modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-26 18:27:55
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
499 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-26 18:27:32
card
stringlengths
11
1.01M
minhtrannnn/93f34ccb-4359-4558-aa70-097a6d651c99
minhtrannnn
2025-01-29T08:01:38Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Coder-1.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T07:16:11Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 93f34ccb-4359-4558-aa70-097a6d651c99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 425476553ab111b0_train_data.json ds_type: json format: custom path: /workspace/input_data/425476553ab111b0_train_data.json type: field_input: Content field_instruction: Title field_output: Summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: minhtrannnn/93f34ccb-4359-4558-aa70-097a6d651c99 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/425476553ab111b0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6972c938-4c63-447c-ab05-b15cf2af5926 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6972c938-4c63-447c-ab05-b15cf2af5926 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 93f34ccb-4359-4558-aa70-097a6d651c99 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9832 | 0.0233 | 200 | 1.6902 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
NalDice/askvox-1.3
NalDice
2025-01-29T08:00:46Z
14
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T07:55:58Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** NalDice - **License:** apache-2.0 - **Finetuned from model :** meta-llama/Llama-3.1-8B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF
mradermacher
2025-01-29T08:00:16Z
115
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:bruhzair/Behemoth-Magnum-v4-SLERP-123b", "base_model:quantized:bruhzair/Behemoth-Magnum-v4-SLERP-123b", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-29T00:43:58Z
--- base_model: bruhzair/Behemoth-Magnum-v4-SLERP-123b language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/bruhzair/Behemoth-Magnum-v4-SLERP-123b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ1_S.gguf) | i1-IQ1_S | 26.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ1_M.gguf) | i1-IQ1_M | 28.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 32.5 | | | [GGUF](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 36.2 | | | [GGUF](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ2_S.gguf) | i1-IQ2_S | 38.5 | | | [GGUF](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 41.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ2_M.gguf) | i1-IQ2_M | 41.7 | | | [GGUF](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q2_K.gguf) | i1-Q2_K | 45.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 47.1 | lower quality | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ3_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ3_XS.gguf.part2of2) | i1-IQ3_XS | 50.2 | | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q3_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q3_K_S.gguf.part2of2) | i1-Q3_K_S | 52.9 | IQ3_XS probably better | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ3_S.gguf.part2of2) | i1-IQ3_S | 53.1 | beats Q3_K* | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ3_M.gguf.part2of2) | i1-IQ3_M | 55.4 | | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q3_K_M.gguf.part2of2) | i1-Q3_K_M | 59.2 | IQ3_S probably better | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q3_K_L.gguf.part2of2) | i1-Q3_K_L | 64.7 | IQ3_M probably better | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-IQ4_XS.gguf.part2of2) | i1-IQ4_XS | 65.5 | | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q4_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q4_0.gguf.part2of2) | i1-Q4_0 | 69.4 | fast, low quality | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q4_K_S.gguf.part2of2) | i1-Q4_K_S | 69.7 | optimal size/speed/quality | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q4_K_M.gguf.part2of2) | i1-Q4_K_M | 73.3 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q4_1.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q4_1.gguf.part2of2) | i1-Q4_1 | 76.8 | | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 84.5 | | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 86.6 | | | [PART 1](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q6_K.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q6_K.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Behemoth-Magnum-v4-SLERP-123b-i1-GGUF/resolve/main/Behemoth-Magnum-v4-SLERP-123b.i1-Q6_K.gguf.part3of3) | i1-Q6_K | 100.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
nat-hunt/75eb649a-a9fb-4ee5-86ca-d9762e8c3e38
nat-hunt
2025-01-29T07:59:59Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-Math-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:58:24Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 75eb649a-a9fb-4ee5-86ca-d9762e8c3e38 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Math-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c9e29dc819e749df_train_data.json ds_type: json format: custom path: /workspace/input_data/c9e29dc819e749df_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nat-hunt/75eb649a-a9fb-4ee5-86ca-d9762e8c3e38 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/c9e29dc819e749df_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: afe39e60-71c0-4e45-bd5f-eb3ea571cc42 wandb_project: Birthday-SN56-4-Gradients-On-Demand wandb_run: your_name wandb_runid: afe39e60-71c0-4e45-bd5f-eb3ea571cc42 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 75eb649a-a9fb-4ee5-86ca-d9762e8c3e38 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0022 | 1 | 0.7618 | | 0.6419 | 0.0288 | 13 | 0.5557 | | 0.4787 | 0.0576 | 26 | 0.4413 | | 0.4391 | 0.0864 | 39 | 0.4198 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/424d7de6-e9cf-4f1c-91c1-0a71050e5d95
daniel40
2025-01-29T07:59:55Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-01-29T07:59:29Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 424d7de6-e9cf-4f1c-91c1-0a71050e5d95 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 70b74cfb5fc6b710_train_data.json ds_type: json format: custom path: /workspace/input_data/70b74cfb5fc6b710_train_data.json type: field_input: provided_answer field_instruction: question field_output: reference_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/424d7de6-e9cf-4f1c-91c1-0a71050e5d95 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/70b74cfb5fc6b710_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 630a89cd-b8d4-4e00-a067-68d12cb2361e wandb_project: Birthday-SN56-31-Gradients-On-Demand wandb_run: your_name wandb_runid: 630a89cd-b8d4-4e00-a067-68d12cb2361e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 424d7de6-e9cf-4f1c-91c1-0a71050e5d95 This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9369 | 0.0036 | 1 | 11.9376 | | 11.9375 | 0.0474 | 13 | 11.9374 | | 11.937 | 0.0949 | 26 | 11.9370 | | 11.9358 | 0.1423 | 39 | 11.9368 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/e1ea3a15-242b-45ff-86cb-34d56b81e954
trenden
2025-01-29T07:59:12Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-01-29T07:58:45Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: e1ea3a15-242b-45ff-86cb-34d56b81e954 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 70b74cfb5fc6b710_train_data.json ds_type: json format: custom path: /workspace/input_data/70b74cfb5fc6b710_train_data.json type: field_input: provided_answer field_instruction: question field_output: reference_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/e1ea3a15-242b-45ff-86cb-34d56b81e954 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/70b74cfb5fc6b710_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 630a89cd-b8d4-4e00-a067-68d12cb2361e wandb_project: Birthday-SN56-26-Gradients-On-Demand wandb_run: your_name wandb_runid: 630a89cd-b8d4-4e00-a067-68d12cb2361e warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e1ea3a15-242b-45ff-86cb-34d56b81e954 This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9367 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0036 | 1 | 11.9376 | | 11.9381 | 0.0474 | 13 | 11.9373 | | 11.9372 | 0.0949 | 26 | 11.9369 | | 11.9365 | 0.1423 | 39 | 11.9367 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/66c5900c-d44d-4065-83eb-0be8f4bec9c1
Best000
2025-01-29T07:59:01Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-01-29T07:58:34Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 66c5900c-d44d-4065-83eb-0be8f4bec9c1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 70b74cfb5fc6b710_train_data.json ds_type: json format: custom path: /workspace/input_data/70b74cfb5fc6b710_train_data.json type: field_input: provided_answer field_instruction: question field_output: reference_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/66c5900c-d44d-4065-83eb-0be8f4bec9c1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/70b74cfb5fc6b710_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 630a89cd-b8d4-4e00-a067-68d12cb2361e wandb_project: Birthday-SN56-32-Gradients-On-Demand wandb_run: your_name wandb_runid: 630a89cd-b8d4-4e00-a067-68d12cb2361e warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 66c5900c-d44d-4065-83eb-0be8f4bec9c1 This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0036 | 1 | 11.9376 | | 11.9381 | 0.0474 | 13 | 11.9376 | | 11.9375 | 0.0949 | 26 | 11.9374 | | 11.937 | 0.1423 | 39 | 11.9372 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/be00ff20-4c88-491e-a941-8fed010baafe
daniel40
2025-01-29T07:59:01Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-01-29T07:58:35Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: be00ff20-4c88-491e-a941-8fed010baafe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 70b74cfb5fc6b710_train_data.json ds_type: json format: custom path: /workspace/input_data/70b74cfb5fc6b710_train_data.json type: field_input: provided_answer field_instruction: question field_output: reference_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/be00ff20-4c88-491e-a941-8fed010baafe hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/70b74cfb5fc6b710_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 630a89cd-b8d4-4e00-a067-68d12cb2361e wandb_project: Birthday-SN56-27-Gradients-On-Demand wandb_run: your_name wandb_runid: 630a89cd-b8d4-4e00-a067-68d12cb2361e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # be00ff20-4c88-491e-a941-8fed010baafe This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0036 | 1 | 11.9376 | | 11.9381 | 0.0474 | 13 | 11.9374 | | 11.9373 | 0.0949 | 26 | 11.9370 | | 11.9366 | 0.1423 | 39 | 11.9368 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nadejdatarabukina/6cc8f6cc-c87a-4dfc-99f5-45a9367cb99a
nadejdatarabukina
2025-01-29T07:58:57Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-01-29T07:58:36Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 6cc8f6cc-c87a-4dfc-99f5-45a9367cb99a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 70b74cfb5fc6b710_train_data.json ds_type: json format: custom path: /workspace/input_data/70b74cfb5fc6b710_train_data.json type: field_input: provided_answer field_instruction: question field_output: reference_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: nadejdatarabukina/6cc8f6cc-c87a-4dfc-99f5-45a9367cb99a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/70b74cfb5fc6b710_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 630a89cd-b8d4-4e00-a067-68d12cb2361e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 630a89cd-b8d4-4e00-a067-68d12cb2361e warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6cc8f6cc-c87a-4dfc-99f5-45a9367cb99a This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0036 | 1 | 11.9373 | | 11.9368 | 0.0182 | 5 | 11.9372 | | 11.936 | 0.0365 | 10 | 11.9370 | | 11.9364 | 0.0547 | 15 | 11.9367 | | 11.9356 | 0.0730 | 20 | 11.9364 | | 11.9358 | 0.0912 | 25 | 11.9363 | | 11.936 | 0.1095 | 30 | 11.9362 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso09/2c629e4c-15a1-44c5-95ec-c69efcfae813
lesso09
2025-01-29T07:58:16Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:24:58Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: 2c629e4c-15a1-44c5-95ec-c69efcfae813 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: true chat_template: llama3 datasets: - data_files: - 8091ecea1323ab3c_train_data.json ds_type: json format: custom path: /workspace/input_data/8091ecea1323ab3c_train_data.json type: field_instruction: input field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso09/2c629e4c-15a1-44c5-95ec-c69efcfae813 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/8091ecea1323ab3c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9916096-d50d-4acf-9c1a-53873dbe493a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9916096-d50d-4acf-9c1a-53873dbe493a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2c629e4c-15a1-44c5-95ec-c69efcfae813 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 5 | nan | | 0.0 | 0.0003 | 10 | nan | | 0.0 | 0.0004 | 15 | nan | | 0.0 | 0.0005 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kartikgupta373/e3-ad15570-705525-olive-green
kartikgupta373
2025-01-29T07:55:58Z
7
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T07:55:57Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # E3 Ad15570 705525 Olive Green <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kartikgupta373/e3-ad15570-705525-olive-green', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Theros/Qwen2.5-ColdBrew-R1-test5
Theros
2025-01-29T07:55:21Z
10
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:Theros/Qwen2.5-ColdBrew-R1-test3", "base_model:merge:Theros/Qwen2.5-ColdBrew-R1-test3", "base_model:bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2", "base_model:merge:bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T07:50:05Z
--- base_model: - Theros/Qwen2.5-ColdBrew-R1-test3 - bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [Theros/Qwen2.5-ColdBrew-R1-test3](https://huggingface.co/Theros/Qwen2.5-ColdBrew-R1-test3) * [bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2](https://huggingface.co/bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Theros/Qwen2.5-ColdBrew-R1-test3 layer_range: [0, 28] - model: bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2 layer_range: [0, 28] merge_method: slerp base_model: Theros/Qwen2.5-ColdBrew-R1-test3 parameters: t: - filter: self_attn value: [0.3, 0.5, 0.6, 0.6, 0.7] # Avoids extreme low/high fluctuations - filter: mlp value: [0.7, 0.6, 0.5, 0.4, 0.3] # Gradual shift, avoiding an early MLP spike - value: 0.5 dtype: bfloat16 tokenizer_source: union ```
lesso07/b679df98-e3ce-41be-ac81-986ed1d85cee
lesso07
2025-01-29T07:54:37Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.2", "base_model:adapter:unsloth/mistral-7b-instruct-v0.2", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:24:37Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: b679df98-e3ce-41be-ac81-986ed1d85cee results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.2 bf16: true chat_template: llama3 datasets: - data_files: - 8091ecea1323ab3c_train_data.json ds_type: json format: custom path: /workspace/input_data/8091ecea1323ab3c_train_data.json type: field_instruction: input field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso07/b679df98-e3ce-41be-ac81-986ed1d85cee hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/8091ecea1323ab3c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9916096-d50d-4acf-9c1a-53873dbe493a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9916096-d50d-4acf-9c1a-53873dbe493a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b679df98-e3ce-41be-ac81-986ed1d85cee This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 5 | nan | | 0.0 | 0.0003 | 10 | nan | | 0.0 | 0.0004 | 15 | nan | | 0.0 | 0.0005 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kartikgupta373/e2-ad15572-705523-beige
kartikgupta373
2025-01-29T07:54:28Z
7
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T07:54:26Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # E2 Ad15572 705523 Beige <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kartikgupta373/e2-ad15572-705523-beige', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
kartikgupta373/c17-as15617-508804-blue
kartikgupta373
2025-01-29T07:54:12Z
7
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T07:54:09Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # C17 As15617 508804 Blue <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kartikgupta373/c17-as15617-508804-blue', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
lesso17/065a3f75-f659-4f9f-aedd-b61bc6248916
lesso17
2025-01-29T07:52:20Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-7b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-7b-hf-flash", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T07:31:46Z
--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 065a3f75-f659-4f9f-aedd-b61bc6248916 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf-flash bf16: auto chat_template: llama3 datasets: - data_files: - 682a834cc2a59bd6_train_data.json ds_type: json format: custom path: /workspace/input_data/682a834cc2a59bd6_train_data.json type: field_input: context field_instruction: question field_output: cleaned_atom format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso17/065a3f75-f659-4f9f-aedd-b61bc6248916 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/682a834cc2a59bd6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 313417c2-c5dc-47a4-9b02-d2be42090d8e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 313417c2-c5dc-47a4-9b02-d2be42090d8e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 065a3f75-f659-4f9f-aedd-b61bc6248916 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9544 | 0.0513 | 200 | 0.2752 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso01/79fdca8c-f2d9-497c-b20c-2b20f113a10c
lesso01
