modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-14 18:27:59
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
520 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-14 18:27:48
card
stringlengths
11
1.01M
lsaulier/poca-SoccerTwo
lsaulier
2023-02-10T07:59:30Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-10T07:59:21Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: lsaulier/poca-SoccerTwo 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Anorak/layoutlm-funsd
Anorak
2023-02-10T07:57:32Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlm", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-10T07:51:07Z
--- tags: - generated_from_trainer model-index: - name: layoutlm-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6857 - Answer: {'precision': 0.7176981541802389, 'recall': 0.8170580964153276, 'f1': 0.7641618497109827, 'number': 809} - Header: {'precision': 0.28368794326241137, 'recall': 0.33613445378151263, 'f1': 0.3076923076923077, 'number': 119} - Question: {'precision': 0.7773820124666073, 'recall': 0.819718309859155, 'f1': 0.7979890310786105, 'number': 1065} - Overall Precision: 0.7204 - Overall Recall: 0.7898 - Overall F1: 0.7535 - Overall Accuracy: 0.8139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.8064 | 1.0 | 10 | 1.6080 | {'precision': 0.020618556701030927, 'recall': 0.012360939431396786, 'f1': 0.01545595054095827, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2702127659574468, 'recall': 0.11924882629107982, 'f1': 0.16547231270358306, 'number': 1065} | 0.1435 | 0.0687 | 0.0929 | 0.3378 | | 1.4826 | 2.0 | 20 | 1.2520 | {'precision': 0.20166320166320167, 'recall': 0.23980222496909764, 'f1': 0.21908526256352345, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4309507286606523, 'recall': 0.5830985915492958, 'f1': 0.49561053471667993, 'number': 1065} | 0.3392 | 0.4089 | 0.3708 | 0.5993 | | 1.1438 | 3.0 | 30 | 0.9584 | {'precision': 0.463519313304721, 'recall': 0.5339925834363412, 'f1': 0.49626651349798967, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6199664429530202, 'recall': 0.6938967136150235, 'f1': 0.6548515728843598, 'number': 1065} | 0.5492 | 0.5876 | 0.5678 | 0.6897 | | 0.8546 | 4.0 | 40 | 0.7900 | {'precision': 0.5885714285714285, 'recall': 0.7639060568603214, 'f1': 0.6648735879505111, 'number': 809} | {'precision': 0.06666666666666667, 'recall': 0.025210084033613446, 'f1': 0.036585365853658534, 'number': 119} | {'precision': 0.6505823627287853, 'recall': 0.7342723004694836, 'f1': 0.6898985443317159, 'number': 1065} | 0.6108 | 0.7040 | 0.6541 | 0.7537 | | 0.6765 | 5.0 | 50 | 0.7144 | {'precision': 0.6514047866805411, 'recall': 0.7737948084054388, 'f1': 0.7073446327683616, 'number': 809} | {'precision': 0.09230769230769231, 'recall': 0.05042016806722689, 'f1': 0.06521739130434782, 'number': 119} | {'precision': 0.7019810508182601, 'recall': 0.7652582159624414, 'f1': 0.7322551662174304, 'number': 1065} | 0.6616 | 0.7260 | 0.6923 | 0.7773 | | 0.5613 | 6.0 | 60 | 0.6796 | {'precision': 0.6635514018691588, 'recall': 0.7898640296662547, 'f1': 0.7212189616252822, 'number': 809} | {'precision': 0.15306122448979592, 'recall': 0.12605042016806722, 'f1': 0.1382488479262673, 'number': 119} | {'precision': 0.7274320771253286, 'recall': 0.7793427230046949, 'f1': 0.7524932003626473, 'number': 1065} | 0.6739 | 0.7446 | 0.7075 | 0.7927 | | 0.4872 | 7.0 | 70 | 0.6554 | {'precision': 0.6592517694641051, 'recall': 0.8059332509270705, 'f1': 0.7252502780867631, 'number': 809} | {'precision': 0.22549019607843138, 'recall': 0.19327731092436976, 'f1': 0.20814479638009048, 'number': 119} | {'precision': 0.7383177570093458, 'recall': 0.815962441314554, 'f1': 0.775200713648528, 'number': 1065} | 0.6808 | 0.7747 | 0.7247 | 0.7997 | | 0.4334 | 8.0 | 80 | 0.6526 | {'precision': 0.6941176470588235, 'recall': 0.8022249690976514, 'f1': 0.7442660550458714, 'number': 809} | {'precision': 0.24545454545454545, 'recall': 0.226890756302521, 'f1': 0.23580786026200873, 'number': 119} | {'precision': 0.7493627867459643, 'recall': 0.828169014084507, 'f1': 0.7867975022301517, 'number': 1065} | 0.7012 | 0.7817 | 0.7393 | 0.8035 | | 0.3941 | 9.0 | 90 | 0.6694 | {'precision': 0.7048997772828508, 'recall': 0.7824474660074165, 'f1': 0.741652021089631, 'number': 809} | {'precision': 0.22099447513812154, 'recall': 0.33613445378151263, 'f1': 0.26666666666666666, 'number': 119} | {'precision': 0.7218984179850125, 'recall': 0.8140845070422535, 'f1': 0.76522506619594, 'number': 1065} | 0.6754 | 0.7727 | 0.7208 | 0.8007 | | 0.3556 | 10.0 | 100 | 0.6607 | {'precision': 0.694006309148265, 'recall': 0.8158220024721878, 'f1': 0.75, 'number': 809} | {'precision': 0.25, 'recall': 0.2773109243697479, 'f1': 0.26294820717131473, 'number': 119} | {'precision': 0.7846153846153846, 'recall': 0.8140845070422535, 'f1': 0.7990783410138248, 'number': 1065} | 0.7130 | 0.7827 | 0.7462 | 0.8068 | | 0.3245 | 11.0 | 110 | 0.6728 | {'precision': 0.6990595611285266, 'recall': 0.826946847960445, 'f1': 0.7576443941109853, 'number': 809} | {'precision': 0.2892561983471074, 'recall': 0.29411764705882354, 'f1': 0.2916666666666667, 'number': 119} | {'precision': 0.7817703768624014, 'recall': 0.8375586854460094, 'f1': 0.8087035358114233, 'number': 1065} | 0.7192 | 0.8008 | 0.7578 | 0.8089 | | 0.3113 | 12.0 | 120 | 0.6799 | {'precision': 0.71875, 'recall': 0.796044499381953, 'f1': 0.755425219941349, 'number': 809} | {'precision': 0.25903614457831325, 'recall': 0.36134453781512604, 'f1': 0.3017543859649123, 'number': 119} | {'precision': 0.775330396475771, 'recall': 0.8262910798122066, 'f1': 0.8, 'number': 1065} | 0.7132 | 0.7863 | 0.7480 | 0.8106 | | 0.2921 | 13.0 | 130 | 0.6836 | {'precision': 0.7070063694267515, 'recall': 0.823238566131026, 'f1': 0.7607081667618503, 'number': 809} | {'precision': 0.32432432432432434, 'recall': 0.3025210084033613, 'f1': 0.31304347826086953, 'number': 119} | {'precision': 0.7976513098464318, 'recall': 0.8291079812206573, 'f1': 0.8130755064456722, 'number': 1065} | 0.7338 | 0.7953 | 0.7633 | 0.8122 | | 0.2841 | 14.0 | 140 | 0.6848 | {'precision': 0.7150537634408602, 'recall': 0.8220024721878862, 'f1': 0.7648073605520415, 'number': 809} | {'precision': 0.26666666666666666, 'recall': 0.33613445378151263, 'f1': 0.2973977695167286, 'number': 119} | {'precision': 0.7841726618705036, 'recall': 0.8187793427230047, 'f1': 0.8011024345429489, 'number': 1065} | 0.7194 | 0.7913 | 0.7536 | 0.8127 | | 0.2793 | 15.0 | 150 | 0.6857 | {'precision': 0.7176981541802389, 'recall': 0.8170580964153276, 'f1': 0.7641618497109827, 'number': 809} | {'precision': 0.28368794326241137, 'recall': 0.33613445378151263, 'f1': 0.3076923076923077, 'number': 119} | {'precision': 0.7773820124666073, 'recall': 0.819718309859155, 'f1': 0.7979890310786105, 'number': 1065} | 0.7204 | 0.7898 | 0.7535 | 0.8139 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.8.0+cu101 - Tokenizers 0.13.2
cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
2023-02-10T07:56:42Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "ChopperCommand-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T07:56:36Z
--- tags: - ChopperCommand-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: ChopperCommand-v5 type: ChopperCommand-v5 metrics: - type: mean_reward value: 52100.00 +/- 43721.02 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **ChopperCommand-v5** This is a trained model of a PPO agent playing ChopperCommand-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id ChopperCommand-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'ChopperCommand-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
gyeoldere/DeBERTa-finetuned-SNLI2
gyeoldere
2023-02-10T07:51:01Z
104
0
transformers
[ "transformers", "pytorch", "deberta", "generated_from_trainer", "dataset:snli", "license:mit", "endpoints_compatible", "region:us" ]
null
2023-02-09T04:37:00Z
--- license: mit tags: - generated_from_trainer datasets: - snli model-index: - name: DeBERTa-finetuned-SNLI2 results: [] metrics: - accuracy library_name: transformers --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DeBERTa-finetuned-SNLI2 This model is a fine-tuned version of [gyeoldere/test_trainer](https://huggingface.co/gyeoldere/test_trainer) on the snli dataset. Test_trainer model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the snli dataset. This model achieves the following results on the evaluation set: - NLI accuracy : 0.86 - MLM accuracy : 0.68 ## Model description This model fine-tuned to perform 2 tasks simultaneously; NLI task and MLM task. Output vector of DeBERTa processed through two different fc layer to predict. I used layer structure introduced in BERT paper, which is implemented on huggingface transformers; DebertaForTokenClassification and DebertaForMaskedLM. [https://huggingface.co/docs/transformers/index] BinaryCrossEntrophyLoss are used for each class, and two losses are added to obtain final loss final_loss = MLM_loss + NLI_loss ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
lamducanhndgv/sst2-custom-setfit-model
lamducanhndgv
2023-02-10T07:48:13Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-10T07:47:54Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # sst2-custom-setfit-model This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("sst2-custom-setfit-model") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
fathyshalab/massive_calendar-roberta-large-v1-3-93
fathyshalab
2023-02-10T07:32:12Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-10T07:31:47Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_calendar-roberta-large-v1-3-93 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_calendar-roberta-large-v1-3-93") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
2023-02-10T07:31:38Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Centipede-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T07:31:34Z
--- tags: - Centipede-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Centipede-v5 type: Centipede-v5 metrics: - type: mean_reward value: 9061.90 +/- 4899.48 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Centipede-v5** This is a trained model of a PPO agent playing Centipede-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Centipede-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Centipede-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Centipede-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
jeremy8767/sd-class-butterflies-32
jeremy8767
2023-02-10T07:24:56Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "region:us" ]
unconditional-image-generation
2023-02-10T07:24:38Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class ๐Ÿงจ](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute ๐Ÿฆ‹. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('jeremy8767/sd-class-butterflies-32') image = pipeline().images[0] image ```
fathyshalab/massive_transport-roberta-large-v1-3-3
fathyshalab
2023-02-10T07:23:48Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-10T07:23:24Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_transport-roberta-large-v1-3-3 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_transport-roberta-large-v1-3-3") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
swl-models/miju-v2.1
swl-models
2023-02-10T07:23:04Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-10T07:10:12Z
--- license: creativeml-openrail-m ---
aichina/ttz-470
aichina
2023-02-10T07:19:52Z
8
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-10T07:18:28Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: ttz --- ### ttz_470 Dreambooth model trained by aichina with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: ttz (use that on your prompt) ![ttz 0](https://huggingface.co/aichina/ttz-470/resolve/main/concept_images/ttz_%281%29.jpg)![ttz 1](https://huggingface.co/aichina/ttz-470/resolve/main/concept_images/ttz_%282%29.jpg)![ttz 2](https://huggingface.co/aichina/ttz-470/resolve/main/concept_images/ttz_%283%29.jpg)![ttz 3](https://huggingface.co/aichina/ttz-470/resolve/main/concept_images/ttz_%284%29.jpg)![ttz 4](https://huggingface.co/aichina/ttz-470/resolve/main/concept_images/ttz_%285%29.jpg)![ttz 5](https://huggingface.co/aichina/ttz-470/resolve/main/concept_images/ttz_%286%29.jpg)
nolanaatama/f222
nolanaatama
2023-02-10T07:19:12Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-10T06:30:39Z
--- license: creativeml-openrail-m ---
fathyshalab/massive_social-roberta-large-v1-3-7
fathyshalab
2023-02-10T07:15:04Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-02-10T07:14:44Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # fathyshalab/massive_social-roberta-large-v1-3-7 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("fathyshalab/massive_social-roberta-large-v1-3-7") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐Ÿคฎ"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
