modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-26 18:27:55
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 499
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-26 18:27:32
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Lekhansh/Llama-3.2-3B-Instruct-Scientific-Text-Cleaner_merged | Lekhansh | 2025-04-28T09:33:19Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T09:28:10Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
sknow-lab/Gemma3-12B-CIC-SciCite | sknow-lab | 2025-04-28T09:32:06Z | 0 | 1 | transformers | [
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"scientometrics",
"citation_analysis",
"citation_intent_classification",
"text-generation",
"conversational",
"en",
"dataset:allenai/scicite",
"arxiv:2502.14561",
"base_model:google/gemma-3-12b-it",
"base_model:finetune:google/gemma-3-12b-it",
"license:gemma",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-25T13:30:58Z | ---
license: gemma
datasets:
- allenai/scicite
language:
- en
metrics:
- f1
base_model:
- google/gemma-3-12b-it
pipeline_tag: text-generation
library_name: transformers
tags:
- scientometrics
- citation_analysis
- citation_intent_classification
---
# Gemma3-12B-CIC-SciCite
A fine-tuned model for Citation Intent Classification, based on [Gemma 3 - 12B Instruct](https://huggingface.co/google/gemma-3-12b-it) and trained on the [SciCite](https://huggingface.co/datasets/allenai/scicite) dataset.
GGUF Version: https://huggingface.co/sknow-lab/Gemma3-12B-CIC-SciCite-GGUF
## SciCite classes
| Class | Definition |
| --- | --- |
| Background information | The citation states, mentions, or points to the background information giving more context about a problem, concept, approach, topic, or importance of the problem in the field. |
| Method | Making use of a method, tool, approach or dataset. |
| Result comparison | Comparison of the paperโs results/findings with the results/findings of other work. |
## Quickstart
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "sknow-lab/Gemma3-12B-CIC-SciCite"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
system_prompt = """
# CONTEXT #
You are an expert researcher tasked with classifying the intent of a citation in a scientific publication.
########
# OBJECTIVE #
You will be given a sentence containing a citation. You must classify the intent of the citation by assigning it to one of three predefined classes.
########
# CLASS DEFINITIONS #
The three (3) possible classes are the following: "background information", "method", "results comparison."
1 - background information: The citation states, mentions, or points to the background information giving more context about a problem, concept, approach, topic, or importance of the problem in the field.
2 - method: Making use of a method, tool, approach, or dataset.
3 - results comparison: Comparison of the paperโs results/findings with the results/findings of other work.
########
# RESPONSE RULES #
- Analyze only the citation marked with the @@CITATION tag.
- Assign exactly one class to each citation.
- Respond only with the exact name of one of the following classes: "background information", "method", or "results comparison".
- Do not provide any explanation or elaboration.
"""
test_citing_sentence = "Activated PBMC are the basis of the standard PBMC blast assay for HIV-1 neutralization, whereas the various GHOST and HeLa cell lines have all been used in neutralization assays @@CITATION@@."
user_prompt = f"""
{test_citing_sentence}
### Question: Which is the most likely intent for this citation?
a) background information
b) method
c) results comparison
### Answer:
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Response: method
```
Details about the system prompts and query templates can be found in the paper.
There might be a need for a cleanup function to extract the predicted label from the output. You can find ours on [GitHub](https://github.com/athenarc/CitationIntentOpenLLM/blob/main/citation_intent_classification_experiments.py).
## Citation
```
@misc{koloveas2025llmspredictcitationintent,
title={Can LLMs Predict Citation Intent? An Experimental Analysis of In-context Learning and Fine-tuning on Open LLMs},
author={Paris Koloveas and Serafeim Chatzopoulos and Thanasis Vergoulis and Christos Tryfonopoulos},
year={2025},
eprint={2502.14561},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.14561},
}
``` |
Triangle104/Qwen2.5-0.5B-Instruct-Q6_K-GGUF | Triangle104 | 2025-04-28T09:19:06Z | 7 | 0 | null | [
"gguf",
"chat",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"base_model:Qwen/Qwen2.5-0.5B-Instruct",
"base_model:quantized:Qwen/Qwen2.5-0.5B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-09-22T17:51:40Z | ---
base_model: Qwen/Qwen2.5-0.5B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- chat
- llama-cpp
- gguf-my-repo
---
# Triangle104/Qwen2.5-0.5B-Instruct-Q6_K-GGUF
This model was converted to GGUF format from [`Qwen/Qwen2.5-0.5B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen2.5-0.5B-Instruct-Q6_K-GGUF --hf-file qwen2.5-0.5b-instruct-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen2.5-0.5B-Instruct-Q6_K-GGUF --hf-file qwen2.5-0.5b-instruct-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen2.5-0.5B-Instruct-Q6_K-GGUF --hf-file qwen2.5-0.5b-instruct-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen2.5-0.5B-Instruct-Q6_K-GGUF --hf-file qwen2.5-0.5b-instruct-q6_k.gguf -c 2048
```
|
sjahr/ppo-LunarLander-v2 | sjahr | 2025-04-28T08:23:48Z | 0 | 0 | stable-baselines3 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | reinforcement-learning | 2025-04-28T08:23:28Z | ---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 241.42 +/- 31.44
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Lingyue1/Light-R1 | Lingyue1 | 2025-04-28T08:16:57Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
"base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-27T07:00:26Z | ---
library_name: transformers
license: other
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: Light-R1-ly
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Light-R1
This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co//lamda12/zhouz/models/DeepSeek-R1-Distill-Qwen-7B) on the light_r1_3k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.45.2
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|
neginr/r1_annotated_finqa | neginr | 2025-04-28T08:13:50Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T08:07:14Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: r1_annotated_finqa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# r1_annotated_finqa
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/r1_annotated_finqa dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 3
- total_train_batch_size: 96
- total_eval_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1
- Datasets 3.0.2
- Tokenizers 0.20.3
|
mlfoundations-dev/opencodereasoning_1k | mlfoundations-dev | 2025-04-28T08:05:14Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T08:02:36Z | ---
library_name: transformers
license: other
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: opencodereasoning_1k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opencodereasoning_1k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/opencodereasoning_1k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 24
- total_train_batch_size: 96
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.5.0a0+b465a5843b.nv24.09
- Datasets 3.5.0
- Tokenizers 0.20.3
|
kkks05/Llama-3.2-1B-instruct-lora_spider | kkks05 | 2025-04-28T08:04:01Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-04-28T05:26:10Z | ---
base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** kkks05
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF | mradermacher | 2025-04-28T08:00:06Z | 10 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:YOYO-AI/YOYO-O1-32B-V4-preview4",
"base_model:quantized:YOYO-AI/YOYO-O1-32B-V4-preview4",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-04-28T03:43:16Z | ---
base_model: YOYO-AI/YOYO-O1-32B-V4-preview4
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/YOYO-AI/YOYO-O1-32B-V4-preview4
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-IQ1_S.gguf) | i1-IQ1_S | 7.4 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.8 | |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-IQ3_S.gguf) | i1-IQ3_S | 14.5 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q4_0.gguf) | i1-Q4_0 | 18.8 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q4_K_M.gguf) | i1-Q4_K_M | 19.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q4_1.gguf) | i1-Q4_1 | 20.7 | |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.4 | |
| [GGUF](https://huggingface.co/mradermacher/YOYO-O1-32B-V4-preview4-i1-GGUF/resolve/main/YOYO-O1-32B-V4-preview4.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
mlfoundations-dev/d1_science_shortest_3k | mlfoundations-dev | 2025-04-28T07:49:06Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-28T07:46:42Z | ---
library_name: transformers
license: other
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: d1_science_shortest_3k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# d1_science_shortest_3k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/d1_science_shortest_3k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 6
- total_train_batch_size: 96
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0a0+ecf3bae40a.nv25.01
- Datasets 3.5.0
- Tokenizers 0.20.3
|
shibajustfor/eb908b1f-1b3d-4348-b3ea-1aec8aa320b5 | shibajustfor | 2025-04-28T07:46:44Z | 0 | 0 | peft | [
"peft",
"generated_from_trainer",
"base_model:tokyotech-llm/Llama-3-Swallow-8B-v0.1",
"base_model:adapter:tokyotech-llm/Llama-3-Swallow-8B-v0.1",
"region:us"
] | null | 2025-04-28T07:46:19Z | ---
library_name: peft
tags:
- generated_from_trainer
base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1
model-index:
- name: shibajustfor/eb908b1f-1b3d-4348-b3ea-1aec8aa320b5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# shibajustfor/eb908b1f-1b3d-4348-b3ea-1aec8aa320b5
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5814
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3 |
bharathsj/llama-3.2-3b-v1 | bharathsj | 2025-04-28T07:44:31Z | 0 | 0 | null | [
"safetensors",
"llama",
"license:apache-2.0",
"region:us"
] | null | 2025-04-28T07:33:00Z | ---
license: apache-2.0
---
|
Triangle104/Qwen2.5-3B-Instruct-Q5_K_M-GGUF | Triangle104 | 2025-04-28T07:34:19Z | 4 | 0 | null | [
"gguf",
"chat",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"base_model:Qwen/Qwen2.5-3B-Instruct",
"base_model:quantized:Qwen/Qwen2.5-3B-Instruct",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-09-19T16:38:42Z | ---
base_model: Qwen/Qwen2.5-3B-Instruct
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
license: other
license_name: qwen-research
license_link: https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- chat
- llama-cpp
- gguf-my-repo
---
# Triangle104/Qwen2.5-3B-Instruct-Q5_K_M-GGUF
This model was converted to GGUF format from [`Qwen/Qwen2.5-3B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen2.5-3B-Instruct-Q5_K_M-GGUF --hf-file qwen2.5-3b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen2.5-3B-Instruct-Q5_K_M-GGUF --hf-file qwen2.5-3b-instruct-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen2.5-3B-Instruct-Q5_K_M-GGUF --hf-file qwen2.5-3b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen2.5-3B-Instruct-Q5_K_M-GGUF --hf-file qwen2.5-3b-instruct-q5_k_m.gguf -c 2048
```
|
mlfoundations-dev/c1_code_10d_16s_3k | mlfoundations-dev | 2025-04-28T07:32:01Z | 2 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-27T23:40:04Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: c1_code_10d_16s_3k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# c1_code_10d_16s_3k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/c1_code_10d_16s_3k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 24
- total_train_batch_size: 96
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|
willg6872/lora_model | willg6872 | 2025-04-28T07:13:30Z | 8 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation-inference",
"unsloth",
"trl",
"en",
"base_model:unsloth/llama-2-7b-bnb-4bit",
"base_model:finetune:unsloth/llama-2-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-04-28T06:58:49Z | ---
base_model: unsloth/llama-2-7b-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** willg6872
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-2-7b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
HoseaDev/llama3.1-alpaca-gpt4-data-zh | HoseaDev | 2025-04-28T05:52:25Z | 0 | 0 | null | [
"gguf",
"llama",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-04-28T04:55:12Z | ---
license: apache-2.0
---
|
Triangle104/Qwen2.5-32B-Instruct-Q3_K_L-GGUF | Triangle104 | 2025-04-28T05:31:05Z | 4 | 0 | transformers | [
"transformers",
"gguf",
"chat",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-32B-Instruct",
"base_model:quantized:Qwen/Qwen2.5-32B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2024-12-29T14:34:15Z | ---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-32B-Instruct/blob/main/LICENSE
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-32B-Instruct
tags:
- chat
- llama-cpp
- gguf-my-repo
library_name: transformers
---
# Triangle104/Qwen2.5-32B-Instruct-Q3_K_L-GGUF
This model was converted to GGUF format from [`Qwen/Qwen2.5-32B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) for more details on the model.
