3, 2, 4, 2, 4, 5, 4, 4, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 2, 2, 4, 2, 4, 5, 2, 4, 2, 2, 5, 2, 2, 4, 5, 2, 4, 2, 3, 2, 5, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 3, 5, 3, 5, 3, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 4, 2, 4, 2, 5, 2, 3, 2, 4, 3, 2, 2, 4, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 3, 4, 4, 2, 2, 3, 2, 3, 4, 2, 5, 4, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 4, 5, 2, 5, 5, 5, 2, 2, 5, 3, 2, 3, 3, 3, 4, 2, 5, 4, 4, 2, 4, 2, 2, 5, 2, 2, 5, 4, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 5, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 3, 3, 2, 5, 3, 2, 3, 2, 5, 2, 2, 5, 2, 3, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 3, 5, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 5, 5, 2, 5, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 3, 5, 3, 2, 4, 2, 4, 2, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 5, 3, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 5, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 5, 5, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 5, 3, 4, 2, 5, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 4, 5, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 2, 5, 2, 2, 3, 2, 2, 4, 4, 4, 2, 3, 5, 2, 2, 4, 5, 4, 2, 2, 2, 4, 4, 2, 4, 2, 5, 2, 5, 5, 2, 5, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 5, 2, 5, 2, 2, 5, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 5, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 5, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 5, 5, 4, 2, 2, 5, 5, 3, 4, 2, 4, 2, 2, 2, 5, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 3, 3, 2, 4, 3, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 3, 2, 5, 2, 5, 2, 2, 4, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 3, 2, 2, 2, 2, 3, 2, 2, 4, 3, 2, 2, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 3, 5, 2, 2, 5, 3, 2, 3, 2, 5, 5, 5, 2, 2, 4, 2, 4, 5, 3, 2, 2, 2, 2, 3, 5, 2, 4, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 5, 4, 2, 5, 2, 5, 5, 2, 2, 4, 2, 2, 5, 3, 4, 2, 5, 4, 2, 2, 2, 4, 5, 2, 4, 2, 2, 4, 2, 2, 3, 4, 2, 4, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 3, 2, 2, 4, 3, 3, 3, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 5, 5, 2, 2, 2, 4, 2, 2, 2, 2, 5, 3, 3, 3, 2, 2, 2, 2, 2, 2, 4, 5, 5, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 5, 3, 2, 5, 3, 2, 2, 5, 2, 2, 4, 5, 4, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 4, 2, 4, 2, 2, 2, 2, 5, 5, 3, 4, 2, 2, 3, 2, 2, 2, 5, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 5, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 5, 4, 2, 5, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 5, 5, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 4, 5, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 4, 3, 2, 3, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 5, 2, 2, 4, 5, 2, 3, 4, 2, 2, 5, 2, 2, 2, 2, 4, 3, 2, 2, 4, 4, 4, 2, 4, 5, 2, 3, 3, 2, 2, 4, 3, 2, 2, 2, 5, 2, 5, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 4, 5, 2, 2, 2, 3, 3, 3, 5, 4, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 4, 2, 2, 2, 5, 4, 2, 2, 2, 2, 4, 3, 5, 4, 2, 2, 3, 2, 2, 5, 2, 2, 3, 3, 2, 2, 2, 5, 5, 2, 4, 2, 2, 2, 2, 2, 5, 4, 2, 5] | | 0.3892 | 6.0 | 2352 | 2.8370 | 0.3734 | [4, 2, 5, 5, 3, 2, 2, 2, 2, 4, 3, 2, 3, 2, 5, 2, 5, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 5, 2, 2, 5, 3, 2, 5, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 3, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 5, 4, 2, 2, 3, 2, 3, 2, 4, 5, 3, 5, 2, 5, 2, 5, 5, 5, 3, 2, 2, 4, 2, 5, 2, 2, 4, 3, 5, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 5, 2, 4, 3, 3, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 3, 3, 2, 5, 5, 3, 2, 3, 5, 2, 3, 2, 5, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 3, 4, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 5, 3, 4, 5, 3, 2, 2, 2, 4, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 5, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 4, 2, 2, 3, 2, 4, 2, 5, 2, 3, 5, 4, 4, 2, 3, 4, 4, 2, 2, 5, 5, 2, 5, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 5, 2, 5, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 5, 2, 4, 5, 4, 5, 5, 3, 2, 2, 3, 2, 2, 2, 5, 5, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 2, 2, 3, 2, 5, 5, 5, 2, 2, 3, 3, 2, 4, 2, 4, 5, 4, 4, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 2, 2, 4, 2, 4, 5, 2, 4, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 3, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 3, 5, 3, 5, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 5, 2, 3, 2, 4, 3, 2, 2, 4, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 5, 4, 2, 2, 2, 5, 2, 5, 2, 3, 3, 5, 4, 5, 2, 5, 5, 5, 2, 2, 5, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 5, 2, 2, 5, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 5, 2, 2, 5, 2, 3, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 3, 5, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 5, 5, 2, 5, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 4, 2, 2, 4, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 5, 2, 4, 4, 5, 2, 3, 5, 3, 2, 2, 5, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 5, 3, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 5, 2, 2, 5, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 3, 3, 5, 5, 5, 4, 4, 2, 5, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 3, 5, 4, 4, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 5, 2, 5, 5, 5, 2, 3, 2, 2, 2, 4, 4, 5, 3, 5, 2, 5, 4, 5, 4, 2, 2, 2, 4, 4, 2, 4, 2, 5, 2, 5, 5, 2, 5, 2, 4, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 2, 5, 2, 5, 2, 2, 5, 2, 4, 2, 3, 2, 4, 5, 2, 4, 2, 2, 4, 5, 4, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 4, 5, 2, 5, 2, 5, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 5, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 5, 5, 4, 2, 2, 5, 5, 3, 4, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 5, 3, 2, 5, 2, 5, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 4, 5, 2, 2, 2, 2, 3, 2, 2, 4, 3, 4, 4, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2, 5, 3, 2, 3, 2, 5, 5, 5, 2, 2, 4, 2, 4, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 4, 2, 5, 5, 5, 5, 5, 2, 2, 2, 2, 5, 3, 2, 2, 5, 4, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 4, 2, 5, 2, 2, 2, 5, 3, 2, 2, 2, 2, 2, 5, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 3, 2, 2, 4, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 5, 5, 2, 2, 2, 4, 2, 2, 2, 2, 5, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 5, 3, 2, 2, 2, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 5, 3, 5, 5, 4, 2, 5, 5, 2, 2, 2, 5, 3, 4, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 3, 4, 2, 2, 3, 2, 2, 2, 5, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 5, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 5, 