aisingapore/unsupervised-feature-decomposition
aisingapore
2023-02-10T07:08:47Z
0
0
null
[ "ufd", "text-classification", "undersupervised-feature-decomposition", "en", "de", "fr", "ja", "license:gpl-3.0", "region:us" ]
text-classification
2023-02-08T09:46:12Z
--- license: gpl-3.0 language: - en - de - fr - ja tags: - ufd - text-classification - undersupervised-feature-decomposition inference: false model-index: - name: undersupervised-feature-decomposition results: - task: type: text-classification name: UFD dataset: name: lijuntaopku/UFD/tree/main/data (Github) type: https://github.com/lijuntaopku/UFD/tree/main/data metrics: - name: Avg Acc (German) on development set type: accuracy value: 87.85% - name: Avg Acc (French) on development set type: accuracy value: 87.45% - name: Avg Acc (Japanese) on development set type: accuracy value: 83.725% - task: type: text-classification name: UFD metrics: - name: Avg Acc (German) reported by authors in paper on development set type: accuracy value: 84.00% - name: Avg Acc (French) reported by authors in paper on development set type: accuracy value: 88.40% - name: Avg Acc (Japanese) reported by authors in paper on development set type: accuracy value: 85.00% --- # Cross Lingual Cross Domain You can **try out the model** at [SGNLP](https://sgnlp.aisingapore.net/cross-lingual-cross-domain).<br /> If you want to find out more information, please contact us at [SGNLP-AISingapore]([email protected]). ## Table of Contents - [Model Details](#model-details) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Model Parameters](#model-parameters) - [License](#license) ## Model Details **Model Name:** Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language - **Description:** It is an implementation of Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language Model paper. - **Paper:** Unsupervised domain adaptation of a pretrained cross-lingual language model. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Nov, 2020 (pp. 3672-3678). - **Author(s):** Li, J., He, R., Ye, H., Ng, H. T., Bing, L., & Yan, R. (2020). - **URL:** https://www.ijcai.org/Proceedings/2020/508 # How to Get Started With the Model ## Install Python package SGnlp is an initiative by AI Singapore's NLP Hub. They aim to bridge the gap between research and industry, promote translational research, and encourage adoption of NLP techniques in the industry. <br><br> Various NLP models, other than cross lingual cross domain are available in the python package. You can try them out at [SGNLP-Demo](https://sgnlp.aisingapore.net/) | [SGNLP-Github](https://github.com/aisingapore/sgnlp). ```python pip install sgnlp ``` ## Examples For more full code guide, please refer to this [documentation](https://sgnlp.aisingapore.net/docs/model/ufd.html). <br> Alternatively, you can also try out the [demo](https://sgnlp.aisingapore.net/cross-lingual-cross-domain) for Cross Lingual Cross Domain. Example of Undersupervised Feature Decomposition (UFD) model (German language): ```python from sgnlp.models.ufd import UFDModelBuilder, UFDPreprocessor # Instantiate model builder and preprocessor model_builder = UFDModelBuilder( source_domains=['books'], target_languages=['de'], target_domains=['dvd']) preprocessor = UFDPreprocessor() # Build pretrained model groups model_groups = model_builder.build_model_group() # Model predict ('books_de_dvd' model example) instance = """Wolverine is BACK Der Film ist im Grunde wie alle Teile der X-Men fรผr Comic-Fans auf jeden Fall ein muss. Hugh Jackman spielt seine Rolle wie immer so gut was ich von den ein oder anderen Darsteller leider nicht sagen kann. Story und Action sind aber genug Grรผnde um sich die Blu-ray zu kaufen.""" instance_features = preprocessor([instance]) output = model_groups['books_de_dvd'](**instance_features) ``` # Training The training datasets can be retrieved from the following author's repository([github](https://github.com/lijuntaopku/UFD/tree/main/data)). #### Training Results - For UFD - **Training Time: (Unsupervised training)** ~3 hours for 30 epochs on a single V100 GPU - **Training Time: (Supervised training)** ~3 hours for 60 epochs on a single V100 GPU # Model Parameters - **Model Weights:** [refer to documentation for details](https://sgnlp.aisingapore.net/docs/model/ufd.html) - **Model Config:** [refer to documentation for details](https://sgnlp.aisingapore.net/docs/model/ufd.html) - **Model Inputs:** Raw text. - **Model Outputs:** Array of logits with the size of number of classes. - **Model Size:** XLM-Roberta: ~2.2GB, Adaptor Domain: ~8.0MB, Adaptor Global: ~8.0MB, Feature Mapper: ~8.0MB, Classifier: ~9.1KB. - **Model Inference Info:** ~2 sec on Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz. - **Usage Scenarios:** Sentiment analysis for eCommerce with operations across multiple countries. # License - **For non-commercial use:** GNU GPLv3. - **For commercial use:** please contact us [SGNLP-AISingapore]([email protected])
atorre/poca-SoccerTwos-30M
atorre
2023-02-10T07:05:47Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-10T07:05:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: atorre/poca-SoccerTwos-30M 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Okyx/NERTESTINGCAROLINE2
Okyx
2023-02-10T06:59:42Z
58
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-02-10T06:59:18Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: NERTESTINGCAROLINE2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # NERTESTINGCAROLINE2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0055 - Validation Loss: 0.0050 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 10395, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0833 | 0.0156 | 0 | | 0.0100 | 0.0060 | 1 | | 0.0055 | 0.0050 | 2 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
2023-02-10T06:58:16Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Breakout-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T22:59:48Z
--- tags: - Breakout-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Breakout-v5 type: Breakout-v5 metrics: - type: mean_reward value: 639.10 +/- 221.36 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Breakout-v5** This is a trained model of a PPO agent playing Breakout-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Breakout-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Breakout-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
2023-02-10T06:57:43Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Breakout-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T06:57:39Z
--- tags: - Breakout-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Breakout-v5 type: Breakout-v5 metrics: - type: mean_reward value: 818.30 +/- 130.50 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Breakout-v5** This is a trained model of a PPO agent playing Breakout-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Breakout-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Breakout-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
2023-02-10T06:57:07Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Centipede-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T22:59:20Z
--- tags: - Centipede-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Centipede-v5 type: Centipede-v5 metrics: - type: mean_reward value: 7550.20 +/- 3036.50 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Centipede-v5** This is a trained model of a PPO agent playing Centipede-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Centipede-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Centipede-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Centipede-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
thanat/bert-finetuned-squad
thanat
2023-02-10T06:53:36Z
61
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-09T23:30:33Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: thanat/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # thanat/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the [squad](https://huggingface.co/datasets/squad) dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5695 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16635, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2755 | 0 | | 0.7832 | 1 | | 0.5695 | 2 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
2023-02-10T06:52:36Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Boxing-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T06:52:32Z
--- tags: - Boxing-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Boxing-v5 type: Boxing-v5 metrics: - type: mean_reward value: 99.80 +/- 0.60 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Boxing-v5** This is a trained model of a PPO agent playing Boxing-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Boxing-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Boxing-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Boxing-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
2023-02-10T06:48:30Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Boxing-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T06:48:24Z
--- tags: - Boxing-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Boxing-v5 type: Boxing-v5 metrics: - type: mean_reward value: 100.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Boxing-v5** This is a trained model of a PPO agent playing Boxing-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Boxing-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Boxing-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Boxing-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/BeamRider-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
2023-02-10T06:48:07Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BeamRider-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T06:48:03Z
--- tags: - BeamRider-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BeamRider-v5 type: BeamRider-v5 metrics: - type: mean_reward value: 37196.80 +/- 14290.72 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **BeamRider-v5** This is a trained model of a PPO agent playing BeamRider-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id BeamRider-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id BeamRider-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'BeamRider-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
2023-02-10T06:45:12Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Bowling-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T06:45:08Z
--- tags: - Bowling-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Bowling-v5 type: Bowling-v5 metrics: - type: mean_reward value: 49.00 +/- 5.10 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Bowling-v5** This is a trained model of a PPO agent playing Bowling-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Bowling-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Bowling-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Bowling-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
2023-02-10T06:42:28Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Berzerk-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T06:42:24Z
--- tags: - Berzerk-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Berzerk-v5 type: Berzerk-v5 metrics: - type: mean_reward value: 4940.00 +/- 2761.43 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Berzerk-v5** This is a trained model of a PPO agent playing Berzerk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Berzerk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Berzerk-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
2023-02-10T06:42:04Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Berzerk-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T06:41:58Z
--- tags: - Berzerk-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Berzerk-v5 type: Berzerk-v5 metrics: - type: mean_reward value: 5506.00 +/- 2309.32 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Berzerk-v5** This is a trained model of a PPO agent playing Berzerk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Berzerk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Berzerk-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
2023-02-10T06:41:51Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Bowling-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T06:41:46Z
--- tags: - Bowling-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Bowling-v5 type: Bowling-v5 metrics: - type: mean_reward value: 21.20 +/- 4.31 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Bowling-v5** This is a trained model of a PPO agent playing Bowling-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Bowling-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Bowling-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Bowling-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/BattleZone-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