---
Model Details:
-
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
Significantly more knowledge and has greatly improved capabilities in coding and mathematics, thanks to our specialized expert models in these domains.
Significant improvements in instruction following, generating long texts (over 8K tokens), understanding structured data (e.g, tables), and generating structured outputs especially JSON. More resilient to the diversity of system prompts, enhancing role-play implementation and condition-setting for chatbots.
Long-context Support up to 128K tokens and can generate up to 8K tokens.
Multilingual support for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
This repo contains the instruction-tuned 32B Qwen2.5 model, which has the following features:
Type: Causal Language Models
Training Stage: Pretraining & Post-training
Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
Number of Parameters: 32.5B
Number of Paramaters (Non-Embedding): 31.0B
Number of Layers: 64
Number of Attention Heads (GQA): 40 for Q and 8 for KV
Context Length: Full 131,072 tokens and generation 8192 tokens
Please refer to this section for detailed instructions on how to deploy Qwen2.5 for handling long texts.
For more details, please refer to our blog, GitHub, and Documentation.
Requirements
The code of Qwen2.5 has been in the latest Hugging face transformers and we advise you to use the latest version of transformers.
With transformers<4.37.0, you will encounter the following error:
KeyError: 'qwen2'
Quickstart
Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-32B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Processing Long Texts
The current config.json is set for context length up to 32,768 tokens. To handle extensive inputs exceeding 32,768 tokens, we utilize YaRN, a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
For supported frameworks, you could add the following to config.json to enable YaRN:
{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}
For deployment, we recommend using vLLM. Please refer to our Documentation for usage if you are not familar with vLLM. Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, potentially impacting performance on shorter texts. We advise adding the rope_scaling configuration only when processing long contexts is required.
Evaluation & Performance
Detailed evaluation results are reported in this ๐ blog.
For requirements on GPU memory and the respective throughput, see results here.
Citation
If you find our work helpful, feel free to give us a cite.
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen2.5-32B-Instruct-Q3_K_L-GGUF --hf-file qwen2.5-32b-instruct-q3_k_l.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen2.5-32B-Instruct-Q3_K_L-GGUF --hf-file qwen2.5-32b-instruct-q3_k_l.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen2.5-32B-Instruct-Q3_K_L-GGUF --hf-file qwen2.5-32b-instruct-q3_k_l.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen2.5-32B-Instruct-Q3_K_L-GGUF --hf-file qwen2.5-32b-instruct-q3_k_l.gguf -c 2048
```
|
TOMFORD79/S6 | TOMFORD79 | 2025-04-28T05:06:02Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-04-28T04:02:34Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
mradermacher/Broken-Tutu-24B-GGUF | mradermacher | 2025-04-28T03:43:19Z | 0 | 1 | transformers | [
"transformers",
"gguf",
"nsfw",
"explicit",
"roleplay",
"unaligned",
"ERP",
"Erotic",
"Horror",
"Violence",
"en",
"base_model:ReadyArt/Broken-Tutu-24B",
"base_model:quantized:ReadyArt/Broken-Tutu-24B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-27T19:13:31Z | ---
base_model: ReadyArt/Broken-Tutu-24B
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- nsfw
- explicit
- roleplay
- unaligned
- ERP
- Erotic
- Horror
- Violence
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/ReadyArt/Broken-Tutu-24B
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Broken-Tutu-24B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF/resolve/main/Broken-Tutu-24B.Q2_K.gguf) | Q2_K | 9.0 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF/resolve/main/Broken-Tutu-24B.Q3_K_S.gguf) | Q3_K_S | 10.5 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF/resolve/main/Broken-Tutu-24B.Q3_K_M.gguf) | Q3_K_M | 11.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF/resolve/main/Broken-Tutu-24B.Q3_K_L.gguf) | Q3_K_L | 12.5 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF/resolve/main/Broken-Tutu-24B.IQ4_XS.gguf) | IQ4_XS | 13.0 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF/resolve/main/Broken-Tutu-24B.Q4_K_S.gguf) | Q4_K_S | 13.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF/resolve/main/Broken-Tutu-24B.Q4_K_M.gguf) | Q4_K_M | 14.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF/resolve/main/Broken-Tutu-24B.Q5_K_S.gguf) | Q5_K_S | 16.4 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF/resolve/main/Broken-Tutu-24B.Q5_K_M.gguf) | Q5_K_M | 16.9 | |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF/resolve/main/Broken-Tutu-24B.Q6_K.gguf) | Q6_K | 19.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Broken-Tutu-24B-GGUF/resolve/main/Broken-Tutu-24B.Q8_0.gguf) | Q8_0 | 25.2 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
Jongsim/Qwen2.5-32B-AGI-4.7bpw-exl2 | Jongsim | 2025-04-28T02:23:41Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"dataset:anthracite-org/kalo-opus-instruct-22k-no-refusal",
"dataset:unalignment/toxic-dpo-v0.2",
"dataset:Orion-zhen/dpo-toxic-zh",
"base_model:Qwen/Qwen2.5-32B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-32B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-09-27T15:47:33Z | ---
license: apache-2.0
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
base_model:
- Qwen/Qwen2.5-32B-Instruct
datasets:
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- unalignment/toxic-dpo-v0.2
- Orion-zhen/dpo-toxic-zh
library_name: transformers
---
AGI means **A**spirational **G**rand **I**llusion
First Qwen2.5 32B Finetune, to fix its **Hypercensuritis**
> Hyper means high, and censura means censor, the suffix "-itis" is used to denote inflammation of a particular part or organ of the body. |
jonahdvt/whisper-large-cv-fleurs-afri | jonahdvt | 2025-04-28T00:21:10Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"sw,yo,ha,ig,lg",
"generated_from_trainer",
"multilingual",
"dataset:common_voice",
"base_model:jonahdvt/whisper-fleurs-large-afri",
"base_model:finetune:jonahdvt/whisper-fleurs-large-afri",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | 2025-04-27T18:58:44Z | ---
library_name: transformers
language:
- multilingual
license: apache-2.0
base_model: jonahdvt/whisper-fleurs-large-afri
tags:
- sw,yo,ha,ig,lg
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: "Whisper Large \u2014 Common Voice Afri"
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large โ Common Voice Afri
This model is a fine-tuned version of [jonahdvt/whisper-fleurs-large-afri](https://huggingface.co/jonahdvt/whisper-fleurs-large-afri) on the Common Voice dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 4600
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|
qingy2024/Fusion4-14B-Instruct | qingy2024 | 2025-04-27T23:53:33Z | 15 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"mergekit",
"merge",
"conversational",
"zho",
"eng",
"fra",
"spa",
"por",
"deu",
"ita",
"rus",
"jpn",
"kor",
"vie",
"tha",
"ara",
"arxiv:2306.01708",
"base_model:Qwen/Qwen2.5-14B",
"base_model:merge:Qwen/Qwen2.5-14B",
"base_model:arcee-ai/Virtuoso-Small",
"base_model:merge:arcee-ai/Virtuoso-Small",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-12-25T21:15:46Z | ---
base_model:
- arcee-ai/Virtuoso-Small
- Qwen/Qwen2.5-14B
library_name: transformers
tags:
- mergekit
- merge
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) as a base.
### Models Merged
The following models were included in the merge:
* [arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: arcee-ai/Virtuoso-Small
parameters:
weight: 1
density: 1
merge_method: ties
base_model: Qwen/Qwen2.5-14B
parameters:
weight: 1
density: 1
normalize: true
int8_mask: true
dtype: float16
```
|
shavkatsharipo/samhari-flex-LoRA | shavkatsharipo | 2025-04-27T21:54:28Z | 2 | 0 | null | [
"license:other",
"region:us"
] | null | 2025-04-26T17:43:13Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
rnzrwnmgbry/rnz | rnzrwnmgbry | 2025-04-27T21:13:05Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-27T21:13:05Z | ---
license: apache-2.0
---
|
Yudees28/MedRefine-QA | Yudees28 | 2025-04-27T19:37:11Z | 0 | 0 | null | [
"safetensors",
"bert",
"region:us"
] | null | 2025-04-27T19:20:03Z | MedRefine-QA
A medical question-answering system that provides reliable and accurate health information through semantic matching techniques. Designed to help users find trustworthy answers to common medical queries while emphasizing the importance of professional medical advice.
Overview
MedRefine-QA leverages domain-specific language models and semantic similarity matching to deliver accurate responses to medical questions. The system combines the strengths of biomedical models like PubMedBERT and Bio_ClinicalBERT with a curated dataset of verified medical information.
Features
Semantic matching using S-BioBert embeddings for question understanding
Fallback mechanisms for questions outside the knowledge base
Appropriate disclaimers regarding professional medical advice
Simple and intuitive interface for medical inquiries
Limitations
This model is intended for informational purposes only and should not replace professional medical advice, diagnosis, or treatment. Users should always consult qualified healthcare providers for medical concerns.
