modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-26 12:28:48
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
498 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-26 12:28:16
card
stringlengths
11
1.01M
nhunglaaaaaaa/fbbbf01c-3291-42a8-b954-285a7708768d
nhunglaaaaaaa
2025-01-28T11:16:28Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B", "base_model:adapter:unsloth/Qwen2-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T11:00:12Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B tags: - axolotl - generated_from_trainer model-index: - name: fbbbf01c-3291-42a8-b954-285a7708768d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3d1574132bffb371_train_data.json ds_type: json format: custom path: /workspace/input_data/3d1574132bffb371_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhunglaaaaaaa/fbbbf01c-3291-42a8-b954-285a7708768d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3d1574132bffb371_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9b171e8-52ec-4f29-ac24-4094f9180312 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9b171e8-52ec-4f29-ac24-4094f9180312 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # fbbbf01c-3291-42a8-b954-285a7708768d This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co/unsloth/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9862 | 0.9122 | 200 | 0.7664 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thakkkkkk/fbbfadd8-dbd0-48d6-8633-a50ea3fe4f7b
thakkkkkk
2025-01-28T11:16:11Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B", "base_model:adapter:unsloth/Qwen2-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T11:00:34Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B tags: - axolotl - generated_from_trainer model-index: - name: fbbfadd8-dbd0-48d6-8633-a50ea3fe4f7b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3d1574132bffb371_train_data.json ds_type: json format: custom path: /workspace/input_data/3d1574132bffb371_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thakkkkkk/fbbfadd8-dbd0-48d6-8633-a50ea3fe4f7b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/3d1574132bffb371_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9b171e8-52ec-4f29-ac24-4094f9180312 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9b171e8-52ec-4f29-ac24-4094f9180312 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # fbbfadd8-dbd0-48d6-8633-a50ea3fe4f7b This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co/unsloth/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7960 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 110 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7959 | 0.9932 | 109 | 0.7977 | | 1.1792 | 1.0068 | 110 | 0.7960 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ClimatePolicyRadar/national-climate-targets
ClimatePolicyRadar
2025-01-28T11:15:24Z
259
4
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "climate", "en", "dataset:ClimatePolicyRadar/national-climate-targets", "arxiv:2404.02822", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-02-14T09:20:26Z
--- license: apache-2.0 datasets: - ClimatePolicyRadar/national-climate-targets language: - en pipeline_tag: text-classification tags: - climate widget: - text: "The Net Zero Strategy, published in October 2021, was the first document of its kind for a major economy. It set out the government’s vision for a market-led, technology-driven transition to decarbonise the UK economy and reach net zero by 2050." inference: parameters: function_to_apply: "sigmoid" --- ## National Climate Targets Classifier - Climate Policy Radar A multi-label text-classifier trained on the National Climate Targets dataset by Climate Policy Radar. Using the [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) model as a starting point, this classifier is trained on the [ClimatePolicyRadar/national-climate-targets](https://huggingface.co/datasets/ClimatePolicyRadar/national-climate-targets) dataset to predict Net Zero ("NZT") , "Reduction" and "Other" targets in a multi-label setting. The training data is an expert annotated subset of national laws, policies and UNFCCC submissions. For more information on the annotation methodology and classifier training [see our paper](https://arxiv.org/abs/2404.02822). ## Getting started ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "ClimatePolicyRadar/national-climate-targets" example = "The Net Zero Strategy, published in October 2021, was the first "\ "document of its kind for a major economy. It set out the government’s "\ "vision for a market-led, technology-driven transition to decarbonise "\ "the UK economy and reach net zero by 2050." model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # using sigmoid because the model is multi-label pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, function_to_apply="sigmoid") pipe(example, padding=True, truncation=True, return_all_scores=True) >>> [[{'label': 'NZT', 'score': 0.9142044186592102}, {'label': 'Reduction', 'score': 0.04552844911813736}, {'label': 'Other', 'score': 0.07590094953775406}]] ``` ## Licence Our classifier is licensed as [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0). Please read our [Terms of Use](https://app.climatepolicyradar.org/terms-of-use), including any specific terms relevant to commercial use. Contact [email protected] with any questions. ## Links - [Paper](https://arxiv.org/abs/2404.02822) ## Citation ``` @misc{juhasz2024identifying, title={Identifying Climate Targets in National Laws and Policies using Machine Learning}, author={Matyas Juhasz and Tina Marchand and Roshan Melwani and Kalyan Dutia and Sarah Goodenough and Harrison Pim and Henry Franks}, year={2024}, eprint={2404.02822}, archivePrefix={arXiv}, primaryClass={cs.CY} } ``` ## Authors & Contact Climate Policy Radar team: Matyas Juhasz, Tina Marchand, Roshan Melwani, Kalyan Dutia, Sarah Goodenough, Harrison Pim, and Henry Franks. [email protected] https://climatepolicyradar.org
KoichiYasuoka/modernbert-large-thai-wikipedia
KoichiYasuoka
2025-01-28T11:14:57Z
12
0
null
[ "pytorch", "modernbert", "thai", "masked-lm", "fill-mask", "custom_code", "th", "dataset:wikimedia/wikipedia", "license:apache-2.0", "region:us" ]
fill-mask
2025-01-25T05:08:50Z
--- language: - "th" tags: - "thai" - "masked-lm" - "modernbert" datasets: - "wikimedia/wikipedia" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" --- # modernbert-large-thai-wikipedia ## Model Description This is a ModernBERT model pre-trained on Thai Wikipedia texts. NVIDIA A100-SXM4-40GB×8 took 5 hours 30 minutes for training. You can fine-tune `modernbert-large-thai-wikipedia` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/modernbert-large-thai-wikipedia-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/modernbert-large-thai-wikipedia-ud-embeds), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/modernbert-large-thai-wikipedia") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/modernbert-large-thai-wikipedia",trust_remote_code=True) ```
nhoxinh/f5f148af-9110-418a-8a43-e830075b7837
nhoxinh
2025-01-28T11:14:00Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T10:57:08Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: f5f148af-9110-418a-8a43-e830075b7837 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 899a846bf6acb565_train_data.json ds_type: json format: custom path: /workspace/input_data/899a846bf6acb565_train_data.json type: field_input: context field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/f5f148af-9110-418a-8a43-e830075b7837 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/899a846bf6acb565_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fddebea0-c86c-4bbf-a72d-ee20bd33886d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fddebea0-c86c-4bbf-a72d-ee20bd33886d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f5f148af-9110-418a-8a43-e830075b7837 This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2128 | 0.2244 | 200 | 1.7437 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/26a2299d-c78a-44da-9a2b-956371dc6925
lesso
2025-01-28T11:06:13Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B", "base_model:adapter:unsloth/Qwen2-7B", "license:apache-2.0", "region:us" ]
null
2025-01-28T11:00:58Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B tags: - axolotl - generated_from_trainer model-index: - name: 26a2299d-c78a-44da-9a2b-956371dc6925 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3d1574132bffb371_train_data.json ds_type: json format: custom path: /workspace/input_data/3d1574132bffb371_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso/26a2299d-c78a-44da-9a2b-956371dc6925 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/3d1574132bffb371_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9b171e8-52ec-4f29-ac24-4094f9180312 wandb_project: lesso18 wandb_run: your_name wandb_runid: b9b171e8-52ec-4f29-ac24-4094f9180312 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 26a2299d-c78a-44da-9a2b-956371dc6925 This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co/unsloth/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.9122 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jfreiter/kidsfit1
jfreiter
2025-01-28T11:05:19Z
15