2025-01-29T07:52:10Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T07:42:46Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: 79fdca8c-f2d9-497c-b20c-2b20f113a10c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: true chat_template: llama3 datasets: - data_files: - f04259c91cb5f8b9_train_data.json ds_type: json format: custom path: /workspace/input_data/f04259c91cb5f8b9_train_data.json type: field_instruction: input field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso01/79fdca8c-f2d9-497c-b20c-2b20f113a10c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/f04259c91cb5f8b9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aac7786a-015b-44a1-9c8e-ad88dd9f945c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: aac7786a-015b-44a1-9c8e-ad88dd9f945c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 79fdca8c-f2d9-497c-b20c-2b20f113a10c This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0006 | 1 | nan | | 0.0 | 0.0030 | 5 | nan | | 0.0 | 0.0060 | 10 | nan | | 0.0 | 0.0090 | 15 | nan | | 0.0 | 0.0121 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kartikgupta373/c16-as15619-508803-blue
kartikgupta373
2025-01-29T07:51:29Z
7
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T07:51:28Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # C16 As15619 508803 Blue <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kartikgupta373/c16-as15619-508803-blue', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
kartikgupta373/c15-as15616-608091-white
kartikgupta373
2025-01-29T07:51:17Z
7
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T07:51:16Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # C15 As15616 608091 White <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kartikgupta373/c15-as15616-608091-white', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mrferr3t/0681d514-17be-4b02-9e4d-74cc17a75330
mrferr3t
2025-01-29T07:50:52Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:44:37Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: 0681d514-17be-4b02-9e4d-74cc17a75330 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f04259c91cb5f8b9_train_data.json ds_type: json format: custom path: /workspace/input_data/f04259c91cb5f8b9_train_data.json type: field_instruction: input field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/0681d514-17be-4b02-9e4d-74cc17a75330 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 12 micro_batch_size: 2 mlflow_experiment_name: /tmp/f04259c91cb5f8b9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aac7786a-015b-44a1-9c8e-ad88dd9f945c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: aac7786a-015b-44a1-9c8e-ad88dd9f945c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0681d514-17be-4b02-9e4d-74cc17a75330 This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3891 | 0.0006 | 1 | 0.6590 | | 1.2638 | 0.0018 | 3 | 0.6189 | | 2.3539 | 0.0036 | 6 | 0.5214 | | 1.8702 | 0.0054 | 9 | 0.4780 | | 2.0651 | 0.0072 | 12 | 0.4419 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
WUw0/596601857-1
WUw0
2025-01-29T07:49:49Z
19
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-28T21:10:12Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: 596601857-1 --- # 596601857 1 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `596601857-1` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WUw0/596601857-1', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
kartikgupta373/as15833-509072-evergreen
kartikgupta373
2025-01-29T07:49:29Z
7
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T07:49:27Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # As15833 509072 Evergreen <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kartikgupta373/as15833-509072-evergreen', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
shibajustfor/3c068898-1d16-488d-993e-8f9a6c3a7f85
shibajustfor
2025-01-29T07:47:38Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:43:35Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: 3c068898-1d16-488d-993e-8f9a6c3a7f85 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f04259c91cb5f8b9_train_data.json ds_type: json format: custom path: /workspace/input_data/f04259c91cb5f8b9_train_data.json type: field_instruction: input field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/3c068898-1d16-488d-993e-8f9a6c3a7f85 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/f04259c91cb5f8b9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aac7786a-015b-44a1-9c8e-ad88dd9f945c wandb_project: Birthday-SN56-39-Gradients-On-Demand wandb_run: your_name wandb_runid: aac7786a-015b-44a1-9c8e-ad88dd9f945c warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3c068898-1d16-488d-993e-8f9a6c3a7f85 This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | nan | | 0.0 | 0.0078 | 13 | nan | | 0.0 | 0.0157 | 26 | nan | | 0.0 | 0.0235 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/ed22e003-10c3-425d-a914-2b5063c64906
trenden
2025-01-29T07:47:29Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:fxmarty/really-tiny-falcon-testing", "base_model:adapter:fxmarty/really-tiny-falcon-testing", "license:mit", "region:us" ]
null
2025-01-29T07:46:50Z
--- library_name: peft license: mit base_model: fxmarty/really-tiny-falcon-testing tags: - axolotl - generated_from_trainer model-index: - name: ed22e003-10c3-425d-a914-2b5063c64906 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/really-tiny-falcon-testing bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0df5b3e9787ca7a4_train_data.json ds_type: json format: custom path: /workspace/input_data/0df5b3e9787ca7a4_train_data.json type: field_input: Genre field_instruction: Title field_output: Overview format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/ed22e003-10c3-425d-a914-2b5063c64906 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/0df5b3e9787ca7a4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 354c2a43-076f-4bcc-92cb-a8316275eb69 wandb_project: Birthday-SN56-3-Gradients-On-Demand wandb_run: your_name wandb_runid: 354c2a43-076f-4bcc-92cb-a8316275eb69 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ed22e003-10c3-425d-a914-2b5063c64906 This model is a fine-tuned version of [fxmarty/really-tiny-falcon-testing](https://huggingface.co/fxmarty/really-tiny-falcon-testing) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.0802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 11.0880 | | 44.3578 | 0.0023 | 13 | 11.0854 | | 44.3371 | 0.0045 | 26 | 11.0818 | | 44.3264 | 0.0068 | 39 | 11.0802 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
beingbatman/CTMAE-P2-V2-S2
beingbatman
2025-01-29T07:46:17Z
20
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-large-finetuned-kinetics", "base_model:finetune:MCG-NJU/videomae-large-finetuned-kinetics", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-01-29T04:09:56Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-large-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: CTMAE-P2-V2-S2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CTMAE-P2-V2-S2 This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5069 - Accuracy: 0.7333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 6500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.6135 | 0.0202 | 131 | 0.7942 | 0.5556 | | 0.4654 | 1.0202 | 262 | 2.2124 | 0.5556 | | 1.1122 | 2.0202 | 393 | 1.8386 | 0.5556 | | 0.7797 | 3.0202 | 524 | 0.9344 | 0.5556 | | 1.379 | 4.0202 | 655 | 1.5755 | 0.5556 | | 0.7305 | 5.0202 | 786 | 1.4677 | 0.5556 | | 0.9115 | 6.0202 | 917 | 1.5456 | 0.5556 | | 1.6622 | 7.0202 | 1048 | 1.2113 | 0.5556 | | 0.6868 | 8.0202 | 1179 | 1.8451 | 0.5556 | | 1.199 | 9.0202 | 1310 | 1.3622 | 0.5556 | | 0.7459 | 10.0202 | 1441 | 1.4034 | 0.5556 | | 0.5574 | 11.0202 | 1572 | 0.9836 | 0.5556 | | 0.3742 | 12.0202 | 1703 | 0.6934 | 0.6889 | | 0.3303 | 13.0202 | 1834 | 0.7161 | 0.6889 | | 0.8856 | 14.0202 | 1965 | 1.5608 | 0.5556 | | 0.186 | 15.0202 | 2096 | 0.7782 | 0.6 | | 0.7263 | 16.0202 | 2227 | 1.4438 | 0.5778 | | 1.552 | 17.0202 | 2358 | 1.2117 | 0.6222 | | 0.1031 | 18.0202 | 2489 | 1.2174 | 0.6667 | | 1.193 | 19.0202 | 2620 | 1.2043 | 0.6444 | | 0.322 | 20.0202 | 2751 | 1.3639 | 0.6444 | | 0.3791 | 21.0202 | 2882 | 1.3107 | 0.6444 | | 0.6201 | 22.0202 | 3013 | 1.2797 | 0.6889 | | 0.9547 | 23.0202 | 3144 | 1.1654 | 0.6444 | | 1.4286 | 24.0202 | 3275 | 1.4078 | 0.6667 | | 0.6023 | 25.0202 | 3406 | 1.5069 | 0.7333 | | 0.2925 | 26.0202 | 3537 | 1.4529 | 0.6889 | | 0.1445 | 27.0202 | 3668 | 1.4417 | 0.7333 | | 0.2717 | 28.0202 | 3799 | 2.1237 | 0.6444 | | 0.411 | 29.0202 | 3930 | 1.5399 | 0.6889 | | 0.6632 | 30.0202 | 4061 | 1.6289 | 0.7333 | | 0.3 | 31.0202 | 4192 | 1.9944 | 0.6222 | | 0.386 | 32.0202 | 4323 | 1.9271 | 0.6889 | | 0.1569 | 33.0202 | 4454 | 1.8172 | 0.6889 | | 0.2135 | 34.0202 | 4585 | 1.7862 | 0.6889 | | 0.3142 | 35.0202 | 4716 | 1.6904 | 0.7111 | | 0.2179 | 36.0202 | 4847 | 1.9549 | 0.7111 | | 0.7634 | 37.0202 | 4978 | 1.9367 | 0.6889 | | 0.0008 | 38.0202 | 5109 | 1.9890 | 0.6667 | | 0.1467 | 39.0202 | 5240 | 1.9472 | 0.6889 | | 0.6641 | 40.0202 | 5371 | 2.2295 | 0.6889 | | 0.3125 | 41.0202 | 5502 | 1.8309 | 0.7111 | | 0.1987 | 42.0202 | 5633 | 2.1643 | 0.6889 | | 0.067 | 43.0202 | 5764 | 2.1776 | 0.6667 | | 0.1513 | 44.0202 | 5895 | 2.1978 | 0.6667 | | 0.0032 | 45.0202 | 6026 | 1.9291 | 0.7333 | | 0.2596 | 46.0202 | 6157 | 2.0961 | 0.6889 | | 0.0006 | 47.0202 | 6288 | 2.0126 | 0.7111 | | 0.0305 | 48.0202 | 6419 | 2.0029 | 0.7333 | | 0.0004 | 49.0125 | 6500 | 2.0025 | 0.7333 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.1 - Tokenizers 0.20.0
krowiemlekommm/PJN_moondream2
krowiemlekommm
2025-01-29T07:46:00Z
10
0
transformers
[ "transformers", "safetensors", "moondream1", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2025-01-29T07:44:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nathanialhunt/54be0fc1-5f35-4ada-b449-48347a20051f
nathanialhunt
2025-01-29T07:45:55Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:41:59Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: 54be0fc1-5f35-4ada-b449-48347a20051f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f04259c91cb5f8b9_train_data.json ds_type: json format: custom path: /workspace/input_data/f04259c91cb5f8b9_train_data.json type: field_instruction: input field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/54be0fc1-5f35-4ada-b449-48347a20051f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/f04259c91cb5f8b9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aac7786a-015b-44a1-9c8e-ad88dd9f945c wandb_project: Birthday-SN56-5-Gradients-On-Demand wandb_run: your_name wandb_runid: aac7786a-015b-44a1-9c8e-ad88dd9f945c warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 54be0fc1-5f35-4ada-b449-48347a20051f This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | nan | | 0.0 | 0.0078 | 13 | nan | | 0.0 | 0.0157 | 26 | nan | | 0.0 | 0.0235 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
TweedleDeepLearnings/29ec791c-168b-4f34-acee-3161602a6154
TweedleDeepLearnings
2025-01-29T07:45:44Z
251
0
peft
[ "peft", "safetensors", "axolotl", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "license:other", "region:us" ]
null
2025-01-29T05:08:20Z
--- library_name: peft license: other base_model: huggyllama/llama-7b tags: - axolotl - generated_from_trainer model-index: - name: c4b201cf-0eeb-4380-a91f-cd6329614a81 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora bf16: auto chat_template: llama3 dataset_prepared_path: null debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true gradient_clipping: 0.1 group_by_length: false hub_repo: null hub_strategy: end hub_token: null learning_rate: 1.0e-04 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: linear max_steps: 200 micro_batch_size: 128 mlflow_experiment_name: /tmp/aed51b8e2c089967_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 4096 special_tokens: pad_token: </PAD> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6a8f76dd-7262-490a-905c-7b83c0f56891 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6a8f76dd-7262-490a-905c-7b83c0f56891 warmup_steps: 5 weight_decay: 0.1 xformers_attention: true ``` </details><br> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 128 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 2048 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5604/16e1abfb-e0bf-41b2-813c-51c3105e4cc1
prxy5604
2025-01-29T07:45:03Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-135M", "base_model:adapter:unsloth/SmolLM2-135M", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:41:05Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-135M tags: - axolotl - generated_from_trainer model-index: - name: 16e1abfb-e0bf-41b2-813c-51c3105e4cc1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-135M bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - fb3f054252ee5303_train_data.json ds_type: json format: custom path: /workspace/input_data/fb3f054252ee5303_train_data.json type: field_input: premise field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/16e1abfb-e0bf-41b2-813c-51c3105e4cc1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/fb3f054252ee5303_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aa00008e-67c1-4447-afe6-ef69d7aebe9e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: aa00008e-67c1-4447-afe6-ef69d7aebe9e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 16e1abfb-e0bf-41b2-813c-51c3105e4cc1 This model is a fine-tuned version of [unsloth/SmolLM2-135M](https://huggingface.co/unsloth/SmolLM2-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.8549 | 0.0048 | 1 | 3.9853 | | 1.563 | 0.2415 | 50 | 1.3595 | | 1.2227 | 0.4831 | 100 | 1.2786 | | 0.9032 | 0.7246 | 150 | 1.1970 | | 1.2691 | 0.9662 | 200 | 1.1563 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhungphammmmm/4dada709-a18d-42bf-9bbf-1358a29e405b
nhungphammmmm
2025-01-29T07:44:28Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M", "base_model:adapter:unsloth/SmolLM-360M", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T07:03:08Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M tags: - axolotl - generated_from_trainer model-index: - name: 4dada709-a18d-42bf-9bbf-1358a29e405b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ac004a2a3ec8e832_train_data.json ds_type: json format: custom path: /workspace/input_data/ac004a2a3ec8e832_train_data.json type: field_input: title field_instruction: content field_output: summary1 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhungphammmmm/4dada709-a18d-42bf-9bbf-1358a29e405b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ac004a2a3ec8e832_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 77344871-dc6c-43c2-89a7-28217f41b23c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 77344871-dc6c-43c2-89a7-28217f41b23c warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 4dada709-a18d-42bf-9bbf-1358a29e405b This model is a fine-tuned version of [unsloth/SmolLM-360M](https://huggingface.co/unsloth/SmolLM-360M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.879 | 0.0027 | 200 | 1.9078 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
SSethisak/xlsr-khmer-fleur
SSethisak
2025-01-29T07:43:15Z
172
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "km", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-01-16T15:44:36Z
--- library_name: transformers language: - km --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Fine Tuned wav2vec2 asr on khmer dataset ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
robiual-awal/af590153-3994-402a-918c-4c7af9d54083
robiual-awal
2025-01-29T07:43:15Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-7b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-7b-hf-flash", "region:us" ]
null
2025-01-29T07:38:16Z
--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: af590153-3994-402a-918c-4c7af9d54083 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 682a834cc2a59bd6_train_data.json ds_type: json format: custom path: /workspace/input_data/682a834cc2a59bd6_train_data.json type: field_input: context field_instruction: question field_output: cleaned_atom format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/af590153-3994-402a-918c-4c7af9d54083 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/682a834cc2a59bd6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 313417c2-c5dc-47a4-9b02-d2be42090d8e wandb_project: Birthday-SN56-30-Gradients-On-Demand wandb_run: your_name wandb_runid: 313417c2-c5dc-47a4-9b02-d2be42090d8e warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # af590153-3994-402a-918c-4c7af9d54083 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 1.4773 | | 4.9829 | 0.0033 | 13 | 0.4564 | | 1.9428 | 0.0067 | 26 | 0.3447 | | 1.3989 | 0.0100 | 39 | 0.3213 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso16/7bdf206b-d218-447d-9628-3b3bba87cdc5
lesso16
2025-01-29T07:42:54Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:fxmarty/really-tiny-falcon-testing", "base_model:adapter:fxmarty/really-tiny-falcon-testing", "license:mit", "region:us" ]
null
2025-01-29T07:42:04Z
--- library_name: peft license: mit base_model: fxmarty/really-tiny-falcon-testing tags: - axolotl - generated_from_trainer model-index: - name: 7bdf206b-d218-447d-9628-3b3bba87cdc5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/really-tiny-falcon-testing bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0df5b3e9787ca7a4_train_data.json ds_type: json format: custom path: /workspace/input_data/0df5b3e9787ca7a4_train_data.json type: field_input: Genre field_instruction: Title field_output: Overview format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso16/7bdf206b-d218-447d-9628-3b3bba87cdc5 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/0df5b3e9787ca7a4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 354c2a43-076f-4bcc-92cb-a8316275eb69 wandb_project: multi wandb_run: your_name wandb_runid: 354c2a43-076f-4bcc-92cb-a8316275eb69 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7bdf206b-d218-447d-9628-3b3bba87cdc5 This model is a fine-tuned version of [fxmarty/really-tiny-falcon-testing](https://huggingface.co/fxmarty/really-tiny-falcon-testing) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.0712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 44.2882 | 0.2789 | 200 | 11.0712 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Minerva-14b-V0.1-GGUF
mradermacher
2025-01-29T07:42:08Z
297
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Triangle104/Minerva-14b-V0.1", "base_model:quantized:Triangle104/Minerva-14b-V0.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-27T13:23:45Z