Citation
If you use this model in your research, please cite:
@software{MedRefine-QA,
title = {MedRefine-QA: A Medical Question-Answering System},
year = {2025},
url = {https://huggingface.co/Yudees28/MedRefine-QA}
} |
agumi322/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-frisky_toothy_wallaby | agumi322 | 2025-04-27T15:52:06Z | 4 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am frisky toothy wallaby",
"trl",
"conversational",
"arxiv:2402.03300",
"base_model:Gensyn/Qwen2.5-0.5B-Instruct",
"base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-06T07:48:01Z | ---
base_model: Gensyn/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-frisky_toothy_wallaby
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am frisky toothy wallaby
- trl
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-frisky_toothy_wallaby
This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="agumi322/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-frisky_toothy_wallaby", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.5.1
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
mlfoundations-dev/c1_science_nod_1s_3k | mlfoundations-dev | 2025-04-27T15:20:09Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-27T15:16:33Z | ---
library_name: transformers
license: other
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: c1_science_nod_1s_3k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# c1_science_nod_1s_3k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/c1_science_nod_1s_3k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 6
- total_train_batch_size: 96
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0a0+ecf3bae40a.nv25.01
- Datasets 3.5.0
- Tokenizers 0.20.3
|
nsadeq/ReDis-Mistral | nsadeq | 2025-04-27T15:11:06Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"Inductive",
"Reasoning",
"text-generation",
"en",
"dataset:nsadeq/redis_generate_rule_alignment",
"dataset:nsadeq/redis_generate_rule_sft",
"dataset:nsadeq/redis_follow_rule_sft",
"arxiv:2504.10647",
"base_model:mistralai/Mistral-7B-Instruct-v0.3",
"base_model:finetune:mistralai/Mistral-7B-Instruct-v0.3",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-27T15:03:00Z | ---
library_name: transformers
tags:
- Inductive
- Reasoning
datasets:
- nsadeq/redis_generate_rule_alignment
- nsadeq/redis_generate_rule_sft
- nsadeq/redis_follow_rule_sft
language:
- en
base_model:
- mistralai/Mistral-7B-Instruct-v0.3
pipeline_tag: text-generation
---
# Model Card for Model ID
ReDis-Llama is trained for improved inductive reasoning performance.
### Model Description
- **Developed by:** Nafis Sadeq
- **Language(s) (NLP):** English
- **Finetuned from model:** mistralai/Mistral-7B-Instruct-v0.3
### Model Sources [optional]
- **Repository:** https://github.com/NafisSadeq/reasoning-distillation
- **Paper:** https://arxiv.org/abs/2504.10647
## How to Get Started with the Model
Follow the instructions here: https://github.com/NafisSadeq/reasoning-distillation
## Training Details
Training details can be found in the paper: https://arxiv.org/abs/2504.10647
## Environmental Impact
- **Hardware Type:** 2 ร 48 GB Nvidia RTX A6000 GPUs
- **Hours used:** 72 hours
### Model Architecture and Objective
This model has the same architecture as mistralai/Mistral-7B-Instruct-v0.3
### Compute Infrastructure
2 ร 48 GB Nvidia RTX A6000 GPUs
## Citation
If you use this model, please cite the following paper.
@misc{sadeq2025improvingincontextlearningreasoning,
title={Improving In-Context Learning with Reasoning Distillation},
author={Nafis Sadeq and Xin Xu and Zhouhang Xie and Julian McAuley and Byungkyu Kang and Prarit Lamba and Xiang Gao},
year={2025},
eprint={2504.10647},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2504.10647},
} |
fhaslam/Llama-3.2-1B-Financial-Sentiment11 | fhaslam | 2025-04-27T15:09:57Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"facebook",
"meta",
"pytorch",
"llama",
"llama-3",
"text-generation",
"conversational",
"en",
"de",
"fr",
"it",
"pt",
"hi",
"es",
"th",
"arxiv:2204.05149",
"arxiv:2405.16406",
"license:llama3.2",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-27T15:09:49Z | ---
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
library_name: transformers
pipeline_tag: text-generation
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
license: llama3.2
extra_gated_prompt: >-
### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT
Llama 3.2 Version Release Date: September 25, 2024
โAgreementโ means the terms and conditions for use, reproduction, distribution
and modification of the Llama Materials set forth herein.
โDocumentationโ means the specifications, manuals and documentation accompanying Llama 3.2
distributed by Meta at https://llama.meta.com/doc/overview.
โLicenseeโ or โyouโ means you, or your employer or any other person or entity (if you are
entering into this Agreement on such person or entityโs behalf), of the age required under
applicable laws, rules or regulations to provide legal consent and that has legal authority
to bind your employer or such other person or entity if you are entering in this Agreement
on their behalf.
โLlama 3.2โ means the foundational large language models and software and algorithms, including
machine-learning model code, trained model weights, inference-enabling code, training-enabling code,
fine-tuning enabling code and other elements of the foregoing distributed by Meta at
https://www.llama.com/llama-downloads.
โLlama Materialsโ means, collectively, Metaโs proprietary Llama 3.2 and Documentation (and
any portion thereof) made available under this Agreement.
โMetaโ or โweโ means Meta Platforms Ireland Limited (if you are located in or,
if you are an entity, your principal place of business is in the EEA or Switzerland)
and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).
By clicking โI Acceptโ below or by using or distributing any portion or element of the Llama Materials,
you agree to be bound by this Agreement.
1. License Rights and Redistribution.
a. Grant of Rights. You are granted a non-exclusive, worldwide,
non-transferable and royalty-free limited license under Metaโs intellectual property or other rights
owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works
of, and make modifications to the Llama Materials.
b. Redistribution and Use.
i. If you distribute or make available the Llama Materials (or any derivative works thereof),
or a product or service (including another AI model) that contains any of them, you shall (A) provide
a copy of this Agreement with any such Llama Materials; and (B) prominently display โBuilt with Llamaโ
on a related website, user interface, blogpost, about page, or product documentation. If you use the
Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or
otherwise improve an AI model, which is distributed or made available, you shall also include โLlamaโ
at the beginning of any such AI model name.
ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part
of an integrated end user product, then Section 2 of this Agreement will not apply to you.
iii. You must retain in all copies of the Llama Materials that you distribute the
following attribution notice within a โNoticeโ text file distributed as a part of such copies:
โLlama 3.2 is licensed under the Llama 3.2 Community License, Copyright ยฉ Meta Platforms,
Inc. All Rights Reserved.โ
iv. Your use of the Llama Materials must comply with applicable laws and regulations
(including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for
the Llama Materials (available at https://www.llama.com/llama3_2/use-policy), which is hereby
incorporated by reference into this Agreement.
2. Additional Commercial Terms. If, on the Llama 3.2 version release date, the monthly active users
of the products or services made available by or for Licensee, or Licenseeโs affiliates,
is greater than 700 million monthly active users in the preceding calendar month, you must request
a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to
exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND
RESULTS THEREFROM ARE PROVIDED ON AN โAS ISโ BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS
ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE
FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED
WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN
IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
5. Intellectual Property.
a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials,
neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates,
except as required for reasonable and customary use in describing and redistributing the Llama Materials or as
set forth in this Section 5(a). Meta hereby grants you a license to use โLlamaโ (the โMarkโ) solely as required
to comply with the last sentence of Section 1.b.i. You will comply with Metaโs brand guidelines (currently accessible
at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark
will inure to the benefit of Meta.
b. Subject to Metaโs ownership of Llama Materials and derivatives made by or for Meta, with respect to any
derivative works and modifications of the Llama Materials that are made by you, as between you and Meta,
you are and will be the owner of such derivative works and modifications.
c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion
of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable
by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or
claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third
party arising out of or related to your use or distribution of the Llama Materials.
6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access
to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms
and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this
Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3,
4 and 7 shall survive the termination of this Agreement.
7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of
California without regard to choice of law principles, and the UN Convention on Contracts for the International
Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of
any dispute arising out of this Agreement.
### Llama 3.2 Acceptable Use Policy
Meta is committed to promoting safe and fair use of its tools and features, including Llama 3.2.
If you access or use Llama 3.2, you agree to this Acceptable Use Policy (โ**Policy**โ).
The most recent copy of this policy can be found at
[https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).
#### Prohibited Uses
We want everyone to use Llama 3.2 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.2 to:
1. Violate the law or othersโ rights, including to:
1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
1. Violence or terrorism
2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
3. Human trafficking, exploitation, and sexual violence
4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
5. Sexual solicitation
6. Any other criminal activity
1. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
2. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
3. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
4. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individualsโ identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law
5. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials
6. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
7. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Metaย
2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.2 related to the following:
8. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997
9. Guns and illegal weapons (including weapon development)
10. Illegal drugs and regulated/controlled substances
11. Operation of critical infrastructure, transportation technologies, or heavy machinery
12. Self-harm or harm to others, including suicide, cutting, and eating disorders
13. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
3. Intentionally deceive or mislead others, including use of Llama 3.2 related to the following:
14. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
15. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
16. Generating, promoting, or further distributing spam
17. Impersonating another individual without consent, authorization, or legal right
18. Representing that the use of Llama 3.2 or outputs are human-generated
19. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagementย
4. Fail to appropriately disclose to end users any known dangers of your AI system
5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.2
With respect to any multimodal models included in Llama 3.2, the rights granted under Section 1(a) of the Llama 3.2 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.
Please report any violation of this Policy, software โbug,โ or other problems that could lead to a violation of this Policy through one of the following means:
* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)
* Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
* Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.2: [email protected]
extra_gated_fields:
First Name: text
Last Name: text
Date of birth: date_picker
Country: country
Affiliation: text
Job title:
type: select
options:
- Student
- Research Graduate
- AI researcher
- AI developer/engineer
- Reporter
- Other
geo: ip_location
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
extra_gated_description: >-
The information you provide will be collected, stored, processed and shared in
accordance with the [Meta Privacy
Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit
---
## Model Information
The Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks.
**Model Developer:** Meta
**Model Architecture:** Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
| | Training Data | Params | Input modalities | Output modalities | Context Length | GQA | Shared Embeddings | Token count | Knowledge cutoff |
| :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- |
| Llama 3.2 (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 128k | Yes | Yes | Up to 9T tokens | December 2023 |
| | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | |
| Llama 3.2 Quantized (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 8k | Yes | Yes | Up to 9T tokens | December 2023 |
| | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | |
**Supported Languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly.
**Llama 3.2 Model Family:** Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Release Date:** Sept 25, 2024
**Status:** This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety.
**License:** Use of Llama 3.2 is governed by the [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (a custom, commercial license agreement).
**Feedback:** Instructions on how to provide feedback or comments on the model can be found in the Llama Models [README](https://github.com/meta-llama/llama-models/blob/main/README.md). For more technical information about generation parameters and recipes for how to use Llama 3.2 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
## Intended Use
**Intended Use Cases:** Llama 3.2 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat and agentic applications like knowledge retrieval and summarization, mobile AI powered writing assistants and query and prompt rewriting. Pretrained models can be adapted for a variety of additional natural language generation tasks. Similarly, quantized models can be adapted for a variety of on-device use-cases with limited compute resources.
**Out of Scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.2 Community License. Use in languages beyond those explicitly referenced as supported in this model card.
## How to use
This repository contains two versions of Llama-3.2-1B-Instruct, for use with transformers and with the original `llama` codebase.
### Use with transformers
Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function.
Make sure to update your transformers installation via `pip install --upgrade transformers`.
```python
import torch
from transformers import pipeline
model_id = "meta-llama/Llama-3.2-1B-Instruct"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes)
### Use with `llama`
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama)
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
```
huggingface-cli download meta-llama/Llama-3.2-1B-Instruct --include "original/*" --local-dir Llama-3.2-1B-Instruct
```
## Hardware and Software
**Training Factors:** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, quantization, annotation, and evaluation were also performed on production infrastructure.