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-28T10:39:05Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: KIDSFIT1 --- # Kidsfit1 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `KIDSFIT1` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jfreiter/kidsfit1', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mrferr3t/5358d6ea-f837-4c0c-a8c9-eb0756361431
mrferr3t
2025-01-28T11:03:25Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "region:us" ]
null
2025-01-28T11:01:32Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: 5358d6ea-f837-4c0c-a8c9-eb0756361431 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 899a846bf6acb565_train_data.json ds_type: json format: custom path: /workspace/input_data/899a846bf6acb565_train_data.json type: field_input: context field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/5358d6ea-f837-4c0c-a8c9-eb0756361431 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 24 micro_batch_size: 2 mlflow_experiment_name: /tmp/899a846bf6acb565_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fddebea0-c86c-4bbf-a72d-ee20bd33886d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fddebea0-c86c-4bbf-a72d-ee20bd33886d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5358d6ea-f837-4c0c-a8c9-eb0756361431 This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8049 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 24 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1705 | 0.0011 | 1 | 2.0811 | | 2.366 | 0.0067 | 6 | 2.0609 | | 2.2914 | 0.0135 | 12 | 1.8999 | | 1.8087 | 0.0202 | 18 | 1.8163 | | 2.0879 | 0.0269 | 24 | 1.8049 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/c4c5c6be-33f9-4938-9c2b-6a9db436515d
Best000
2025-01-28T11:02:48Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "region:us" ]
null
2025-01-28T11:01:38Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: c4c5c6be-33f9-4938-9c2b-6a9db436515d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 899a846bf6acb565_train_data.json ds_type: json format: custom path: /workspace/input_data/899a846bf6acb565_train_data.json type: field_input: context field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/c4c5c6be-33f9-4938-9c2b-6a9db436515d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/899a846bf6acb565_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fddebea0-c86c-4bbf-a72d-ee20bd33886d wandb_project: Birthday-SN56-32-Gradients-On-Demand wandb_run: your_name wandb_runid: fddebea0-c86c-4bbf-a72d-ee20bd33886d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c4c5c6be-33f9-4938-9c2b-6a9db436515d This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0011 | 1 | nan | | 0.0 | 0.0034 | 3 | nan | | 0.0 | 0.0067 | 6 | nan | | 0.0 | 0.0101 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/e4c2439d-7b13-489b-b78d-6ddb0e259a53
great0001
2025-01-28T11:02:46Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B", "base_model:adapter:unsloth/Qwen2-7B", "license:apache-2.0", "region:us" ]
null
2025-01-28T11:01:08Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B tags: - axolotl - generated_from_trainer model-index: - name: e4c2439d-7b13-489b-b78d-6ddb0e259a53 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3d1574132bffb371_train_data.json ds_type: json format: custom path: /workspace/input_data/3d1574132bffb371_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/e4c2439d-7b13-489b-b78d-6ddb0e259a53 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/3d1574132bffb371_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9b171e8-52ec-4f29-ac24-4094f9180312 wandb_project: Mine-SN56-20-Gradients-On-Demand wandb_run: your_name wandb_runid: b9b171e8-52ec-4f29-ac24-4094f9180312 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e4c2439d-7b13-489b-b78d-6ddb0e259a53 This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co/unsloth/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0023 | 1 | nan | | 0.0 | 0.0296 | 13 | nan | | 0.0 | 0.0593 | 26 | nan | | 0.0 | 0.0889 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fahd200581/AIEGYPOSTERAI
fahd200581
2025-01-28T11:01:27Z
12
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-28T10:33:46Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AIEGYPOSTERAI --- # Aiegyposterai <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AIEGYPOSTERAI` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('fahd200581/AIEGYPOSTERAI', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
ClarenceDan/37747312-56b7-472e-b03a-62c6e3c71971
ClarenceDan
2025-01-28T11:01:08Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B", "base_model:adapter:unsloth/Qwen2-7B", "license:apache-2.0", "region:us" ]
null
2025-01-28T11:00:14Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B tags: - axolotl - generated_from_trainer model-index: - name: 37747312-56b7-472e-b03a-62c6e3c71971 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3d1574132bffb371_train_data.json ds_type: json format: custom path: /workspace/input_data/3d1574132bffb371_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/37747312-56b7-472e-b03a-62c6e3c71971 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/3d1574132bffb371_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b9b171e8-52ec-4f29-ac24-4094f9180312 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b9b171e8-52ec-4f29-ac24-4094f9180312 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 37747312-56b7-472e-b03a-62c6e3c71971 This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co/unsloth/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0046 | 1 | nan | | 0.0 | 0.0137 | 3 | nan | | 0.0 | 0.0274 | 6 | nan | | 0.0 | 0.0410 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso01/300a07a9-190a-4706-a273-b5989d5c00bd
lesso01
2025-01-28T11:00:55Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T10:57:03Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: 300a07a9-190a-4706-a273-b5989d5c00bd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: true chat_template: llama3 datasets: - data_files: - 899a846bf6acb565_train_data.json ds_type: json format: custom path: /workspace/input_data/899a846bf6acb565_train_data.json type: field_input: context field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso01/300a07a9-190a-4706-a273-b5989d5c00bd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/899a846bf6acb565_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fddebea0-c86c-4bbf-a72d-ee20bd33886d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fddebea0-c86c-4bbf-a72d-ee20bd33886d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 300a07a9-190a-4706-a273-b5989d5c00bd This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0011 | 1 | nan | | 0.0 | 0.0056 | 5 | nan | | 0.0 | 0.0112 | 10 | nan | | 0.0 | 0.0168 | 15 | nan | | 0.0 | 0.0224 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/fac149b9-ac37-4ed0-8e7d-9ac803d3081d
shibajustfor
2025-01-28T10:59:16Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "region:us" ]
null
2025-01-28T10:57:45Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: fac149b9-ac37-4ed0-8e7d-9ac803d3081d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 899a846bf6acb565_train_data.json ds_type: json format: custom path: /workspace/input_data/899a846bf6acb565_train_data.json type: field_input: context field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/fac149b9-ac37-4ed0-8e7d-9ac803d3081d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/899a846bf6acb565_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fddebea0-c86c-4bbf-a72d-ee20bd33886d wandb_project: Birthday-SN56-38-Gradients-On-Demand wandb_run: your_name wandb_runid: fddebea0-c86c-4bbf-a72d-ee20bd33886d warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # fac149b9-ac37-4ed0-8e7d-9ac803d3081d This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0011 | 1 | nan | | 0.0 | 0.0146 | 13 | nan | | 0.0 | 0.0292 | 26 | nan | | 0.0 | 0.0438 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
havinash-ai/66ef2158-27bc-4fc2-9bfe-0fa668c6d1dd
havinash-ai
2025-01-28T10:59:08Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "region:us" ]
null
2025-01-28T10:57:37Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: 66ef2158-27bc-4fc2-9bfe-0fa668c6d1dd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 899a846bf6acb565_train_data.json ds_type: json format: custom path: /workspace/input_data/899a846bf6acb565_train_data.json type: field_input: context field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/66ef2158-27bc-4fc2-9bfe-0fa668c6d1dd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/899a846bf6acb565_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fddebea0-c86c-4bbf-a72d-ee20bd33886d wandb_project: Birthday-SN56-9-Gradients-On-Demand wandb_run: your_name wandb_runid: fddebea0-c86c-4bbf-a72d-ee20bd33886d warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 66ef2158-27bc-4fc2-9bfe-0fa668c6d1dd This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0011 | 1 | nan | | 0.0 | 0.0146 | 13 | nan | | 0.0 | 0.0292 | 26 | nan | | 0.0 | 0.0438 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/825624dd-0964-4e19-a5f2-35636f6a3a79
daniel40
2025-01-28T10:59:07Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "region:us" ]