2023-02-10T06:38:06Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BattleZone-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T06:38:03Z
--- tags: - BattleZone-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BattleZone-v5 type: BattleZone-v5 metrics: - type: mean_reward value: 70200.00 +/- 16803.57 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **BattleZone-v5** This is a trained model of a PPO agent playing BattleZone-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id BattleZone-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BattleZone-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/BattleZone-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BattleZone-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id BattleZone-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'BattleZone-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
2023-02-10T06:36:24Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Berzerk-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T22:58:13Z
--- tags: - Berzerk-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Berzerk-v5 type: Berzerk-v5 metrics: - type: mean_reward value: 1138.00 +/- 261.49 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Berzerk-v5** This is a trained model of a PPO agent playing Berzerk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Berzerk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Berzerk-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
padmajabfrl/Ethnicity-Classification
padmajabfrl
2023-02-10T06:25:36Z
23
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-01T05:13:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Ethnicity-Classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Ethnicity-Classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0358 - Accuracy: 0.9951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0569 | 1.0 | 5305 | 0.0597 | 0.9884 | | 0.0324 | 2.0 | 10610 | 0.0418 | 0.9924 | | 0.0151 | 3.0 | 15915 | 0.0359 | 0.9941 | | 0.0037 | 4.0 | 21220 | 0.0366 | 0.9946 | | 0.0044 | 5.0 | 26525 | 0.0358 | 0.9951 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.12.0 - Datasets 2.9.0 - Tokenizers 0.10.3
pfunk/Pong-v4-DQPN_p500_e0.10-seed1
pfunk
2023-02-10T06:08:51Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T06:08:28Z
--- tags: - Pong-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v4 type: Pong-v4 metrics: - type: mean_reward value: 3.90 +/- 7.15 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p500_e0.10.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p500_e0.10]" python -m cleanrl_utils.enjoy --exp-name DQPN_p500_e0.10 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_e0.10-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_e0.10-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p500_e0.10-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p500_e0.10 --start-policy-f 500000 --end-policy-f 1000 --evaluation-fraction 0.10 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.1, 'exp_name': 'DQPN_p500_e0.10', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 500000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
juanmi1234/Reinforce-PixelCopter
juanmi1234
2023-02-10T05:52:49Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-07T03:37:37Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 55.90 +/- 40.18 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
KoboldAI/OPT-2.7B-Nerybus-Mix
KoboldAI
2023-02-10T05:38:20Z
1,761
11
transformers
[ "transformers", "pytorch", "opt", "text-generation", "en", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-02-09T10:45:38Z
--- license: other language: - en inference: false --- # OPT-2.7B-Nerybus-Mix This is an experimental model containing a ***parameter-wise 50/50 blend (weighted average)*** of the weights of *NerysV2-2.7B* and *ErebusV1-2.7B* Preliminary testing produces pretty coherent outputs, it appears to retain the NSFWness of Erebus but with a Nerys-esque twist in terms of prose. # License The two models used for this blend, *NerysV2-2.7B* and *ErebusV1-2.7B* are made by **Mr. Seeker**. - https://huggingface.co/KoboldAI/OPT-2.7B-Erebus - https://huggingface.co/KoboldAI/OPT-2.7B-Nerys-v2 The base OPT-2.7B model is licensed under the OPT-175B license, Copyright (c) Meta Platforms, Inc. All Rights Reserved. # Evaluation Results As the original datasets used for the source models are not publically available, I use my own datasets for this evaluation, which may not provide accurate comparison. Eval parameters: 32000 characters extracted from the middle of the corpus, tested in blocks of 1024 tokens each, same dataset used for each test batch. ``` Literotica Dataset Eval (Randomly selected stories) {'eval_loss': 2.571258306503296, 'name': 'Concedo_OPT-2.7B-Nerybus-Mix'} {'eval_loss': 2.5491442680358887, 'name': 'KoboldAI_OPT-2.7B-Erebus'} {'eval_loss': 2.6158597469329834, 'name': 'KoboldAI_OPT-2.7B-Nerys'} {'eval_loss': 2.614469051361084, 'name': 'facebook_opt-2.7b'} {'eval_loss': 2.4960227012634277, 'name': '(Unreleased 2.7B ModronAI Model)'} ASSTR Dataset Eval (Randomly selected stories) {'eval_loss': 2.664412498474121, 'name': 'Concedo_OPT-2.7B-Nerybus-Mix'} {'eval_loss': 2.6451029777526855, 'name': 'KoboldAI_OPT-2.7B-Erebus'} {'eval_loss': 2.7259647846221924, 'name': 'KoboldAI_OPT-2.7B-Nerys'} {'eval_loss': 2.6675195693969727, 'name': 'facebook_opt-2.7b'} {'eval_loss': 2.962111473083496, 'name': '(Unreleased 2.7B ModronAI Model)'} Sexstories Dataset Eval (Random highly rated stories) {'eval_loss': 2.2352423667907715, 'name': 'Concedo_OPT-2.7B-Nerybus-Mix'} {'eval_loss': 2.194378137588501, 'name': 'KoboldAI_OPT-2.7B-Erebus'} {'eval_loss': 2.307469129562378, 'name': 'KoboldAI_OPT-2.7B-Nerys'} {'eval_loss': 2.293961763381958, 'name': 'facebook_opt-2.7b'} {'eval_loss': 2.0103421211242676, 'name': '(Unreleased 2.7B ModronAI Model)'} Harry Potter Dataset Eval (Canon books) {'eval_loss': 2.473742961883545, 'name': 'Concedo_OPT-2.7B-Nerybus-Mix'} {'eval_loss': 2.480600357055664, 'name': 'KoboldAI_OPT-2.7B-Erebus'} {'eval_loss': 2.506237506866455, 'name': 'KoboldAI_OPT-2.7B-Nerys'} {'eval_loss': 2.5074169635772705, 'name': 'facebook_opt-2.7b'} {'eval_loss': 2.273703098297119, 'name': '(Unreleased 2.7B ModronAI Model)'} Star Wars Dataset Eval (Rogue One Novel) {'eval_loss': 2.5031676292419434, 'name': 'Concedo_OPT-2.7B-Nerybus-Mix'} {'eval_loss': 2.5239150524139404, 'name': 'KoboldAI_OPT-2.7B-Erebus'} {'eval_loss': 2.526801586151123, 'name': 'KoboldAI_OPT-2.7B-Nerys'} {'eval_loss': 2.473283529281616, 'name': 'facebook_opt-2.7b'} {'eval_loss': 2.955465793609619, 'name': '(Unreleased 2.7B ModronAI Model)'} ``` It is recommend to use this model with the KoboldAI software. All feedback and comments can be directed to Concedo on the KoboldAI discord.
cleanrl/Asterix-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
2023-02-10T05:36:55Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Asterix-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T05:36:50Z
--- tags: - Asterix-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Asterix-v5 type: Asterix-v5 metrics: - type: mean_reward value: 264600.00 +/- 34685.59 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Asterix-v5** This is a trained model of a PPO agent playing Asterix-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Asterix-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Asterix-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Asterix-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Asterix-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Asterix-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Asterix-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
2023-02-10T05:36:15Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Atlantis-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T23:10:52Z
--- tags: - Atlantis-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Atlantis-v5 type: Atlantis-v5 metrics: - type: mean_reward value: 981050.00 +/- 53973.07 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Atlantis-v5** This is a trained model of a PPO agent playing Atlantis-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Atlantis-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Atlantis-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Atlantis-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
2023-02-10T05:35:27Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Atlantis-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T05:35:21Z
--- tags: - Atlantis-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Atlantis-v5 type: Atlantis-v5 metrics: - type: mean_reward value: 940680.00 +/- 15926.32 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Atlantis-v5** This is a trained model of a PPO agent playing Atlantis-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Atlantis-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Atlantis-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Atlantis-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
2023-02-10T05:27:59Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Assault-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T22:54:57Z
--- tags: - Assault-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Assault-v5 type: Assault-v5 metrics: - type: mean_reward value: 25571.30 +/- 9973.68 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Assault-v5** This is a trained model of a PPO agent playing Assault-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Assault-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Assault-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Assault-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
2023-02-10T05:27:08Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Assault-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T05:27:04Z
--- tags: - Assault-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Assault-v5 type: Assault-v5 metrics: - type: mean_reward value: 20280.10 +/- 7934.76 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Assault-v5** This is a trained model of a PPO agent playing Assault-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Assault-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Assault-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Assault-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
2023-02-10T05:23:59Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Alien-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T05:23:52Z
--- tags: - Alien-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Alien-v5 type: Alien-v5 metrics: - type: mean_reward value: 4749.00 +/- 1891.72 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Alien-v5** This is a trained model of a PPO agent playing Alien-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Alien-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Alien-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Alien-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
2023-02-10T05:23:55Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Amidar-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T05:23:49Z
--- tags: - Amidar-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Amidar-v5 type: Amidar-v5 metrics: - type: mean_reward value: 1734.50 +/- 526.81 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Amidar-v5** This is a trained model of a PPO agent playing Amidar-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Amidar-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Amidar-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Amidar-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2
cleanrl
2023-02-10T05:23:52Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Amidar-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T05:23:48Z
--- tags: - Amidar-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Amidar-v5 type: Amidar-v5 metrics: - type: mean_reward value: 1320.20 +/- 244.04 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Amidar-v5** This is a trained model of a PPO agent playing Amidar-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Amidar-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Amidar-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Amidar-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/BankHeist-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
2023-02-10T05:23:42Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BankHeist-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-05T22:57:54Z