**Training Energy Use:** Training utilized a cumulative of **916k** GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.
**Training Greenhouse Gas Emissions:** Estimated total location-based greenhouse gas emissions were **240** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy; therefore, the total market-based greenhouse gas emissions for training were 0 tons CO2eq.
| | Training Time (GPU hours) | Logit Generation Time (GPU Hours) | Training Power Consumption (W) | Training Location-Based Greenhouse Gas Emissions (tons CO2eq) | Training Market-Based Greenhouse Gas Emissions (tons CO2eq) |
| :---- | :---: | ----- | :---: | :---: | :---: |
| Llama 3.2 1B | 370k | \- | 700 | 107 | 0 |
| Llama 3.2 3B | 460k | \- | 700 | 133 | 0 |
| Llama 3.2 1B SpinQuant | 1.7 | 0 | 700 | *Negligible*\*\* | 0 |
| Llama 3.2 3B SpinQuant | 2.4 | 0 | 700 | *Negligible*\*\* | 0 |
| Llama 3.2 1B QLora | 1.3k | 0 | 700 | 0.381 | 0 |
| Llama 3.2 3B QLora | 1.6k | 0 | 700 | 0.461 | 0 |
| Total | 833k | 86k | | 240 | 0 |
\*\* The location-based CO2e emissions of Llama 3.2 1B SpinQuant and Llama 3.2 3B SpinQuant are less than 0.001 metric tonnes each. This is due to the minimal training GPU hours that are required.
The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.
## Training Data
**Overview:** Llama 3.2 was pretrained on up to 9 trillion tokens of data from publicly available sources. For the 1B and 3B Llama 3.2 models, we incorporated logits from the Llama 3.1 8B and 70B models into the pretraining stage of the model development, where outputs (logits) from these larger models were used as token-level targets. Knowledge distillation was used after pruning to recover performance. In post-training we used a similar recipe as Llama 3.1 and produced final chat models by doing several rounds of alignment on top of the pre-trained model. Each round involved Supervised Fine-Tuning (SFT), Rejection Sampling (RS), and Direct Preference Optimization (DPO).
**Data Freshness:** The pretraining data has a cutoff of December 2023\.
## Quantization
### Quantization Scheme
We designed the current quantization scheme with the [PyTorchโs ExecuTorch](https://github.com/pytorch/executorch) inference framework and Arm CPU backend in mind, taking into account metrics including model quality, prefill/decoding speed, and memory footprint. Our quantization scheme involves three parts:
- All linear layers in all transformer blocks are quantized to a 4-bit groupwise scheme (with a group size of 32) for weights and 8-bit per-token dynamic quantization for activations.
- The classification layer is quantized to 8-bit per-channel for weight and 8-bit per token dynamic quantization for activation.
- Similar to classification layer, an 8-bit per channel quantization is used for embedding layer.
### Quantization-Aware Training and LoRA
The quantization-aware training (QAT) with low-rank adaptation (LoRA) models went through only post-training stages, using the same data as the full precision models. To initialize QAT, we utilize BF16 Llama 3.2 model checkpoints obtained after supervised fine-tuning (SFT) and perform an additional full round of SFT training with QAT. We then freeze the backbone of the QAT model and perform another round of SFT with LoRA adaptors applied to all layers within the transformer block. Meanwhile, the LoRA adaptors' weights and activations are maintained in BF16. Because our approach is similar to QLoRA of Dettmers et al., (2023) (i.e., quantization followed by LoRA adapters), we refer this method as QLoRA. Finally, we fine-tune the resulting model (both backbone and LoRA adaptors) using direct preference optimization (DPO).
### SpinQuant
[SpinQuant](https://arxiv.org/abs/2405.16406) was applied, together with generative post-training quantization (GPTQ). For the SpinQuant rotation matrix fine-tuning, we optimized for 100 iterations, using 800 samples with sequence-length 2048 from the WikiText 2 dataset. For GPTQ, we used 128 samples from the same dataset with the same sequence-length.
## Benchmarks \- English Text
In this section, we report the results for Llama 3.2 models on standard automatic benchmarks. For all these evaluations, we used our internal evaluations library.
### Base Pretrained Models
| Category | Benchmark | \# Shots | Metric | Llama 3.2 1B | Llama 3.2 3B | Llama 3.1 8B |
| ----- | ----- | :---: | :---: | :---: | :---: | :---: |
| General | MMLU | 5 | macro\_avg/acc\_char | 32.2 | 58 | 66.7 |
| | AGIEval English | 3-5 | average/acc\_char | 23.3 | 39.2 | 47.8 |
| | ARC-Challenge | 25 | acc\_char | 32.8 | 69.1 | 79.7 |
| Reading comprehension | SQuAD | 1 | em | 49.2 | 67.7 | 77 |
| | QuAC (F1) | 1 | f1 | 37.9 | 42.9 | 44.9 |
| | DROP (F1) | 3 | f1 | 28.0 | 45.2 | 59.5 |
| Long Context | Needle in Haystack | 0 | em | 96.8 | 1 | 1 |
### Instruction Tuned Models
| Capability | | Benchmark | \# Shots | Metric | Llama 3.2 1B bf16 | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B bf16 | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B |
| :---: | ----- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General | | MMLU | 5 | macro\_avg/acc | 49.3 | 43.3 | 47.3 | 49.0 | 63.4 | 60.5 | 62 | 62.4 | 69.4 |
| Re-writing | | Open-rewrite eval | 0 | micro\_avg/rougeL | 41.6 | 39.2 | 40.9 | 41.2 | 40.1 | 40.3 | 40.8 | 40.7 | 40.9 |
| Summarization | | TLDR9+ (test) | 1 | rougeL | 16.8 | 14.9 | 16.7 | 16.8 | 19.0 | 19.1 | 19.2 | 19.1 | 17.2 |
| Instruction following | | IFEval | 0 | Avg(Prompt/Instruction acc Loose/Strict) | 59.5 | 51.5 | 58.4 | 55.6 | 77.4 | 73.9 | 73.5 | 75.9 | 80.4 |
| Math | | GSM8K (CoT) | 8 | em\_maj1@1 | 44.4 | 33.1 | 40.6 | 46.5 | 77.7 | 72.9 | 75.7 | 77.9 | 84.5 |
| | | MATH (CoT) | 0 | final\_em | 30.6 | 20.5 | 25.3 | 31.0 | 48.0 | 44.2 | 45.3 | 49.2 | 51.9 |
| Reasoning | | ARC-C | 0 | acc | 59.4 | 54.3 | 57 | 60.7 | 78.6 | 75.6 | 77.6 | 77.6 | 83.4 |
| | | GPQA | 0 | acc | 27.2 | 25.9 | 26.3 | 25.9 | 32.8 | 32.8 | 31.7 | 33.9 | 32.8 |
| | | Hellaswag | 0 | acc | 41.2 | 38.1 | 41.3 | 41.5 | 69.8 | 66.3 | 68 | 66.3 | 78.7 |
| Tool Use | | BFCL V2 | 0 | acc | 25.7 | 14.3 | 15.9 | 23.7 | 67.0 | 53.4 | 60.1 | 63.5 | 67.1 |
| | | Nexus | 0 | macro\_avg/acc | 13.5 | 5.2 | 9.6 | 12.5 | 34.3 | 32.4 | 31.5 | 30.1 | 38.5 |
| Long Context | | InfiniteBench/En.QA | 0 | longbook\_qa/f1 | 20.3 | N/A | N/A | N/A | 19.8 | N/A | N/A | N/A | 27.3 |
| | | InfiniteBench/En.MC | 0 | longbook\_choice/acc | 38.0 | N/A | N/A | N/A | 63.3 | N/A | N/A | N/A | 72.2 |
| | | NIH/Multi-needle | 0 | recall | 75.0 | N/A | N/A | N/A | 84.7 | N/A | N/A | N/A | 98.8 |
| Multilingual | | MGSM (CoT) | 0 | em | 24.5 | 13.7 | 18.2 | 24.4 | 58.2 | 48.9 | 54.3 | 56.8 | 68.9 |
\*\*for comparison purposes only. Model not released.
### Multilingual Benchmarks
| Category | Benchmark | Language | Llama 3.2 1B | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General | MMLU (5-shot, macro_avg/acc) | Portuguese | 39.8 | 34.9 | 38.9 | 40.2 | 54.5 | 50.9 | 53.3 | 53.4 | 62.1 |
| | | Spanish | 41.5 | 36.0 | 39.8 | 41.8 | 55.1 | 51.9 | 53.6 | 53.6 | 62.5 |
| | | Italian | 39.8 | 34.9 | 38.1 | 40.6 | 53.8 | 49.9 | 52.1 | 51.7 | 61.6 |
| | | German | 39.2 | 34.9 | 37.5 | 39.6 | 53.3 | 50.0 | 52.2 | 51.3 | 60.6 |
| | | French | 40.5 | 34.8 | 39.2 | 40.8 | 54.6 | 51.2 | 53.3 | 53.3 | 62.3 |
| | | Hindi | 33.5 | 30.0 | 32.1 | 34.0 | 43.3 | 40.4 | 42.0 | 42.1 | 50.9 |
| | | Thai | 34.7 | 31.2 | 32.4 | 34.9 | 44.5 | 41.3 | 44.0 | 42.2 | 50.3 |
\*\*for comparison purposes only. Model not released.
## Inference time
In the below table, we compare the performance metrics of different quantization methods (SpinQuant and QAT \+ LoRA) with the BF16 baseline. The evaluation was done using the [ExecuTorch](https://github.com/pytorch/executorch) framework as the inference engine, with the ARM CPU as a backend using Android OnePlus 12 device.
| Category | Decode (tokens/sec) | Time-to-first-token (sec) | Prefill (tokens/sec) | Model size (PTE file size in MB) | Memory size (RSS in MB) |
| :---- | ----- | ----- | ----- | ----- | ----- |
| 1B BF16 (baseline) | 19.2 | 1.0 | 60.3 | 2358 | 3,185 |
| 1B SpinQuant | 50.2 (2.6x) | 0.3 (-76.9%) | 260.5 (4.3x) | 1083 (-54.1%) | 1,921 (-39.7%) |
| 1B QLoRA | 45.8 (2.4x) | 0.3 (-76.0%) | 252.0 (4.2x) | 1127 (-52.2%) | 2,255 (-29.2%) |
| 3B BF16 (baseline) | 7.6 | 3.0 | 21.2 | 6129 | 7,419 |
| 3B SpinQuant | 19.7 (2.6x) | 0.7 (-76.4%) | 89.7 (4.2x) | 2435 (-60.3%) | 3,726 (-49.8%) |
| 3B QLoRA | 18.5 (2.4x) | 0.7 (-76.1%) | 88.8 (4.2x) | 2529 (-58.7%) | 4,060 (-45.3%) |
(\*) The performance measurement is done using an adb binary-based approach.