null
2025-01-28T10:57:31Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: 825624dd-0964-4e19-a5f2-35636f6a3a79 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 899a846bf6acb565_train_data.json ds_type: json format: custom path: /workspace/input_data/899a846bf6acb565_train_data.json type: field_input: context field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/825624dd-0964-4e19-a5f2-35636f6a3a79 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/899a846bf6acb565_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fddebea0-c86c-4bbf-a72d-ee20bd33886d wandb_project: Birthday-SN56-27-Gradients-On-Demand wandb_run: your_name wandb_runid: fddebea0-c86c-4bbf-a72d-ee20bd33886d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 825624dd-0964-4e19-a5f2-35636f6a3a79 This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0011 | 1 | nan | | 0.0 | 0.0146 | 13 | nan | | 0.0 | 0.0292 | 26 | nan | | 0.0 | 0.0438 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/0a4ff6b2-dade-4d2b-8bb2-0e147f5095c7
Best000
2025-01-28T10:58:25Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B", "base_model:adapter:unsloth/Qwen2.5-3B", "license:other", "region:us" ]
null
2025-01-28T10:57:13Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: 0a4ff6b2-dade-4d2b-8bb2-0e147f5095c7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 899a846bf6acb565_train_data.json ds_type: json format: custom path: /workspace/input_data/899a846bf6acb565_train_data.json type: field_input: context field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/0a4ff6b2-dade-4d2b-8bb2-0e147f5095c7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/899a846bf6acb565_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fddebea0-c86c-4bbf-a72d-ee20bd33886d wandb_project: Birthday-SN56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: fddebea0-c86c-4bbf-a72d-ee20bd33886d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0a4ff6b2-dade-4d2b-8bb2-0e147f5095c7 This model is a fine-tuned version of [unsloth/Qwen2.5-3B](https://huggingface.co/unsloth/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0011 | 1 | nan | | 0.0 | 0.0034 | 3 | nan | | 0.0 | 0.0067 | 6 | nan | | 0.0 | 0.0101 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
KenLi315/Conan-embedding-v1-Q4_K_M-GGUF
KenLi315
2025-01-28T10:57:31Z
565
1
sentence-transformers
[ "sentence-transformers", "gguf", "mteb", "llama-cpp", "gguf-my-repo", "zh", "base_model:TencentBAC/Conan-embedding-v1", "base_model:quantized:TencentBAC/Conan-embedding-v1", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us", "feature-extraction" ]
null
2025-01-28T10:57:29Z
--- tags: - mteb - llama-cpp - gguf-my-repo language: - zh license: cc-by-nc-4.0 library_name: sentence-transformers base_model: TencentBAC/Conan-embedding-v1 model-index: - name: conan-embedding results: - task: type: STS dataset: name: MTEB AFQMC type: C-MTEB/AFQMC config: default split: validation revision: None metrics: - type: cos_sim_pearson value: 56.613572467148856 - type: cos_sim_spearman value: 60.66446211824284 - type: euclidean_pearson value: 58.42080485872613 - type: euclidean_spearman value: 59.82750030458164 - type: manhattan_pearson value: 58.39885271199772 - type: manhattan_spearman value: 59.817749720366734 - task: type: STS dataset: name: MTEB ATEC type: C-MTEB/ATEC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 56.60530380552331 - type: cos_sim_spearman value: 58.63822441736707 - type: euclidean_pearson value: 62.18551665180664 - type: euclidean_spearman value: 58.23168804495912 - type: manhattan_pearson value: 62.17191480770053 - type: manhattan_spearman value: 58.22556219601401 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (zh) type: mteb/amazon_reviews_multi config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 50.308 - type: f1 value: 46.927458607895126 - task: type: STS dataset: name: MTEB BQ type: C-MTEB/BQ config: default split: test revision: None metrics: - type: cos_sim_pearson value: 72.6472074172711 - type: cos_sim_spearman value: 74.50748447236577 - type: euclidean_pearson value: 72.51833296451854 - type: euclidean_spearman value: 73.9898922606105 - type: manhattan_pearson value: 72.50184948939338 - type: manhattan_spearman value: 73.97797921509638 - task: type: Clustering dataset: name: MTEB CLSClusteringP2P type: C-MTEB/CLSClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 60.63545326048343 - task: type: Clustering dataset: name: MTEB CLSClusteringS2S type: C-MTEB/CLSClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 52.64834762325994 - task: type: Reranking dataset: name: MTEB CMedQAv1 type: C-MTEB/CMedQAv1-reranking config: default split: test revision: None metrics: - type: map value: 91.38528814655234 - type: mrr value: 93.35857142857144 - task: type: Reranking dataset: name: MTEB CMedQAv2 type: C-MTEB/CMedQAv2-reranking config: default split: test revision: None metrics: - type: map value: 89.72084678877096 - type: mrr value: 91.74380952380953 - task: type: Retrieval dataset: name: MTEB CmedqaRetrieval type: C-MTEB/CmedqaRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 26.987 - type: map_at_10 value: 40.675 - type: map_at_100 value: 42.495 - type: map_at_1000 value: 42.596000000000004 - type: map_at_3 value: 36.195 - type: map_at_5 value: 38.704 - type: mrr_at_1 value: 41.21 - type: mrr_at_10 value: 49.816 - type: mrr_at_100 value: 50.743 - type: mrr_at_1000 value: 50.77700000000001 - type: mrr_at_3 value: 47.312 - type: mrr_at_5 value: 48.699999999999996 - type: ndcg_at_1 value: 41.21 - type: ndcg_at_10 value: 47.606 - type: ndcg_at_100 value: 54.457 - type: ndcg_at_1000 value: 56.16100000000001 - type: ndcg_at_3 value: 42.108000000000004 - type: ndcg_at_5 value: 44.393 - type: precision_at_1 value: 41.21 - type: precision_at_10 value: 10.593 - type: precision_at_100 value: 1.609 - type: precision_at_1000 value: 0.183 - type: precision_at_3 value: 23.881 - type: precision_at_5 value: 17.339 - type: recall_at_1 value: 26.987 - type: recall_at_10 value: 58.875 - type: recall_at_100 value: 87.023 - type: recall_at_1000 value: 98.328 - type: recall_at_3 value: 42.265 - type: recall_at_5 value: 49.334 - task: type: PairClassification dataset: name: MTEB Cmnli type: C-MTEB/CMNLI config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 85.91701743836441 - type: cos_sim_ap value: 92.53650618807644 - type: cos_sim_f1 value: 86.80265975431082 - type: cos_sim_precision value: 83.79025239338556 - type: cos_sim_recall value: 90.039747486556 - type: dot_accuracy value: 77.17378232110643 - type: dot_ap value: 85.40244368166546 - type: dot_f1 value: 79.03038001481951 - type: dot_precision value: 72.20502901353966 - type: dot_recall value: 87.2808043020809 - type: euclidean_accuracy value: 84.65423932651834 - type: euclidean_ap value: 91.47775530034588 - type: euclidean_f1 value: 85.64471499723298 - type: euclidean_precision value: 81.31567885666246 - type: euclidean_recall value: 90.46060322656068 - type: manhattan_accuracy value: 84.58208057726999 - type: manhattan_ap value: 91.46228709402014 - type: manhattan_f1 value: 85.6631626034444 - type: manhattan_precision value: 82.10075026795283 - type: manhattan_recall value: 89.5487491232172 - type: max_accuracy value: 85.91701743836441 - type: max_ap value: 92.53650618807644 - type: max_f1 value: 86.80265975431082 - task: type: Retrieval dataset: name: MTEB CovidRetrieval type: C-MTEB/CovidRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 83.693 - type: map_at_10 value: 90.098 - type: map_at_100 value: 90.145 - type: map_at_1000 value: 90.146 - type: map_at_3 value: 89.445 - type: map_at_5 value: 89.935 - type: mrr_at_1 value: 83.878 - type: mrr_at_10 value: 90.007 - type: mrr_at_100 value: 90.045 - type: mrr_at_1000 value: 90.046 - type: mrr_at_3 value: 89.34 - type: mrr_at_5 value: 89.835 - type: ndcg_at_1 value: 84.089 - type: ndcg_at_10 value: 92.351 - type: ndcg_at_100 value: 92.54599999999999 - type: ndcg_at_1000 value: 92.561 - type: ndcg_at_3 value: 91.15299999999999 - type: ndcg_at_5 value: 91.968 - type: precision_at_1 value: 84.089 - type: precision_at_10 value: 10.011000000000001 - type: precision_at_100 value: 1.009 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 32.28 - type: precision_at_5 value: 19.789 - type: recall_at_1 value: 83.693 - type: recall_at_10 value: 99.05199999999999 - type: recall_at_100 value: 99.895 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 95.917 - type: recall_at_5 value: 97.893 - task: type: Retrieval dataset: name: MTEB DuRetrieval type: C-MTEB/DuRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 26.924 - type: map_at_10 value: 81.392 - type: map_at_100 value: 84.209 - type: map_at_1000 value: 84.237 - type: map_at_3 value: 56.998000000000005 - type: map_at_5 value: 71.40100000000001 - type: mrr_at_1 value: 91.75 - type: mrr_at_10 value: 94.45 - type: mrr_at_100 value: 94.503 - type: mrr_at_1000 value: 94.505 - type: mrr_at_3 value: 94.258 - type: mrr_at_5 value: 94.381 - type: ndcg_at_1 value: 91.75 - type: ndcg_at_10 value: 88.53 - type: ndcg_at_100 value: 91.13900000000001 - type: ndcg_at_1000 value: 91.387 - type: ndcg_at_3 value: 87.925 - type: ndcg_at_5 value: 86.461 - type: precision_at_1 value: 