--- base_model: Triangle104/Minerva-14b-V0.1 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Triangle104/Minerva-14b-V0.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF/resolve/main/Minerva-14b-V0.1.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF/resolve/main/Minerva-14b-V0.1.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF/resolve/main/Minerva-14b-V0.1.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF/resolve/main/Minerva-14b-V0.1.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF/resolve/main/Minerva-14b-V0.1.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF/resolve/main/Minerva-14b-V0.1.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF/resolve/main/Minerva-14b-V0.1.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF/resolve/main/Minerva-14b-V0.1.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF/resolve/main/Minerva-14b-V0.1.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF/resolve/main/Minerva-14b-V0.1.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF/resolve/main/Minerva-14b-V0.1.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Minerva-14b-V0.1-i1-GGUF
mradermacher
2025-01-29T07:42:08Z
649
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Triangle104/Minerva-14b-V0.1", "base_model:quantized:Triangle104/Minerva-14b-V0.1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-29T00:05:43Z
--- base_model: Triangle104/Minerva-14b-V0.1 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Triangle104/Minerva-14b-V0.1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Minerva-14b-V0.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ1_M.gguf) | i1-IQ1_M | 4.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ2_M.gguf) | i1-IQ2_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q4_1.gguf) | i1-Q4_1 | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Minerva-14b-V0.1-i1-GGUF/resolve/main/Minerva-14b-V0.1.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
lesso06/6469a921-b91b-42a3-a0b8-5de95f0ba723
lesso06
2025-01-29T07:40:51Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-7b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-7b-hf-flash", "region:us" ]
null
2025-01-29T07:28:55Z
--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 6469a921-b91b-42a3-a0b8-5de95f0ba723 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 682a834cc2a59bd6_train_data.json ds_type: json format: custom path: /workspace/input_data/682a834cc2a59bd6_train_data.json type: field_input: context field_instruction: question field_output: cleaned_atom format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso06/6469a921-b91b-42a3-a0b8-5de95f0ba723 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/682a834cc2a59bd6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 313417c2-c5dc-47a4-9b02-d2be42090d8e wandb_project: multi wandb_run: your_name wandb_runid: 313417c2-c5dc-47a4-9b02-d2be42090d8e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6469a921-b91b-42a3-a0b8-5de95f0ba723 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9214 | 0.4107 | 200 | 0.2535 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5604/b225d555-ab72-4134-9a1c-d31b506b8bab
prxy5604
2025-01-29T07:40:20Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B", "base_model:adapter:unsloth/Qwen2-7B", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:13:45Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B tags: - axolotl - generated_from_trainer model-index: - name: b225d555-ab72-4134-9a1c-d31b506b8bab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - c710dbacd1baf82d_train_data.json ds_type: json format: custom path: /workspace/input_data/c710dbacd1baf82d_train_data.json type: field_instruction: prompt field_output: story format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/b225d555-ab72-4134-9a1c-d31b506b8bab hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/c710dbacd1baf82d_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 96aa06fc-7593-4da9-898b-b6eb1b530143 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 96aa06fc-7593-4da9-898b-b6eb1b530143 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b225d555-ab72-4134-9a1c-d31b506b8bab This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co/unsloth/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6271 | 0.0120 | 1 | 2.8036 | | 2.6876 | 0.6006 | 50 | 2.6502 | | 2.6007 | 1.2012 | 100 | 2.6470 | | 2.5217 | 1.8018 | 150 | 2.6516 | | 2.4413 | 2.4024 | 200 | 2.6540 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/e88f772c-9042-44b4-92e9-087a69d265aa
nhung01
2025-01-29T07:39:40Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Coder-1.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T07:16:32Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: e88f772c-9042-44b4-92e9-087a69d265aa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 425476553ab111b0_train_data.json ds_type: json format: custom path: /workspace/input_data/425476553ab111b0_train_data.json type: field_input: Content field_instruction: Title field_output: Summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/e88f772c-9042-44b4-92e9-087a69d265aa hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/425476553ab111b0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6972c938-4c63-447c-ab05-b15cf2af5926 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6972c938-4c63-447c-ab05-b15cf2af5926 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e88f772c-9042-44b4-92e9-087a69d265aa This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9891 | 0.0233 | 200 | 1.6897 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Lil-R/BLYMM-Qwen-DareTies-V1
Lil-R
2025-01-29T07:38:44Z
227
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-21T09:25:07Z
--- library_name: transformers license: apache-2.0 --- # **BLYMM-Qwen-DareTies-V1** This model has been produced by: - **ROBERGE Marial**, engineering student at French Engineering School ECE - **ESCRIVA Mathis**, engineering student at French Engineering School ECE - **LALAIN Youri**, engineering student at French Engineering School ECE - **RAGE LILIAN**, engineering student at French Engineering School ECE - **HUVELLE Baptiste**, engineering student at French Engineering School ECE Under the supervision of: - **Andre-Louis Rochet**, Lecturer at ECE & Co-Founder of TW3 Partners - **Paul Lemaistre**, CTO of TW3 Partners With the contribution of: - **ECE engineering school** as sponsor and financial contributor - **François STEPHAN** as director of ECE - **Gérard REUS** as acting director of iLAB - **Matthieu JOLLARD** ECE Alumni - **Louis GARCIA** ECE Alumni ### Supervisory structure The iLab (intelligence Lab) is a structure created by the ECE and dedicated to artificial intelligence ### About ECE ECE, a multi-program, multi-campus, and multi-sector engineering school specializing in digital engineering, trains engineers and technology experts for the 21st century, capable of meeting the challenges of the dual digital and sustainable development revolutions. ## **Caractéristiques** - **Méthode de fusion :** Dare_ties - **Modèles sources :** - [newsbang/Homer-v1.0-Qwen2.5-72B](https://huggingface.co/newsbang/Homer-v1.0-Qwen2.5-72B) - [Qwen/Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct)
Kromtao/01_Kromtao_07
Kromtao
2025-01-29T07:37:51Z
25
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-29T07:37:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nhung03/736d0c2e-26ce-451c-9230-5862cee5cb26
nhung03
2025-01-29T07:37:39Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Coder-1.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T07:16:09Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 736d0c2e-26ce-451c-9230-5862cee5cb26 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 425476553ab111b0_train_data.json ds_type: json format: custom path: /workspace/input_data/425476553ab111b0_train_data.json type: field_input: Content field_instruction: Title field_output: Summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/736d0c2e-26ce-451c-9230-5862cee5cb26 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/425476553ab111b0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6972c938-4c63-447c-ab05-b15cf2af5926 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6972c938-4c63-447c-ab05-b15cf2af5926 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 736d0c2e-26ce-451c-9230-5862cee5cb26 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9905 | 0.0233 | 200 | 1.6911 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiual-awal/4834c128-a0af-4e5a-ba84-ea4d1c20ba91
robiual-awal
2025-01-29T07:36:27Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-7b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-7b-hf-flash", "region:us" ]
null
2025-01-29T07:31:37Z
--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 4834c128-a0af-4e5a-ba84-ea4d1c20ba91 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 682a834cc2a59bd6_train_data.json ds_type: json format: custom path: /workspace/input_data/682a834cc2a59bd6_train_data.json type: field_input: context field_instruction: question field_output: cleaned_atom format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/4834c128-a0af-4e5a-ba84-ea4d1c20ba91 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/682a834cc2a59bd6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 313417c2-c5dc-47a4-9b02-d2be42090d8e wandb_project: Birthday-SN56-29-Gradients-On-Demand wandb_run: your_name wandb_runid: 313417c2-c5dc-47a4-9b02-d2be42090d8e warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4834c128-a0af-4e5a-ba84-ea4d1c20ba91 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 1.4773 | | 4.9795 | 0.0033 | 13 | 0.4543 | | 1.9429 | 0.0067 | 26 | 0.3398 | | 1.3899 | 0.0100 | 39 | 0.3185 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/75262155-049f-44bb-915f-8c5d9f31d576
trenden
2025-01-29T07:36:17Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-7b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-7b-hf-flash", "region:us" ]
null
2025-01-29T07:31:36Z
--- library_name: peft base_model: NousResearch/CodeLlama-7b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 75262155-049f-44bb-915f-8c5d9f31d576 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-7b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 682a834cc2a59bd6_train_data.json ds_type: json format: custom path: /workspace/input_data/682a834cc2a59bd6_train_data.json type: field_input: context field_instruction: question field_output: cleaned_atom format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/75262155-049f-44bb-915f-8c5d9f31d576 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/682a834cc2a59bd6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 313417c2-c5dc-47a4-9b02-d2be42090d8e wandb_project: Birthday-SN56-26-Gradients-On-Demand wandb_run: your_name wandb_runid: 313417c2-c5dc-47a4-9b02-d2be42090d8e warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 75262155-049f-44bb-915f-8c5d9f31d576 This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 1.4773 | | 4.9838 | 0.0033 | 13 | 0.4583 | | 1.9594 | 0.0067 | 26 | 0.3408 | | 1.3953 | 0.0100 | 39 | 0.3192 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
John6666/llama-joycaption-alpha-two-hf-llava-nf4
John6666
2025-01-29T07:35:37Z
571
14
transformers
[ "transformers", "safetensors", "llava", "image-text-to-text", "captioning", "conversational", "en", "base_model:fancyfeast/llama-joycaption-alpha-two-hf-llava", "base_model:quantized:fancyfeast/llama-joycaption-alpha-two-hf-llava", "license:llama3.1", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
image-text-to-text
2024-10-13T08:26:31Z
--- language: - en license: llama3.1 library_name: transformers base_model: fancyfeast/llama-joycaption-alpha-two-hf-llava tags: - captioning - transformers --- bitsandbytes NF4 quants of [fancyfeast/llama-joycaption-alpha-two-hf-llava](https://huggingface.co/fancyfeast/llama-joycaption-alpha-two-hf-llava). The following is almost from the original model card. # Model Card for Llama JoyCaption Alpha Two [Github](https://github.com/fpgaminer/joycaption) JoyCaption is an image captioning Visual Language Model (VLM) being built from the ground up as a free, open, and uncensored model for the community to use in training Diffusion models. Key Features: - **Free and Open**: It will be released for free, open weights, no restrictions, and just like [bigASP](https://www.reddit.com/r/StableDiffusion/comments/1dbasvx/the_gory_details_of_finetuning_sdxl_for_30m/), will come with training scripts and lots of juicy details on how it gets built. - **Uncensored**: Equal coverage of SFW and NSFW concepts. No "cylindrical shaped object with a white substance coming out on it" here. - **Diversity**: All are welcome here. Do you like digital art? Photoreal? Anime? Furry? JoyCaption is for everyone. Pains are being taken to ensure broad coverage of image styles, content, ethnicity, gender, orientation, etc. - **Minimal Filtering**: JoyCaption is trained on large swathes of images so that it can understand almost all aspects of our world. almost. Illegal content will never be tolerated in JoyCaption's training. ## Motivation Automated descriptive captions enable the training and finetuning of diffusion models on a wider range of images, since trainers are no longer required to either find images with already associated text or write the descriptions themselves. They also improve the quality of generations produced by Text-to-Image models trained on them (ref: DALL-E 3 paper). But to-date, the community has been stuck with ChatGPT, which is expensive and heavily censored; or alternative models, like CogVLM, which are weaker than ChatGPT and have abysmal performance outside of the SFW domain. I'm building JoyCaption to help fill this gap by performing near or on-par with GPT4o in captioning images, while being free, unrestricted, and open. ## How to Get Started with the Model Please see the [Github](https://github.com/fpgaminer/joycaption) for more details. Example usage: ``` import torch import torch.amp import torchvision.transforms.functional as TVF from PIL import Image from transformers import AutoTokenizer, LlavaForConditionalGeneration IMAGE_PATH = "image.jpg" PROMPT = "Write a long descriptive caption for this image in a formal tone." MODEL_NAME = "John6666/llama-joycaption-alpha-two-hf-llava-nf4" # Load JoyCaption # bfloat16 is the native dtype of the LLM used in JoyCaption (Llama 3.1) # device_map=0 loads the model into the first GPU tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True) llava_model = LlavaForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype="bfloat16", device_map=0) llava_model.eval() with torch.no_grad(): # Load and preprocess image # Normally you would use the Processor here, but the image module's processor # has some buggy behavior and a simple resize in Pillow yields higher quality results image = Image.open(IMAGE_PATH) if image.size != (384, 384): image = image.resize((384, 384), Image.LANCZOS) image = image.convert("RGB") pixel_values = TVF.pil_to_tensor(image) # Normalize the image pixel_values = pixel_values / 255.0 pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) pixel_values = pixel_values.to(torch.bfloat16).unsqueeze(0) # Build the conversation convo = [ { "role": "system", "content": "You are a helpful image captioner.", }, { "role": "user", "content": PROMPT, }, ] # Format the conversation convo_string = tokenizer.apply_chat_template(convo, tokenize=False, add_generation_prompt=True) # Tokenize the conversation convo_tokens = tokenizer.encode(convo_string, add_special_tokens=False, truncation=False) # Repeat the image tokens input_tokens = [] for token in convo_tokens: if token == llava_model.config.image_token_index: input_tokens.extend([llava_model.config.image_token_index] * llava_model.config.image_seq_length) else: input_tokens.append(token) input_ids = torch.tensor(input_tokens, dtype=torch.long).unsqueeze(0) attention_mask = torch.ones_like(input_ids) # Generate the caption generate_ids = llava_model.generate(input_ids=input_ids.to('cuda'), pixel_values=pixel_values.to('cuda'), attention_mask=attention_mask.to('cuda'), max_new_tokens=300, do_sample=True, suppress_tokens=None, use_cache=True)[0] # Trim off the prompt generate_ids = generate_ids[input_ids.shape[1]:] # Decode the caption caption = tokenizer.decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) caption = caption.strip() print(caption) ```
facu1321/geno1
facu1321
2025-01-29T07:34:42Z
39
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T07:21:18Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: geno1 --- # Geno1 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `geno1` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('facu1321/geno1', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mrHunghddddd/ecb7817c-1340-42a2-b8c1-de49acd161c3
mrHunghddddd
2025-01-29T07:34:03Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-135M", "base_model:adapter:unsloth/SmolLM2-135M", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T07:23:57Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-135M tags: - axolotl - generated_from_trainer model-index: - name: ecb7817c-1340-42a2-b8c1-de49acd161c3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-135M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fb3f054252ee5303_train_data.json ds_type: json format: custom path: /workspace/input_data/fb3f054252ee5303_train_data.json type: field_input: premise field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrHunghddddd/ecb7817c-1340-42a2-b8c1-de49acd161c3 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/fb3f054252ee5303_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aa00008e-67c1-4447-afe6-ef69d7aebe9e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: aa00008e-67c1-4447-afe6-ef69d7aebe9e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ecb7817c-1340-42a2-b8c1-de49acd161c3 This model is a fine-tuned version of [unsloth/SmolLM2-135M](https://huggingface.co/unsloth/SmolLM2-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1727 | 0.2415 | 200 | 2.1166 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/MN-12B-Mimicore-WhiteSnake-Q4_K_M-GGUF
Triangle104
2025-01-29T07:33:41Z
35
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:DoppelReflEx/MN-12B-Mimicore-WhiteSnake", "base_model:quantized:DoppelReflEx/MN-12B-Mimicore-WhiteSnake", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T07:13:42Z