(\*\*) It is measured on an Android OnePlus 12 device.
(\*\*\*) Time-to-first-token (TTFT) is measured with prompt length=64
*Footnote:*
- *Decode (tokens/second) is for how quickly it keeps generating. Higher is better.*
- *Time-to-first-token (TTFT for shorthand) is for how fast it generates the first token for a given prompt. Lower is better.*
- *Prefill is the inverse of TTFT (aka 1/TTFT) in tokens/second. Higher is better*
- *Model size \- how big is the model, measured by, PTE file, a binary file format for ExecuTorch*
- *RSS size \- Memory usage in resident set size (RSS)*
## Responsibility & Safety
As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks:
1. Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama
2. Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm
3. Provide protections for the community to help prevent the misuse of our models
### Responsible Deployment
**Approach:** Llama is a foundational technology designed to be used in a variety of use cases. Examples on how Metaโs Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models, enabling the world to benefit from the technology power, by aligning our model safety for generic use cases and addressing a standard set of harms. Developers are then in the driverโs seat to tailor safety for their use cases, defining their own policies and deploying the models with the necessary safeguards in their Llama systems. Llama 3.2 was developed following the best practices outlined in our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/).
#### Llama 3.2 Instruct
**Objective:** Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. We implemented the same set of safety mitigations as in Llama 3, and you can learn more about these in the Llama 3 [paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/).
**Fine-Tuning Data:** We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. Weโve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control.
**Refusals and Tone:** Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines.
#### Llama 3.2 Systems
**Safety as a System:** Large language models, including Llama 3.2, **are not designed to be deployed in isolation** but instead should be deployed as part of an overall AI system with additional safety guardrails as required. Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools. As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box.
### New Capabilities and Use Cases
**Technological Advancement:** Llama releases usually introduce new capabilities that require specific considerations in addition to the best practices that generally apply across all Generative AI use cases. For prior release capabilities also supported by Llama 3.2, see [Llama 3.1 Model Card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md), as the same considerations apply here as well.
**Constrained Environments:** Llama 3.2 1B and 3B models are expected to be deployed in highly constrained environments, such as mobile devices. LLM Systems using smaller models will have a different alignment profile and safety/helpfulness tradeoff than more complex, larger systems. Developers should ensure the safety of their system meets the requirements of their use case. We recommend using lighter system safeguards for such use cases, like Llama Guard 3-1B or its mobile-optimized version.
### Evaluations
**Scaled Evaluations:** We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Purple Llama safeguards to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case.
**Red Teaming:** We conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets. We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets.
### Critical Risks
In addition to our safety work above, we took extra care on measuring and/or mitigating the following critical risk areas:
**1\. CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive Weapons):** Llama 3.2 1B and 3B models are smaller and less capable derivatives of Llama 3.1. For Llama 3.1 70B and 405B, to assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons and have determined that such testing also applies to the smaller 1B and 3B models.
**2\. Child Safety:** Child Safety risk assessments were conducted using a team of experts, to assess the modelโs capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
**3\. Cyber Attacks:** For Llama 3.1 405B, our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed.
Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention. Because Llama 3.2โs 1B and 3B models are smaller and less capable models than Llama 3.1 405B, we broadly believe that the testing conducted for the 405B model also applies to Llama 3.2 models.
### Community
**Industry Partnerships:** Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
**Grants:** We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Metaโs Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists).
**Reporting:** Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
## Ethical Considerations and Limitations
**Values:** The core values of Llama 3.2 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.2 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
**Testing:** Llama 3.2 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.2โs potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.2 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
|
RRashmini/google-unimax-t5-small-20 | RRashmini | 2025-04-27T14:33:56Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"umt5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-04-27T14:32:46Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ramcargpt/BatQwen2.5-Small-19K | ramcargpt | 2025-04-27T13:33:41Z | 0 | 0 | transformers | [
"transformers",
"gguf",
"qwen2",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/Qwen2.5-3B-unsloth-bnb-4bit",
"base_model:quantized:unsloth/Qwen2.5-3B-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-04-27T13:33:04Z | ---
base_model: unsloth/Qwen2.5-3B-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** ramcargpt
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-3B-unsloth-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
atsuki-yamaguchi/Llama-3.1-8B-Instruct-ta-madlad-mean-trans0305-emb-special | atsuki-yamaguchi | 2025-04-27T09:35:58Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"ta",
"dataset:allenai/MADLAD-400",
"arxiv:2412.11704",
"base_model:atsuki-yamaguchi/Llama-3.1-8B-Instruct-ta-madlad-mean-tuned",
"base_model:finetune:atsuki-yamaguchi/Llama-3.1-8B-Instruct-ta-madlad-mean-tuned",
"license:llama3.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2024-11-29T23:50:02Z |
---
license: llama3.1
datasets:
- allenai/MADLAD-400
language:
- ta
base_model:
- meta-llama/Llama-3.1-8B-Instruct
- atsuki-yamaguchi/Llama-3.1-8B-Instruct-ta-madlad-mean-tuned
library_name: transformers
---
# Llama 3.1 8B Instruct for Tamil: ElChat (Linear merging)
This model is built on top of Llama 3.1 8B Instruct adapted for Tamil using 500M target language tokens sampled from MADLAD-400.
## Model Details
* **Vocabulary**: This model has an additional target vocabulary of 10K.
* **Target vocabulary initialization**: The target weights of the embedding and LM head were initialized using mean initialization.
* **Training**: This model was continually pre-trained on 500M target language tokens sampled from MADLAD-400.
* **Post-processing**: The model was post-processed using the ElChat method with linear merging instead of SLERP.
## Model Description
- **Language:** Tamil
- **License:** Llama 3.1 Community License Agreement
- **Fine-tuned from model:** meta-llama/Llama-3.1-8B-Instruct
## Model Sources
- **Repository:** https://github.com/gucci-j/chat-cve
- **Paper:** https://arxiv.org/abs/2412.11704
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"atsuki-yamaguchi/Llama-3.1-8B-Instruct-ta-madlad-mean-trans0305-emb-special"
)
tokenizer = AutoTokenizer.from_pretrained(
"atsuki-yamaguchi/Llama-3.1-8B-Instruct-ta-madlad-mean-trans0305-emb-special"
)
```
## Citation
```
@misc{yamaguchi2024vocabularyexpansionchatmodels,
title={{ElChat}: Adapting Chat Language Models Using Only Target Unlabeled Language Data},
author={Atsuki Yamaguchi and Terufumi Morishita and Aline Villavicencio and Nikolaos Aletras},
year={2024},
eprint={2412.11704},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.11704},
}
```
|
PAUL1122/mistral_korean2 | PAUL1122 | 2025-04-27T08:21:23Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-04-27T08:17:42Z | ---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
palpit/LLaVA-v1.5-13b-2000-llava-med-lora | palpit | 2025-04-27T01:57:39Z | 0 | 0 | null | [
"safetensors",
"llava_llama",
"region:us"
] | null | 2024-11-25T06:14:38Z | # Model Card for Model ID
This is the llava-v1.5-7b model variant trained from the self-modified llava-med dataset. |
tayyubGX/sign-language-model2 | tayyubGX | 2025-04-27T01:54:15Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text2text-generation | 2025-04-27T01:45:26Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
mlfoundations-dev/c1_code_nod_4s_1k | mlfoundations-dev | 2025-04-27T01:00:30Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-26T23:56:10Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: c1_code_nod_4s_1k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# c1_code_nod_4s_1k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/c1_code_nod_4s_1k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 6
- total_train_batch_size: 96
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1
- Datasets 3.0.2
- Tokenizers 0.20.3
|
genki10/BERT_V8_sp10_lw40_ex100_lo100_k5_k5_fold4 | genki10 | 2025-04-27T00:51:23Z | 0 | 0 | transformers | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-27T00:33:31Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: BERT_V8_sp10_lw40_ex100_lo100_k5_k5_fold4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT_V8_sp10_lw40_ex100_lo100_k5_k5_fold4
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8568
- Qwk: 0.4126
- Mse: 0.8568
- Rmse: 0.9257
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:|
| No log | 1.0 | 4 | 10.0080 | 0.0066 | 10.0080 | 3.1635 |
| No log | 2.0 | 8 | 5.8547 | 0.0505 | 5.8547 | 2.4196 |
| No log | 3.0 | 12 | 3.1352 | 0.0118 | 3.1352 | 1.7707 |
| No log | 4.0 | 16 | 1.7320 | 0.0394 | 1.7320 | 1.3161 |
| No log | 5.0 | 20 | 1.2269 | 0.0342 | 1.2269 | 1.1076 |
| No log | 6.0 | 24 | 0.8727 | 0.1948 | 0.8727 | 0.9342 |
| No log | 7.0 | 28 | 1.0243 | 0.0495 | 1.0243 | 1.0121 |
| No log | 8.0 | 32 | 0.7590 | 0.4097 | 0.7590 | 0.8712 |
| No log | 9.0 | 36 | 0.6756 | 0.5025 | 0.6756 | 0.8220 |
| No log | 10.0 | 40 | 1.0251 | 0.3609 | 1.0251 | 1.0124 |
| No log | 11.0 | 44 | 0.9219 | 0.4012 | 0.9219 | 0.9601 |
| No log | 12.0 | 48 | 0.6766 | 0.4951 | 0.6766 | 0.8225 |
| No log | 13.0 | 52 | 1.1625 | 0.3650 | 1.1625 | 1.0782 |
| No log | 14.0 | 56 | 0.8185 | 0.4478 | 0.8185 | 0.9047 |
| No log | 15.0 | 60 | 1.1450 | 0.3743 | 1.1450 | 1.0701 |
| No log | 16.0 | 64 | 0.7286 | 0.4854 | 0.7286 | 0.8536 |
| No log | 17.0 | 68 | 0.9480 | 0.3957 | 0.9480 | 0.9736 |
| No log | 18.0 | 72 | 0.9902 | 0.3894 | 0.9902 | 0.9951 |
| No log | 19.0 | 76 | 0.7143 | 0.5412 | 0.7143 | 0.8451 |
| No log | 20.0 | 80 | 1.3726 | 0.3112 | 1.3726 | 1.1716 |
| No log | 21.0 | 84 | 0.9579 | 0.4055 | 0.9579 | 0.9787 |
| No log | 22.0 | 88 | 0.9382 | 0.3987 | 0.9382 | 0.9686 |
| No log | 23.0 | 92 | 0.9784 | 0.3937 | 0.9784 | 0.9891 |
| No log | 24.0 | 96 | 1.3741 | 0.2886 | 1.3741 | 1.1722 |
| No log | 25.0 | 100 | 0.7647 | 0.4519 | 0.7647 | 0.8745 |
| No log | 26.0 | 104 | 1.6422 | 0.2269 | 1.6422 | 1.2815 |
| No log | 27.0 | 108 | 0.7155 | 0.4536 | 0.7155 | 0.8459 |
| No log | 28.0 | 112 | 0.9718 | 0.3850 | 0.9718 | 0.9858 |
| No log | 29.0 | 116 | 0.8900 | 0.3954 | 0.8900 | 0.9434 |
| No log | 30.0 | 120 | 1.1999 | 0.3136 | 1.1999 | 1.0954 |
| No log | 31.0 | 124 | 0.8515 | 0.4071 | 0.8515 | 0.9228 |
| No log | 32.0 | 128 | 1.1243 | 0.3429 | 1.1243 | 1.0603 |
| No log | 33.0 | 132 | 1.0474 | 0.3745 | 1.0474 | 1.0234 |
| No log | 34.0 | 136 | 0.9949 | 0.3880 | 0.9949 | 0.9974 |
| No log | 35.0 | 140 | 1.3042 | 0.2998 | 1.3042 | 1.1420 |
| No log | 36.0 | 144 | 0.7902 | 0.3926 | 0.7902 | 0.8889 |
| No log | 37.0 | 148 | 1.0854 | 0.3277 | 1.0854 | 1.0418 |
| No log | 38.0 | 152 | 0.8275 | 0.4027 | 0.8275 | 0.9097 |
| No log | 39.0 | 156 | 1.1221 | 0.3287 | 1.1221 | 1.0593 |
| No log | 40.0 | 160 | 0.8769 | 0.3993 | 0.8769 | 0.9364 |
| No log | 41.0 | 164 | 1.1536 | 0.3024 | 1.1536 | 1.0741 |
| No log | 42.0 | 168 | 0.9203 | 0.3626 | 0.9203 | 0.9593 |
| No log | 43.0 | 172 | 1.1411 | 0.3009 | 1.1411 | 1.0682 |
| No log | 44.0 | 176 | 0.8892 | 0.4035 | 0.8892 | 0.9430 |
| No log | 45.0 | 180 | 1.2542 | 0.3188 | 1.2542 | 1.1199 |
| No log | 46.0 | 184 | 0.8217 | 0.4340 | 0.8217 | 0.9065 |
| No log | 47.0 | 188 | 1.2440 | 0.3004 | 1.2440 | 1.1153 |
| No log | 48.0 | 192 | 0.7930 | 0.4453 | 0.7930 | 0.8905 |
| No log | 49.0 | 196 | 0.8568 | 0.4126 | 0.8568 | 0.9257 |
### Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
|
kivisuals/Prince | kivisuals | 2025-04-27T00:33:59Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-04-27T00:04:08Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: Prince
---
# Prince
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Prince` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "Prince",
"lora_weights": "https://huggingface.co/kivisuals/Prince/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('kivisuals/Prince', weight_name='lora.safetensors')
image = pipeline('Prince').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/kivisuals/Prince/discussions) to add images that show off what youโve made with this LoRA.