--- tags: - BankHeist-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BankHeist-v5 type: BankHeist-v5 metrics: - type: mean_reward value: 452.00 +/- 65.54 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **BankHeist-v5** This is a trained model of a PPO agent playing BankHeist-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id BankHeist-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BankHeist-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/BankHeist-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BankHeist-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id BankHeist-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'BankHeist-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
2023-02-10T05:21:42Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Alien-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T05:21:34Z
--- tags: - Alien-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Alien-v5 type: Alien-v5 metrics: - type: mean_reward value: 4560.00 +/- 1837.65 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Alien-v5** This is a trained model of a PPO agent playing Alien-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Alien-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Alien-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Alien-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Asteroids-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3
cleanrl
2023-02-10T05:20:39Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Asteroids-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T05:20:34Z
--- tags: - Asteroids-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Asteroids-v5 type: Asteroids-v5 metrics: - type: mean_reward value: 17852.00 +/- 19061.85 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Asteroids-v5** This is a trained model of a PPO agent playing Asteroids-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Asteroids-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Asteroids-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Asteroids-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Asteroids-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Asteroids-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Asteroids-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
raw-vitor/danny
raw-vitor
2023-02-10T05:05:33Z
31
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-10T04:54:12Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### danny Dreambooth model trained by raw-vitor with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
pittawat/Reinforce-cart-pole
pittawat
2023-02-10T05:02:42Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T05:02:29Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cart-pole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
swl-models/scabbard-v2.0
swl-models
2023-02-10T04:39:59Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-10T04:26:46Z
--- license: creativeml-openrail-m ---
nolanaatama/izm
nolanaatama
2023-02-10T04:36:43Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-10T04:34:12Z
--- license: creativeml-openrail-m ---
peter-nagy/deep-grader-codebert-cpp
peter-nagy
2023-02-10T04:36:03Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-10T04:22:33Z
--- license: apache-2.0 --- Deep Grader is a programming language model leveraging large pre-trained models (CodeBERT, UniXcoder) fine-tuned on the task of Automatic Program Grading with Python and C++ programming languages. For more information, see: [https://github.com/peter-nagy1/Deep-Grader](https://github.com/peter-nagy1/Deep-Grader)
peter-nagy/deep-grader-unixcoder-cpp
peter-nagy
2023-02-10T04:20:24Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-10T04:06:41Z
--- license: apache-2.0 --- Deep Grader is a programming language model leveraging large pre-trained models (CodeBERT, UniXcoder) fine-tuned on the task of Automatic Program Grading with Python and C++ programming languages. For more information, see: [https://github.com/peter-nagy1/Deep-Grader](https://github.com/peter-nagy1/Deep-Grader)
yhchoi/distilbert-base-uncased-finetuned-emotion
yhchoi
2023-02-10T03:51:58Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-10T02:28:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.25.1 - Pytorch 1.7.1+cu110 - Datasets 2.9.0 - Tokenizers 0.13.2
peter-nagy/deep-grader-unixcoder-python
peter-nagy
2023-02-10T03:51:03Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-10T02:25:25Z
--- license: apache-2.0 --- Deep Grader is a programming language model leveraging large pre-trained models (CodeBERT, UniXcoder) fine-tuned on the task of Automatic Program Grading with Python and C++ programming languages. For more information, see: [https://github.com/peter-nagy1/Deep-Grader](https://github.com/peter-nagy1/Deep-Grader)
swl-models/AnyJuice-v3.2
swl-models
2023-02-10T03:46:40Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-10T03:10:32Z
--- license: creativeml-openrail-m ---
XPeng2022/fotorx
XPeng2022
2023-02-10T03:44:35Z
5
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-09T09:12:31Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### fotorx Dreambooth model trained by XPeng2022 Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
XPeng2022/hgs3
XPeng2022
2023-02-10T03:44:06Z
31
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-10T03:32:39Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### HGS3 Dreambooth model trained by XPeng2022 Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
arnov/name-gender
arnov
2023-02-10T03:13:20Z
0
0
adapter-transformers
[ "adapter-transformers", "gender", "names", "lgbtq+", "zero-shot-classification", "en", "fr", "es", "de", "dataset:openwebtext", "region:us" ]
zero-shot-classification
2023-02-10T02:08:47Z
--- datasets: - openwebtext language: - en - fr - es - de metrics: - accuracy library_name: adapter-transformers pipeline_tag: zero-shot-classification tags: - gender - names - lgbtq+ ---
gatardochi/Reinforce-CartPole-v1
gatardochi
2023-02-10T02:34:51Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T02:34:39Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
income/bpr-contriever-gpl-quora
income
2023-02-10T02:33:32Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-10T02:33:19Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 59733 with parameters: ``` {'batch_size': 75, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `income.bpr.gpl.loss.BPRMarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 70000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
junjuice0/VOXO
junjuice0
2023-02-10T02:20:26Z
108
46
diffusers
[ "diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-03T09:58:41Z
--- thumbnail: "https://media.discordapp.net/attachments/1002437703192821910/1073391952977989632/thumb.png" license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image --- ![thumbnail](https://media.discordapp.net/attachments/1002437703192821910/1073391952977989632/thumb.png) # VOXO Merged model by junjuice0. This model was originally created just for me, so I am not after quality and please don't expect too much. I may release finetune version of this model in the future, but only God knows if I am willing to do it until then. [JOIN US(ๆ—ฅๆœฌ่ชž)](https://discord.gg/ai-art) # VOXO-Vtuber (VOXO-v0-vtuber.safetensors) This model can generate vtubers for Hololive and Nijisanji. Some vtubers may or may not come out well. It is recommended to give the name a weight of about 1.2 (e.g. (ange katrina:1.2)) # RECOMMENDED It is recommended to use TIs such as bad-images or bad-prompt for negative prompts. Also, quality prompts (e.g. masterpiece, high quality) are not required. The use of highres. fix may change the painting considerably, use according to your preference. # HOW TO USE The usage is the same as other diffusion models, and it would be easier to read other people's explanations than mine here.
linkin-13/xtremedistil-l12-h384-uncased-trivia-qa
linkin-13
2023-02-10T02:10:16Z
106
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-02-10T01:07:19Z
--- tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [microsoft/xtremedistil-l12-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l12-h384-uncased) on the TriviaQA dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
sgoodfriend/dqn-sb3-SpaceInvadersNoFrameskip-v4
sgoodfriend
2023-02-10T02:01:56Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T02:01:22Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: dqn results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 539.50 +/- 121.23 name: mean_reward verified: false --- # **dqn** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **dqn** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CSAle/DilbertDiffusion2
CSAle
2023-02-10T02:00:58Z
31
0
diffusers
[ "diffusers", "tensorboard", "pytorch", "stable-diffusion-v2-1-base", "text-to-image", "diffusion-models-class", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-10T01:59:57Z
--- license: creativeml-openrail-m tags: - pytorch - diffusers - stable-diffusion-v2-1-base - text-to-image - diffusion-models-class widget: - text: dilbert walking his dog --- # DreamBooth model for the Dilbert concept trained by CSAle on the CSAle/DilbertDiffusionDataset dataset. This is a Stable Diffusion model fine-tuned on the Dilbert concept. It can be used by modifying the `instance_prompt`: **dilbert** ## Description A DilbertDiffusion model ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('CSAle/DilbertDiffusion2') image = pipeline().images[0] image ```
WildBill258/ppo-LunarLander-v2
WildBill258
2023-02-10T01:18:33Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T01:18:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.41 +/- 18.47 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
eormeno12/platzi_vit_model
eormeno12
2023-02-10T00:54:04Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-10T00:07:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: platzi_vit_model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9924812030075187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi_vit_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0328 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1427 | 3.85 | 500 | 0.0328 | 0.9925 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
MagicalGirlsFC/Magical_Girls_Football_Club-Mix
MagicalGirlsFC
2023-02-10T00:47:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-10T00:46:08Z
--- license: creativeml-openrail-m ---
figfig/local_test_model
figfig
2023-02-10T00:41:23Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "en", "dataset:figfig/restaurant_order_local_test", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-10T00:30:17Z
--- language: - en license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - figfig/restaurant_order_local_test metrics: - wer model-index: - name: restaurant_local_test_model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: local_test_data type: figfig/restaurant_order_local_test args: 'config: en, split: test' metrics: - name: Wer type: wer value: 78.57142857142857 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # restaurant_local_test_model This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the local_test_data dataset. It achieves the following results on the evaluation set: - Loss: 0.5435 - Wer: 78.5714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 10.0 | 10 | 2.2425 | 7.1429 | | No log | 20.0 | 20 | 0.6651 | 0.0 | | 2.4375 | 30.0 | 30 | 0.5776 | 35.7143 | | 2.4375 | 40.0 | 40 | 0.5435 | 78.5714 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
gatardochi/dqn-SpaceInvadersNoFrameskip-v4
gatardochi
2023-02-10T00:38:41Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T00:37:54Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 736.00 +/- 244.23 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga gatardochi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga gatardochi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga gatardochi ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
eshwarprasadS/lunarlanderv2-dqn
eshwarprasadS
2023-02-10T00:25:08Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-10T00:24:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 141.31 +/- 65.12 name: mean_reward verified: false --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bongsoo/albert-small-kor-sbert-v1
bongsoo
2023-02-10T00:09:50Z
4
3
sentence-transformers