--- license: cc-by-nc-4.0 base_model: DoppelReflEx/MN-12B-Mimicore-WhiteSnake library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/MN-12B-Mimicore-WhiteSnake-Q4_K_M-GGUF This model was converted to GGUF format from [`DoppelReflEx/MN-12B-Mimicore-WhiteSnake`](https://huggingface.co/DoppelReflEx/MN-12B-Mimicore-WhiteSnake) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DoppelReflEx/MN-12B-Mimicore-WhiteSnake) for more details on the model. --- Model details: - Better version of GreenSnake, not too much different in OpenLLM LeaderBoard scores. Merge with cgato/Nemo-12b-Humanize-KTO-Experimental-Latest so this model could perform 'human response'. This merge model is a gift for Lunar New Year, haha. Enjoy it. Good for RP, ERP, Story Telling. PS: It's don't have cgato/Nemo-12b-Humanize-KTO-Experimental-Latest Tokenization issue. Update: Still have cgato/Nemo-12b-Humanize-KTO-Experimental-Latest Tokenization issue, but randomly occur in rare rate. If you are experiencing this issue, just press re-generate to reroll other message/response. Chat Format? ChatML of course! Models Merged The following models were included in the merge: cgato/Nemo-12b-Humanize-KTO-Experimental-Latest DoppelReflEx/MN-12B-Mimicore-GreenSnake Configuration The following YAML configuration was used to produce this model: models: - model: cgato/Nemo-12b-Humanize-KTO-Experimental-Latest parameters: density: 0.9 weight: 1 - model: DoppelReflEx/MN-12B-Mimicore-GreenSnake parameters: density: 0.6 weight: 0.8 merge_method: dare_ties base_model: IntervitensInc/Mistral-Nemo-Base-2407-chatml tokenizer_source: base --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q4_K_M-GGUF --hf-file mn-12b-mimicore-whitesnake-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q4_K_M-GGUF --hf-file mn-12b-mimicore-whitesnake-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q4_K_M-GGUF --hf-file mn-12b-mimicore-whitesnake-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q4_K_M-GGUF --hf-file mn-12b-mimicore-whitesnake-q4_k_m.gguf -c 2048 ```
mrferr3t/a6178fc7-d53d-4063-a386-18062781d83c
mrferr3t
2025-01-29T07:32:42Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B", "base_model:adapter:unsloth/Qwen2-1.5B", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:31:59Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B tags: - axolotl - generated_from_trainer model-index: - name: a6178fc7-d53d-4063-a386-18062781d83c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 08df1ebc5b3fbd74_train_data.json ds_type: json format: custom path: /workspace/input_data/08df1ebc5b3fbd74_train_data.json type: field_instruction: source field_output: hyp1 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/a6178fc7-d53d-4063-a386-18062781d83c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 8 micro_batch_size: 2 mlflow_experiment_name: /tmp/08df1ebc5b3fbd74_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5c870557-3dbf-46fd-a40c-ee656b727226 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5c870557-3dbf-46fd-a40c-ee656b727226 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a6178fc7-d53d-4063-a386-18062781d83c This model is a fine-tuned version of [unsloth/Qwen2-1.5B](https://huggingface.co/unsloth/Qwen2-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5773 | 0.2353 | 1 | 1.3842 | | 1.9126 | 0.4706 | 2 | 1.3859 | | 1.7345 | 0.9412 | 4 | 1.3765 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
reds0510/npo_gdr_1e-6_ckpt75
reds0510
2025-01-29T07:32:34Z
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T07:14:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso01/4a057ddc-fe5a-4d52-a0bd-d4ed15e456e0
lesso01
2025-01-29T07:30:19Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-135M", "base_model:adapter:unsloth/SmolLM2-135M", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T07:27:21Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-135M tags: - axolotl - generated_from_trainer model-index: - name: 4a057ddc-fe5a-4d52-a0bd-d4ed15e456e0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-135M bf16: true chat_template: llama3 datasets: - data_files: - fb3f054252ee5303_train_data.json ds_type: json format: custom path: /workspace/input_data/fb3f054252ee5303_train_data.json type: field_input: premise field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso01/4a057ddc-fe5a-4d52-a0bd-d4ed15e456e0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/fb3f054252ee5303_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aa00008e-67c1-4447-afe6-ef69d7aebe9e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: aa00008e-67c1-4447-afe6-ef69d7aebe9e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4a057ddc-fe5a-4d52-a0bd-d4ed15e456e0 This model is a fine-tuned version of [unsloth/SmolLM2-135M](https://huggingface.co/unsloth/SmolLM2-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0012 | 1 | nan | | 0.0 | 0.0060 | 5 | nan | | 0.0 | 0.0121 | 10 | nan | | 0.0 | 0.0181 | 15 | nan | | 0.0 | 0.0242 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/a5f54f29-dde0-4519-8ea1-9e0b173b0558
mrferr3t
2025-01-29T07:30:16Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Coder-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:17:54Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: a5f54f29-dde0-4519-8ea1-9e0b173b0558 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 425476553ab111b0_train_data.json ds_type: json format: custom path: /workspace/input_data/425476553ab111b0_train_data.json type: field_input: Content field_instruction: Title field_output: Summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/a5f54f29-dde0-4519-8ea1-9e0b173b0558 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 24 micro_batch_size: 2 mlflow_experiment_name: /tmp/425476553ab111b0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6972c938-4c63-447c-ab05-b15cf2af5926 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6972c938-4c63-447c-ab05-b15cf2af5926 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a5f54f29-dde0-4519-8ea1-9e0b173b0558 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 24 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9133 | 0.0001 | 1 | 2.2337 | | 2.463 | 0.0007 | 6 | 2.2105 | | 2.3493 | 0.0014 | 12 | 2.0745 | | 1.9768 | 0.0021 | 18 | 2.0276 | | 1.7809 | 0.0028 | 24 | 2.0030 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/567e266b-33d8-46a8-933f-19f89ea6e377
mrferr3t
2025-01-29T07:29:16Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Base-2407", "base_model:adapter:unsloth/Mistral-Nemo-Base-2407", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:19:31Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Base-2407 tags: - axolotl - generated_from_trainer model-index: - name: 567e266b-33d8-46a8-933f-19f89ea6e377 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Base-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e11d3af61284289e_train_data.json ds_type: json format: custom path: /workspace/input_data/e11d3af61284289e_train_data.json type: field_input: '' field_instruction: prompt field_output: reference_completion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/567e266b-33d8-46a8-933f-19f89ea6e377 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 20 micro_batch_size: 2 mlflow_experiment_name: /tmp/e11d3af61284289e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 33053983-d2d7-46cd-86bd-33b197e4dd4c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 33053983-d2d7-46cd-86bd-33b197e4dd4c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 567e266b-33d8-46a8-933f-19f89ea6e377 This model is a fine-tuned version of [unsloth/Mistral-Nemo-Base-2407](https://huggingface.co/unsloth/Mistral-Nemo-Base-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.1819 | 0.0001 | 1 | 0.8374 | | 2.9609 | 0.0007 | 5 | 0.8297 | | 3.4358 | 0.0014 | 10 | 0.8031 | | 2.8805 | 0.0021 | 15 | 0.7771 | | 3.0493 | 0.0028 | 20 | 0.7716 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
Sarveshj/DeepSeek-R1-Distill-Qwen-32B-Q4_K_M-GGUF
Sarveshj
2025-01-29T07:28:31Z
229
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T07:26:54Z
--- license: mit library_name: transformers base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B tags: - llama-cpp - gguf-my-repo --- # Sarveshj/DeepSeek-R1-Distill-Qwen-32B-Q4_K_M-GGUF This model was converted to GGUF format from [`deepseek-ai/DeepSeek-R1-Distill-Qwen-32B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Sarveshj/DeepSeek-R1-Distill-Qwen-32B-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-32b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Sarveshj/DeepSeek-R1-Distill-Qwen-32B-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-32b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Sarveshj/DeepSeek-R1-Distill-Qwen-32B-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-32b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Sarveshj/DeepSeek-R1-Distill-Qwen-32B-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-32b-q4_k_m.gguf -c 2048 ```
lautaflase/lofaan2026
lautaflase
2025-01-29T07:28:00Z
8
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2025-01-29T07:27:49Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: "\0\0\0\0\0\0\0\0Version 1.0.0" output: url: images/71nL6kZW51L.jpg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: lofaan2025 --- # lofaan2025 <Gallery /> ## Trigger words You should use `lofaan2025` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/lautaflase/lofaan2026/tree/main) them in the Files & versions tab.
kartikgupta373/as15671-509038-white
kartikgupta373
2025-01-29T07:27:15Z
7
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T07:27:13Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # As15671 509038 White <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kartikgupta373/as15671-509038-white', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Best000/f68ac3ab-8d68-403d-88cc-8a3069d29f91
Best000
2025-01-29T07:26:13Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:23:59Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: f68ac3ab-8d68-403d-88cc-8a3069d29f91 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dcef816926ec2838_train_data.json ds_type: json format: custom path: /workspace/input_data/dcef816926ec2838_train_data.json type: field_input: activity field_instruction: topic field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/f68ac3ab-8d68-403d-88cc-8a3069d29f91 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/dcef816926ec2838_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d997858c-edf3-49a2-a1d9-29c48b4b7819 wandb_project: Birthday-SN56-15-Gradients-On-Demand wandb_run: your_name wandb_runid: d997858c-edf3-49a2-a1d9-29c48b4b7819 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f68ac3ab-8d68-403d-88cc-8a3069d29f91 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 2.1771 | | 2.0815 | 0.0062 | 13 | 1.8749 | | 1.892 | 0.0123 | 26 | 1.7472 | | 1.7838 | 0.0185 | 39 | 1.7154 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Jrinky/model4
Jrinky
2025-01-29T07:26:00Z
84
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:20816", "loss:Infonce", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:BAAI/bge-m3", "base_model:finetune:BAAI/bge-m3", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-01-29T07:20:44Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:20816 - loss:Infonce base_model: BAAI/bge-m3 widget: - source_sentence: What do studies show about the configurations of eukaryotic polysomes sentences: - "Eukaryotic\n\nIn cells \nin situ (in cell) studies have shown that eukaryotic\ \ polysomes exhibit linear configurations. Densely packed 3-D helices and planar\ \ double-row polysomes were found with variable packing including “top-to-top”\ \ contacts similar to prokaryotic polysomes." - Carlo Dante Rota (born 17 April 1961) is a British-born Canadian actor. He has appeared in Little Mosque on the Prairie and as systems analyst Morris O'Brian on the Fox series 24. - 'Ronnie & Jo Wood Still ‘Close Friends’ Despite Joint Property Auction Celebrity auctioneer Darren Julien is gearing up for a massive sale of over 600 items belonging to Rolling Stones guitarist Ronnie Wood’s and his ex-wife Jo Wood. Much like many of Julian’s Auctions past collections, this auction has created some controversy because Ronnie has recently come out as opposed to the sale of his personal belongings, denying his involvement in the ‘joint’ sale. In response to those recent statements coming out Ronnie Wood’s camp saying he’s “shocked and disappointed” at the auctioning off his personal belongings, and that the auction has been “misrepresented as a joint sale,” Julien claims Ronnie has known about the auction since its start.' - source_sentence: What was Mike Holober's role at the BMI Jazz Composer’s Workshop from 2007 to 2015 sentences: - '- Establishing a named ''link’ person within an organisation with a liaison role between service users and the organisation. This can help to reduce the problems that can occur with personnel changes or restructuring.' - 'A professor of obstetrics from 1895 at Kraków''s Jagiellonian University, Jordan became best known for organizing children’s playgrounds, called "Jordan''s parks" after him. Life Henryk Jordan was born into an impoverished noble family from the village of Zakliczyn, which over time moved to other places in Polish Galicia (for example Przemyśl). His father, Bonifacy Jordan, gave private lessons. His mother, Salomea Wędrychowska, was a homemaker. Jordan received his high-school education in Tarnopol and Tarnów. In 1861, however, he took part in pro-Polish demonstrations for which he was threatened with expulsion from school. In 1862 he moved to Trieste and a year later passed his high-school examinations, in Italian, with honors. Jordan began his university studies in Vienna, and from 1863 continued them at Kraków''s Jagiellonian University. He passed his science examinations in 1867 but did not receive his master''s degree due to pneumonia.' - "From 2007 - 2015 he served as Associate Director of the BMI Jazz Composer’s Workshop,\ \ where he taught with Musical Director Jim McNeely. Discography \n The Mike Holober\ \ Quintet, Canyon (Sons of Sound, 2003)\n The Gotham Jazz Orchestra, T Thought\ \ Trains (Sons of Sound, 2004)\n The Mike Holober Quintet, Wish List (Sons of\ \ Sound, 2006)\n The Gotham Jazz Orchestra, Quake (Sunnyside, 2009)\n Mike Holober\ \ & Balancing Act, Balancing Act (Palmetto, 2015)\n The Gotham Jazz Orchestra,\ \ Hiding Out (Zoho Music, 2019)\n\nReferences\n\nExternal links \n Artist's official\ \ website\n Sons of Sound, Label page for Mike Holober\n Manhattan School of Music\ \ faculty profile\n CCNY Stuart Katz Professorship announcement\n Interview with\ \ WBGO's Gary Walker\n\nVideos\n Westchester Jazz Orchestra - promotional video\ \ written and directed by Darryl Estrine 2013\n \"Oh No\" - hr-Bigband plays Frank\ \ Zappa; Deutsches Jazzfestival Frankfurt 2015\n \"We Are Not Alone\" - hr-Bigband\ \ plays Frank Zappa; Deutsches Jazzfestival Frankfurt 2015\n \"G-Spot Tornado\ \ - hr-Bigband plays Frank Zappa; Deutsches Jazzfestival Frankfurt 2015\n\n\"\ Star of Jupiter\" - Kurt Rosenwinkel & hr-Bigband; Kurt Rosenwinkel & hr-Bigband\ \ im hr-Sendesaal 12.06.2015\n \"Heavenly Bodies\" - Kurt Rosenwinkel & hr-Bigband;\ \ Kurt Rosenwinkel & hr-Bigband im hr-Sendesaal 12.06.2015\n \"East Coast Love\ \ Affair\" - Kurt Rosenwinkel & hr-Bigband; Kurt Rosenwinkel & hr-Bigband im hr-Sendesaal\ \ 12.06.2015\n \"Brooklyn Sometimes\" - Kurt Rosenwinkel & hr-Bigband; Kurt Rosenwinkel\ \ & hr-Bigband im hr-Sendesaal 12.06.2015\n Al Foster feat. by WDR BIG BAND -\ \ Douglas (Rehearsal) - WDR rehearsal featuring Al Foster; 04.14.2016\n Al Foster\ \ feat." - source_sentence: What problems does Alice encounter due to her roommate Merv's TV watching habits sentences: - Roommate from hell Merv (Jeremy Strong) is an unrepentant yogurt-pilferer and, far worse, the kind of TV addict who likes to "interact" by loudly critiquing the very junk he's mainlining. The overwhelming blaring of the television rankles Alice (Katie Kreisler), who starts out musing about a part of Vermont that's cut off from TV -- and then ends up furiously plotting Merv's ouster. - And it does help a bit in public places--there are a few people who will hold open doors for me, or offer me other courtesies, as a result of my using the cane. It's a real ego-killer to occasionally catch sight of myself, reflected in a plate-glass window, stumping along with the cane and lurching from side-to-side. - 'That''s an important step in literacy development. Why you''ll like it: I love reading this book aloud at story hours.' - source_sentence: What was the role of the Sri Lankan High Commissioner in Pretoria, South Africa sentences: - "As the Sri Lankan High Commissioner, he functioned as the executive head of the\ \ Sri Lankan diplomatic mission in Pretoria, South Africa. Secretary to the Prime\ \ Minister \nFollowing the Appointment of the new prime minister D.M." - xv + 191 pp. + 1 plate. - "Winters are generally mild in Alabama, as they are throughout most of the southeastern\ \ United States, with average January low temperatures around in Mobile, around\ \ in Huntsville, around in Montgomery, and around in Birmingham. Extremes\n\ \nPrecipitation\nThe amount of precipitation is greatest along the coast (62 inches/1,574 mm)\ \ and evenly distributed through the rest of the state (about 52 inches/1,320 mm).