|
mlfoundations-dev/b2_code_askllm_0.3k | mlfoundations-dev | 2025-04-26T22:32:47Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-26T20:55:17Z | ---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: b2_code_askllm_0.3k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# b2_code_askllm_0.3k
This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/b2_code_askllm_0.3k dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 13.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|
team-9/gpt2-finetune-stackechange-baseline-10k | team-9 | 2025-04-26T20:56:23Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:openai-community/gpt2",
"base_model:finetune:openai-community/gpt2",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-04-26T09:44:36Z | ---
library_name: transformers
license: mit
base_model: gpt2
tags:
- generated_from_trainer
model-index:
- name: gpt2-finetune-stackechange-baseline-10k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-finetune-stackechange-baseline-10k
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9621
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2273 | 1.0 | 155 | 3.0242 |
| 3.0638 | 2.0 | 310 | 2.9772 |
| 3.0442 | 3.0 | 465 | 2.9621 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|
SynthoCraft/Whisper-large-v3 | SynthoCraft | 2025-04-26T17:47:43Z | 0 | 0 | null | [
"safetensors",
"whisper",
"audio",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"en",
"zh",
"de",
"es",
"ru",
"ko",
"fr",
"ja",
"pt",
"tr",
"pl",
"ca",
"nl",
"ar",
"sv",
"it",
"id",
"hi",
"fi",
"vi",
"he",
"uk",
"el",
"ms",
"cs",
"ro",
"da",
"hu",
"ta",
"no",
"th",
"ur",
"hr",
"bg",
"lt",
"la",
"mi",
"ml",
"cy",
"sk",
"te",
"fa",
"lv",
"bn",
"sr",
"az",
"sl",
"kn",
"et",
"mk",
"br",
"eu",
"is",
"hy",
"ne",
"mn",
"bs",
"kk",
"sq",
"sw",
"gl",
"mr",
"pa",
"si",
"km",
"sn",
"yo",
"so",
"af",
"oc",
"ka",
"be",
"tg",
"sd",
"gu",
"am",
"yi",
"lo",
"uz",
"fo",
"ht",
"ps",
"tk",
"nn",
"mt",
"sa",
"lb",
"my",
"bo",
"tl",
"mg",
"as",
"tt",
"haw",
"ln",
"ha",
"ba",
"jw",
"su",
"arxiv:2212.04356",
"license:apache-2.0",
"region:us"
] | automatic-speech-recognition | 2025-04-26T17:03:58Z | ---
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- no
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
pipeline_tag: automatic-speech-recognition
license: apache-2.0
---
# Whisper
Whisper is a state-of-the-art model for automatic speech recognition (ASR) and speech translation, proposed in the paper
[Robust Speech Recognition via Large-Scale Weak Supervision](https://huggingface.co/papers/2212.04356) by Alec Radford
et al. from OpenAI. Trained on >5M hours of labeled data, Whisper demonstrates a strong ability to generalise to many
datasets and domains in a zero-shot setting.
Whisper large-v3 has the same architecture as the previous [large](https://huggingface.co/openai/whisper-large) and [large-v2](https://huggingface.co/openai/whisper-large-v2)
models, except for the following minor differences:
1. The spectrogram input uses 128 Mel frequency bins instead of 80
2. A new language token for Cantonese
The Whisper large-v3 model was trained on 1 million hours of weakly labeled audio and 4 million hours of pseudo-labeled
audio collected using Whisper [large-v2](https://huggingface.co/openai/whisper-large-v2) . The model was trained for 2.0 epochs over this mixture dataset.
The large-v3 model shows improved performance over a wide variety of languages, showing 10% to 20% reduction of errors
compared to Whisper [large-v2](https://huggingface.co/openai/whisper-large-v2) . For more details on the different checkpoints available, refer to the section [Model details](#model-details).
**Disclaimer**: Content for this model card has partly been written by the ๐ค Hugging Face team, and partly copied and
pasted from the original model card.
## Usage
Whisper large-v3 is supported in Hugging Face ๐ค Transformers. To run the model, first install the Transformers
library. For this example, we'll also install ๐ค Datasets to load toy audio dataset from the Hugging Face Hub, and
๐ค Accelerate to reduce the model loading time:
```bash
pip install --upgrade pip
pip install --upgrade transformers datasets[audio] accelerate
```
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
class to transcribe audios of arbitrary length:
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```
To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
```python
result = pipe("audio.mp3")
```
Multiple audio files can be transcribed in parallel by specifying them as a list and setting the `batch_size` parameter:
```python
result = pipe(["audio_1.mp3", "audio_2.mp3"], batch_size=2)
```
Transformers is compatible with all Whisper decoding strategies, such as temperature fallback and condition on previous
tokens. The following example demonstrates how to enable these heuristics:
```python
generate_kwargs = {
"max_new_tokens": 448,
"num_beams": 1,
"condition_on_prev_tokens": False,
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
"logprob_threshold": -1.0,
"no_speech_threshold": 0.6,
"return_timestamps": True,
}
result = pipe(sample, generate_kwargs=generate_kwargs)
```
Whisper predicts the language of the source audio automatically. If the source audio language is known *a-priori*, it
can be passed as an argument to the pipeline:
```python
result = pipe(sample, generate_kwargs={"language": "english"})
```
By default, Whisper performs the task of *speech transcription*, where the source audio language is the same as the target
text language. To perform *speech translation*, where the target text is in English, set the task to `"translate"`:
```python
result = pipe(sample, generate_kwargs={"task": "translate"})
```
Finally, the model can be made to predict timestamps. For sentence-level timestamps, pass the `return_timestamps` argument:
```python
result = pipe(sample, return_timestamps=True)
print(result["chunks"])
```
And for word-level timestamps:
```python
result = pipe(sample, return_timestamps="word")
print(result["chunks"])
```
The above arguments can be used in isolation or in combination. For example, to perform the task of speech transcription
where the source audio is in French, and we want to return sentence-level timestamps, the following can be used:
```python
result = pipe(sample, return_timestamps=True, generate_kwargs={"language": "french", "task": "translate"})
print(result["chunks"])
```
<details>
<summary> For more control over the generation parameters, use the model + processor API directly: </summary>
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
from datasets import Audio, load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
dataset = dataset.cast_column("audio", Audio(processor.feature_extractor.sampling_rate))
sample = dataset[0]["audio"]
inputs = processor(
sample["array"],
sampling_rate=sample["sampling_rate"],
return_tensors="pt",
truncation=False,
padding="longest",
return_attention_mask=True,
)
inputs = inputs.to(device, dtype=torch_dtype)
gen_kwargs = {
"max_new_tokens": 448,
"num_beams": 1,
"condition_on_prev_tokens": False,
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
"logprob_threshold": -1.0,
"no_speech_threshold": 0.6,
"return_timestamps": True,
}
pred_ids = model.generate(**inputs, **gen_kwargs)
pred_text = processor.batch_decode(pred_ids, skip_special_tokens=True, decode_with_timestamps=False)
print(pred_text)
```
</details>
## Additional Speed & Memory Improvements
You can apply additional speed and memory improvements to Whisper to further reduce the inference speed and VRAM
requirements.
### Chunked Long-Form
Whisper has a receptive field of 30-seconds. To transcribe audios longer than this, one of two long-form algorithms are
required:
1. **Sequential:** uses a "sliding window" for buffered inference, transcribing 30-second slices one after the other
2. **Chunked:** splits long audio files into shorter ones (with a small overlap between segments), transcribes each segment independently, and stitches the resulting transcriptions at the boundaries
The sequential long-form algorithm should be used in either of the following scenarios:
1. Transcription accuracy is the most important factor, and speed is less of a consideration
2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate
Conversely, the chunked algorithm should be used when:
1. Transcription speed is the most important factor
2. You are transcribing a **single** long audio file
By default, Transformers uses the sequential algorithm. To enable the chunked algorithm, pass the `chunk_length_s`
parameter to the `pipeline`. For large-v3, a chunk length of 30-seconds is optimal. To activate batching over long
audio files, pass the argument `batch_size`:
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
batch_size=16, # batch size for inference - set based on your device
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
result = pipe(sample)
print(result["text"])
```
#### Torch compile
The Whisper forward pass is compatible with [`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html)
for 4.5x speed-ups.