91.75 - type: precision_at_10 value: 42.05 - type: precision_at_100 value: 4.827 - type: precision_at_1000 value: 0.48900000000000005 - type: precision_at_3 value: 78.55 - type: precision_at_5 value: 65.82000000000001 - type: recall_at_1 value: 26.924 - type: recall_at_10 value: 89.338 - type: recall_at_100 value: 97.856 - type: recall_at_1000 value: 99.11 - type: recall_at_3 value: 59.202999999999996 - type: recall_at_5 value: 75.642 - task: type: Retrieval dataset: name: MTEB EcomRetrieval type: C-MTEB/EcomRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 54.800000000000004 - type: map_at_10 value: 65.613 - type: map_at_100 value: 66.185 - type: map_at_1000 value: 66.191 - type: map_at_3 value: 62.8 - type: map_at_5 value: 64.535 - type: mrr_at_1 value: 54.800000000000004 - type: mrr_at_10 value: 65.613 - type: mrr_at_100 value: 66.185 - type: mrr_at_1000 value: 66.191 - type: mrr_at_3 value: 62.8 - type: mrr_at_5 value: 64.535 - type: ndcg_at_1 value: 54.800000000000004 - type: ndcg_at_10 value: 70.991 - type: ndcg_at_100 value: 73.434 - type: ndcg_at_1000 value: 73.587 - type: ndcg_at_3 value: 65.324 - type: ndcg_at_5 value: 68.431 - type: precision_at_1 value: 54.800000000000004 - type: precision_at_10 value: 8.790000000000001 - type: precision_at_100 value: 0.9860000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 24.2 - type: precision_at_5 value: 16.02 - type: recall_at_1 value: 54.800000000000004 - type: recall_at_10 value: 87.9 - type: recall_at_100 value: 98.6 - type: recall_at_1000 value: 99.8 - type: recall_at_3 value: 72.6 - type: recall_at_5 value: 80.10000000000001 - task: type: Classification dataset: name: MTEB IFlyTek type: C-MTEB/IFlyTek-classification config: default split: validation revision: None metrics: - type: accuracy value: 51.94305502116199 - type: f1 value: 39.82197338426721 - task: type: Classification dataset: name: MTEB JDReview type: C-MTEB/JDReview-classification config: default split: test revision: None metrics: - type: accuracy value: 90.31894934333957 - type: ap value: 63.89821836499594 - type: f1 value: 85.93687177603624 - task: type: STS dataset: name: MTEB LCQMC type: C-MTEB/LCQMC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 73.18906216730208 - type: cos_sim_spearman value: 79.44570226735877 - type: euclidean_pearson value: 78.8105072242798 - type: euclidean_spearman value: 79.15605680863212 - type: manhattan_pearson value: 78.80576507484064 - type: manhattan_spearman value: 79.14625534068364 - task: type: Reranking dataset: name: MTEB MMarcoReranking type: C-MTEB/Mmarco-reranking config: default split: dev revision: None metrics: - type: map value: 41.58107192600853 - type: mrr value: 41.37063492063492 - task: type: Retrieval dataset: name: MTEB MMarcoRetrieval type: C-MTEB/MMarcoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 68.33 - type: map_at_10 value: 78.261 - type: map_at_100 value: 78.522 - type: map_at_1000 value: 78.527 - type: map_at_3 value: 76.236 - type: map_at_5 value: 77.557 - type: mrr_at_1 value: 70.602 - type: mrr_at_10 value: 78.779 - type: mrr_at_100 value: 79.00500000000001 - type: mrr_at_1000 value: 79.01 - type: mrr_at_3 value: 77.037 - type: mrr_at_5 value: 78.157 - type: ndcg_at_1 value: 70.602 - type: ndcg_at_10 value: 82.254 - type: ndcg_at_100 value: 83.319 - type: ndcg_at_1000 value: 83.449 - type: ndcg_at_3 value: 78.46 - type: ndcg_at_5 value: 80.679 - type: precision_at_1 value: 70.602 - type: precision_at_10 value: 9.989 - type: precision_at_100 value: 1.05 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 29.598999999999997 - type: precision_at_5 value: 18.948 - type: recall_at_1 value: 68.33 - type: recall_at_10 value: 94.00800000000001 - type: recall_at_100 value: 98.589 - type: recall_at_1000 value: 99.60799999999999 - type: recall_at_3 value: 84.057 - type: recall_at_5 value: 89.32900000000001 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-CN) type: mteb/amazon_massive_intent config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 78.13718897108272 - type: f1 value: 74.07613180855328 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-CN) type: mteb/amazon_massive_scenario config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 86.20040349697376 - type: f1 value: 85.05282136519973 - task: type: Retrieval dataset: name: MTEB MedicalRetrieval type: C-MTEB/MedicalRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 56.8 - type: map_at_10 value: 64.199 - type: map_at_100 value: 64.89 - type: map_at_1000 value: 64.917 - type: map_at_3 value: 62.383 - type: map_at_5 value: 63.378 - type: mrr_at_1 value: 56.8 - type: mrr_at_10 value: 64.199 - type: mrr_at_100 value: 64.89 - type: mrr_at_1000 value: 64.917 - type: mrr_at_3 value: 62.383 - type: mrr_at_5 value: 63.378 - type: ndcg_at_1 value: 56.8 - type: ndcg_at_10 value: 67.944 - type: ndcg_at_100 value: 71.286 - type: ndcg_at_1000 value: 71.879 - type: ndcg_at_3 value: 64.163 - type: ndcg_at_5 value: 65.96600000000001 - type: precision_at_1 value: 56.8 - type: precision_at_10 value: 7.9799999999999995 - type: precision_at_100 value: 0.954 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 23.1 - type: precision_at_5 value: 14.74 - type: recall_at_1 value: 56.8 - type: recall_at_10 value: 79.80000000000001 - type: recall_at_100 value: 95.39999999999999 - type: recall_at_1000 value: 99.8 - type: recall_at_3 value: 69.3 - type: recall_at_5 value: 73.7 - task: type: Classification dataset: name: MTEB MultilingualSentiment type: C-MTEB/MultilingualSentiment-classification config: default split: validation revision: None metrics: - type: accuracy value: 78.57666666666667 - type: f1 value: 78.23373528202681 - task: type: PairClassification dataset: name: MTEB Ocnli type: C-MTEB/OCNLI config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 85.43584190579317 - type: cos_sim_ap value: 90.76665640338129 - type: cos_sim_f1 value: 86.5021770682148 - type: cos_sim_precision value: 79.82142857142858 - type: cos_sim_recall value: 94.40337909186906 - type: dot_accuracy value: 78.66811044937737 - type: dot_ap value: 85.84084363880804 - type: dot_f1 value: 80.10075566750629 - type: dot_precision value: 76.58959537572254 - type: dot_recall value: 83.9493136219641 - type: euclidean_accuracy value: 84.46128857606931 - type: euclidean_ap value: 88.62351100230491 - type: euclidean_f1 value: 85.7709469509172 - type: euclidean_precision value: 80.8411214953271 - type: euclidean_recall value: 91.34107708553326 - type: manhattan_accuracy value: 84.51543042772063 - type: manhattan_ap value: 88.53975607870393 - type: manhattan_f1 value: 85.75697211155378 - type: manhattan_precision value: 81.14985862393968 - type: manhattan_recall value: 90.91869060190075 - type: max_accuracy value: 85.43584190579317 - type: max_ap value: 90.76665640338129 - type: max_f1 value: 86.5021770682148 - task: type: Classification dataset: name: MTEB OnlineShopping type: C-MTEB/OnlineShopping-classification config: default split: test revision: None metrics: - type: accuracy value: 95.06999999999998 - type: ap value: 93.45104559324996 - type: f1 value: 95.06036329426092 - task: type: STS dataset: name: MTEB PAWSX type: C-MTEB/PAWSX config: default split: test revision: None metrics: - type: cos_sim_pearson value: 40.01998290519605 - type: cos_sim_spearman value: 46.5989769986853 - type: euclidean_pearson value: 45.37905883182924 - type: euclidean_spearman value: 46.22213849806378 - type: manhattan_pearson value: 45.40925124776211 - type: manhattan_spearman value: 46.250705124226386 - task: type: STS dataset: name: MTEB QBQTC type: C-MTEB/QBQTC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 42.719516197112526 - type: cos_sim_spearman value: 44.57507789581106 - type: euclidean_pearson value: 35.73062264160721 - type: euclidean_spearman value: 40.473523909913695 - type: manhattan_pearson value: 35.69868964086357 - type: manhattan_spearman value: 40.46349925372903 - task: type: STS dataset: name: MTEB STS22 (zh) type: mteb/sts22-crosslingual-sts config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.340118285801104 - type: cos_sim_spearman value: 67.72781908620632 - type: euclidean_pearson value: 63.161965746091596 - type: euclidean_spearman value: 67.36825684340769 - type: manhattan_pearson value: 63.089863788261425 - type: manhattan_spearman value: 67.40868898995384 - task: type: STS dataset: name: MTEB STSB type: C-MTEB/STSB config: default split: test revision: None metrics: - type: cos_sim_pearson value: 79.1646360962365 - type: cos_sim_spearman value: 81.24426700767087 - type: euclidean_pearson value: 79.43826409936123 - type: euclidean_spearman value: 79.71787965300125 - type: manhattan_pearson value: 79.43377784961737 - type: manhattan_spearman value: 79.69348376886967 - task: type: Reranking dataset: name: MTEB T2Reranking type: C-MTEB/T2Reranking config: default split: dev revision: None metrics: - type: map value: 68.35595092507496 - type: mrr value: 79.00244892585788 - task: type: Retrieval dataset: name: MTEB T2Retrieval type: C-MTEB/T2Retrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 26.588 - type: map_at_10 value: 75.327 - type: map_at_100 value: 79.095 - type: map_at_1000 value: 79.163 - type: map_at_3 value: 52.637 - type: map_at_5 value: 64.802 - type: mrr_at_1 value: 88.103 - type: mrr_at_10 value: 91.29899999999999 - type: mrr_at_100 value: 91.408 - type: mrr_at_1000 value: 91.411 - type: mrr_at_3 value: 90.801 - type: mrr_at_5 value: 91.12700000000001 - type: ndcg_at_1 value: 88.103 - type: ndcg_at_10 value: 83.314 - type: ndcg_at_100 value: 87.201 - type: ndcg_at_1000 value: 87.83999999999999 - type: ndcg_at_3 value: 84.408 - type: ndcg_at_5 value: 83.078 - type: precision_at_1 value: 88.103 - type: precision_at_10 value: 41.638999999999996 - type: precision_at_100 value: 5.006 - type: precision_at_1000 value: 0.516 - type: precision_at_3 value: 73.942 - type: precision_at_5 value: 62.056 - type: recall_at_1 value: 26.588 - type: recall_at_10 value: 82.819 - type: recall_at_100 value: 95.334 - type: recall_at_1000 value: 98.51299999999999 - type: recall_at_3 value: 54.74 - type: recall_at_5 value: 68.864 - task: type: Classification dataset: name: MTEB TNews type: C-MTEB/TNews-classification config: default split: validation revision: None metrics: - type: accuracy value: 55.029 - type: f1 value: 53.043617905026764 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringP2P type: C-MTEB/ThuNewsClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 77.83675116835911 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringS2S type: C-MTEB/ThuNewsClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 74.19701455865277 - task: type: Retrieval dataset: name: MTEB VideoRetrieval type: C-MTEB/VideoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 64.7 - type: map_at_10 value: 75.593 - type: map_at_100 value: 75.863 - type: map_at_1000 value: 75.863 - type: map_at_3 value: 73.63300000000001 - type: map_at_5 value: 74.923 - type: mrr_at_1 value: 64.7 - type: mrr_at_10 value: 75.593 - type: mrr_at_100 value: 75.863 - type: mrr_at_1000 value: 75.863 - type: mrr_at_3 value: 73.63300000000001 - type: mrr_at_5 value: 74.923 - type: ndcg_at_1 value: 64.7 - type: ndcg_at_10 value: 80.399 - type: ndcg_at_100 value: 81.517 - type: ndcg_at_1000 value: 81.517 - type: ndcg_at_3 value: 76.504 - type: ndcg_at_5 value: 78.79899999999999 - type: precision_at_1 value: 64.7 - type: precision_at_10 value: 9.520000000000001 - type: precision_at_100 value: 1 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 28.266999999999996 - type: precision_at_5 value: 18.060000000000002 - type: recall_at_1 value: 64.7 - type: recall_at_10 value: 95.19999999999999 - type: recall_at_100 value: 100 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 84.8 - type: recall_at_5 value: 90.3 - task: type: Classification dataset: name: MTEB Waimai type: C-MTEB/waimai-classification config: default split: test revision: None metrics: - type: accuracy value: 89.69999999999999 - type: ap value: 75.91371640164184 - type: f1 value: 88.34067777698694 --- # KenLi315/Conan-embedding-v1-Q4_K_M-GGUF This model was converted to GGUF format from [`TencentBAC/Conan-embedding-v1`](https://huggingface.co/TencentBAC/Conan-embedding-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/TencentBAC/Conan-embedding-v1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo KenLi315/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo KenLi315/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo KenLi315/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo KenLi315/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -c 2048 ```
earnxus/1cc0087b-f4f8-47ea-9f8e-54ec62e33dbb
earnxus
2025-01-28T10:57:15Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M-Instruct", "base_model:adapter:unsloth/SmolLM2-360M-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T10:43:55Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 1cc0087b-f4f8-47ea-9f8e-54ec62e33dbb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22b70be0f94320a3_train_data.json ds_type: json format: custom path: /workspace/input_data/22b70be0f94320a3_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: earnxus/1cc0087b-f4f8-47ea-9f8e-54ec62e33dbb hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/22b70be0f94320a3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: d02f8361-84b9-4479-bc3c-c6ea227f1563 wandb_project: Gradients-On-Nine wandb_run: your_name wandb_runid: d02f8361-84b9-4479-bc3c-c6ea227f1563 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 1cc0087b-f4f8-47ea-9f8e-54ec62e33dbb This model is a fine-tuned version of [unsloth/SmolLM2-360M-Instruct](https://huggingface.co/unsloth/SmolLM2-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5945 | 0.0484 | 200 | 2.1274 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/f7a237aa-36c9-4c0e-88df-d841e330c7c0
mrferr3t
2025-01-28T10:52:21Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M-Instruct", "base_model:adapter:unsloth/SmolLM2-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-28T10:48:15Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: f7a237aa-36c9-4c0e-88df-d841e330c7c0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22b70be0f94320a3_train_data.json ds_type: json format: custom path: /workspace/input_data/22b70be0f94320a3_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/f7a237aa-36c9-4c0e-88df-d841e330c7c0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 11 micro_batch_size: 2 mlflow_experiment_name: /tmp/22b70be0f94320a3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d02f8361-84b9-4479-bc3c-c6ea227f1563 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d02f8361-84b9-4479-bc3c-c6ea227f1563 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f7a237aa-36c9-4c0e-88df-d841e330c7c0 This model is a fine-tuned version of [unsloth/SmolLM2-360M-Instruct](https://huggingface.co/unsloth/SmolLM2-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.6161 | 0.0002 | 1 | 3.8398 | | 3.3484 | 0.0007 | 3 | 3.8375 | | 3.9161 | 0.0015 | 6 | 3.8177 | | 3.1883 | 0.0022 | 9 | 3.7493 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso16/3ac4c30c-b6a7-48fd-9f22-686522698f93
lesso16
2025-01-28T10:48:01Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M-Instruct", "base_model:adapter:unsloth/SmolLM2-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-28T10:44:45Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 3ac4c30c-b6a7-48fd-9f22-686522698f93 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22b70be0f94320a3_train_data.json ds_type: json format: custom path: /workspace/input_data/22b70be0f94320a3_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso16/3ac4c30c-b6a7-48fd-9f22-686522698f93 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/22b70be0f94320a3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d02f8361-84b9-4479-bc3c-c6ea227f1563 wandb_project: multi wandb_run: your_name wandb_runid: d02f8361-84b9-4479-bc3c-c6ea227f1563 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 3ac4c30c-b6a7-48fd-9f22-686522698f93 This model is a fine-tuned version of [unsloth/SmolLM2-360M-Instruct](https://huggingface.co/unsloth/SmolLM2-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.3870 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
philip-hightech/58e1cd4a-109a-4ea8-9da7-c27348f07094
philip-hightech
2025-01-28T10:47:22Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M-Instruct", "base_model:adapter:unsloth/SmolLM2-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-28T10:44:09Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 58e1cd4a-109a-4ea8-9da7-c27348f07094 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22b70be0f94320a3_train_data.json ds_type: json format: custom path: /workspace/input_data/22b70be0f94320a3_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: philip-hightech/58e1cd4a-109a-4ea8-9da7-c27348f07094 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/22b70be0f94320a3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d02f8361-84b9-4479-bc3c-c6ea227f1563 wandb_project: Mine-SN56-21-Gradients-On-Demand wandb_run: your_name wandb_runid: d02f8361-84b9-4479-bc3c-c6ea227f1563 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 58e1cd4a-109a-4ea8-9da7-c27348f07094 This model is a fine-tuned version of [unsloth/SmolLM2-360M-Instruct](https://huggingface.co/unsloth/SmolLM2-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0016 | 13 | nan | | 0.0 | 0.0031 | 26 | nan | | 0.0 | 0.0047 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiual-awal/d1dfd873-d789-4251-87f2-22df3994c074
robiual-awal
2025-01-28T10:47:16Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M-Instruct", "base_model:adapter:unsloth/SmolLM2-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-28T10:44:07Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: d1dfd873-d789-4251-87f2-22df3994c074 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22b70be0f94320a3_train_data.json ds_type: json format: custom path: /workspace/input_data/22b70be0f94320a3_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/d1dfd873-d789-4251-87f2-22df3994c074 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/22b70be0f94320a3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d02f8361-84b9-4479-bc3c-c6ea227f1563 wandb_project: Birthday-SN56-29-Gradients-On-Demand wandb_run: your_name wandb_runid: d02f8361-84b9-4479-bc3c-c6ea227f1563 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d1dfd873-d789-4251-87f2-22df3994c074 This model is a fine-tuned version of [unsloth/SmolLM2-360M-Instruct](https://huggingface.co/unsloth/SmolLM2-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 0.0 | 0.0031 | 13 | nan | | 0.0 | 0.0063 | 26 | nan | | 0.0 | 0.0094 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/8bf810b1-4e1a-45cc-8fee-33e85c04ec4f