[ "sentence-transformers", "pytorch", "albert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-11T04:15:28Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # albert-small-kor-sbert-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. [albert-small-kor-v1](https://huggingface.co/bongsoo/albert-small-kor-v1) ๋ชจ๋ธ์„ sentencebert๋กœ ๋งŒ๋“  ๋ชจ๋ธ. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('bongsoo/albert-small-kor-sbert-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bongsoo/albert-small-kor-sbert-v1') model = AutoModel.from_pretrained('bongsoo/albert-small-kor-sbert-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results - ์„ฑ๋Šฅ ์ธก์ •์„ ์œ„ํ•œ ๋ง๋ญ‰์น˜๋Š”, ์•„๋ž˜ ํ•œ๊ตญ์–ด (kor), ์˜์–ด(en) ํ‰๊ฐ€ ๋ง๋ญ‰์น˜๋ฅผ ์ด์šฉํ•จ <br> ํ•œ๊ตญ์–ด : **korsts(1,379์Œ๋ฌธ์žฅ)** ์™€ **klue-sts(519์Œ๋ฌธ์žฅ)** <br> ์˜์–ด : [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt)(1,376์Œ๋ฌธ์žฅ) ์™€ [glue:stsb](https://huggingface.co/datasets/glue/viewer/stsb/validation) (1,500์Œ๋ฌธ์žฅ) - ์„ฑ๋Šฅ ์ง€ํ‘œ๋Š” **cosin.spearman** - ํ‰๊ฐ€ ์ธก์ • ์ฝ”๋“œ๋Š” [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-test3.ipynb) ์ฐธ์กฐ - |๋ชจ๋ธ |korsts|klue-sts|glue(stsb)|stsb_multi_mt(en)| |:--------|------:|--------:|--------------:|------------:| |distiluse-base-multilingual-cased-v2 |0.7475 |0.7855 |0.8193 |0.8075| |paraphrase-multilingual-mpnet-base-v2 |0.8201 |0.7993 |0.8907 |0.8682| |bongsoo/moco-sentencedistilbertV2.1 |0.8390 |0.8767 |0.8805 |0.8548| |bongsoo/albert-small-kor-sbert-v1 |0.8305 |0.8588 |0.8419 |0.7965| For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training - [albert-small-kor-v1](https://huggingface.co/bongsoo/albert-small-kor-v1) ๋ชจ๋ธ์„ sts(10)-distil(10)-nli(3)-sts(10) ํ›ˆ๋ จ ์‹œํ‚ด The model was trained with the parameters: **๊ณตํ†ต** - **do_lower_case=1, correct_bios=0, polling_mode=cls** **1.STS** - ๋ง๋ญ‰์น˜ : korsts(5,749) + kluestsV1.1(11,668) + stsb_multi_mt(5,749) + mteb/sickr-sts(9,927) + glue stsb(5,749) (์ด:38,842) - Param : **lr: 1e-4, eps: 1e-6, warm_step=10%, epochs: 10, train_batch: 32, eval_batch: 64, max_token_len: 72** - ํ›ˆ๋ จ์ฝ”๋“œ [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sentece-bert-sts.ipynb) ์ฐธ์กฐ **2.distilation** - ๊ต์‚ฌ ๋ชจ๋ธ : paraphrase-multilingual-mpnet-base-v2(max_token_len:128) - ๋ง๋ญ‰์น˜ : news_talk_en_ko_train.tsv (์˜์–ด-ํ•œ๊ตญ์–ด ๋Œ€ํ™”-๋‰ด์Šค ๋ณ‘๋ ฌ ๋ง๋ญ‰์น˜ : 1.38M) - Param : **lr: 5e-5, eps: 1e-8, epochs: 10, train_batch: 32, eval/test_batch: 64, max_token_len: 128(๊ต์‚ฌ๋ชจ๋ธ์ด 128์ด๋ฏ€๋กœ ๋งŸ์ถฐ์คŒ)** - ํ›ˆ๋ จ์ฝ”๋“œ [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-distillaton.ipynb) ์ฐธ์กฐ **3.NLI** - ๋ง๋ญ‰์น˜ : ํ›ˆ๋ จ(967,852) : kornli(550,152), kluenli(24,998), glue-mnli(392,702) / ํ‰๊ฐ€(3,519) : korsts(1,500), kluests(519), gluests(1,500) () - HyperParameter : **lr: 3e-5, eps: 1e-8, warm_step=10%, epochs: 3, train/eval_batch: 64, max_token_len: 128** - ํ›ˆ๋ จ์ฝ”๋“œ [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sentence-bert-nli.ipynb) ์ฐธ์กฐ ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': True}) with Transformer model: AlbertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors bongsoo
bongsoo/klue-sbert-v1
bongsoo
2023-02-10T00:07:24Z
76
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-13T02:48:18Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # klue-sbert-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. klue/bert-base ๋ชจ๋ธ์„ sentencebert๋กœ ํŒŒ์ธํŠœ๋‹ํ•œ ๋ชจ๋ธ ## Evaluation Results - ์„ฑ๋Šฅ ์ธก์ •์„ ์œ„ํ•œ ๋ง๋ญ‰์น˜๋Š”, ์•„๋ž˜ ํ•œ๊ตญ์–ด (kor), ์˜์–ด(en) ํ‰๊ฐ€ ๋ง๋ญ‰์น˜๋ฅผ ์ด์šฉํ•จ <br> ํ•œ๊ตญ์–ด : **korsts(1,379์Œ๋ฌธ์žฅ)** ์™€ **klue-sts(519์Œ๋ฌธ์žฅ)** <br> ์˜์–ด : [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt)(1,376์Œ๋ฌธ์žฅ) ์™€ [glue:stsb](https://huggingface.co/datasets/glue/viewer/stsb/validation) (1,500์Œ๋ฌธ์žฅ) - ์„ฑ๋Šฅ ์ง€ํ‘œ๋Š” **cosin.spearman** - ํ‰๊ฐ€ ์ธก์ • ์ฝ”๋“œ๋Š” [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-test3.ipynb) ์ฐธ์กฐ - |๋ชจ๋ธ |korsts|klue-sts|glue(stsb)|stsb_multi_mt(en)| |:--------|------:|--------:|--------------:|------------:| |distiluse-base-multilingual-cased-v2 |0.7475 |0.7855 |0.8193 |0.8075| |paraphrase-multilingual-mpnet-base-v2 |0.8201 |0.7993 |0.8907 |0.8682| |bongsoo/albert-small-kor-sbert-v1 |0.8305 |0.8588 |0.8419 |0.7965| |bongsoo/kpf-sbert-v1.0 |0.8590 |0.8924 |0.8840 |0.8531| |**bongsoo/klue-sbert-v1.0** |0.8529 |0.8952 |0.8813 |0.8469| For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training - [klue/bert-base](https://huggingface.co/klue/bert-base) ๋ชจ๋ธ์„ sts(10)-distil(10)-nli(3)-sts(10) ํ›ˆ๋ จ ์‹œํ‚ด The model was trained with the parameters: **๊ณตํ†ต** - **do_lower_case=1, correct_bios=0, polling_mode=mean** **1.STS** - ๋ง๋ญ‰์น˜ : korsts(5,749) + kluestsV1.1(11,668) + stsb_multi_mt(5,749) + mteb/sickr-sts(9,927) + glue stsb(5,749) (์ด:38,842) - Param : **lr: 1e-4, eps: 1e-6, warm_step=10%, epochs: 10, train_batch: 128, eval_batch: 64, max_token_len: 72** - ํ›ˆ๋ จ์ฝ”๋“œ [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sentece-bert-sts.ipynb) ์ฐธ์กฐ **2.distilation** - ๊ต์‚ฌ ๋ชจ๋ธ : paraphrase-multilingual-mpnet-base-v2(max_token_len:128) - ๋ง๋ญ‰์น˜ : news_talk_en_ko_train.tsv (์˜์–ด-ํ•œ๊ตญ์–ด ๋Œ€ํ™”-๋‰ด์Šค ๋ณ‘๋ ฌ ๋ง๋ญ‰์น˜ : 1.38M) - Param : **lr: 5e-5, eps: 1e-8, epochs: 10, train_batch: 128, eval/test_batch: 64, max_token_len: 128(๊ต์‚ฌ๋ชจ๋ธ์ด 128์ด๋ฏ€๋กœ ๋งŸ์ถฐ์คŒ)** - ํ›ˆ๋ จ์ฝ”๋“œ [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-distillaton.ipynb) ์ฐธ์กฐ **3.NLI** - ๋ง๋ญ‰์น˜ : ํ›ˆ๋ จ(967,852) : kornli(550,152), kluenli(24,998), glue-mnli(392,702) / ํ‰๊ฐ€(3,519) : korsts(1,500), kluests(519), gluests(1,500) () - HyperParameter : **lr: 3e-5, eps: 1e-8, warm_step=10%, epochs: 3, train/eval_batch: 64, max_token_len: 128** - ํ›ˆ๋ จ์ฝ”๋“œ [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sentence-bert-nli.ipynb) ์ฐธ์กฐ - ## Citing & Authors bongsoo
bongsoo/kpf-sbert-v1.1
bongsoo
2023-02-09T23:59:32Z
47
4
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-13T05:00:59Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # kpf-sbert-v1.1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. jinmang2/kpfbert ๋ชจ๋ธ์„ sentencebert๋กœ ํŒŒ์ธ๋“€๋‹ํ•œ ๋ชจ๋ธ (kpf-sbert-v1 ์—์„œ NLI-STS ํ›ˆ๋ จ์„ 1๋ฒˆ ๋” ์‹œํ‚ด) ## Evaluation Results - ์„ฑ๋Šฅ ์ธก์ •์„ ์œ„ํ•œ ๋ง๋ญ‰์น˜๋Š”, ์•„๋ž˜ ํ•œ๊ตญ์–ด (kor), ์˜์–ด(en) ํ‰๊ฐ€ ๋ง๋ญ‰์น˜๋ฅผ ์ด์šฉํ•จ <br> ํ•œ๊ตญ์–ด : **korsts(1,379์Œ๋ฌธ์žฅ)** ์™€ **klue-sts(519์Œ๋ฌธ์žฅ)** <br> ์˜์–ด : [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt)(1,376์Œ๋ฌธ์žฅ) ์™€ [glue:stsb](https://huggingface.co/datasets/glue/viewer/stsb/validation) (1,500์Œ๋ฌธ์žฅ) - ์„ฑ๋Šฅ ์ง€ํ‘œ๋Š” **cosin.spearman** - ํ‰๊ฐ€ ์ธก์ • ์ฝ”๋“œ๋Š” [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-test3.ipynb) ์ฐธ์กฐ - |๋ชจ๋ธ |korsts|klue-sts|glue(stsb)|stsb_multi_mt(en)| |:--------|------:|--------:|--------------:|------------:| |distiluse-base-multilingual-cased-v2 |0.7475 |0.7855 |0.8193 |0.8075| |paraphrase-multilingual-mpnet-base-v2 |0.8201 |0.7993 |0.8907 |0.8682| |bongsoo/albert-small-kor-sbert-v1 |0.8305 |0.8588 |0.8419 |0.7965| |bongsoo/klue-sbert-v1.0 |0.8529 |0.8952 |0.8813 |0.8469| |bongsoo/kpf-sbert-v1.0 |0.8590 |0.8924 |0.8840 |0.8531| |**bongsoo/kpf-sbert-v1.1** |0.8750 |0.8900 |0.8863 |0.8554| For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training - [jinmang2/kpfbert](https://huggingface.co/jinmang2/kpfbert) ๋ชจ๋ธ์„ sts(10)-distil(10)-nli(3)-sts(10)-nli(3)-sts(10) ํ›ˆ๋ จ ์‹œํ‚ด The model was trained with the parameters: **๊ณตํ†ต** - **do_lower_case=1, correct_bios=0, polling_mode=mean** **1.STS** - ๋ง๋ญ‰์น˜ : korsts(5,749) + kluestsV1.1(11,668) + stsb_multi_mt(5,749) + mteb/sickr-sts(9,927) + glue stsb(5,749) (์ด:38,842) - Param : **lr: 1e-4, eps: 1e-6, warm_step=10%, epochs: 10, train_batch: 128, eval_batch: 64, max_token_len: 72** - ํ›ˆ๋ จ์ฝ”๋“œ [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sentece-bert-sts.ipynb) ์ฐธ์กฐ **2.distilation** - ๊ต์‚ฌ ๋ชจ๋ธ : paraphrase-multilingual-mpnet-base-v2(max_token_len:128) - ๋ง๋ญ‰์น˜ : news_talk_en_ko_train.tsv (์˜์–ด-ํ•œ๊ตญ์–ด ๋Œ€ํ™”-๋‰ด์Šค ๋ณ‘๋ ฌ ๋ง๋ญ‰์น˜ : 1.38M) - Param : **lr: 5e-5, eps: 1e-8, epochs: 10, train_batch: 128, eval/test_batch: 64, max_token_len: 128(๊ต์‚ฌ๋ชจ๋ธ์ด 128์ด๋ฏ€๋กœ ๋งŸ์ถฐ์คŒ)** - ํ›ˆ๋ จ์ฝ”๋“œ [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-distillaton.ipynb) ์ฐธ์กฐ **3.NLI** - ๋ง๋ญ‰์น˜ : ํ›ˆ๋ จ(967,852) : kornli(550,152), kluenli(24,998), glue-mnli(392,702) / ํ‰๊ฐ€(3,519) : korsts(1,500), kluests(519), gluests(1,500) () - HyperParameter : **lr: 3e-5, eps: 1e-8, warm_step=10%, epochs: 3, train/eval_batch: 64, max_token_len: 128** - ํ›ˆ๋ จ์ฝ”๋“œ [์—ฌ๊ธฐ](https://github.com/kobongsoo/BERT/blob/master/sbert/sentence-bert-nli.ipynb) ์ฐธ์กฐ - ## Citing & Authors bongsoo
UCSD-VA-health/RadBERT-2m
UCSD-VA-health
2023-02-09T23:24:34Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-06T07:21:44Z
--- license: apache-2.0 --- ## RadBERT-2m This is a base model of Radiology-BERT from UC San Diego and VA healthcare system. It is initialized from BERT-base-uncased and further trained with 2 million radiology reports deidentified from US VA hospital. The model achieves stronger medical language understanding performance than previous medical domain models such as BioBERT, Clinical-BERT, BLUE-BERT and BioMed-RoBERTa. Performances are evaluated on three tasks: (a) abnormal sentence classification: sentence classification in radiology reports as reporting abnormal or normal findings; (b) report coding: Assign a diagnostic code to a given radiology report for five different coding systems; (c) report summarization: given the findings section of a radiology report, extractively select key sentences that summarized the findings. It also shows superior performance on other radiology NLP tasks which are not reported in the paper. For details, check out the paper here: [RadBERT: Adapting transformer-based language models to radiology](https://pubs.rsna.org/doi/abs/10.1148/ryai.210258) ### How to use Here is an example of how to use this model to extract the features of a given text in PyTorch: ```python from transformers import AutoConfig, AutoTokenizer, AutoModel config = AutoConfig.from_pretrained('zzxslp/RadBERT-RoBERTa-4m') tokenizer = AutoTokenizer.from_pretrained('zzxslp/RadBERT-RoBERTa-4m') model = AutoModel.from_pretrained('zzxslp/RadBERT-RoBERTa-4m', config=config) text = "Replace me by any medical text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### BibTeX entry and citation info If you use the model, please cite our paper: ```bibtex @article{yan2022radbert, title={RadBERT: Adapting transformer-based language models to radiology}, author={Yan, An and McAuley, Julian and Lu, Xing and Du, Jiang and Chang, Eric Y and Gentili, Amilcare and Hsu, Chun-Nan}, journal={Radiology: Artificial Intelligence}, volume={4}, number={4}, pages={e210258}, year={2022}, publisher={Radiological Society of North America} } ```
Qalam/Lei
Qalam
2023-02-09T23:14:22Z
0
1
null
[ "text-to-image", "arxiv:2006.11239", "arxiv:2010.02502", "arxiv:2202.09778", "arxiv:2204.13902", "license:apache-2.0", "region:us" ]
text-to-image
2023-02-09T22:51:29Z
--- license: apache-2.0 pipeline_tag: text-to-image --- <p align="center"> <br> <img src="./docs/source/en/imgs/diffusers_library.jpg" width="400"/> <br> <p> <p align="center"> <a href="https://github.com/huggingface/diffusers/blob/main/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue"> </a> <a href="https://github.com/huggingface/diffusers/releases"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg"> </a> <a href="CODE_OF_CONDUCT.md"> <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg"> </a> </p> ๐Ÿค— Diffusers provides pretrained diffusion models across multiple modalities, such as vision and audio, and serves as a modular toolbox for inference and training of diffusion models. More precisely, ๐Ÿค— Diffusers offers: - State-of-the-art diffusion pipelines that can be run in inference with just a couple of lines of code (see [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)). Check [this overview](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/README.md#pipelines-summary) to see all supported pipelines and their corresponding official papers. - Various noise schedulers that can be used interchangeably for the preferred speed vs. quality trade-off in inference (see [src/diffusers/schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)). - Multiple types of models, such as UNet, can be used as building blocks in an end-to-end diffusion system (see [src/diffusers/models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)). - Training examples to show how to train the most popular diffusion model tasks (see [examples](https://github.com/huggingface/diffusers/tree/main/examples), *e.g.