**Note:** `torch.compile` is currently not compatible with the Chunked long-form algorithm or Flash Attention 2 โ ๏ธ
```python
import torch
from torch.nn.attention import SDPBackend, sdpa_kernel
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
from tqdm import tqdm
torch.set_float32_matmul_precision("high")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
).to(device)
# Enable static cache and compile the forward pass
model.generation_config.cache_implementation = "static"
model.generation_config.max_new_tokens = 256
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
sample = dataset[0]["audio"]
# 2 warmup steps
for _ in tqdm(range(2), desc="Warm-up step"):
with sdpa_kernel(SDPBackend.MATH):
result = pipe(sample.copy(), generate_kwargs={"min_new_tokens": 256, "max_new_tokens": 256})
# fast run
with sdpa_kernel(SDPBackend.MATH):
result = pipe(sample.copy())
print(result["text"])
```
#### Flash Attention 2
We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2) if your GPU supports it and you are not using [torch.compile](#torch-compile).
To do so, first install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
```
pip install flash-attn --no-build-isolation
```
Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
```python
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="flash_attention_2")
```
#### Torch Scale-Product-Attention (SDPA)
If your GPU does not support Flash Attention, we recommend making use of PyTorch [scaled dot-product attention (SDPA)](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html).
This attention implementation is activated **by default** for PyTorch versions 2.1.1 or greater. To check
whether you have a compatible PyTorch version, run the following Python code snippet:
```python
from transformers.utils import is_torch_sdpa_available
print(is_torch_sdpa_available())
```
If the above returns `True`, you have a valid version of PyTorch installed and SDPA is activated by default. If it
returns `False`, you need to upgrade your PyTorch version according to the [official instructions](https://pytorch.org/get-started/locally/)
Once a valid PyTorch version is installed, SDPA is activated by default. It can also be set explicitly by specifying
`attn_implementation="sdpa"` as follows:
```python
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, attn_implementation="sdpa")
```
For more information about how to use the SDPA refer to the [Transformers SDPA documentation](https://huggingface.co/docs/transformers/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention).
## Model details
Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. There are two
flavours of Whisper model: English-only and multilingual. The English-only models were trained on the task of English
speech recognition. The multilingual models were trained simultaneously on multilingual speech recognition and speech
translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech
translation, the model predicts transcriptions to a *different* language to the audio.
Whisper checkpoints come in five configurations of varying model sizes. The smallest four are available as English-only
and multilingual. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints
are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The
checkpoints are summarised in the following table with links to the models on the Hub:
| Size | Parameters | English-only | Multilingual |
|----------|------------|------------------------------------------------------|-----------------------------------------------------|
| tiny | 39 M | [โ](https://huggingface.co/openai/whisper-tiny.en) | [โ](https://huggingface.co/openai/whisper-tiny) |
| base | 74 M | [โ](https://huggingface.co/openai/whisper-base.en) | [โ](https://huggingface.co/openai/whisper-base) |
| small | 244 M | [โ](https://huggingface.co/openai/whisper-small.en) | [โ](https://huggingface.co/openai/whisper-small) |
| medium | 769 M | [โ](https://huggingface.co/openai/whisper-medium.en) | [โ](https://huggingface.co/openai/whisper-medium) |
| large | 1550 M | x | [โ](https://huggingface.co/openai/whisper-large) |
| large-v2 | 1550 M | x | [โ](https://huggingface.co/openai/whisper-large-v2) |
| large-v3 | 1550 M | x | [โ](https://huggingface.co/openai/whisper-large-v3) |
## Fine-Tuning
The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However,
its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog
post [Fine-Tune Whisper with ๐ค Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step
guide to fine-tuning the Whisper model with as little as 5 hours of labelled data.
### Evaluated Use
The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only โintendedโ uses or to draw reasonable guidelines around what is or is not research.
The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them.
In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes.
## Training Data
The large-v3 checkpoint is trained on 1 million hours of weakly labeled audio and 4 million hours of pseudo-labeled audio collected using Whisper large-v2.
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
## Performance and Limitations
Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level.
However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself.
Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf).
In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
## Broader Implications
We anticipate that Whisper modelsโ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box โ their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications.
There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects.
### BibTeX entry and citation info
```bibtex
@misc{radford2022whisper,
doi = {10.48550/ARXIV.2212.04356},
url = {https://arxiv.org/abs/2212.04356},
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
``` |
NightRaven109/MATFUSE-sd-rdy2gominusdatset | NightRaven109 | 2025-04-26T17:47:10Z | 0 | 0 | null | [
"arxiv:2308.11408",
"region:us"
] | null | 2025-04-26T17:46:08Z | <div align="center">
# MatFuse: Controllable Material Generation with Diffusion Models
[Giuseppe Vecchio](https://github.com/giuvecchio), [Renato Sortino](https://rensortino.github.io), [Simone Palazzo](https://github.com/simopal6) and [Concetto Spampinato](https://github.com/cspampin)
[](https://arxiv.org/abs/2308.11408)
[](https://gvecchio.com/matfuse/)
[](https://cvpr.thecvf.com/Conferences/2024/AcceptedPapers#:~:text=MatFuse:%20Controllable%20Material%20Generation%20with%20Diffusion%20Models)
[](https://huggingface.co/gvecchio/MatFuse)
</div>
<img title="teaser image" alt="Teaser" src="./imgs/teaser.png"/>
# ๐ Overview
The official PyTorch implementation for paper __"MatFuse: Controllable Material Generation with Diffusion Models"__.
MatFuse is a novel approach that simplifies the creation of SVBRDF (Spatially-Varying Bidirectional Reflectance Distribution Function) maps.
It leverages the generative power of diffusion models (DM) to streamline the material synthesis process. By integrating multiple sources of conditioning, including color palettes, sketches, text, and pictures, it provides fine-grained control and flexibility in material generation.
Additionally, MatFuse enabled editing or refining the synthesized materials after their initial generation. It supports a map-level editing by masking specific areas of specific maps or the entire material.
<div align="center">
<img src="./imgs/editing.png" style="max-width: 70%; border-radius: 10px"/>
</div>
#### See more exaples from MatFuse at the [project page](https://gvecchio.com/matfuse).
### ๐ Paper abstract
Creating high-quality materials in computer graphics is a challenging and time-consuming task, which requires great expertise. To simply this process, we introduce **MatFuse**, a unified approach that harnesses the generative power of diffusion models to simplify the creation of SVBRDF maps. Our pipeline integrates multiple sources of conditioning, including color palettes, sketches, text, and pictures, for a fine-grained control and flexibility in material synthesis. This design enables the combination of diverse information sources (e.g., sketch + text), enhancing creative possibilities in line with the principle of compositionality. Additionally, we propose a multi-encoder compression model with a two-fold purpose: it improves reconstruction performance by learning a separate latent representation for each map and enables a map-level material editing capabilities. We demonstrate the effectiveness of MatFuse under multiple conditioning settings and explore the potential of material editing. We also quantitatively assess the quality of the generated materials in terms of CLIP-IQA and FID scores.
<div align="center">
<img src="./imgs/diffusion.png" style="max-width: 70%"/>
</div>
#### Read the full MatFuse paper on [arXiv](https://arxiv.org/abs/2308.11408).
### ๐ Repository details
This repo relies on the original latent diffusion implementation (https://github.com/CompVis/stable-diffusion) which has been modified to include the features described in the **MatFuse** paper. If you're familiar with the original stable diffusion codebase you should have no problems running this one.
The most relevant changes are:
- a new multi-encoder vq-vae architecture which processes each material map (diffuse, normal, roughness and specular) independently, learning a disentangled latent representation.
- a new a _VQMaterialLoss_ which combines the original _VQLPIPSWithDiscriminator_ with a rendering loss.
- multi-condition fusion mechanism.
MatFuse is trained on a combination of the dataset by Deschaintre et al. (2018) and materials from the [PolyHeaven](https://polyhaven.com/) library. We do not plan to release such dataset as it can be easily collected. Anyway, if you plan to train your own MatFuse, we strongly recomend using the recently released dataset **[MatSynth](https://gvecchio.com/matsynth)** which contains a wider variety of high-resolution materials and annotations.
# ๐ฟ Installation
#### 1. Clone the repo
```shell
git clone https://github.com/giuvecchio/matfuse-sd.git
cd matfuse-sd
```
#### 2. Setting up the virtualenv
This is assuming you have navigated to the `matfuse-sd` root after cloning it.
**NOTE:** This is tested under `python3.10`. For other python versions, you might encounter version conflicts.
**PyTorch 1.13.1**
```shell
# create environment (can use venv instead of conda)
conda create -n matfuse python==3.10.13
conda activate matfuse
# install required packages
pip install -r requirements.txt
```
# ๐ช Training
Training of MatFuse requires two steps:
1. Training of the autoencoder (VQ-VAE)
2. Training of the diffusion model (LDM)
Both is accessed through the `main.py` script in the `src` folder and relies on the use of config files to setup the models, datasets and losses. \
Config files are located under `src/configs/`, and are split in `autoencoder` and `diffusion` subfolders. \
Use the right config file depending on the part of the model you want to train.
The general command to launch a training is:
```shell
python src/main.py --base src/configs/<model>/<config.yaml> --train --gpus <indices,>
```
## Data preparation
We provide a dataset class for the training of MatFuse. This dataset expects the data folder to be structured as shown below.
```
./data/MatFuse/{split}/
โโโ bricks_045
โ โโโ metadata.json
โ โโโ diffuse.png
โ โโโ normal.png
โ โโโ roughness.png
โ โโโ specular.png
โ โโโ sketch.png
โ โโโ renders
โ โโโ render_00.png
โ โโโ render_01.png
โ โโโ ...
โโโ ...
```
Data shouldbe split between `train` and `test` sets. Each material folder contains the required SVBRDF maps (diffuse, normal, roughness, specular), the sketch and a `metadata.json` file with the text caption and the color palette.
โ ๏ธ **Note:** To run a training, update the `data_root` property in the config file to point to the folder where you have your dataset stored.
### Processing the data
We provide a script to extract the color palette from the renders under the `src/scripts/data` folder. To run it run:
```shell
python src/scripts/data/extract_palette.py --data <path/to/dataset>
```
## Training the autoencoder
Configs for training an autoencoder are provided at `src/configs/autoencoder`. \
MatFuse uses a VQ-regularized model. For more info see the [taming-transformers](https://github.com/CompVis/taming-transformers) repository.