shibajustfor
2025-01-28T10:47:00Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M-Instruct", "base_model:adapter:unsloth/SmolLM2-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-28T10:44:02Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8bf810b1-4e1a-45cc-8fee-33e85c04ec4f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22b70be0f94320a3_train_data.json ds_type: json format: custom path: /workspace/input_data/22b70be0f94320a3_train_data.json type: field_instruction: sentence1 field_output: sentence2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/8bf810b1-4e1a-45cc-8fee-33e85c04ec4f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/22b70be0f94320a3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d02f8361-84b9-4479-bc3c-c6ea227f1563 wandb_project: Birthday-SN56-39-Gradients-On-Demand wandb_run: your_name wandb_runid: d02f8361-84b9-4479-bc3c-c6ea227f1563 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8bf810b1-4e1a-45cc-8fee-33e85c04ec4f This model is a fine-tuned version of [unsloth/SmolLM2-360M-Instruct](https://huggingface.co/unsloth/SmolLM2-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 0.0 | 0.0031 | 13 | nan | | 0.0 | 0.0063 | 26 | nan | | 0.0 | 0.0094 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ahsanf/lexia-finetuned-DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit-v.0.0.2
ahsanf
2025-01-28T10:44:41Z
975
2
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit", "base_model:quantized:unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-23T18:07:10Z
--- base_model: unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Fine-Tuned Deepsek R1 Model This repository contains a fine-tuned version of the Mistral language model. The fine-tuning was performed using a dataset derived from a CSV file, enabling the model to specialize in tasks related to the specific context of the dataset. ## Model Details - **Base Model**: Deepsek Instruct (base version) - **Fine-Tuning Framework**: [Unsloth](https://github.com/UnslothAI) and [Hugging Face Transformers](https://huggingface.co/docs/transformers/index) - **Dataset**: 141 rows of input-output pairs derived from a CSV file - **Objective**: Enhance the model's capability to generate accurate and contextually appropriate responses for tasks specific to the provided dataset. ## Dataset The dataset used for fine-tuning contains conversational data structured as follows: - **Input**: User queries or prompts - **Output**: Model-generated responses or target answers ### Example Entry ```json { "conversations": [ { "from": "human", "value": "<input-text>" }, { "from": "gpt", "value": "<output-text>" } ] } ``` ## Fine-Tuning Process 1. **Preprocessing**: - Converted the CSV file into a JSON format compatible with the Mistral model using the ShareGPT template. - Applied tokenization and ensured compatibility with the Mistral chat template. 2. **Training Configuration**: - **Epochs**: 30 - **Batch Size**: 2 (per device) - **Gradient Accumulation**: 4 steps - **Optimizer**: AdamW with 8-bit precision - **Learning Rate**: 2e-4 3. **Hardware**: - Training was conducted on a single GPU. 4. **Frameworks**: - [Unsloth](https://github.com/UnslothAI) for chat template handling and training - [Hugging Face Transformers](https://huggingface.co/docs/transformers) for model fine-tuning ## Installation and Setup ### Prerequisites - Python 3.8+ - Install dependencies: ```bash pip install torch transformers datasets unsloth ``` ### Usage To use the fine-tuned model, load it with the Hugging Face Transformers library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained("path_to_your_finetuned_model") tokenizer = AutoTokenizer.from_pretrained("path_to_your_finetuned_model") # Generate a response input_text = "<your input>" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ### Inference Example ```python input_text = "What is the weather like today?" response = get_response(input_text) print(response) ``` ## Results The fine-tuned model achieved: - **Improved Response Quality**: The model generates responses closely aligned with the target dataset. - **Faster Convergence**: Optimized for a small dataset with minimal overfitting. ## Limitations - **Dataset Size**: The model was fine-tuned on a small dataset (141 rows), which may limit generalization to other tasks. - **Domain-Specific**: Performance is optimal for the domain represented by the dataset. ## Acknowledgments Special thanks to the open-source AI community for providing tools like Unsloth and Hugging Face Transformers. Their contributions make fine-tuning large language models accessible to all. # Fine-Tuned Mistral Model ## Example Chat Conversation Below is an example conversation showcasing the capabilities of the fine-tuned Mistral model. The model is optimized for customer service in the FMCG industry and supports use cases like recommending healthy snacks. ### Input Data Example | Field | Value | |---------------------------------|---------------------------------------------| | **doc_id** | cs001 | | **last_update** | 2024-12-06 | | **use_case** | customer service | | **topic** | FMCG | | **stage** | awareness | | **input** | Halo, aku cari camilan sehat nih. | | **language** | bahasa | | **intent** | menyapa dan memulai pencarian produk | | **input_emotion** | penasaran | | **instruction** | Sapa pelanggan dengan hangat, tawarkan beberapa rekomendasi camilan sehat, dan ajak mereka untuk memilih kategori tertentu. | | **output** | Hai Kak! Aku [ai_agent_name] 😊. Lagi cari camilan sehat ya? Kita punya banyak pilihan nih, mulai dari granola bar, kacang panggang, sampai keripik sayur. Kakak lagi butuh yang praktis buat dibawa atau buat ngemil di rumah? 🛍️🍴 | | **output_tone** | ramah, santai | | **metadata/product_category/0** | snacks | | **metadata/dynamic_placeholders/0** | [ai_agent_name] | --- ### Example Conversation #### **Human**: > Halo, aku cari camilan sehat nih. #### **Assistant**: > Hai Kak! Aku **SnackBot** 😊. Lagi cari camilan sehat ya? Kita punya banyak pilihan nih, mulai dari granola bar, kacang panggang, sampai keripik sayur. Kakak lagi butuh yang praktis buat dibawa atau buat ngemil di rumah? 🛍️🍴 --- This demonstrates the model's ability to: 1. **Understand intent**: Identify the user's need for healthy snacks. 2. **Generate relevant responses**: Provide a list of options in a friendly tone. 3. **Utilize placeholders dynamically**: Replace `[ai_agent_name]` with a suitable agent name, e.g., **SnackBot**. For more usage examples, refer to the instructions in the dataset or try interacting with the model directly! ## License This project is licensed under the [MIT License](LICENSE). --- Feel free to raise any issues or contribute improvements to this repository! # Uploaded model - **Developed by:** ahsanf - **License:** apache-2.0 - **Finetuned from model :** unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
adammandic87/06f69ed1-71af-4694-aa4d-5a03c02d1f06
adammandic87
2025-01-28T10:36:06Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-01-28T10:34:59Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: 06f69ed1-71af-4694-aa4d-5a03c02d1f06 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fbb569b9308b1364_train_data.json ds_type: json format: custom path: /workspace/input_data/fbb569b9308b1364_train_data.json type: field_instruction: en field_output: ko format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/06f69ed1-71af-4694-aa4d-5a03c02d1f06 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/fbb569b9308b1364_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 56ada706-7796-4d50-99a6-f689b2188837 wandb_project: birthday-sn56-19-Gradients-On-Demand wandb_run: your_name wandb_runid: 56ada706-7796-4d50-99a6-f689b2188837 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 06f69ed1-71af-4694-aa4d-5a03c02d1f06 This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0022 | 1 | 2.1773 | | 1.9553 | 0.0287 | 13 | 1.4756 | | 1.5205 | 0.0573 | 26 | 1.3874 | | 1.4332 | 0.0860 | 39 | 1.3661 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thakkkkkk/c8e7ad48-df02-494c-a5cf-c9b1bf0a69b1
thakkkkkk
2025-01-28T10:35:59Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:adapter:unsloth/Meta-Llama-3.1-8B-Instruct", "license:llama3.1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T09:19:43Z
--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: c8e7ad48-df02-494c-a5cf-c9b1bf0a69b1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dc20aa83d25b3ceb_train_data.json ds_type: json format: custom path: /workspace/input_data/dc20aa83d25b3ceb_train_data.json type: field_input: rejected field_instruction: chosen field_output: chosen_feedback format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thakkkkkk/c8e7ad48-df02-494c-a5cf-c9b1bf0a69b1 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/dc20aa83d25b3ceb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ad7557e0-b545-425a-9916-a596d5073e2d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ad7557e0-b545-425a-9916-a596d5073e2d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c8e7ad48-df02-494c-a5cf-c9b1bf0a69b1 This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4899 | 0.0273 | 200 | 0.4983 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/test