* [unconditional-image-generation](https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation)). ## Installation ### For PyTorch **With `pip`** (official package) ```bash pip install --upgrade diffusers[torch] ``` **With `conda`** (maintained by the community) ```sh conda install -c conda-forge diffusers ``` ### For Flax **With `pip`** ```bash pip install --upgrade diffusers[flax] ``` **Apple Silicon (M1/M2) support** Please, refer to [the documentation](https://huggingface.co/docs/diffusers/optimization/mps). ## Contributing We โค๏ธ contributions from the open-source community! If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md). You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library. - See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute - See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines - See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) Also, say ๐Ÿ‘‹ in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out โ˜•. ## Quickstart In order to get started, we recommend taking a look at two notebooks: - The [Getting started with Diffusers](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) notebook, which showcases an end-to-end example of usage for diffusion models, schedulers and pipelines. Take a look at this notebook to learn how to use the pipeline abstraction, which takes care of everything (model, scheduler, noise handling) for you, and also to understand each independent building block in the library. - The [Training a diffusers model](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) notebook summarizes diffusion models training methods. This notebook takes a step-by-step approach to training your diffusion models on an image dataset, with explanatory graphics. ## Stable Diffusion is fully compatible with `diffusers`! Stable Diffusion is a text-to-image latent diffusion model created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/), [LAION](https://laion.ai/) and [RunwayML](https://runwayml.com/). It's trained on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) database. This model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 4GB VRAM. See the [model card](https://huggingface.co/CompVis/stable-diffusion) for more information. ### Text-to-Image generation with Stable Diffusion First let's install ```bash pip install --upgrade diffusers transformers accelerate ``` We recommend using the model in [half-precision (`fp16`)](https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/) as it gives almost always the same results as full precision while being roughly twice as fast and requiring half the amount of GPU RAM. ```python import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] ``` #### Running the model locally You can also simply download the model folder and pass the path to the local folder to the `StableDiffusionPipeline`. ``` git lfs install git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 ``` Assuming the folder is stored locally under `./stable-diffusion-v1-5`, you can run stable diffusion as follows: ```python pipe = StableDiffusionPipeline.from_pretrained("./stable-diffusion-v1-5") pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] ``` If you are limited by GPU memory, you might want to consider chunking the attention computation in addition to using `fp16`. The following snippet should result in less than 4GB VRAM. ```python pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" pipe.enable_attention_slicing() image = pipe(prompt).images[0] ``` If you wish to use a different scheduler (e.g.: DDIM, LMS, PNDM/PLMS), you can instantiate it before the pipeline and pass it to `from_pretrained`. ```python from diffusers import LMSDiscreteScheduler pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` If you want to run Stable Diffusion on CPU or you want to have maximum precision on GPU, please run the model in the default *full-precision* setting: ```python from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") # disable the following line if you run on CPU pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` ### JAX/Flax Diffusers offers a JAX / Flax implementation of Stable Diffusion for very fast inference. JAX shines specially on TPU hardware because each TPU server has 8 accelerators working in parallel, but it runs great on GPUs too. Running the pipeline with the default PNDMScheduler: ```python import jax import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxStableDiffusionPipeline pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="flax", dtype=jax.numpy.bfloat16 ) prompt = "a photo of an astronaut riding a horse on mars" prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, jax.device_count()) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) ``` **Note**: If you are limited by TPU memory, please make sure to load the `FlaxStableDiffusionPipeline` in `bfloat16` precision instead of the default `float32` precision as done above. You can do so by telling diffusers to load the weights from "bf16" branch. ```python import jax import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxStableDiffusionPipeline pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", revision="bf16", dtype=jax.numpy.bfloat16 ) prompt = "a photo of an astronaut riding a horse on mars" prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, jax.device_count()) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) ``` Diffusers also has a Image-to-Image generation pipeline with Flax/Jax ```python import jax import numpy as np import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard import requests from io import BytesIO from PIL import Image from diffusers import FlaxStableDiffusionImg2ImgPipeline def create_key(seed=0): return jax.random.PRNGKey(seed) rng = create_key(0) url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" response = requests.get(url) init_img = Image.open(BytesIO(response.content)).convert("RGB") init_img = init_img.resize((768, 512)) prompts = "A fantasy landscape, trending on artstation" pipeline, params = FlaxStableDiffusionImg2ImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="flax", dtype=jnp.bfloat16, ) num_samples = jax.device_count() rng = jax.random.split(rng, jax.device_count()) prompt_ids, processed_image = pipeline.prepare_inputs(prompt=[prompts]*num_samples, image = [init_img]*num_samples) p_params = replicate(params) prompt_ids = shard(prompt_ids) processed_image = shard(processed_image) output = pipeline( prompt_ids=prompt_ids, image=processed_image, params=p_params, prng_seed=rng, strength=0.75, num_inference_steps=50, jit=True, height=512, width=768).images output_images = pipeline.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) ``` Diffusers also has a Text-guided inpainting pipeline with Flax/Jax ```python import jax import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard import PIL import requests from io import BytesIO from diffusers import FlaxStableDiffusionInpaintPipeline def download_image(url): response = requests.get(url) return PIL.Image.open(BytesIO(response.content)).convert("RGB") img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = download_image(img_url).resize((512, 512)) mask_image = download_image(mask_url).resize((512, 512)) pipeline, params = FlaxStableDiffusionInpaintPipeline.from_pretrained("xvjiarui/stable-diffusion-2-inpainting") prompt = "Face of a yellow cat, high resolution, sitting on a park bench" prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] init_image = num_samples * [init_image] mask_image = num_samples * [mask_image] prompt_ids, processed_masked_images, processed_masks = pipeline.prepare_inputs(prompt, init_image, mask_image) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, jax.device_count()) prompt_ids = shard(prompt_ids) processed_masked_images = shard(processed_masked_images) processed_masks = shard(processed_masks) images = pipeline(prompt_ids, processed_masks, processed_masked_images, params, prng_seed, num_inference_steps, jit=True).images images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) ``` ### Image-to-Image text-guided generation with Stable Diffusion The `StableDiffusionImg2ImgPipeline` lets you pass a text prompt and an initial image to condition the generation of new images. ```python import requests import torch from PIL import Image from io import BytesIO from diffusers import StableDiffusionImg2ImgPipeline # load the pipeline device = "cuda" model_id_or_path = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16) # or download via git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 # and pass `model_id_or_path="./stable-diffusion-v1-5"`. pipe = pipe.to(device) # let's download an initial image url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" response = requests.get(url) init_image = Image.open(BytesIO(response.content)).convert("RGB") init_image = init_image.resize((768, 512)) prompt = "A fantasy landscape, trending on artstation" images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images images[0].save("fantasy_landscape.png") ``` You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb) ### In-painting using Stable Diffusion The `StableDiffusionInpaintPipeline` lets you edit specific parts of an image by providing a mask and a text prompt. ```python import PIL import requests import torch from io import BytesIO from diffusers import StableDiffusionInpaintPipeline def download_image(url): response = requests.get(url) return PIL.Image.open(BytesIO(response.content)).convert("RGB") img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = download_image(img_url).resize((512, 512)) mask_image = download_image(mask_url).resize((512, 512)) pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "Face of a yellow cat, high resolution, sitting on a park bench" image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] ``` ### Tweak prompts reusing seeds and latents You can generate your own latents to reproduce results, or tweak your prompt on a specific result you liked. Please have a look at [Reusing seeds for deterministic generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/reusing_seeds). ## Fine-Tuning Stable Diffusion Fine-tuning techniques make it possible to adapt Stable Diffusion to your own dataset, or add new subjects to it. These are some of the techniques supported in `diffusers`: Textual Inversion is a technique for capturing novel concepts from a small number of example images in a way that can later be used to control text-to-image pipelines. It does so by learning new 'words' in the embedding space of the pipeline's text encoder. These special words can then be used within text prompts to achieve very fine-grained control of the resulting images. - Textual Inversion. Capture novel concepts from a small set of sample images, and associate them with new "words" in the embedding space of the text encoder. Please, refer to [our training examples](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion) or [documentation](https://huggingface.co/docs/diffusers/training/text_inversion) to try for yourself. - Dreambooth. Another technique to capture new concepts in Stable Diffusion. This method fine-tunes the UNet (and, optionally, also the text encoder) of the pipeline to achieve impressive results. Please, refer to [our training example](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth) and [training report](https://huggingface.co/blog/dreambooth) for additional details and training recommendations. - Full Stable Diffusion fine-tuning. If you have a more sizable dataset with a specific look or style, you can fine-tune Stable Diffusion so that it outputs images following those examples. This was the approach taken to create [a Pokรฉmon Stable Diffusion model](https://huggingface.co/justinpinkney/pokemon-stable-diffusion) (by Justing Pinkney / Lambda Labs), [a Japanese specific version of Stable Diffusion](https://huggingface.co/spaces/rinna/japanese-stable-diffusion) (by [Rinna Co.](https://github.com/rinnakk/japanese-stable-diffusion/) and others. You can start at [our text-to-image fine-tuning example](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image) and go from there. ## Stable Diffusion Community Pipelines The release of Stable Diffusion as an open source model has fostered a lot of interesting ideas and experimentation. Our [Community Examples folder](https://github.com/huggingface/diffusers/tree/main/examples/community) contains many ideas worth exploring, like interpolating to create animated videos, using CLIP Guidance for additional prompt fidelity, term weighting, and much more! [Take a look](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview) and [contribute your own](https://huggingface.co/docs/diffusers/using-diffusers/contribute_pipeline). ## Other Examples There are many ways to try running Diffusers! Here we outline code-focused tools (primarily using `DiffusionPipeline`s and Google Colab) and interactive web-tools. ### Running Code If you want to run the code yourself ๐Ÿ’ป, you can try out: - [Text-to-Image Latent Diffusion](https://huggingface.co/CompVis/ldm-text2im-large-256) ```python # !pip install diffusers["torch"] transformers from diffusers import DiffusionPipeline device = "cuda" model_id = "CompVis/ldm-text2im-large-256" # load model and scheduler ldm = DiffusionPipeline.from_pretrained(model_id) ldm = ldm.to(device) # run pipeline in inference (sample random noise and denoise) prompt = "A painting of a squirrel eating a burger" image = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6).images[0] # save image image.save("squirrel.png") ``` - [Unconditional Diffusion with discrete scheduler](https://huggingface.co/google/ddpm-celebahq-256) ```python # !pip install diffusers["torch"] from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-celebahq-256" device = "cuda" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference ddpm.to(device) # run pipeline in inference (sample random noise and denoise) image = ddpm().images[0] # save image image.save("ddpm_generated_image.png") ``` - [Unconditional Latent Diffusion](https://huggingface.co/CompVis/ldm-celebahq-256) - [Unconditional Diffusion with continuous scheduler](https://huggingface.co/google/ncsnpp-ffhq-1024) **Other Image Notebooks**: * [image-to-image generation with Stable Diffusion](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg), * [tweak images via repeated Stable Diffusion seeds](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg), **Diffusers for Other Modalities**: * [Molecule conformation generation](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/geodiff_molecule_conformation.