\ \ Much of the rainfall is produced by thunderstorms and, occasionally, by hurricanes\ \ and other tropical disturbances. In central and northern Alabama, average monthly\ \ precipitation amounts are highest from November to April, typically peaking\ \ in December or March, as at Huntsville (December maximum) or Birmingham (March\ \ maximum), with August to October the driest months. Along the coast, summer\ \ thunderstorm rains are markedly more frequent and tropical weather systems are\ \ a threat from July to October. Accordingly, at Mobile, virtually the wettest\ \ city annually anywhere in the eastern United States (wetter than even Miami,\ \ FL with its drier winters), monthly average precipitation peaks in July and\ \ August, but virtually the entire year is wet, with October a slightly drier\ \ month. Although snow is a rare event in much of Alabama, areas of the state\ \ north of Montgomery may receive a dusting of snow a few times every winter,\ \ with an occasional moderately heavy snowfall every few years. Historic heavy\ \ snowfall events include the New Year's Eve 1963 snowstorm and the 1993 Storm\ \ of the Century. The annual average snowfall for the Birmingham area is per\ \ year. In the southern Gulf coast, snowfall is less frequent, sometimes going\ \ several years without any snowfall. El Niño and La Niña\nDuring El Niño, Alabama\ \ receives colder than average winter temperatures with wetter than average conditions\ \ along the southern parts of the state and drier than average conditions in the\ \ northern parts. La Niña brings warmer than average temperatures with the drier\ \ weather in the southern parts of the state due to a northern storm track. Hazards\n\ \nAlabama is also prone to tropical storms and even hurricanes. Areas of the state\ \ far away from the Gulf are not immune to the effects of the storms, which often\ \ dump tremendous amounts of rain as they move inland and weaken. Thunderstorms\ \ are common during the summer throughout Alabama and also occur during other\ \ times of the year including winter. South Alabama reports many thunderstorms.\ \ The Gulf Coast, around Mobile Bay, averages between 100 and 110 days per year\ \ with thunder reported, which eastern and northwest Alabama have 70 to 80 thunderstorm\ \ days per year. Occasionally, thunderstorms are severe with frequent lightning\ \ and large hail – the central and northern parts of the state are most vulnerable\ \ to this type of storm, the northern and central regions of Alabama are especially\ \ prone to tornadoes. Alabama ranks seventh in the number of deaths from lightning\ \ and ninth in the number of deaths from lightning strikes per capita. Tornadoes\ \ occur frequently in Alabama during the spring and fall months, these tornadoes\ \ can be devastating and even deadly.– these are common throughout the state,\ \ although the peak season for tornadoes varies from the northern to southern\ \ parts of the state. Alabama, along with Kansas, has the most reported F5/EF5\ \ tornadoes than any other state – according to statistics from the National Climatic\ \ Data Center for the period January 1, 1950, to October 31, 2006. An F5 tornado\ \ is the most powerful of its kind. Several long – tracked F5 tornadoes have contributed\ \ to Alabama reporting more tornado fatalities than any other state except for\ \ Texas and Mississippi. The Super Outbreaks of April 1974 and April 2011 both\ \ badly affected Alabama. The northern part of the state – along the Tennessee\ \ Valley – is one of the areas in the US most vulnerable to violent tornadoes\ \ . The area of Alabama and Mississippi most affected by tornadoes is sometimes\ \ referred to as Dixie Alley, as distinct from the Tornado Alley of the Southern\ \ Plains. Alabama is one of the few places in the world that has a secondary tornado\ \ season (November and December) along with the spring severe weather season.\ \ See also\nClimate change in Alabama\n\nReferences\n\n \nGeography of Alabama" - source_sentence: What is the significance of the first written mention of Metylovice, and in which year did it occur sentences: - Users could also get discounts when they bought the coins in bulk and earn coins through certain apps on the Appstore. In 2014, with the release of the Fire Phone, Amazon offered app developers 500,000 Amazon Coins for each paid app or app with in-app purchasing developed and optimized for the Fire Phone. - 'Contents Hard Times moves the Traveller universe forward into a time where the galaxy is riven by economic stagnation and collapse of the empire. Rick Swan wrote, "Planets are gasping for life like guppies flung from a fish bowl, and the luckless survivors face a future of staggering adversity."' - 'The Olešná Stream flows through the municipality. History The first written mention of Metylovice is in a deed of Bishop Dětřich from 1299. From the second half of the 17th century, tanning developed in the village, thanks to which the originally agricultural village began to prosper and grow. Brick houses began to replace the original wooden ones and the education and cultural life of the inhabitants increased. Sights The most important monument is the Church of All Saints.' pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on BAAI/bge-m3 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 --> - **Maximum Sequence Length:** 1024 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Jrinky/model4") # Run inference sentences = [ 'What is the significance of the first written mention of Metylovice, and in which year did it occur', 'The Olešná Stream flows through the municipality. History\nThe first written mention of Metylovice is in a deed of Bishop Dětřich from 1299. From the second half of the 17th century, tanning developed in the village, thanks to which the originally agricultural village began to prosper and grow. Brick houses began to replace the original wooden ones and the education and cultural life of the inhabitants increased. Sights\nThe most important monument is the Church of All Saints.', 'Users could also get discounts when they bought the coins in bulk and earn coins through certain apps on the Appstore. In 2014, with the release of the Fire Phone, Amazon offered app developers 500,000 Amazon Coins for each paid app or app with in-app purchasing developed and optimized for the Fire Phone.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 20,816 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 17.92 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 168.82 tokens</li><li>max: 1024 tokens</li></ul> | * Samples: | anchor | positive | |:-----------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>What was the birth date and place of Helena Binder, also known as Blanche Blotto</code> | <code>Born June 13, 1955 in Batavia, New York. Helena Binder, aka Blanche Blotto (keyboards, vocals; 1978-1980).</code> | | <code>What incidents involving Israeli soldiers occurred in the occupied West Bank on Tuesday</code> | <code>Also Tuesday, Israeli soldiers fired a barrage of gas bombs and concussion grenades at a Palestinian home in the Masafer Yatta area, south of Hebron, in the southern part of the occupied West Bank, wounding an entire family, including children. On Tuesday evening, Israeli soldiers invaded the al-Maghayir village northeast of Ramallah, in the central West Bank, after many illegal colonizers attacked Palestinian cars. In related news, the soldiers shot three Palestinian construction workers near the illegal Annexation Wall, west of Hebron, in the southern part of the occupied West Bank, and abducted them.</code> | | <code>How was the Mosbrucher Maar formed, and when did it occur</code> | <code>The Mosbrucher Weiher, also called the Mosbrucher Maar, is a silted up maar east of the municipal boundary of the village of Mosbruch in the county Vulkaneifel in Germany. It is located immediately at the foot of the 675-metre-high Hochkelberg, a former volcano. The floor of the maar is in the shape of an elongated oval and is about 700×500 metres in size, its upper boundary has a diameter of about 1,300 × 1,050 metres. This makes the Mosbrucher Maar the third largest of the maars in the western Eifel region. The Üßbach stream flows past and close to the Mosbrucher Weiher. Origin <br>According to pollen analysis studies, the crater was formed about 11,000 years ago by a volcanic eruption. In the area around the maar there are very few volcanic tuffs in comparison to other Eifel maars; only in two places are there greater accumulations of tuff; the rest of the surrounding area is covered only by a thin layer.</code> | * Loss: <code>selfloss.Infonce</code> with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 1,096 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 18.26 tokens</li><li>max: 574 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 189.9 tokens</li><li>max: 1024 tokens</li></ul> | * Samples: | anchor | positive | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>What architectural features are present on the front and southern sides of the Martínez Adobe house</code> | <code>The front and southern sides of the house have wooden wrap-around porches at each level. Wood shingles of either cedar or redwood originally covered the roof. The Martínez Adobe is now part of the John Muir National Historic Site and is open to the public. See also<br>California Historical Landmarks in Contra Costa County<br>National Register of Historic Places listings in Contra Costa County, California<br><br>References<br><br>Further reading<br>Feasibility Report John Muir Home and Vicente Martinez Adobe, Martinez, California. (1963). United States: National Park Service, U.S. Department of the Interior. Western Regional Office. Vincent, G., Mariotti, J., Rubin, J. (2009). Pinole. United States: Arcadia Publishing.</code> | | <code>What are the cognitive aspects being assessed in relation to TBI, and how do they impact the rehabilitation services for individuals, including warfighters with hearing problems</code> | <code>“Within AASC, we’ve been very proactive as part of interdisciplinary teams assessing TBI. Another area we’re looking at involves cognitive aspects associated with TBI and mild TBI and the best approach to providing rehabilitative services.”<br>As with warfighters who return to duty – including combat – with prosthetic feet or legs, many with hearing problems also want to continue serving rather than accept medical discharges.</code> | | <code>What are the benefits mentioned by BIO President & CEO Jim Greenwood regarding the energy title programs in rural America</code> | <code>BIO President & CEO Jim Greenwood said, “The important energy title programs authorized and funded in this bill are just beginning to have a positive impact in revitalizing rural America, fueling economic growth and creating well-paying opportunities where we need it most -- in manufacturing, energy, agriculture and forestry. These programs can also help meet our responsibilities to revitalize rural areas, reduce dependence on foreign oil, and renew economic growth.</code> | * Loss: <code>selfloss.Infonce</code> with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0961 | 100 | 0.2849 | 0.0915 | | 0.1921 | 200 | 0.0963 | 0.0511 | | 0.2882 | 300 | 0.069 | 0.0459 | | 0.3842 | 400 | 0.0622 | 0.0445 | | 0.4803 | 500 | 0.0544 | 0.0441 | | 0.5764 | 600 | 0.0615 | 0.0418 | | 0.6724 | 700 | 0.0573 | 0.0416 | | 0.7685 | 800 | 0.0524 | 0.0435 | | 0.8646 | 900 | 0.0523 | 0.0398 | ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 3.4.0 - Transformers: 4.42.4 - PyTorch: 2.2.0+cu121 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### Infonce ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
kartikgupta373/as15669-mustardyellow
kartikgupta373
2025-01-29T07:25:47Z
7
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T07:25:43Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # As15669 Mustardyellow <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kartikgupta373/as15669-mustardyellow', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
lesso11/3457c5f0-b44d-4efa-beb9-ff95835195d6
lesso11
2025-01-29T07:25:18Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:21:42Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 3457c5f0-b44d-4efa-beb9-ff95835195d6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 775410f20973b41e_train_data.json ds_type: json format: custom path: /workspace/input_data/775410f20973b41e_train_data.json type: field_input: rejected field_instruction: prompt field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso11/3457c5f0-b44d-4efa-beb9-ff95835195d6 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/775410f20973b41e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2a9c3890-5cf7-4888-91af-b81ebd4af89f wandb_project: multi wandb_run: your_name wandb_runid: 2a9c3890-5cf7-4888-91af-b81ebd4af89f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 3457c5f0-b44d-4efa-beb9-ff95835195d6 This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1886 | 0.3384 | 200 | 2.1742 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/e93356a9-aa11-4850-89e0-e6831b6962c8
Best000
2025-01-29T07:25:06Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:22:00Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: e93356a9-aa11-4850-89e0-e6831b6962c8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 775410f20973b41e_train_data.json ds_type: json format: custom path: /workspace/input_data/775410f20973b41e_train_data.json type: field_input: rejected field_instruction: prompt field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/e93356a9-aa11-4850-89e0-e6831b6962c8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/775410f20973b41e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2a9c3890-5cf7-4888-91af-b81ebd4af89f wandb_project: Birthday-SN56-32-Gradients-On-Demand wandb_run: your_name wandb_runid: 2a9c3890-5cf7-4888-91af-b81ebd4af89f warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e93356a9-aa11-4850-89e0-e6831b6962c8 This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 2.7100 | | 2.7609 | 0.0028 | 13 | 2.6856 | | 2.722 | 0.0055 | 26 | 2.5662 | | 2.5732 | 0.0083 | 39 | 2.4285 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso15/b288b863-f9b2-4c1a-9587-7c62df850262
lesso15
2025-01-29T07:23:39Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:Intel/neural-chat-7b-v3-3", "base_model:adapter:Intel/neural-chat-7b-v3-3", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T06:20:00Z
--- library_name: peft license: apache-2.0 base_model: Intel/neural-chat-7b-v3-3 tags: - axolotl - generated_from_trainer model-index: - name: b288b863-f9b2-4c1a-9587-7c62df850262 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Intel/neural-chat-7b-v3-3 bf16: auto chat_template: llama3 datasets: - data_files: - 75ea8b2b0ce0747b_train_data.json ds_type: json format: custom path: /workspace/input_data/75ea8b2b0ce0747b_train_data.json type: field_input: Resume_str field_instruction: Category field_output: Resume_html format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso15/b288b863-f9b2-4c1a-9587-7c62df850262 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/75ea8b2b0ce0747b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 09b31402-03d6-4e52-b0bc-a10763cac165 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 09b31402-03d6-4e52-b0bc-a10763cac165 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b288b863-f9b2-4c1a-9587-7c62df850262 This model is a fine-tuned version of [Intel/neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8504 | 0.7373 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
SandLogicTechnologies/DeepSeek-R1-Distill-Qwen-1.5B-GGUF
SandLogicTechnologies
2025-01-29T07:23:25Z
221
2
null
[ "gguf", "Qwen2", "Conversational", "EdgeAI", "en", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T06:56:05Z
--- language: - en base_model: - deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B tags: - Qwen2 - Conversational - EdgeAI --- # DeepSeek-R1-Distill-Qwen-1.5B Quantized Models This repository contains Q4_KM and Q5_KM quantized versions of the [DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) model, optimized for efficient deployment while maintaining strong performance. Discover our full range of quantized language models by visiting our [SandLogic Lexicon HuggingFace](https://huggingface.co/SandLogicTechnologies). To learn more about our company and services, check out our website at [SandLogic](https://www.sandlogic.com/). ## Model Description These models are quantized versions of DeepSeek-R1-Distill-Qwen-1.5B, which is a highly efficient distilled 1.5B parameter model based on the Qwen architecture. This lightweight model demonstrates that reasoning patterns from larger models can be effectively distilled into much smaller architectures, making it ideal for resource-constrained deployments. ### Key Features - Ultra-lightweight model with only 1.5B parameters - Fine-tuned using DeepSeek-R1 generated reasoning data - Modified configurations and tokenizer optimized for performance - Excellent balance of performance and resource efficiency - Perfect for edge devices and limited compute environments ### Available Quantized Versions 1. **Q4_KM Version** - 4-bit quantization using the K-means method - Approximately 1.12GB model size - Exceptional efficiency for deployment - Ideal for mobile and edge devices 2. **Q5_KM Version** - 5-bit quantization using the K-means method - Approximately 1.30GB model size - Higher precision while maintaining small size - Recommended for balanced performance requirements ## Usage ```bash pip install llama-cpp-python ``` Please refer to the llama-cpp-python [documentation](https://llama-cpp-python.readthedocs.io/en/latest/) to install with GPU support. ### Basic Text Completion Here's an example demonstrating how to use the high-level API for basic text completion: ```python from llama_cpp import Llama llm = Llama( model_path="model/path/", verbose=False, # n_gpu_layers=-1, # Uncomment to use GPU acceleration # n_ctx=2048, # Uncomment to increase the context window ) # Example of a simple task output = llm( "Q: What are the benefits of using smaller language models? A: ", max_tokens=128, stop=["Q:", "\n\n"], echo=False ) print(output["choices"][0]["text"]) ``` ## Model Configuration Changes Please note that DeepSeek have made slight modifications to the original Qwen-1.5B configurations and tokenizer to optimize performance. When using these models, ensure you're using provided settings rather than the original Qwen-1.5B configurations. ## Deployment Benefits - Minimal RAM requirements (< 2GB) - Fast inference speed - Suitable for CPU-only environments - Excellent for edge computing applications - Efficient batching capabilities ## License This model inherits the license of the original DeepSeek-R1-Distill-Qwen-1.5B model. Please refer to the original model's license for usage terms and conditions. ## Acknowledgments We thank the DeepSeek AI team for open-sourcing their distilled models and demonstrating that even very small models can achieve impressive performance through effective distillation techniques. Special thanks also to the Qwen team for providing the base model architecture.