kk-aivio
2025-01-28T10:35:48Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M-Instruct", "base_model:adapter:unsloth/SmolLM-135M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-28T10:20:59Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-135M-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8f98792a60ccddb6_train_data.json ds_type: json format: custom path: /workspace/input_data/8f98792a60ccddb6_train_data.json type: field_instruction: text field_output: title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: kk-aivio/test hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/8f98792a60ccddb6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ec775fcf-a2f3-4d2e-b927-b54ca72381d3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ec775fcf-a2f3-4d2e-b927-b54ca72381d3 warmup_steps: 5 weight_decay: 0.01 xformers_attention: false ``` </details><br> # test This model is a fine-tuned version of [unsloth/SmolLM-135M-Instruct](https://huggingface.co/unsloth/SmolLM-135M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.5690 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sercetexam9/afro-xlmr-base-amh-finetuned-augmentation-LUNAR
sercetexam9
2025-01-28T10:35:38Z
29
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:Davlan/afro-xlmr-base", "base_model:finetune:Davlan/afro-xlmr-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-28T10:11:59Z
--- library_name: transformers license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: afro-xlmr-base-amh-finetuned-augmentation-LUNAR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-base-amh-finetuned-augmentation-LUNAR This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3598 - F1: 0.7180 - Roc Auc: 0.8216 - Accuracy: 0.5711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3732 | 1.0 | 238 | 0.3390 | 0.3871 | 0.6361 | 0.3741 | | 0.3078 | 2.0 | 476 | 0.2957 | 0.4993 | 0.6893 | 0.4573 | | 0.255 | 3.0 | 714 | 0.3038 | 0.4991 | 0.6918 | 0.4489 | | 0.2146 | 4.0 | 952 | 0.2743 | 0.5751 | 0.7355 | 0.4889 | | 0.1812 | 5.0 | 1190 | 0.2834 | 0.5907 | 0.7533 | 0.4932 | | 0.1566 | 6.0 | 1428 | 0.2816 | 0.6564 | 0.7837 | 0.5153 | | 0.1454 | 7.0 | 1666 | 0.2748 | 0.6717 | 0.7939 | 0.5427 | | 0.1151 | 8.0 | 1904 | 0.2930 | 0.6693 | 0.8009 | 0.5469 | | 0.0807 | 9.0 | 2142 | 0.3085 | 0.6799 | 0.7997 | 0.5458 | | 0.0643 | 10.0 | 2380 | 0.3011 | 0.6978 | 0.8078 | 0.5574 | | 0.0626 | 11.0 | 2618 | 0.3296 | 0.6945 | 0.8138 | 0.5522 | | 0.0461 | 12.0 | 2856 | 0.3366 | 0.6896 | 0.8001 | 0.5564 | | 0.0342 | 13.0 | 3094 | 0.3503 | 0.6893 | 0.8178 | 0.5522 | | 0.0301 | 14.0 | 3332 | 0.3453 | 0.7036 | 0.8136 | 0.5669 | | 0.0209 | 15.0 | 3570 | 0.3575 | 0.7135 | 0.8176 | 0.5680 | | 0.0171 | 16.0 | 3808 | 0.3632 | 0.7042 | 0.8158 | 0.5616 | | 0.017 | 17.0 | 4046 | 0.3598 | 0.7180 | 0.8216 | 0.5711 | | 0.0223 | 18.0 | 4284 | 0.3610 | 0.7065 | 0.8170 | 0.5701 | | 0.0207 | 19.0 | 4522 | 0.3622 | 0.7153 | 0.8212 | 0.5680 | | 0.0179 | 20.0 | 4760 | 0.3629 | 0.7117 | 0.8213 | 0.5669 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
swinakk/mistral-7b-inst-v22
swinakk
2025-01-28T10:34:35Z
10
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-01-28T10:29:09Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF
mradermacher
2025-01-28T10:33:33Z
580
1
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "en", "base_model:mlfoundations-dev/DCFT-Stratos-Verified-114k-7B-4gpus", "base_model:quantized:mlfoundations-dev/DCFT-Stratos-Verified-114k-7B-4gpus", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-28T07:02:51Z
--- base_model: mlfoundations-dev/DCFT-Stratos-Verified-114k-7B-4gpus language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - llama-factory - full - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/mlfoundations-dev/DCFT-Stratos-Verified-114k-7B-4gpus <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF
mradermacher
2025-01-28T10:33:32Z
289
1
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "en", "base_model:mlfoundations-dev/DCFT-Stratos-Verified-114k-7B-4gpus", "base_model:quantized:mlfoundations-dev/DCFT-Stratos-Verified-114k-7B-4gpus", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-27T17:01:56Z
--- base_model: mlfoundations-dev/DCFT-Stratos-Verified-114k-7B-4gpus language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - llama-factory - full - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mlfoundations-dev/DCFT-Stratos-Verified-114k-7B-4gpus <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DCFT-Stratos-Verified-114k-7B-4gpus-GGUF/resolve/main/DCFT-Stratos-Verified-114k-7B-4gpus.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
nathanialhunt/ffdd7358-97d3-45f6-b261-554f3830421a
nathanialhunt
2025-01-28T10:33:05Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-01-28T10:31:50Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: ffdd7358-97d3-45f6-b261-554f3830421a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fbb569b9308b1364_train_data.json ds_type: json format: custom path: /workspace/input_data/fbb569b9308b1364_train_data.json type: field_instruction: en field_output: ko format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/ffdd7358-97d3-45f6-b261-554f3830421a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/fbb569b9308b1364_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 56ada706-7796-4d50-99a6-f689b2188837 wandb_project: Birthday-SN56-24-Gradients-On-Demand wandb_run: your_name wandb_runid: 56ada706-7796-4d50-99a6-f689b2188837 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ffdd7358-97d3-45f6-b261-554f3830421a This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0022 | 1 | 2.1773 | | 1.956 | 0.0287 | 13 | 1.4769 | | 1.521 | 0.0573 | 26 | 1.3889 | | 1.4314 | 0.0860 | 39 | 1.3666 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nadejdatarabukina/ad7a0660-1d83-4864-8b2e-ace1c54c7aca
nadejdatarabukina
2025-01-28T10:29:04Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-01-28T10:26:11Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: ad7a0660-1d83-4864-8b2e-ace1c54c7aca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fbb569b9308b1364_train_data.json ds_type: json format: custom path: /workspace/input_data/fbb569b9308b1364_train_data.json type: field_instruction: en field_output: ko format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: nadejdatarabukina/ad7a0660-1d83-4864-8b2e-ace1c54c7aca hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/fbb569b9308b1364_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 56ada706-7796-4d50-99a6-f689b2188837 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 56ada706-7796-4d50-99a6-f689b2188837 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ad7a0660-1d83-4864-8b2e-ace1c54c7aca This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0022 | 1 | 3.0584 | | 2.9035 | 0.0110 | 5 | 2.5737 | | 2.5319 | 0.0221 | 10 | 2.2829 | | 2.4052 | 0.0331 | 15 | 2.1636 | | 2.1313 | 0.0441 | 20 | 2.1002 | | 2.123 | 0.0551 | 25 | 2.0776 | | 2.1695 | 0.0662 | 30 | 2.0732 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q2_K-GGUF
raimundsz
2025-01-28T10:28:43Z
24
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "de", "fr", "it", "es", "pt", "hi", "th", "base_model:raimundsz/Llama-3.2-3B-Instruct_4TINA2", "base_model:quantized:raimundsz/Llama-3.2-3B-Instruct_4TINA2", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-28T10:25:26Z
--- license: llama3.2 language: - en - de - fr - it - es - pt - hi - th base_model: raimundsz/Llama-3.2-3B-Instruct_4TINA2 tags: - llama-cpp - gguf-my-repo --- # raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q2_K-GGUF This model was converted to GGUF format from [`raimundsz/Llama-3.2-3B-Instruct_4TINA2`](https://huggingface.co/raimundsz/Llama-3.2-3B-Instruct_4TINA2) using llama.cpp. Refer to the [original model card](https://huggingface.co/raimundsz/Llama-3.2-3B-Instruct_4TINA2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q2_K-GGUF --hf-file llama-3.2-3b-instruct_4tina2-q2_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q2_K-GGUF --hf-file llama-3.2-3b-instruct_4tina2-q2_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q2_K-GGUF --hf-file llama-3.2-3b-instruct_4tina2-q2_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q2_K-GGUF --hf-file llama-3.2-3b-instruct_4tina2-q2_k.gguf -c 2048 ```
mrferr3t/56a43b71-88a8-49a2-a8a6-e1ba57df7849
mrferr3t