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg), * [Model-based reinforcement learning](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/reinforcement_learning_with_diffusers.ipynb) ![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg), ### Web Demos If you just want to play around with some web demos, you can try out the following ๐Ÿš€ Spaces: | Model | Hugging Face Spaces | |-------------------------------- |------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | Text-to-Image Latent Diffusion | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/CompVis/text2img-latent-diffusion) | | Faces generator | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/CompVis/celeba-latent-diffusion) | | DDPM with different schedulers | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/fusing/celeba-diffusion) | | Conditional generation from sketch | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/huggingface/diffuse-the-rest) | | Composable diffusion | [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Shuang59/Composable-Diffusion) | ## Definitions **Models**: Neural network that models $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$ (see image below) and is trained end-to-end to *denoise* a noisy input to an image. *Examples*: UNet, Conditioned UNet, 3D UNet, Transformer UNet <p align="center"> <img src="https://user-images.githubusercontent.com/10695622/174349667-04e9e485-793b-429a-affe-096e8199ad5b.png" width="800"/> <br> <em> Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em> <p> **Schedulers**: Algorithm class for both **inference** and **training**. The class provides functionality to compute previous image according to alpha, beta schedule as well as predict noise for training. Also known as **Samplers**. *Examples*: [DDPM](https://arxiv.org/abs/2006.11239), [DDIM](https://arxiv.org/abs/2010.02502), [PNDM](https://arxiv.org/abs/2202.09778), [DEIS](https://arxiv.org/abs/2204.13902) <p align="center"> <img src="https://user-images.githubusercontent.com/10695622/174349706-53d58acc-a4d1-4cda-b3e8-432d9dc7ad38.png" width="800"/> <br> <em> Sampling and training algorithms. Figure from DDPM paper (https://arxiv.org/abs/2006.11239). </em> <p> **Diffusion Pipeline**: End-to-end pipeline that includes multiple diffusion models, possible text encoders, ... *Examples*: Glide, Latent-Diffusion, Imagen, DALL-E 2 <p align="center"> <img src="https://user-images.githubusercontent.com/10695622/174348898-481bd7c2-5457-4830-89bc-f0907756f64c.jpeg" width="550"/> <br> <em> Figure from ImageGen (https://imagen.research.google/). </em> <p> ## Philosophy - Readability and clarity is preferred over highly optimized code. A strong importance is put on providing readable, intuitive and elementary code design. *E.g.*, the provided [schedulers](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers) are separated from the provided [models](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models) and provide well-commented code that can be read alongside the original paper. - Diffusers is **modality independent** and focuses on providing pretrained models and tools to build systems that generate **continuous outputs**, *e.g.* vision and audio. - Diffusion models and schedulers are provided as concise, elementary building blocks. In contrast, diffusion pipelines are a collection of end-to-end diffusion systems that can be used out-of-the-box, should stay as close as possible to their original implementation and can include components of another library, such as text-encoders. Examples for diffusion pipelines are [Glide](https://github.com/openai/glide-text2im) and [Latent Diffusion](https://github.com/CompVis/latent-diffusion). ## In the works For the first release, ๐Ÿค— Diffusers focuses on text-to-image diffusion techniques. However, diffusers can be used for much more than that! Over the upcoming releases, we'll be focusing on: - Diffusers for audio - Diffusers for reinforcement learning (initial work happening in https://github.com/huggingface/diffusers/pull/105). - Diffusers for video generation - Diffusers for molecule generation (initial work happening in https://github.com/huggingface/diffusers/pull/54) A few pipeline components are already being worked on, namely: - BDDMPipeline for spectrogram-to-sound vocoding - GLIDEPipeline to support OpenAI's GLIDE model - Grad-TTS for text to audio generation / conditional audio generation We want diffusers to be a toolbox useful for diffusers models in general; if you find yourself limited in any way by the current API, or would like to see additional models, schedulers, or techniques, please open a [GitHub issue](https://github.com/huggingface/diffusers/issues) mentioning what you would like to see. ## Credits This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today: - @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion) - @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion) - @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim). - @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch) We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights. ## Citation ```bibtex @misc{von-platen-etal-2022-diffusers, author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf}, title = {Diffusers: State-of-the-art diffusion models}, year = {2022}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/huggingface/diffusers}} } ```
danielpleus/PlattGPT
danielpleus
2023-02-09T23:13:39Z
104
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-04T20:25:23Z
--- widget: - text: "Brad Pitt is en Schauspeler. He hett speelt" example_title: "Brad Pitt" inference: parameters: max_length: 100 no_repeat_ngram_size: 1 ---
peteralexandercharles/Bender
peteralexandercharles
2023-02-09T23:07:14Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T23:07:14Z
--- license: creativeml-openrail-m ---
qpham001/TriviaQA_NLP4Web_Group12
qpham001
2023-02-09T22:58:39Z
92
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-02-07T10:21:42Z
--- license: mit tags: - generated_from_trainer model-index: - name: result results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # result This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
jayeshvpatil/ppo-LunarLander-v2
jayeshvpatil
2023-02-09T22:33:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T01:59:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.45 +/- 22.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
robinsk8a/ppo-SnowballTarget
robinsk8a
2023-02-09T21:48:56Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-09T21:48:45Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: robinsk8a/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
joelniklaus/legal-greek-roberta-base
joelniklaus
2023-02-09T21:35:21Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-06T02:37:12Z
--- tags: - generated_from_trainer model-index: - name: legal-greek-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legal-greek-roberta-base This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: tpu - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 200000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.8724 | 12.0 | 50000 | 0.6730 | | 0.7713 | 24.0 | 100000 | 0.5763 | | 0.7186 | 36.0 | 150000 | 0.5396 | | 0.7152 | 48.0 | 200000 | 0.5247 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.9.0 - Tokenizers 0.12.0
SashkaHavr/NLP4Web_Home_Exercise6_Group13
SashkaHavr
2023-02-09T21:14:21Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-02-08T15:20:16Z
--- license: mit tags: - generated_from_trainer model-index: - name: NLP4Web_Home_Exercise6_Group13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP4Web_Home_Exercise6_Group13 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Rolo/ppo-PyramidsTraining
Rolo
2023-02-09T21:04:40Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-02-09T21:04:32Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Rolo/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
02shanky/finetuned-twitter-xlm-roberta-base-emotion
02shanky
2023-02-09T21:01:11Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:emotion", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-09T20:20:54Z
--- tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: finetuned-twitter-xlm-roberta-base-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9305 - name: F1 type: f1 value: 0.9306713707413102 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-twitter-xlm-roberta-base-emotion This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1793 - Accuracy: 0.9305 - F1: 0.9307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
cfisicaro/poca-SoccerTwos
cfisicaro
2023-02-09T20:59:54Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T20:59:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: cfisicaro/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
LarryAIDraw/lenaeightysix-21000
LarryAIDraw
2023-02-09T20:44:54Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T18:47:43Z
--- license: creativeml-openrail-m --- my second hypernetwork.i think soso but having some effect. masterpiece,best quality,art by lenaeightysix,1girl,ahoge,very long hair,silver hair, long sleeves,hair between eyes, bangs,medium breasts, buttons,belt,thighhighs,military uniform,pantyhose,looking at viewer
Sjors05/rmix_Sjors
Sjors05
2023-02-09T20:44:04Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-09T19:09:13Z
--- license: creativeml-openrail-m ---
robsoneng/ppo-LunarLander-v2
robsoneng
2023-02-09T20:35:59Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T20:35:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.85 +/- 18.37 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
SfinOe/dreamlike_2.0
SfinOe
2023-02-09T20:33:54Z
20
8
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "photorealistic", "photoreal", "en", "license:other", "autotrain_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-09T20:26:14Z