Training can be started by running
```shell
python src/main.py --base src/configs/autoencoder/multi-vq_f8.yaml --train --gpus 0,
```
## Training the LDM
In `src/configs/diffusion/` we provide configs for training the MatFuse LDMs. \
โ ๏ธ **Before moving on to the next step** update the `ckpt_path` under `first_stage_config` in the `matfuse-ldm-vq_f8.yaml` to point to your vq-vae checkpoint.
Training can be started by running
```shell
python src/main.py --base src/configs/diffusion/matfuse-ldm-vq_f8.yaml --train --gpus 0,
```
### Resuming a training
To resume a training append the arguments `--resume <log/folder>` to the training command.
### Notes:
If you're training on Windows remember to set the distributed backend to `gloo`. **Others are not supported!**
```shell
$env:PL_TORCH_DISTRIBUTED_BACKEND='gloo'
```
To limit the number of visible GPUs use:
```shell
CUDA_VISIBLE_DEVICES=<GPU_ID> python src/main.py ...
```
The experiments are automatically logged using [Weights and Biases](https://wandb.ai/site).
To specify your own project space and project name set the following environment variables:
```shell
WANDB_PROJECT='{YOUR_PROJECT_NAME}'
WANDB_ENTITY='{YOUR_PROJECT_SPACE_NAME}'
```
# ๐งช Inference
To run inference on a trained model, run the `gradio_app.py` script specifying the path to the model checkpoint and the configuration. \
This will open a web interface to perform conditional generation and material editing.
### โ ๏ธ Notes
- For inference, at least 12GB of GPU VRAM are necessary.
- Weights are available at [huggingface.co/gvecchio/MatFuse](https://huggingface.co/gvecchio/MatFuse). We provide both ema only weights (pruned) and full weights. The gradio app expects the full weights to be provided.
```shell
python src/gradio_app.py --ckpt <path/to/checkpoint.ckpt> --config src/configs/diffusion/<config.yaml>
```
<div align="center">
<img src="./imgs/gradio_generate.png" style="max-width: 49%; border-radius: 10px"/> <img src="./imgs/gradio_edit.png" style="max-width: 49%; border-radius: 10px"/>
</div>
####
# ๐ Citation
```bibtex
@inproceedings{vecchio2024matfuse,
author = {Vecchio, Giuseppe and Sortino, Renato and Palazzo, Simone and Spampinato, Concetto},
title = {MatFuse: Controllable Material Generation with Diffusion Models},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {4429-4438}
}
```
|
TOMFORD79/Menu_v1_9 | TOMFORD79 | 2025-04-26T17:18:04Z | 0 | 0 | null | [
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | 2025-04-26T16:26:24Z | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf | RichardErkhov | 2025-04-26T16:22:30Z | 0 | 0 | null | [
"gguf",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-26T14:20:57Z | Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Qwen2-7B-Instruct-v1.1 - GGUF
- Model creator: https://huggingface.co/Anteia/
- Original model: https://huggingface.co/Anteia/Qwen2-7B-Instruct-v1.1/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Qwen2-7B-Instruct-v1.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q2_K.gguf) | Q2_K | 2.81GB |
| [Qwen2-7B-Instruct-v1.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.IQ3_XS.gguf) | IQ3_XS | 3.12GB |
| [Qwen2-7B-Instruct-v1.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.IQ3_S.gguf) | IQ3_S | 3.26GB |
| [Qwen2-7B-Instruct-v1.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q3_K_S.gguf) | Q3_K_S | 3.25GB |
| [Qwen2-7B-Instruct-v1.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.IQ3_M.gguf) | IQ3_M | 3.33GB |
| [Qwen2-7B-Instruct-v1.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q3_K.gguf) | Q3_K | 3.55GB |
| [Qwen2-7B-Instruct-v1.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q3_K_M.gguf) | Q3_K_M | 3.55GB |
| [Qwen2-7B-Instruct-v1.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q3_K_L.gguf) | Q3_K_L | 3.81GB |
| [Qwen2-7B-Instruct-v1.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.IQ4_XS.gguf) | IQ4_XS | 3.96GB |
| [Qwen2-7B-Instruct-v1.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q4_0.gguf) | Q4_0 | 4.13GB |
| [Qwen2-7B-Instruct-v1.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.IQ4_NL.gguf) | IQ4_NL | 4.16GB |
| [Qwen2-7B-Instruct-v1.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q4_K_S.gguf) | Q4_K_S | 4.15GB |
| [Qwen2-7B-Instruct-v1.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q4_K.gguf) | Q4_K | 4.36GB |
| [Qwen2-7B-Instruct-v1.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q4_K_M.gguf) | Q4_K_M | 4.36GB |
| [Qwen2-7B-Instruct-v1.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q4_1.gguf) | Q4_1 | 4.54GB |
| [Qwen2-7B-Instruct-v1.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q5_0.gguf) | Q5_0 | 4.95GB |
| [Qwen2-7B-Instruct-v1.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q5_K_S.gguf) | Q5_K_S | 4.95GB |
| [Qwen2-7B-Instruct-v1.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q5_K.gguf) | Q5_K | 5.07GB |
| [Qwen2-7B-Instruct-v1.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q5_K_M.gguf) | Q5_K_M | 5.07GB |
| [Qwen2-7B-Instruct-v1.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q5_1.gguf) | Q5_1 | 5.36GB |
| [Qwen2-7B-Instruct-v1.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q6_K.gguf) | Q6_K | 5.82GB |
| [Qwen2-7B-Instruct-v1.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/Anteia_-_Qwen2-7B-Instruct-v1.1-gguf/blob/main/Qwen2-7B-Instruct-v1.1.Q8_0.gguf) | Q8_0 | 7.54GB |
Original model description:
---
library_name: transformers
tags:
- krx
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
o-Sophie-Rain-Spiderman-Video/Sophie.Rain.Spiderman.Video.Official | o-Sophie-Rain-Spiderman-Video | 2025-04-26T16:09:16Z | 0 | 0 | null | [
"region:us"
] | null | 2025-04-26T16:08:39Z | <p><a href="https://social.danielwellington.com/srain" rel="nofollow">๐ด โคโบ๐๐ฅ๐ข๐ค ๐๐๐ซ๐ ๐ญ๐จ๐๐ (๐๐๐ญ๐๐ก ๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ)</a></p>
<p><a href="https://social.danielwellington.com/srain" rel="nofollow">๐ด โคโบ๐๐ฅ๐ข๐ค ๐๐๐ซ๐ ๐ญ๐จ๐๐ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐๐ข๐ง๐ค )</a></p>
<p><a href="https://social.danielwellington.com/srain" rel="nofollow"><img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif"></a></p> |
HeavensHackDev/Nova_0.5_Alpha | HeavensHackDev | 2025-04-26T08:05:50Z | 0 | 0 | adapter-transformers | [
"adapter-transformers",
"code",
"music",
"chemistry",
"biology",
"legal",
"ru",
"en",
"uk",
"kk",
"dataset:nvidia/OpenCodeReasoning",
"license:openrail",
"region:us"
] | null | 2025-04-26T08:02:08Z | ---
license: openrail
datasets:
- nvidia/OpenCodeReasoning
language:
- ru
- en
- uk
- kk
metrics:
- code_eval
- charcut_mt
library_name: adapter-transformers
tags:
- code
- music
- chemistry
- biology
- legal
--- |
imkrish/heart-disease-models | imkrish | 2025-04-26T07:38:18Z | 0 | 0 | null | [
"region:us"
] | null | 2025-04-26T07:02:47Z | # Heart Disease Prediction Models
Four sklearn classifiers trained on the Kaggle heart-failure dataset.
Pickles included:
- LogisticR.pkl
- SVM.pkl
- DecisionTree.pkl
- RandomForest.pkl
Load with `pickle.load(open(...))` or use via HF Inference API. |
theomani/theomani | theomani | 2025-04-26T03:23:28Z | 0 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-04-26T02:54:39Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: theomani
---
# Theomani
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `theomani` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "theomani",
"lora_weights": "https://huggingface.co/theomani/theomani/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('theomani/theomani', weight_name='lora.safetensors')
image = pipeline('theomani').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/theomani/theomani/discussions) to add images that show off what youโve made with this LoRA.
|
Kannaseka/yolov8 | Kannaseka | 2025-04-25T13:15:10Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2025-04-25T13:14:59Z | ---
license: apache-2.0
---
|
Hartunka/distilbert_rand_5_v2_mrpc | Hartunka | 2025-04-22T18:23:02Z | 0 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"base_model:Hartunka/distilbert_rand_5_v2",
"base_model:finetune:Hartunka/distilbert_rand_5_v2",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | 2025-04-22T18:21:54Z | ---
library_name: transformers
language:
- en
base_model: Hartunka/distilbert_rand_5_v2
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: distilbert_rand_5_v2_mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.696078431372549
- name: F1
type: f1
value: 0.7980456026058632
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_rand_5_v2_mrpc
This model is a fine-tuned version of [Hartunka/distilbert_rand_5_v2](https://huggingface.co/Hartunka/distilbert_rand_5_v2) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5870
- Accuracy: 0.6961
- F1: 0.7980
- Combined Score: 0.7471
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6303 | 1.0 | 15 | 0.5948 | 0.6936 | 0.8031 | 0.7484 |
| 0.5774 | 2.0 | 30 | 0.5870 | 0.6961 | 0.7980 | 0.7471 |
| 0.5136 | 3.0 | 45 | 0.6408 | 0.6936 | 0.8019 | 0.7478 |
| 0.4314 | 4.0 | 60 | 0.7090 | 0.6765 | 0.7651 | 0.7208 |
| 0.2865 | 5.0 | 75 | 0.9271 | 0.6716 | 0.7674 | 0.7195 |
| 0.1755 | 6.0 | 90 | 1.2391 | 0.6054 | 0.7046 | 0.6550 |
| 0.0968 | 7.0 | 105 | 1.5553 | 0.6348 | 0.7296 | 0.6822 |
### Framework versions
- Transformers 4.50.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.21.1
|
Hosseinka/qwen2-vl-run_vera_4-29 | Hosseinka | 2025-04-21T01:37:31Z | 0 | 0 | transformers | [
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen2-VL-7B-Instruct",
"base_model:finetune:Qwen/Qwen2-VL-7B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-04-21T00:50:53Z | ---
base_model: Qwen/Qwen2-VL-7B-Instruct
library_name: transformers
model_name: qwen2-vl-run_vera_4-29
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for qwen2-vl-run_vera_4-29
This model is a fine-tuned version of [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Hosseinka/qwen2-vl-run_vera_4-29", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/hosseinksh/qwen2-vl-run_vera_4-29/runs/38qvq2oo)
This model was trained with SFT.
### Framework versions
- TRL: 0.16.0
- Transformers: 4.50.3
- Pytorch: 2.4.1+cu121
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |
Subsets and Splits