kartikgupta373/as15662-509032-pastel-green
kartikgupta373
2025-01-29T07:21:52Z
25
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T07:21:51Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # As15662 509032 Pastel Green <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kartikgupta373/as15662-509032-pastel-green', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
kartikgupta373/as15661-509023-caramine-pink
kartikgupta373
2025-01-29T07:21:18Z
10
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T07:21:16Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # As15661 509023 Caramine Pink <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kartikgupta373/as15661-509023-caramine-pink', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
AIFunOver/DeepSeek-R1-Distill-Llama-8B-openvino-4bit
AIFunOver
2025-01-29T07:21:12Z
38
0
transformers
[ "transformers", "safetensors", "openvino", "llama", "text-generation", "nncf", "4-bit", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T07:04:45Z
--- base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B library_name: transformers license: mit tags: - openvino - nncf - 4-bit base_model_relation: quantized --- This model is a quantized version of [`deepseek-ai/DeepSeek-R1-Distill-Llama-8B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel). First make sure you have `optimum-intel` installed: ```bash pip install optimum[openvino] ``` To load your model you can do as follows: ```python from optimum.intel import OVModelForCausalLM model_id = "AIFunOver/DeepSeek-R1-Distill-Llama-8B-openvino-4bit" model = OVModelForCausalLM.from_pretrained(model_id) ```
YOYO-AI/Qwen2.5-14B-YOYO-1005-v2
YOYO-AI
2025-01-29T07:20:50Z
11
0
null
[ "safetensors", "qwen2", "merge", "text-generation", "conversational", "en", "zh", "base_model:YOYO-AI/Qwen2.5-14B-YOYO-1005", "base_model:finetune:YOYO-AI/Qwen2.5-14B-YOYO-1005", "license:apache-2.0", "region:us" ]
text-generation
2025-01-29T02:30:38Z
--- license: apache-2.0 language: - en - zh base_model: - YOYO-AI/Qwen2.5-14B-YOYO-1005 pipeline_tag: text-generation tags: - merge --- I will release the second-generation versions of **1010**, **1005**, **0510**, and **0505**, test them on the **open_llm_leaderboard**, and select the model with the highest average score as the **latest** version for this iteration. Finally, I will generalize this merging methodology for broader application.
ardaspear/9d7c64a0-a477-4ddb-be0d-253947673083
ardaspear
2025-01-29T07:20:00Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M", "base_model:adapter:unsloth/SmolLM-135M", "license:apache-2.0", "region:us" ]
null
2025-01-29T06:39:34Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M tags: - axolotl - generated_from_trainer model-index: - name: 9d7c64a0-a477-4ddb-be0d-253947673083 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-135M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f13f8c7f24d1c82b_train_data.json ds_type: json format: custom path: /workspace/input_data/f13f8c7f24d1c82b_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: ardaspear/9d7c64a0-a477-4ddb-be0d-253947673083 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/f13f8c7f24d1c82b_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: fe5a2fbf-53c6-40d5-bfc2-dd765f3feb4e wandb_project: Gradients-On-Five wandb_run: your_name wandb_runid: fe5a2fbf-53c6-40d5-bfc2-dd765f3feb4e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9d7c64a0-a477-4ddb-be0d-253947673083 This model is a fine-tuned version of [unsloth/SmolLM-135M](https://huggingface.co/unsloth/SmolLM-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.1209 | | 1.1429 | 0.0012 | 9 | 1.1171 | | 1.114 | 0.0024 | 18 | 1.1026 | | 1.0849 | 0.0036 | 27 | 1.0858 | | 1.0434 | 0.0048 | 36 | 1.0698 | | 1.0651 | 0.0060 | 45 | 1.0571 | | 1.1012 | 0.0072 | 54 | 1.0479 | | 1.0737 | 0.0084 | 63 | 1.0407 | | 1.0229 | 0.0096 | 72 | 1.0360 | | 1.0336 | 0.0108 | 81 | 1.0332 | | 0.9747 | 0.0120 | 90 | 1.0321 | | 1.0246 | 0.0132 | 99 | 1.0319 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tryingpro/bd50aa04-2634-48bd-9154-e083b9863b7f
tryingpro
2025-01-29T07:19:30Z
5
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b-Instruct", "base_model:adapter:unsloth/llama-3-8b-Instruct", "license:llama3", "region:us" ]
null
2025-01-29T02:19:57Z
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: bd50aa04-2634-48bd-9154-e083b9863b7f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 93a2807477853fd7_train_data.json ds_type: json format: custom path: /workspace/input_data/93a2807477853fd7_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: tryingpro/bd50aa04-2634-48bd-9154-e083b9863b7f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 90 micro_batch_size: 2 mlflow_experiment_name: /tmp/93a2807477853fd7_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: tryingpro-unicourt wandb_mode: online wandb_name: 1baad95d-3392-4bf7-aae8-e00a80f185c4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1baad95d-3392-4bf7-aae8-e00a80f185c4 warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ``` </details><br> # bd50aa04-2634-48bd-9154-e083b9863b7f This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 90 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | nan | | 0.0 | 0.0027 | 8 | nan | | 0.0 | 0.0053 | 16 | nan | | 0.0 | 0.0080 | 24 | nan | | 0.0 | 0.0107 | 32 | nan | | 0.0 | 0.0133 | 40 | nan | | 0.0 | 0.0160 | 48 | nan | | 0.0 | 0.0187 | 56 | nan | | 0.0 | 0.0213 | 64 | nan | | 0.0 | 0.0240 | 72 | nan | | 0.0 | 0.0266 | 80 | nan | | 0.0 | 0.0293 | 88 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
memevis/p12
memevis
2025-01-29T07:16:39Z
34
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T07:11:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
outlookAi/emRGMxaKX5
outlookAi
2025-01-29T07:13:37Z
12
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T06:51:35Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: NidtaP --- # Emrgmxakx5 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `NidtaP` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('outlookAi/emRGMxaKX5', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
duyphu/015a3dba-1747-4578-b959-b3877f3beec8
duyphu
2025-01-29T07:11:59Z
11
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B", "base_model:adapter:unsloth/Qwen2-7B", "license:apache-2.0", "region:us" ]
null
2025-01-29T07:00:52Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B tags: - axolotl - generated_from_trainer model-index: - name: 015a3dba-1747-4578-b959-b3877f3beec8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c710dbacd1baf82d_train_data.json ds_type: json format: custom path: /workspace/input_data/c710dbacd1baf82d_train_data.json type: field_instruction: prompt field_output: story format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/015a3dba-1747-4578-b959-b3877f3beec8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/c710dbacd1baf82d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 96aa06fc-7593-4da9-898b-b6eb1b530143 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 96aa06fc-7593-4da9-898b-b6eb1b530143 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 015a3dba-1747-4578-b959-b3877f3beec8 This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co/unsloth/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0030 | 1 | nan | | 0.0 | 0.0301 | 10 | nan | | 0.0 | 0.0602 | 20 | nan | | 0.0 | 0.0902 | 30 | nan | | 0.0 | 0.1203 | 40 | nan | | 0.0 | 0.1504 | 50 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
reds0510/npo_gdr_1e-6_ckpt50
reds0510
2025-01-29T07:11:10Z
5
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T06:59:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mrferr3t/795c5b88-53f5-4b67-b3f4-e18696e1879d
mrferr3t
2025-01-29T07:09:08Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M", "base_model:adapter:unsloth/SmolLM-135M", "license:apache-2.0", "region:us" ]
null
2025-01-29T06:39:55Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M tags: - axolotl - generated_from_trainer model-index: - name: 795c5b88-53f5-4b67-b3f4-e18696e1879d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-135M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f13f8c7f24d1c82b_train_data.json ds_type: json format: custom path: /workspace/input_data/f13f8c7f24d1c82b_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/795c5b88-53f5-4b67-b3f4-e18696e1879d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 19 micro_batch_size: 2 mlflow_experiment_name: /tmp/f13f8c7f24d1c82b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fe5a2fbf-53c6-40d5-bfc2-dd765f3feb4e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fe5a2fbf-53c6-40d5-bfc2-dd765f3feb4e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 795c5b88-53f5-4b67-b3f4-e18696e1879d This model is a fine-tuned version of [unsloth/SmolLM-135M](https://huggingface.co/unsloth/SmolLM-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 19 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1519 | 0.0000 | 1 | 1.1686 | | 1.1649 | 0.0002 | 5 | 1.1682 | | 1.0092 | 0.0003 | 10 | 1.1638 | | 1.1278 | 0.0005 | 15 | 1.1569 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5604/5c25f201-61c2-4c24-b99c-71e35882361e
prxy5604
2025-01-29T07:07:01Z
9
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-01-29T06:43:18Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: 5c25f201-61c2-4c24-b99c-71e35882361e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - f65209fd2b79f576_train_data.json ds_type: json format: custom path: /workspace/input_data/f65209fd2b79f576_train_data.json type: field_instruction: text field_output: code format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/5c25f201-61c2-4c24-b99c-71e35882361e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/f65209fd2b79f576_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7fba0349-cbce-4a47-81c7-be27ce53fcc2 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7fba0349-cbce-4a47-81c7-be27ce53fcc2 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5c25f201-61c2-4c24-b99c-71e35882361e This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.55 | 0.0006 | 1 | 0.7866 | | 2.4345 | 0.0316 | 50 | 0.3219 | | 1.9095 | 0.0632 | 100 | 0.2910 | | 2.0765 | 0.0947 | 150 | 0.2781 | | 2.0481 | 0.1263 | 200 | 0.2736 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/1f13060f-2597-4e29-89e7-320382c88449
kk-aivio
2025-01-29T07:06:49Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:princeton-nlp/gemma-2-9b-it-SimPO", "base_model:adapter:princeton-nlp/gemma-2-9b-it-SimPO", "license:mit", "region:us" ]
null
2025-01-29T07:04:59Z
--- library_name: peft license: mit base_model: princeton-nlp/gemma-2-9b-it-SimPO tags: - axolotl - generated_from_trainer model-index: - name: 1f13060f-2597-4e29-89e7-320382c88449 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: princeton-nlp/gemma-2-9b-it-SimPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 349dac9ba163f0a5_train_data.json ds_type: json format: custom path: /workspace/input_data/349dac9ba163f0a5_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/1f13060f-2597-4e29-89e7-320382c88449 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/349dac9ba163f0a5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0f1b7d9e-507c-4d19-8049-642ebf7e0fb6 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: 0f1b7d9e-507c-4d19-8049-642ebf7e0fb6 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1f13060f-2597-4e29-89e7-320382c88449 This model is a fine-tuned version of [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0036 | 1 | 4.2997 | | 2.79 | 0.0466 | 13 | 1.2274 | | 1.1457 | 0.0933 | 26 | 1.0730 | | 1.047 | 0.1399 | 39 | 1.0469 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso05/8b59edcc-7cfa-41c7-b687-e5698d7da29d
lesso05
2025-01-29T07:03:30Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B", "base_model:adapter:unsloth/Qwen2-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T07:00:36Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B tags: - axolotl - generated_from_trainer model-index: - name: 8b59edcc-7cfa-41c7-b687-e5698d7da29d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B bf16: true chat_template: llama3 datasets: - data_files: - c710dbacd1baf82d_train_data.json ds_type: json format: custom path: /workspace/input_data/c710dbacd1baf82d_train_data.json type: field_instruction: prompt field_output: story format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso05/8b59edcc-7cfa-41c7-b687-e5698d7da29d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/c710dbacd1baf82d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 96aa06fc-7593-4da9-898b-b6eb1b530143 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 96aa06fc-7593-4da9-898b-b6eb1b530143 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8b59edcc-7cfa-41c7-b687-e5698d7da29d This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co/unsloth/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0030 | 1 | nan | | 0.0 | 0.0150 | 5 | nan | | 0.0 | 0.0301 | 10 | nan | | 0.0 | 0.0451 | 15 | nan | | 0.0 | 0.0602 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
gavrilstep/ea5cc700-5d72-458d-a2fa-14d39fe0f3e8
gavrilstep
2025-01-29T07:02:41Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B", "base_model:adapter:unsloth/Qwen2-7B", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T07:00:09Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B tags: - axolotl - generated_from_trainer model-index: - name: ea5cc700-5d72-458d-a2fa-14d39fe0f3e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c710dbacd1baf82d_train_data.json ds_type: json format: custom path: /workspace/input_data/c710dbacd1baf82d_train_data.json type: field_instruction: prompt field_output: story format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: gavrilstep/ea5cc700-5d72-458d-a2fa-14d39fe0f3e8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/c710dbacd1baf82d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 96aa06fc-7593-4da9-898b-b6eb1b530143 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 96aa06fc-7593-4da9-898b-b6eb1b530143 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ea5cc700-5d72-458d-a2fa-14d39fe0f3e8 This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co/unsloth/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0030 | 1 | nan | | 0.0 | 0.0150 | 5 | nan | | 0.0 | 0.0301 | 10 | nan | | 0.0 | 0.0451 | 15 | nan | | 0.0 | 0.0602 | 20 | nan | | 0.0 | 0.0752 | 25 | nan | | 0.0 | 0.0902 | 30 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
NalDice/askvox-1.2
NalDice
2025-01-29T07:01:56Z