--- language: - en license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - photorealistic - photoreal - diffusers inference: false --- # Dreamlike Photoreal 2.0 is a photorealistic model based on Stable Diffusion 1.5, made by [dreamlike.art](https://dreamlike.art/). # If you want to use dreamlike models on your website/app/etc., check the license at the bottom first! Warning: This model is horny! Add "nude, naked" to the negative prompt if want to avoid NSFW. You can add **photo** to your prompt to make your gens look more photorealistic. Non-square aspect ratios work better for some prompts. If you want a portrait photo, try using a vertical aspect ratio. If you want a landscape photo, try using a horizontal aspect ratio. This model was trained on 768x768px images, so use 768x768px, 640x896px, 896x640px, etc. It also works pretty good with higher resolutions such as 768x1024px or 1024x768px. ### Examples <img src="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/preview1.jpg" style="max-width: 800px;" width="100%"/> <img src="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/preview2.jpg" style="max-width: 800px;" width="100%"/> <img src="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/preview3.jpg" style="max-width: 800px;" width="100%"/> ### dreamlike.art You can use this model for free on [dreamlike.art](https://dreamlike.art/)! <img src="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/dreamlike.jpg" style="max-width: 1000px;" width="100%"/> ### CKPT [Download dreamlike-photoreal-2.0.ckpt (2.13GB)](https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/dreamlike-photoreal-2.0.ckpt) ### Safetensors [Download dreamlike-photoreal-2.0.safetensors (2.13GB)](https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/dreamlike-photoreal-2.0.safetensors) ### ๐Ÿงจ Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion Pipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). ```python from diffusers import StableDiffusionPipeline import torch model_id = "dreamlike-art/dreamlike-photoreal-2.0" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "photo, a church in the middle of a field of crops, bright cinematic lighting, gopro, fisheye lens" image = pipe(prompt).images[0] image.save("./result.jpg") ``` <img src="https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/resolve/main/church.jpg" style="max-width: 640px;" width="100%"/> # License This model is licesed under a **modified** CreativeML OpenRAIL-M license. - **You are not allowed to host, finetune, or do inference with the model or its derivatives on websites/apps/etc. If you want to, please email us at [email protected]** - **You are free to host the model card and files (Without any actual inference or finetuning) on both commercial and non-commercial websites/apps/etc. Please state the full model name (Dreamlike Photoreal 2.0) and include the license as well as a link to the model card (https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0)** - **You are free to use the outputs (images) of the model for commercial purposes in teams of 10 or less** - You can't use the model to deliberately produce nor share illegal or harmful outputs or content - The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license - You may re-distribute the weights. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the **modified** CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license here: https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0/blob/main/LICENSE.md
iamannika/bert-finetuned-squad
iamannika
2023-02-09T20:19:14Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-02-09T06:11:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Rolo/ppo-SnowballTarget2
Rolo
2023-02-09T20:15:29Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-02-09T20:15:19Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Rolo/ppo-SnowballTarget2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
jamesdolezal/CTransPath
jamesdolezal
2023-02-09T19:17:09Z
0
2
null
[ "license:gpl-3.0", "region:us" ]
null
2023-02-09T19:10:23Z
--- license: gpl-3.0 --- [UNOFFICIAL] This is the pretrained CTransPath model that accompanies the manuscript Transformer-based Unsupervised Contrastive Learning for Histopathological Image Classification, published by Xiyue Wang *et al* in Medical Image Analysis (October 2022, DOI: https://doi.org/10.1016/j.media.2022.102559) This model has been uploaded to HuggingFace for easier sharing, but has not been verified by the original authors and is in no way affiliated with the original authors. The official pretrained model is available on the official GitHub repository (https://github.com/Xiyue-Wang/TransPath) and Google Drive (https://drive.google.com/file/d/1DoDx_70_TLj98gTf6YTXnu4tFhsFocDX/view?usp=sharing). The license as included in the original repository is GPL-3.0.
lmqg/flan-t5-small-squad-ae
lmqg
2023-02-09T19:16:04Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "answer extraction", "en", "dataset:lmqg/qg_squad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-09T19:14:57Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: en datasets: - lmqg/qg_squad pipeline_tag: text2text-generation tags: - answer extraction widget: - text: "extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress." example_title: "Answering Extraction Example 1" - text: "extract answers: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress. <hl>" example_title: "Answering Extraction Example 2" model-index: - name: lmqg/flan-t5-small-squad-ae results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_squad type: default args: default metrics: - name: BLEU4 (Answer Extraction) type: bleu4_answer_extraction value: 34.6 - name: ROUGE-L (Answer Extraction) type: rouge_l_answer_extraction value: 67.61 - name: METEOR (Answer Extraction) type: meteor_answer_extraction value: 42.59 - name: BERTScore (Answer Extraction) type: bertscore_answer_extraction value: 91.1 - name: MoverScore (Answer Extraction) type: moverscore_answer_extraction value: 80.54 - name: AnswerF1Score (Answer Extraction) type: answer_f1_score__answer_extraction value: 68.13 - name: AnswerExactMatch (Answer Extraction) type: answer_exact_match_answer_extraction value: 55.83 --- # Model Card of `lmqg/flan-t5-small-squad-ae` This model is fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) for answer extraction on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) - **Language:** en - **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/flan-t5-small-squad-ae") # model prediction answers = model.generate_a("William Turner was an English painter who specialised in watercolour landscapes") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/flan-t5-small-squad-ae") output = pipe("extract answers: <hl> Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records. <hl> Her performance in the film received praise from critics, and she garnered several nominations for her portrayal of James, including a Satellite Award nomination for Best Supporting Actress, and a NAACP Image Award nomination for Outstanding Supporting Actress.") ``` ## Evaluation - ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/flan-t5-small-squad-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:---------------------------------------------------------------| | AnswerExactMatch | 55.83 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | AnswerF1Score | 68.13 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | BERTScore | 91.1 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_1 | 48.25 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_2 | 43.39 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_3 | 38.64 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_4 | 34.6 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | METEOR | 42.59 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | MoverScore | 80.54 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | ROUGE_L | 67.61 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_squad - dataset_name: default - input_types: ['paragraph_sentence'] - output_types: ['answer'] - prefix_types: ['ae'] - model: google/flan-t5-small - max_length: 512 - max_length_output: 32 - epoch: 8 - batch: 64 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 1 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/flan-t5-small-squad-ae/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
atorre/poca-SoccerTwos-20M
atorre
2023-02-09T19:15:25Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-02-09T19:15:15Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: atorre/poca-SoccerTwos-20M 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
figfig/whisper-small-en
figfig
2023-02-09T19:10:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "en", "dataset:figfig/restaurant_order_test", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-06T14:06:09Z
--- language: - en license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - figfig/restaurant_order_test metrics: - wer model-index: - name: restaurant_test_model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: test_data type: figfig/restaurant_order_test args: 'config: en, split: test' metrics: - name: Wer type: wer value: 78.57142857142857 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # restaurant_test_model This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the test_data dataset. It achieves the following results on the evaluation set: - Loss: 0.5435 - Wer: 78.5714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 10.0 | 10 | 2.2425 | 7.1429 | | No log | 20.0 | 20 | 0.6651 | 0.0 | | 2.4375 | 30.0 | 30 | 0.5776 | 35.7143 | | 2.4375 | 40.0 | 40 | 0.5435 | 78.5714 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mjaydenkim/autotrain-ma-detection-test-3372892714
mjaydenkim
2023-02-09T19:08:48Z
104
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:mjaydenkim/autotrain-data-ma-detection-test", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-09T19:07:39Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain ๐Ÿค—" datasets: - mjaydenkim/autotrain-data-ma-detection-test co2_eq_emissions: emissions: 1.2555854454965398 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 3372892714 - CO2 Emissions (in grams): 1.2556 ## Validation Metrics - Loss: 0.153 - Accuracy: 0.941 - Precision: 0.892 - Recall: 0.966 - AUC: 0.988 - F1: 0.928 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/mjaydenkim/autotrain-ma-detection-test-3372892714 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mjaydenkim/autotrain-ma-detection-test-3372892714", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("mjaydenkim/autotrain-ma-detection-test-3372892714", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
fermaat/a2c-AntBulletEnv-v0
fermaat
2023-02-09T19:07:23Z
6
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T19:06:04Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2275.50 +/- 137.45 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
figfig/restaurant_local_test_model
figfig
2023-02-09T18:43:14Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-02-09T17:05:39Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure [optional] <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] ### Summary # Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed]
niv-al/sqt5-small
niv-al
2023-02-09T18:03:31Z
103
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "sq", "en", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-08T20:42:37Z
--- license: openrail language: - sq - en ---
yujiepan/bert-base-uncased-sst2-unstructured80-PTQ
yujiepan
2023-02-09T17:57:58Z
32
0
transformers
[ "transformers", "pytorch", "openvino", "bert", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-02-06T20:11:20Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue model-index: - name: bert-base-uncased-sst2-unstructured80-PTQ results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sst2-unstructured80-PTQ This model conducts simple post training quantization of [yujiepan/bert-base-uncased-sst2-unstructured-sparsity-80](https://huggingface.co/yujiepan/bert-base-uncased-sst2-unstructured-sparsity-80) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - torch loss: 0.4029 - torch accuracy: 0.9128 - OpenVINO IR accuracy: 0.9117 - Sparsity in transformer block linear layers: 0.80 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - num_epochs: 12.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
sh0xb0x/avatarbitch
sh0xb0x
2023-02-09T17:56:12Z
32
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-09T17:54:40Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: avatar101 --- ### AVATARBITCH Dreambooth model trained by sh0xb0x with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: avatar101 (use that on your prompt) ![avatar101 0](https://huggingface.co/sh0xb0x/avatarbitch/resolve/main/concept_images/avatar101_%281%29.jpg)![avatar101 1](https://huggingface.co/sh0xb0x/avatarbitch/resolve/main/concept_images/avatar101_%282%29.jpg)![avatar101 2](https://huggingface.co/sh0xb0x/avatarbitch/resolve/main/concept_images/avatar101_%283%29.jpg)![avatar101 3](https://huggingface.co/sh0xb0x/avatarbitch/resolve/main/concept_images/avatar101_%284%29.jpg)![avatar101 4](https://huggingface.co/sh0xb0x/avatarbitch/resolve/main/concept_images/avatar101_%285%29.jpg)![avatar101 5](https://huggingface.co/sh0xb0x/avatarbitch/resolve/main/concept_images/avatar101_%286%29.jpg)![avatar101 6](https://huggingface.co/sh0xb0x/avatarbitch/resolve/main/concept_images/avatar101_%287%29.jpg)![avatar101 7](https://huggingface.co/sh0xb0x/avatarbitch/resolve/main/concept_images/avatar101_%288%29.jpg)
yujiepan/bert-base-uncased-sst2-PTQ
yujiepan
2023-02-09T17:51:33Z
5
0
transformers
[ "transformers", "pytorch", "openvino", "bert", "generated_from_trainer", "en", "dataset:glue", "endpoints_compatible", "region:us" ]
null
2023-02-09T17:38:16Z
--- language: - en tags: - generated_from_trainer datasets: - glue model-index: - name: bert-base-uncased-sst2-PTQ results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sst2-PTQ This model conducts simple post training quantization of [textattack/bert-base-uncased-SST-2](https://huggingface.co/textattack/bert-base-uncased-SST-2) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - torch loss: 0.2140 - torch accuracy: 0.9243 - OpenVINO IR accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2