3, 2, 5, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 5, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 5, 3, 2, 5, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 4, 3, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 5, 2, 2, 2, 5, 2, 3, 4, 2, 2, 5, 2, 2, 2, 5, 4, 3, 2, 2, 4, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 4, 5, 2, 2, 2, 5, 2, 5, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 2, 5, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 5, 4, 4, 2, 2, 2, 2, 3, 2, 2, 5, 2, 3, 3, 2, 4, 2, 2, 4, 2, 2, 5, 2, 2, 3, 3, 2, 2, 2, 5, 5, 2, 4, 2, 2, 2, 2, 2, 5, 4, 2, 5] | | 0.3865 | 7.0 | 2744 | 2.6189 | 0.3478 | [4, 2, 2, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 4, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 5, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 3, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 5, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 5, 2, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 4, 3, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 5, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 4, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 4, 5, 2, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 5, 3, 4, 5, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 4, 2, 5, 2, 3, 5, 4, 4, 2, 3, 4, 4, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 3, 4, 4, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 4, 2, 4, 5, 4, 4, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 2, 2, 4, 2, 4, 5, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 3, 2, 3, 5, 5, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 4, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 3, 2, 3, 4, 2, 2, 4, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 4, 5, 2, 5, 2, 5, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 5, 2, 3, 2, 4, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 5, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 4, 2, 5, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 4, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 5, 5, 2, 2, 3, 2, 2, 4, 4, 4, 5, 3, 5, 2, 5, 4, 5, 2, 2, 2, 2, 4, 4, 2, 4, 2, 5, 2, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 4, 3, 2, 4, 2, 2, 2, 2, 2, 5, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 5, 5, 4, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 5, 3, 2, 5, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 4, 4, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 4, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 3, 2, 2, 2, 3, 4, 2, 3, 2, 5, 2, 5, 2, 2, 4, 2, 4, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 4, 2, 5, 2, 5, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 4, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 4, 4, 5, 5, 2, 2, 2, 4, 2, 2, 2, 2, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 4, 5, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 3, 2, 5, 4, 2, 5, 2, 2, 2, 2, 5, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 3, 4, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 5, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 5, 3, 2, 5, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 5, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 4, 4, 2, 4, 5, 2, 3, 3, 2, 2, 3, 5, 2, 2, 2, 5, 2, 2, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 4, 2, 2, 2, 2, 3, 3, 3, 5, 4, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 2, 5, 2, 4, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 4, 2, 5] | | 0.3883 | 8.0 | 3136 | 2.6381 | 0.3422 | [4, 2, 5, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 5, 4, 4, 4, 2, 2, 2, 2, 5, 2, 2, 5, 3, 2, 5, 5, 2, 5, 5, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 5, 4, 2, 2, 3, 2, 4, 2, 3, 5, 3, 2, 2, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 5, 2, 4, 4, 3, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 5, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 4, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 5, 3, 4, 5, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 2, 3, 5, 2, 4, 2, 3, 4, 4, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 4, 2, 4, 5, 4, 4, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 2, 2, 4, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 3, 2, 3, 2, 5, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 5, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 5, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 5, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 5, 4, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 5, 5, 2, 2, 3, 2, 2, 2, 4, 4, 5, 3, 5, 2, 5, 4, 5, 4, 2, 2, 2, 4, 4, 2, 4, 2, 5, 2, 2, 2, 2, 5, 4, 3, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 4, 3, 2, 4, 2, 2, 2, 2, 2, 5, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 5, 5, 4, 2, 2, 2, 5, 3, 4, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 5, 3, 2, 5, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 4, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 4, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 3, 2, 2, 2, 3, 3, 2, 3, 2, 5, 5, 5, 2, 2, 4, 2, 4, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 4, 2, 5, 2, 5, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 4, 5, 4, 2, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 4, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 5, 2, 2, 2, 2, 4, 5, 5, 2, 2, 2, 4, 2, 2, 2, 2, 5, 3, 3, 3, 2, 2, 2, 2, 2, 2, 4, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 5, 5, 4, 2, 5, 2, 2, 2, 2, 5, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 5, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 5, 3, 2, 5, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 5, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 2, 3, 4, 2, 2, 5, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 3, 5, 2, 2, 2, 5, 2, 2, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 2, 5, 2, 3, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 5, 4, 2, 5] | | 0.3755 | 9.0 | 3528 | 2.5505 | 0.3344 | [4, 2, 5, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 4, 4, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 5, 4, 2, 2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 5, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 4, 5, 2, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 4, 5, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 2, 3, 5, 2, 4, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 4, 2, 4, 5, 4, 4, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 4, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 3, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 4, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 2, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 5, 4, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 3, 2, 2, 4, 4, 4, 2, 3, 5, 2, 5, 4, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 4, 2, 2, 2, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 4, 3, 2, 4, 2, 2, 2, 5, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 5, 5, 4, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 4, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 3, 2, 2, 2, 3, 3, 2, 3, 2, 5, 5, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 4, 4, 5, 5, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 4, 5, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 5, 2, 3, 5, 5, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 5, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 5, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 5, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 5, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3353 | 10.0 | 3920 | 2.5121 | 0.3313 | [4, 2, 2, 5, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 4, 4, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 5, 4, 2, 2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 5, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 4, 3, 3, 4, 2, 2, 3, 2, 4, 5, 2, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 4, 5, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 2, 3, 5, 2, 4, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 4, 2, 4, 5, 4, 4, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 3, 4, 4, 2, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 2, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 4, 2, 3, 5, 2, 2, 4, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 4, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 4, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 4, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 3, 5, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 4, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 5, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 5, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 5, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3207 | 11.0 | 4312 | 2.5160 | 0.3297 | [4, 2, 2, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 4, 4, 4, 2, 2, 2, 2, 5, 2, 2, 5, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 5, 4, 2, 2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 5, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 4, 5, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 2, 3, 5, 2, 4, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 4, 2, 4, 5, 4, 4, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 3, 4, 4, 2, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 4, 2, 3, 5, 2, 5, 4, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 4, 2, 2, 2, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 4, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 5, 5, 4, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 5, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 4, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 3, 2, 2, 2, 3, 3, 2, 3, 2, 5, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 3, 3, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 3, 5, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 4, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 4, 4, 2, 2, 2, 2, 2, 3, 5, 5, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 5, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 4, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 4, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3607 | 12.0 | 4704 | 2.4789 | 0.3269 | [4, 2, 5, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 4, 4, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 5, 2, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 5, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 5, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 5, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 4, 5, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 4, 2, 4, 5, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 2, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 3, 4, 2, 2, 2, 2, 5, 2, 1, 2, 5, 4, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 2, 2, 0, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 5, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 4, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 4, 4, 2, 2, 2, 2, 2, 3, 2, 3, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 3, 4, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 5, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 3, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 4, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3346 | 13.0 | 5096 | 2.5115 | 0.3196 | [4, 2, 5, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 4, 4, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 5, 2, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 5, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 4, 5, 2, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 5, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 5, 2, 3, 5, 2, 4, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 0, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 5, 4, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 4, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 4, 3, 2, 4, 2, 2, 2, 5, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 4, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 3, 0, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 5, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 4, 4, 2, 2, 2, 2, 2, 3, 5, 5, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3316 | 14.0 | 5488 | 2.5141 | 0.3166 | [4, 2, 5, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 4, 4, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 5, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 5, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 5, 5, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 4, 2, 5, 2, 3, 5, 2, 4, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 3, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 2, 4, 2, 4, 2, 2, 2, 4, 4, 2, 5, 2, 2, 2, 2, 2, 2, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 5, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 4, 3, 2, 4, 2, 2, 2, 5, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 4, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 2, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 3, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 5, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 4, 4, 2, 2, 2, 2, 2, 3, 5, 5, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3278 | 15.0 | 5880 | 2.5748 | 0.3135 | [4, 2, 5, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 4, 4, 4, 2, 2, 2, 2, 5, 2, 2, 5, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 5, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 5, 2, 3, 2, 3, 2, 2, 3, 5, 5, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 5, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 5, 2, 4, 2, 3, 4, 4, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 5, 4, 2, 2, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 3, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 3, 5, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 5, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 5, 2, 5, 4, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 5, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 5, 4, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 5, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 4, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 4, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2, 3, 3, 2, 3, 2, 5, 5, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 3, 2, 2, 2, 4, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 4, 3, 3, 5, 2, 2, 2, 2, 2, 5, 2, 2, 5, 2, 2, 2, 2, 4, 5, 5, 2, 2, 2, 4, 2, 2, 2, 2, 5, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 4, 2, 2, 2, 2, 2, 2, 3, 5, 5, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 5, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 5] | | 0.3076 | 16.0 | 6272 | 2.5 | 0.3116 | [4, 2, 5, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 4, 4, 4, 2, 2, 2, 2, 5, 2, 2, 5, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 5, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 5, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 5, 2, 5, 4, 2, 4, 2, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 4, 2, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 5, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 3, 5, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 4, 4, 2, 2, 2, 2, 2, 3, 5, 5, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3187 | 17.0 | 6664 | 2.5652 | 0.3154 | [4, 2, 5, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 4, 4, 2, 2, 2, 2, 5, 2, 2, 5, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 5, 5, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 5, 5, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 4, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 5, 2, 3, 5, 2, 4, 2, 3, 4, 4, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 2, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 4, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 3, 2, 3, 2, 5, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 3, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 5, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 5, 2, 5, 4, 2, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 4, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 4, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 4, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2, 3, 3, 2, 3, 2, 5, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 5, 3, 2, 2, 2, 3, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 3, 3, 5, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 5, 5, 2, 2, 2, 4, 2, 2, 2, 2, 5, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 5, 3, 2, 2, 2, 2, 2, 5, 3, 4, 2, 2, 2, 2, 2, 2, 3, 5, 5, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 5, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 4, 5, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 5] | | 0.3311 | 18.0 | 7056 | 2.5211 | 0.3086 | [4, 2, 5, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 4, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 5, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 5, 5, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 3, 2, 5, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 5, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 5, 2, 5, 4, 2, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 5, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 5, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 5, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 4, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 5, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 5, 5, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 2, 2, 2, 2, 2, 2, 3, 5, 5, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 4, 5, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 5, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.2879 | 19.0 | 7448 | 2.4341 | 0.3012 | [4, 2, 5, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 4, 4, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 0, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 2, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 0, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 2, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 3, 4, 3, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 0, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 4, 2, 4, 2, 2, 3, 3, 2, 2, 3, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 3, 3, 5, 4, 4, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.363 | 20.0 | 7840 | 2.4450 | 0.2981 | [4, 2, 5, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 5, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 0, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 2, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 5, 4, 2, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 4, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 0, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3052 | 21.0 | 8232 | 2.4316 | 0.2971 | [4, 2, 5, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 4, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 2, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 0, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 2, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 0, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 4, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 4, 2, 4, 5, 2, 3, 3, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.2763 | 22.0 | 8624 | 2.4879 | 0.3017 | [4, 2, 5, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 5, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 1, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 4, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 5, 4, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 5, 2, 5, 4, 2, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 5, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 4, 2, 4, 2, 2, 4, 2, 2, 4, 5, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3064 | 23.0 | 9016 | 2.4661 | 0.2973 | [4, 2, 5, 5, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 1, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 2, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 5, 3, 2, 2, 4, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 5, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 0, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 2, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 5, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 3, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 0, 5, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 2, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 1, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 3, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3023 | 24.0 | 9408 | 2.4578 | 0.2965 | [4, 2, 5, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 5, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 2, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 0, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 0, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 2, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3294 | 25.0 | 9800 | 2.4591 | 0.2957 | [4, 2, 5, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 2, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 0, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 0, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 2, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3283 | 26.0 | 10192 | 2.4520 | 0.2953 | [4, 2, 5, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 2, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 0, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 0, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 2, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 0, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3061 | 27.0 | 10584 | 2.4520 | 0.2953 | [4, 2, 5, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 2, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 0, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 0, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 2, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 0, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.2806 | 28.0 | 10976 | 2.4520 | 0.2953 | [4, 2, 5, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 2, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 0, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 0, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 2, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 0, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | | 0.3133 | 29.0 | 11368 | 2.4520 | 0.2953 | [4, 2, 5, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 5, 2, 5, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 2, 5, 2, 5, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 5, 4, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 4, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 3, 2, 5, 5, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 4, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 3, 4, 2, 3, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 4, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 3, 2, 2, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 2, 4, 2, 4, 4, 4, 2, 3, 5, 2, 3, 2, 2, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 4, 2, 4, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 2, 2, 2, 3, 4, 2, 3, 2, 2, 5, 4, 4, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 0, 3, 4, 2, 5, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 4, 2, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 3, 3, 5, 5, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 2, 2, 4, 3, 4, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 4, 2, 4, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 3, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 2, 2, 5, 3, 4, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 3, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 4, 5, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 3, 2, 5, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 2, 3, 5, 2, 2, 5, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 0, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 2, 2, 2, 3, 5, 2, 4, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 0, 4, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 5, 2, 4, 2, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 4, 2, 3, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 2, 4, 2, 5, 2, 5, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 2, 2, 2, 2, 4, 2, 2, 5, 2, 3, 3, 2, 5, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 4, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 5, 2, 4, 2, 2, 2, 2, 2, 3, 2, 2, 5] | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.6.1 - Tokenizers 0.14.1
Acadys/PointCon-Vigogne33B
Acadys
2023-11-08T10:40:03Z
0
0
null
[ "safetensors", "generated_from_trainer", "lora", "fr", "dataset:IUseAMouse/POINTCON-QA-Light", "base_model:bofenghuang/vigogne-33b-instruct", "base_model:adapter:bofenghuang/vigogne-33b-instruct", "license:openrail", "region:us" ]
null
2023-11-08T09:26:21Z
--- license: openrail base_model: bofenghuang/vigogne-33b-instruct tags: - generated_from_trainer - lora model-index: - name: PointCon-vigogne-33b-instruct-3 results: [] datasets: - IUseAMouse/POINTCON-QA-Light language: - fr --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PointCon-vigogne-33b-instruct-3 This model is a fine-tuned version of [bofenghuang/vigogne-33b-instruct](https://huggingface.co/bofenghuang/vigogne-33b-instruct) on the .CON french satirical corpus. It achieves the following results on the evaluation set: - Loss: 1.8266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0831 | 0.24 | 30 | 1.9738 | | 1.9472 | 0.48 | 60 | 1.8989 | | 1.8874 | 0.73 | 90 | 1.8626 | | 1.8311 | 0.97 | 120 | 1.8403 | | 1.7394 | 1.21 | 150 | 1.8423 | | 1.6894 | 1.45 | 180 | 1.8373 | | 1.6351 | 1.69 | 210 | 1.8295 | | 1.7245 | 1.94 | 240 | 1.8266 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
amaanbadure/GPT2QA_wikiqa
amaanbadure
2023-11-08T10:29:28Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-classification", "generated_from_trainer", "dataset:wiki_qa", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-11-08T10:11:09Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer datasets: - wiki_qa metrics: - accuracy - f1 model-index: - name: GPT2QA_wikiqa results: - task: name: Text Classification type: text-classification dataset: name: wiki_qa type: wiki_qa config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9578606158833063 - name: F1 type: f1 value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GPT2QA_wikiqa This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the wiki_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.2413 - Accuracy: 0.9579 - F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:| | 0.1963 | 1.0 | 1387 | 0.2651 | 0.9579 | 0.0 | | 0.2095 | 2.0 | 2774 | 0.2413 | 0.9579 | 0.0 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
makwingchi/a2c-PandaReachDense-v3
makwingchi
2023-11-08T10:11:11Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-08T10:04:31Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.17 +/- 0.14 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```