32
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T06:49:45Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** NalDice - **License:** apache-2.0 - **Finetuned from model :** meta-llama/Llama-3.1-8B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Lora2025-01-27-GGUF
mradermacher
2025-01-29T07:00:07Z
279
0
transformers
[ "transformers", "gguf", "en", "base_model:ianfoster/Lora2025-01-27", "base_model:quantized:ianfoster/Lora2025-01-27", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T05:58:09Z
--- base_model: ianfoster/Lora2025-01-27 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/ianfoster/Lora2025-01-27 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Lora2025-01-27-GGUF/resolve/main/Lora2025-01-27.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
naijavoices/mms-tts-hau-finetuned-AQ87U
naijavoices
2025-01-29T06:58:46Z
17
0
transformers
[ "transformers", "safetensors", "vits", "text-to-audio", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
text-to-audio
2025-01-29T06:58:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Moustapha91/TTS_WOLOF_FINAL
Moustapha91
2025-01-29T06:55:09Z
28
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-01-29T06:54:49Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: TTS_WOLOF_FINAL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TTS_WOLOF_FINAL This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:-----:|:---------------:| | 0.4017 | 6.2706 | 5000 | 0.3795 | | 0.3821 | 12.5412 | 10000 | 0.3702 | | 0.3708 | 18.8117 | 15000 | 0.3769 | | 0.3605 | 25.0823 | 20000 | 0.3705 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
beingbatman/CTMAE-P2-V2-S5
beingbatman
2025-01-29T06:53:48Z
20
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-large-finetuned-kinetics", "base_model:finetune:MCG-NJU/videomae-large-finetuned-kinetics", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-01-29T04:11:04Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-large-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: CTMAE-P2-V2-S5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CTMAE-P2-V2-S5 This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2006 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 13050 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.5874 | 0.02 | 261 | 2.2577 | 0.5682 | | 0.581 | 1.02 | 522 | 2.4954 | 0.5682 | | 1.5552 | 2.02 | 783 | 2.2144 | 0.5682 | | 0.7597 | 3.02 | 1044 | 2.1388 | 0.5682 | | 1.8176 | 4.02 | 1305 | 1.5857 | 0.5682 | | 0.9596 | 5.02 | 1566 | 1.9454 | 0.5682 | | 0.8402 | 6.02 | 1827 | 2.0550 | 0.5682 | | 1.0823 | 7.02 | 2088 | 1.7864 | 0.5682 | | 1.0229 | 8.02 | 2349 | 1.8592 | 0.5682 | | 0.7113 | 9.02 | 2610 | 1.4045 | 0.5682 | | 1.3068 | 10.02 | 2871 | 1.4536 | 0.5682 | | 1.7964 | 11.02 | 3132 | 1.8695 | 0.5682 | | 1.6925 | 12.02 | 3393 | 0.7860 | 0.5682 | | 0.3966 | 13.02 | 3654 | 2.1610 | 0.5682 | | 0.0112 | 14.02 | 3915 | 2.7138 | 0.5682 | | 0.5847 | 15.02 | 4176 | 0.8433 | 0.7045 | | 0.6547 | 16.02 | 4437 | 1.7384 | 0.6136 | | 0.7854 | 17.02 | 4698 | 1.3477 | 0.6818 | | 1.0052 | 18.02 | 4959 | 1.4197 | 0.7045 | | 1.4927 | 19.02 | 5220 | 2.2046 | 0.6136 | | 0.5386 | 20.02 | 5481 | 1.2006 | 0.75 | | 0.7256 | 21.02 | 5742 | 1.5015 | 0.7273 | | 0.8462 | 22.02 | 6003 | 1.6405 | 0.6591 | | 0.64 | 23.02 | 6264 | 2.2160 | 0.5682 | | 1.0358 | 24.02 | 6525 | 2.6674 | 0.5682 | | 0.0003 | 25.02 | 6786 | 3.2237 | 0.5682 | | 1.449 | 26.02 | 7047 | 2.9910 | 0.5455 | | 0.6425 | 27.02 | 7308 | 2.9668 | 0.5682 | | 0.0038 | 28.02 | 7569 | 3.2074 | 0.5455 | | 0.4198 | 29.02 | 7830 | 3.4554 | 0.5455 | | 0.0002 | 30.02 | 8091 | 2.2222 | 0.6591 | | 0.0087 | 31.02 | 8352 | 2.7093 | 0.5455 | | 0.2823 | 32.02 | 8613 | 2.8994 | 0.5909 | | 0.0009 | 33.02 | 8874 | 2.9261 | 0.5909 | | 0.0064 | 34.02 | 9135 | 2.4037 | 0.6818 | | 0.7506 | 35.02 | 9396 | 2.8436 | 0.6364 | | 0.6686 | 36.02 | 9657 | 3.1198 | 0.5682 | | 0.0089 | 37.02 | 9918 | 2.2353 | 0.6591 | | 0.6753 | 38.02 | 10179 | 3.0288 | 0.6364 | | 0.0003 | 39.02 | 10440 | 2.4052 | 0.6591 | | 0.295 | 40.02 | 10701 | 3.7579 | 0.5682 | | 0.0002 | 41.02 | 10962 | 3.3831 | 0.5909 | | 0.5379 | 42.02 | 11223 | 3.5119 | 0.5455 | | 0.0001 | 43.02 | 11484 | 3.3207 | 0.5909 | | 0.0001 | 44.02 | 11745 | 3.1331 | 0.6136 | | 0.0002 | 45.02 | 12006 | 3.1938 | 0.5909 | | 0.0001 | 46.02 | 12267 | 3.2387 | 0.5909 | | 0.6632 | 47.02 | 12528 | 3.3889 | 0.5909 | | 0.2849 | 48.02 | 12789 | 3.3584 | 0.6364 | | 0.0001 | 49.02 | 13050 | 3.2970 | 0.6136 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.1 - Tokenizers 0.20.0
kiranpantha/whisper-large-v3-nepali-peft-dora-speaker2-rank128-targetxckv-epochs3
kiranpantha
2025-01-29T06:53:34Z
7
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "ne", "dataset:kiranpantha/OpenSLR54-Balanced-Nepali", "base_model:kiranpantha/whisper-large-v3-nepali", "base_model:adapter:kiranpantha/whisper-large-v3-nepali", "license:apache-2.0", "region:us" ]
null
2025-01-29T06:48:01Z
--- library_name: peft language: - ne license: apache-2.0 base_model: kiranpantha/whisper-large-v3-nepali tags: - generated_from_trainer datasets: - kiranpantha/OpenSLR54-Balanced-Nepali model-index: - name: kiranpantha/whisper-large-v3-nepali results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kiranpantha/whisper-large-v3-nepali This model is a fine-tuned version of [kiranpantha/whisper-large-v3-nepali](https://huggingface.co/kiranpantha/whisper-large-v3-nepali) on the OpenSLR54 dataset. It achieves the following results on the evaluation set: - Loss: 0.3029 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 0.6995 | | No log | 2.0 | 12 | 0.3506 | | No log | 3.0 | 18 | 0.3029 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cxx11.abi - Datasets 3.2.0 - Tokenizers 0.21.0
gunchoi/json-pair-hwasan
gunchoi
2025-01-29T06:50:47Z
869
0
diffusers
[ "diffusers", "sd3", "sd3-diffusers", "text-to-image", "simpletuner", "lora", "template:sd-lora", "standard", "base_model:stabilityai/stable-diffusion-3.5-large", "base_model:adapter:stabilityai/stable-diffusion-3.5-large", "license:other", "region:us" ]
text-to-image
2025-01-20T23:51:30Z
--- license: other base_model: stabilityai/stable-diffusion-3.5-large tags: - sd3 - sd3-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora - standard inference: true widget: - text: unconditional (blank prompt) parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_0_0.png - text: >- k4s4, {"scene_id":34,"characters":[{"character_id":"Unknown122","action":"speakingwithagesture","emotion":"concerned","position":"top-right","appearance":"darkhairtiedback,mustacheandgoatee,wearingaredrobewithyellowaccentsandadecorativehat"},{"character_id":"Unknown121","action":"listening","emotion":"focused","position":"bottom-center","appearance":"brownhairtiedup,wearingagreenrobewithacollar"}],"dialogue":[{"character_id":"Unknown122","dialogue_type":"exclamation","original_text":"하면...!","translated_text":"Then...!","position":"top-left"},{"character_id":"Unknown121","dialogue_type":"normalspeech","original_text":"하면대체이게무슨병이란말입니까!","translated_text":"Thenwhatillnessarewedealingwith?","position":"bottom-center"}],"description":"Unknown122,appearinganimatedandconcerned,questionsthenatureoftheillness,whileUnknown121listensintently,standingcloseinaninteriorroom.","setting":{"location":"interiorroomwithlatticewindows","time_of_the_day":"n/a"},"purpose_of_the_scene":"Toportraytheurgentsearchforananswertothemysteriousillnesstroublingthecharacters,addingintensitytothedilemma.","camera_angle":"high-angleshotcapturingbothcharacters","continuity_note":"MaintainUnknown122'sconcerneddemeanorandattire,consistentwithhispreviousscenes.","focal_points":["Unknown122'sanimatedexpression","dialoguebubbles"]} parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_1_0.png --- # simpletuner-lora This is a standard PEFT LoRA derived from [stabilityai/stable-diffusion-3.5-large](https://huggingface.co/stabilityai/stable-diffusion-3.5-large). The main validation prompt used during training was: ``` k4s4, {"scene_id":34,"characters":[{"character_id":"Unknown122","action":"speakingwithagesture","emotion":"concerned","position":"top-right","appearance":"darkhairtiedback,mustacheandgoatee,wearingaredrobewithyellowaccentsandadecorativehat"},{"character_id":"Unknown121","action":"listening","emotion":"focused","position":"bottom-center","appearance":"brownhairtiedup,wearingagreenrobewithacollar"}],"dialogue":[{"character_id":"Unknown122","dialogue_type":"exclamation","original_text":"하면...!","translated_text":"Then...!","position":"top-left"},{"character_id":"Unknown121","dialogue_type":"normalspeech","original_text":"하면대체이게무슨병이란말입니까!","translated_text":"Thenwhatillnessarewedealingwith?","position":"bottom-center"}],"description":"Unknown122,appearinganimatedandconcerned,questionsthenatureoftheillness,whileUnknown121listensintently,standingcloseinaninteriorroom.","setting":{"location":"interiorroomwithlatticewindows","time_of_the_day":"n/a"},"purpose_of_the_scene":"Toportraytheurgentsearchforananswertothemysteriousillnesstroublingthecharacters,addingintensitytothedilemma.","camera_angle":"high-angleshotcapturingbothcharacters","continuity_note":"MaintainUnknown122'sconcerneddemeanorandattire,consistentwithhispreviousscenes.","focal_points":["Unknown122'sanimatedexpression","dialoguebubbles"]} ``` ## Validation settings - CFG: `7.5` - CFG Rescale: `0.0` - Steps: `30` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `42` - Resolution: `512x512` - Skip-layer guidance: Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: <Gallery /> The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 7 - Training steps: 10768 - Learning rate: 1e-05 - Learning rate schedule: cosine - Warmup steps: 2500 - Max grad norm: 0.1 - Effective batch size: 6 - Micro-batch size: 6 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Gradient checkpointing: True - Prediction type: flow-matching (extra parameters=['shift=3']) - Optimizer: adamw_bf16 - Trainable parameter precision: Pure BF16 - Caption dropout probability: 20.0% - LoRA Rank: 16 - LoRA Alpha: None - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### webtoon-storyboard - Repeats: 2 - Total number of images: 2692 - Total number of aspect buckets: 1 - Resolution: 0.262144 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'stabilityai/stable-diffusion-3.5-large' adapter_id = 'gunchoi/simpletuner-lora' pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 pipeline.load_lora_weights(adapter_id) prompt = "k4s4, {"scene_id":34,"characters":[{"character_id":"Unknown122","action":"speakingwithagesture","emotion":"concerned","position":"top-right","appearance":"darkhairtiedback,mustacheandgoatee,wearingaredrobewithyellowaccentsandadecorativehat"},{"character_id":"Unknown121","action":"listening","emotion":"focused","position":"bottom-center","appearance":"brownhairtiedup,wearingagreenrobewithacollar"}],"dialogue":[{"character_id":"Unknown122","dialogue_type":"exclamation","original_text":"하면...!","translated_text":"Then...!","position":"top-left"},{"character_id":"Unknown121","dialogue_type":"normalspeech","original_text":"하면대체이게무슨병이란말입니까!","translated_text":"Thenwhatillnessarewedealingwith?","position":"bottom-center"}],"description":"Unknown122,appearinganimatedandconcerned,questionsthenatureoftheillness,whileUnknown121listensintently,standingcloseinaninteriorroom.","setting":{"location":"interiorroomwithlatticewindows","time_of_the_day":"n/a"},"purpose_of_the_scene":"Toportraytheurgentsearchforananswertothemysteriousillnesstroublingthecharacters,addingintensitytothedilemma.","camera_angle":"high-angleshotcapturingbothcharacters","continuity_note":"MaintainUnknown122'sconcerneddemeanorandattire,consistentwithhispreviousscenes.","focal_points":["Unknown122'sanimatedexpression","dialoguebubbles"]}" negative_prompt = 'blurry, cropped, ugly' ## Optional: quantise the model to save on vram. ## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time. #from optimum.quanto import quantize, freeze, qint8 #quantize(pipeline.transformer, weights=qint8) #freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level image = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=512, height=512, guidance_scale=7.5, ).images[0] image.save("output.png", format="PNG") ```
Kuongan/xlm-roberta-base-esp-finetuned
Kuongan
2025-01-29T06:49:13Z
6
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-29T06:24:40Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlm-roberta-base-esp-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-esp-finetuned This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3345 - F1: 0.7715 - Roc Auc: 0.8559 - Accuracy: 0.6033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.556 | 1.0 | 98 | 0.4924 | 0.1173 | 0.5484 | 0.125 | | 0.3942 | 2.0 | 196 | 0.3753 | 0.6280 | 0.7772 | 0.4293 | | 0.3051 | 3.0 | 294 | 0.3283 | 0.7282 | 0.8250 | 0.5380 | | 0.2566 | 4.0 | 392 | 0.3234 | 0.7277 | 0.8307 | 0.5380 | | 0.2077 | 5.0 | 490 | 0.3109 | 0.7502 | 0.8392 | 0.5652 | | 0.1646 | 6.0 | 588 | 0.3135 | 0.7383 | 0.8336 | 0.5435 | | 0.1524 | 7.0 | 686 | 0.3132 | 0.7456 | 0.8359 | 0.5707 | | 0.1346 | 8.0 | 784 | 0.3253 | 0.7427 | 0.8341 | 0.5380 | | 0.1076 | 9.0 | 882 | 0.3272 | 0.7549 | 0.8457 | 0.5924 | | 0.0963 | 10.0 | 980 | 0.3384 | 0.7671 | 0.8528 | 0.5978 | | 0.0888 | 11.0 | 1078 | 0.3381 | 0.7620 | 0.8485 | 0.5870 | | 0.0762 | 12.0 | 1176 | 0.3345 | 0.7715 | 0.8559 | 0.6033 | | 0.0528 | 13.0 | 1274 | 0.3566 | 0.7683 | 0.8577 | 0.5924 | | 0.0512 | 14.0 | 1372 | 0.3522 | 0.7643 | 0.8534 | 0.5924 | | 0.0435 | 15.0 | 1470 | 0.3595 | 0.7635 | 0.8517 | 0.5978 | | 0.0415 | 16.0 | 1568 | 0.3651 | 0.7646 | 0.8550 | 0.5870 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
lesso02/44f62377-57e0-48f6-bb52-b4c07682bfbc
lesso02
2025-01-29T06:49:07Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M", "base_model:adapter:unsloth/SmolLM-135M", "license:apache-2.0", "region:us" ]
null
2025-01-29T06:39:36Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M tags: - axolotl - generated_from_trainer model-index: - name: 44f62377-57e0-48f6-bb52-b4c07682bfbc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-135M bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f13f8c7f24d1c82b_train_data.json ds_type: json format: custom path: /workspace/input_data/f13f8c7f24d1c82b_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso02/44f62377-57e0-48f6-bb52-b4c07682bfbc hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/f13f8c7f24d1c82b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fe5a2fbf-53c6-40d5-bfc2-dd765f3feb4e wandb_project: multi wandb_run: your_name wandb_runid: fe5a2fbf-53c6-40d5-bfc2-dd765f3feb4e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 44f62377-57e0-48f6-bb52-b4c07682bfbc This model is a fine-tuned version of [unsloth/SmolLM-135M](https://huggingface.co/unsloth/SmolLM-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0534 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso04/6801f452-bf72-4dd4-bb87-8d7f1ece48c3
lesso04
2025-01-29T06:48:17Z
9
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-01-29T06:36:26Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: 6801f452-bf72-4dd4-bb87-8d7f1ece48c3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f65209fd2b79f576_train_data.json ds_type: json format: custom path: /workspace/input_data/f65209fd2b79f576_train_data.json type: field_instruction: text field_output: code format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso04/6801f452-bf72-4dd4-bb87-8d7f1ece48c3 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/f65209fd2b79f576_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7fba0349-cbce-4a47-81c7-be27ce53fcc2 wandb_project: multi wandb_run: your_name wandb_runid: 7fba0349-cbce-4a47-81c7-be27ce53fcc2 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6801f452-bf72-4dd4-bb87-8d7f1ece48c3 This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8426 | 0.2526 | 200 | 0.3059 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thalllsssss/8521530e-949b-412d-a088-9b8575ff5f89
thalllsssss
2025-01-29T06:46:28Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T06:45:36Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8521530e-949b-412d-a088-9b8575ff5f89 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 47d54f36be91dd39_train_data.json ds_type: json format: custom path: /workspace/input_data/47d54f36be91dd39_train_data.json type: field_input: choices field_instruction: question_eng field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thalllsssss/8521530e-949b-412d-a088-9b8575ff5f89 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/47d54f36be91dd39_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f1df40a9-a29a-4e64-9bf4-df4241b29729 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f1df40a9-a29a-4e64-9bf4-df4241b29729 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8521530e-949b-412d-a088-9b8575ff5f89 This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7952 | 0.96 | 12 | 2.6245 | | 4.6313 | 1.04 | 13 | 2.6001 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
denbeo/5c806032-c3fd-4436-88de-de1f4ddbc97e
denbeo
2025-01-29T06:46:27Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T06:45:36Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 5c806032-c3fd-4436-88de-de1f4ddbc97e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 47d54f36be91dd39_train_data.json ds_type: json format: custom path: /workspace/input_data/47d54f36be91dd39_train_data.json type: field_input: choices field_instruction: question_eng field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: denbeo/5c806032-c3fd-4436-88de-de1f4ddbc97e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/47d54f36be91dd39_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f1df40a9-a29a-4e64-9bf4-df4241b29729 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f1df40a9-a29a-4e64-9bf4-df4241b29729 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5c806032-c3fd-4436-88de-de1f4ddbc97e This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7811 | 0.96 | 12 | 2.6076 | | 4.5854 | 1.04 | 13 | 2.5995 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso10/68209fb2-f5a7-4e04-b19f-a0c3db0119bd
lesso10
2025-01-29T06:46:10Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-14B-Chat", "base_model:adapter:Qwen/Qwen1.5-14B-Chat", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T03:11:47Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-14B-Chat tags: - axolotl - generated_from_trainer model-index: - name: 68209fb2-f5a7-4e04-b19f-a0c3db0119bd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-14B-Chat bf16: true chat_template: llama3 datasets: - data_files: - ab9f66717531643e_train_data.json ds_type: json format: custom path: /workspace/input_data/ab9f66717531643e_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: lesso10/68209fb2-f5a7-4e04-b19f-a0c3db0119bd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/ab9f66717531643e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 99226ce4-70ae-47e9-94ba-26f819deda4a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 99226ce4-70ae-47e9-94ba-26f819deda4a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 68209fb2-f5a7-4e04-b19f-a0c3db0119bd This model is a fine-tuned version of [Qwen/Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3075 | 0.0002 | 1 | 2.5874 | | 2.5536 | 0.0008 | 5 | 2.5263 | | 2.1837 | 0.0016 | 10 | 2.2839 | | 2.1648 | 0.0024 | 15 | 2.1811 | | 1.9718 | 0.0033 | 20 | 2.1177 | | 2.0016 | 0.0041 | 25 | 2.1023 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nghiatrannnnnn/9907a2d9-244d-4bc1-a282-1cef43daf6db
nghiatrannnnnn
2025-01-29T06:45:53Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T06:45:23Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9907a2d9-244d-4bc1-a282-1cef43daf6db results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 47d54f36be91dd39_train_data.json ds_type: json format: custom path: /workspace/input_data/47d54f36be91dd39_train_data.json type: field_input: choices field_instruction: question_eng field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nghiatrannnnnn/9907a2d9-244d-4bc1-a282-1cef43daf6db hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/47d54f36be91dd39_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f1df40a9-a29a-4e64-9bf4-df4241b29729 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f1df40a9-a29a-4e64-9bf4-df4241b29729 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9907a2d9-244d-4bc1-a282-1cef43daf6db This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7951 | 0.96 | 12 | 2.5965 | | 4.5822 | 1.04 | 13 | 2.5733 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/424e8751-0f86-4399-980d-db8080299df0
mrferr3t
2025-01-29T06:45:40Z
8
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-01-29T06:36:54Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: 424e8751-0f86-4399-980d-db8080299df0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f65209fd2b79f576_train_data.json ds_type: json format: custom path: /workspace/input_data/f65209fd2b79f576_train_data.json type: field_instruction: text field_output: code format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/424e8751-0f86-4399-980d-db8080299df0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 16 micro_batch_size: 2 mlflow_experiment_name: /tmp/f65209fd2b79f576_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7fba0349-cbce-4a47-81c7-be27ce53fcc2 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7fba0349-cbce-4a47-81c7-be27ce53fcc2 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 424e8751-0f86-4399-980d-db8080299df0 This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.2854 | 0.0002 | 1 | 0.7521 | | 8.0356 | 0.0006 | 4 | 0.7514 | | 8.5858 | 0.0013 | 8 | 0.7271 | | 7.7803 | 0.0019 | 12 | 0.6742 | | 9.4474 | 0.0025 | 16 | 0.6521 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q6_K-GGUF
Triangle104
2025-01-29T06:45:33Z
314
1
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated", "base_model:quantized:huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-29T06:45:04Z
--- license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo library_name: transformers --- # Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q6_K-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated`](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q6_K-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q6_K-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q6_K-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q6_K-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q6_k.gguf -c 2048 ```
calico-1226/video-cost-model-1216
calico-1226
2025-01-29T06:43:21Z
7
0
null
[ "safetensors", "llava_score", "license:cc-by-nc-4.0", "region:us" ]
null
2025-01-29T03:37:48Z
--- license: cc-by-nc-4.0 ---
great0001/74b9ee60-2bb7-4c7a-bdba-d42fbbb84c5d
great0001
2025-01-29T06:40:52Z
8
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-01-29T06:35:17Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: 74b9ee60-2bb7-4c7a-bdba-d42fbbb84c5d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f65209fd2b79f576_train_data.json ds_type: json format: custom path: /workspace/input_data/f65209fd2b79f576_train_data.json type: field_instruction: text field_output: code format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/74b9ee60-2bb7-4c7a-bdba-d42fbbb84c5d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/f65209fd2b79f576_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7fba0349-cbce-4a47-81c7-be27ce53fcc2 wandb_project: Birthday-SN56-33-Gradients-On-Demand wandb_run: your_name wandb_runid: 7fba0349-cbce-4a47-81c7-be27ce53fcc2 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 74b9ee60-2bb7-4c7a-bdba-d42fbbb84c5d This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.6943 | 0.0002 | 1 | 0.7522 | | 9.3066 | 0.0021 | 13 | 0.6642 | | 3.4034 | 0.0041 | 26 | 0.4466 | | 3.346 | 0.0062 | 39 | 0.3819 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Theros/Qwen2.5-ColdBrew-R1-test4
Theros
2025-01-29T06:40:27Z
46
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:Theros/Qwen2.5-ColdBrew-R1-test2", "base_model:merge:Theros/Qwen2.5-ColdBrew-R1-test2", "base_model:bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2", "base_model:merge:bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T06:35:09Z
--- base_model: - bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2 - Theros/Qwen2.5-ColdBrew-R1-test2 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2](https://huggingface.co/bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2) * [Theros/Qwen2.5-ColdBrew-R1-test2](https://huggingface.co/Theros/Qwen2.5-ColdBrew-R1-test2) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Theros/Qwen2.5-ColdBrew-R1-test2 layer_range: [0, 28] - model: bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2 layer_range: [0, 28] merge_method: slerp base_model: Theros/Qwen2.5-ColdBrew-R1-test2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 tokenizer_source: Theros/Qwen2.5-ColdBrew-R1-test2 ```
Prisma-Multimodal/imagenet-sweep-vanilla-x64-CLS_8-hook_resid_post-635.018737792969-76
Prisma-Multimodal
2025-01-29T06:40:24Z
19
0
null
[ "region:us" ]
null
2025-01-29T06:40:14Z
# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 8 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: True ### Training - **Training Images**: 1298432 - **Learning Rate**: 0.0028 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096 - **Context Size**: 1 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 635.0187 - **Dead Features**: 0 - **Mean Passes Since Fired**: 45.8548 ### Reconstruction - **Explained Variance**: 0.7672 - **Explained Variance Std**: 0.2072 - **MSE Loss**: 0.0015 - **L1 Loss**: 230.6383 - **Overall Loss**: 0.0015 ## Training Details - **Training Duration**: 360 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/c0dcb7e7-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1302528.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/vanilla-imagenet-CLS_only-sweep/runs/ii5o7h2h - **Random Seed**: 42
Prisma-Multimodal/imagenet-sweep-vanilla-x64-CLS_7-hook_resid_post-492.959381103516-88
Prisma-Multimodal
2025-01-29T06:40:13Z
12
0
null
[ "region:us" ]
null
2025-01-29T06:40:05Z
# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 7 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: True ### Training - **Training Images**: 1298432 - **Learning Rate**: 0.0036 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096 - **Context Size**: 1 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 492.9594 - **Dead Features**: 0 - **Mean Passes Since Fired**: 121.3178 ### Reconstruction - **Explained Variance**: 0.8836 - **Explained Variance Std**: 0.0215 - **MSE Loss**: 0.0005 - **L1 Loss**: 215.2193 - **Overall Loss**: 0.0010 ## Training Details - **Training Duration**: 252 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/21aa4c67-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1302528.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/vanilla-imagenet-CLS_only-sweep/runs/5tdstmwv - **Random Seed**: 42
Prisma-Multimodal/imagenet-sweep-vanilla-x64-CLS_6-hook_resid_post-430.556243896484-92
Prisma-Multimodal
2025-01-29T06:40:04Z
13
0
null
[ "region:us" ]
null
2025-01-29T06:39:53Z
# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 6 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: True ### Training - **Training Images**: 1298432 - **Learning Rate**: 0.0061 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096 - **Context Size**: 1 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 430.5562 - **Dead Features**: 0 - **Mean Passes Since Fired**: 179.1497 ### Reconstruction - **Explained Variance**: 0.9292 - **Explained Variance Std**: 0.0209 - **MSE Loss**: 0.0003 - **L1 Loss**: 342.2079 - **Overall Loss**: 0.0003 ## Training Details - **Training Duration**: 254 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/a4f2874e-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1302528.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/vanilla-imagenet-CLS_only-sweep/runs/lqwere3b - **Random Seed**: 42
Prisma-Multimodal/imagenet-sweep-vanilla-x64-CLS_4-hook_resid_post-682.543762207031-95
Prisma-Multimodal
2025-01-29T06:39:43Z
13
0
null
[ "region:us" ]
null
2025-01-29T06:39:34Z
# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 4 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: True ### Training - **Training Images**: 1298432 - **Learning Rate**: 0.0076 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096 - **Context Size**: 1 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 682.5438 - **Dead Features**: 0 - **Mean Passes Since Fired**: 232.3228 ### Reconstruction - **Explained Variance**: 0.9544 - **Explained Variance Std**: 0.0125 - **MSE Loss**: 0.0001 - **L1 Loss**: 318.7141 - **Overall Loss**: 0.0001 ## Training Details - **Training Duration**: 249 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/f2bb5300-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1302528.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/vanilla-imagenet-CLS_only-sweep/runs/9qbjy580 - **Random Seed**: 42