2025-01-28T10:28:30Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-01-28T10:26:54Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: 56a43b71-88a8-49a2-a8a6-e1ba57df7849 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fbb569b9308b1364_train_data.json ds_type: json format: custom path: /workspace/input_data/fbb569b9308b1364_train_data.json type: field_instruction: en field_output: ko format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/56a43b71-88a8-49a2-a8a6-e1ba57df7849 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/fbb569b9308b1364_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 56ada706-7796-4d50-99a6-f689b2188837 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 56ada706-7796-4d50-99a6-f689b2188837 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 56a43b71-88a8-49a2-a8a6-e1ba57df7849 This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9244 | 0.0022 | 1 | 2.1779 | | 2.4485 | 0.0154 | 7 | 1.7891 | | 1.5459 | 0.0309 | 14 | 1.4860 | | 1.4846 | 0.0463 | 21 | 1.4270 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso06/a0705743-df8c-451f-8a7b-5aa45e5d1ccf
lesso06
2025-01-28T10:28:08Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-01-28T10:26:54Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: a0705743-df8c-451f-8a7b-5aa45e5d1ccf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fbb569b9308b1364_train_data.json ds_type: json format: custom path: /workspace/input_data/fbb569b9308b1364_train_data.json type: field_instruction: en field_output: ko format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso06/a0705743-df8c-451f-8a7b-5aa45e5d1ccf hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/fbb569b9308b1364_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 56ada706-7796-4d50-99a6-f689b2188837 wandb_project: multi wandb_run: your_name wandb_runid: 56ada706-7796-4d50-99a6-f689b2188837 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a0705743-df8c-451f-8a7b-5aa45e5d1ccf This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 57 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3295 | 0.9868 | 56 | 1.3827 | | 1.6657 | 1.0044 | 57 | 1.3829 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LucileFavero/AM_model_gem_T_Q_no_instr
LucileFavero
2025-01-28T10:23:53Z
22
0
transformers
[ "transformers", "gguf", "gemma2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/gemma-2-9b-bnb-4bit", "base_model:quantized:unsloth/gemma-2-9b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-28T10:22:42Z
--- base_model: unsloth/gemma-2-9b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** LucileFavero - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-9b-bnb-4bit This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
abanm/Dubs_V_0_0_1_4_bit
abanm
2025-01-28T10:22:28Z
9
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-01-28T10:22:09Z
--- base_model: unsloth/phi-3.5-mini-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** abanm - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3.5-mini-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sercetexam9/afro-xlmr-base-arq-finetuned-augmentation-LUNAR
sercetexam9
2025-01-28T10:22:19Z
25
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:Davlan/afro-xlmr-base", "base_model:finetune:Davlan/afro-xlmr-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-28T10:12:56Z
--- library_name: transformers license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: afro-xlmr-base-arq-finetuned-augmentation-LUNAR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-base-arq-finetuned-augmentation-LUNAR This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5136 - F1: 0.5725 - Roc Auc: 0.6987 - Accuracy: 0.2957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.6493 | 1.0 | 58 | 0.5823 | 0.0 | 0.4993 | 0.1087 | | 0.5943 | 2.0 | 116 | 0.5618 | 0.1307 | 0.5245 | 0.1130 | | 0.5728 | 3.0 | 174 | 0.5463 | 0.2063 | 0.5497 | 0.1348 | | 0.5326 | 4.0 | 232 | 0.5335 | 0.2462 | 0.5581 | 0.1348 | | 0.4913 | 5.0 | 290 | 0.5259 | 0.3849 | 0.6084 | 0.1652 | | 0.4505 | 6.0 | 348 | 0.5067 | 0.4337 | 0.6319 | 0.1826 | | 0.3857 | 7.0 | 406 | 0.5034 | 0.5164 | 0.6635 | 0.2 | | 0.3759 | 8.0 | 464 | 0.5013 | 0.4906 | 0.6597 | 0.2 | | 0.3219 | 9.0 | 522 | 0.5048 | 0.5114 | 0.6624 | 0.2087 | | 0.2938 | 10.0 | 580 | 0.5037 | 0.5247 | 0.6744 | 0.2478 | | 0.2736 | 11.0 | 638 | 0.5054 | 0.5363 | 0.6788 | 0.2478 | | 0.2491 | 12.0 | 696 | 0.5079 | 0.5447 | 0.6863 | 0.2478 | | 0.2412 | 13.0 | 754 | 0.5149 | 0.5502 | 0.6857 | 0.2609 | | 0.2071 | 14.0 | 812 | 0.5159 | 0.5617 | 0.6905 | 0.2739 | | 0.2084 | 15.0 | 870 | 0.5196 | 0.5573 | 0.6893 | 0.2609 | | 0.1965 | 16.0 | 928 | 0.5136 | 0.5725 | 0.6987 | 0.2957 | | 0.185 | 17.0 | 986 | 0.5141 | 0.5663 | 0.6924 | 0.2957 | | 0.188 | 18.0 | 1044 | 0.5156 | 0.5651 | 0.6913 | 0.2783 | | 0.1932 | 19.0 | 1102 | 0.5163 | 0.5640 | 0.6917 | 0.2826 | | 0.184 | 20.0 | 1160 | 0.5165 | 0.5655 | 0.6928 | 0.2826 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
sercetexam9/afro-xlmr-base-ary-finetuned-augmentation-LUNAR
sercetexam9
2025-01-28T10:21:33Z
24
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:Davlan/afro-xlmr-base", "base_model:finetune:Davlan/afro-xlmr-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-28T10:13:26Z
--- library_name: transformers license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: afro-xlmr-base-ary-finetuned-augmentation-LUNAR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-base-ary-finetuned-augmentation-LUNAR This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3039 - F1: 0.5359 - Roc Auc: 0.7304 - Accuracy: 0.5105 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3909 | 1.0 | 108 | 0.4005 | 0.0 | 0.5 | 0.2471 | | 0.3379 | 2.0 | 216 | 0.3598 | 0.0617 | 0.5153 | 0.2727 | | 0.3195 | 3.0 | 324 | 0.3172 | 0.2951 | 0.6014 | 0.4336 | | 0.2657 | 4.0 | 432 | 0.3034 | 0.3616 | 0.6395 | 0.4848 | | 0.2547 | 5.0 | 540 | 0.2844 | 0.4671 | 0.6847 | 0.5035 | | 0.2004 | 6.0 | 648 | 0.2903 | 0.4405 | 0.6738 | 0.5012 | | 0.1695 | 7.0 | 756 | 0.2880 | 0.4687 | 0.6886 | 0.5221 | | 0.1317 | 8.0 | 864 | 0.3039 | 0.5359 | 0.7304 | 0.5105 | | 0.112 | 9.0 | 972 | 0.3076 | 0.4946 | 0.6997 | 0.5198 | | 0.1025 | 10.0 | 1080 | 0.3090 | 0.4987 | 0.7032 | 0.5058 | | 0.0946 | 11.0 | 1188 | 0.3187 | 0.5202 | 0.7145 | 0.5221 | | 0.0848 | 12.0 | 1296 | 0.3326 | 0.4990 | 0.7012 | 0.5198 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q4_K_M-GGUF
raimundsz
2025-01-28T10:18:26Z
23
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "de", "fr", "it", "es", "pt", "hi", "th", "base_model:raimundsz/Llama-3.2-3B-Instruct_4TINA2", "base_model:quantized:raimundsz/Llama-3.2-3B-Instruct_4TINA2", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-28T10:17:17Z
--- license: llama3.2 language: - en - de - fr - it - es - pt - hi - th base_model: raimundsz/Llama-3.2-3B-Instruct_4TINA2 tags: - llama-cpp - gguf-my-repo --- # raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q4_K_M-GGUF This model was converted to GGUF format from [`raimundsz/Llama-3.2-3B-Instruct_4TINA2`](https://huggingface.co/raimundsz/Llama-3.2-3B-Instruct_4TINA2) using llama.cpp. Refer to the [original model card](https://huggingface.co/raimundsz/Llama-3.2-3B-Instruct_4TINA2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q4_K_M-GGUF --hf-file llama-3.2-3b-instruct_4tina2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q4_K_M-GGUF --hf-file llama-3.2-3b-instruct_4tina2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q4_K_M-GGUF --hf-file llama-3.2-3b-instruct_4tina2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo raimundsz/Llama-3.2-3B-Instruct_4TINA2-Q4_K_M-GGUF --hf-file llama-3.2-3b-instruct_4tina2-q4_k_m.gguf -c 2048 ```
RyanYr/reflect_single_llm8B_SftT12
RyanYr
2025-01-28T10:17:35Z
242
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-27T22:03:32Z
--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: transformers model_name: reflect_single_llm8B_SftT12 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for reflect_single_llm8B_SftT12 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_single_llm8B_SftT12", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/6tbqxl5o) This model was trained with SFT. ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
sercetexam9/xlm-roberta-base-amh-finetuned-augmentation-LUNAR
sercetexam9
2025-01-28T10:14:17Z
26
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-28T09:50:25Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlm-roberta-base-amh-finetuned-augmentation-LUNAR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-amh-finetuned-augmentation-LUNAR This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3820 - F1: 0.6576 - Roc Auc: 0.7940 - Accuracy: 0.5110 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4179 | 1.0 | 238 | 0.4173 | 0.0 | 0.5 | 0.1735 | | 0.3969 | 2.0 | 476 | 0.3760 | 0.2222 | 0.5646 | 0.2808 | | 0.3427 | 3.0 | 714 | 0.3236 | 0.4125 | 0.6565 | 0.3922 | | 0.2814 | 4.0 | 952 | 0.2987 | 0.5339 | 0.7071 | 0.4448 | | 0.2655 | 5.0 | 1190 | 0.2953 | 0.5704 | 0.7415 | 0.4658 | | 0.2185 | 6.0 | 1428 | 0.3105 | 0.5699 | 0.7519 | 0.4448 | | 0.2206 | 7.0 | 1666 | 0.3094 | 0.5764 | 0.7509 | 0.4669 | | 0.161 | 8.0 | 1904 | 0.3088 | 0.5871 | 0.7524 | 0.4879 | | 0.1473 | 9.0 | 2142 | 0.3198 | 0.6278 | 0.7683 | 0.4921 | | 0.1237 | 10.0 | 2380 | 0.3405 | 0.6264 | 0.7680 | 0.4774 | | 0.1032 | 11.0 | 2618 | 0.3341 | 0.6362 | 0.7720 | 0.5079 | | 0.0857 | 12.0 | 2856 | 0.3452 | 0.6521 | 0.7771 | 0.5058 | | 0.0695 | 13.0 | 3094 | 0.3604 | 0.6552 | 0.7872 | 0.5058 | | 0.0626 | 14.0 | 3332 | 0.3686 | 0.6472 | 0.7815 | 0.5089 | | 0.0481 | 15.0 | 3570 | 0.3666 | 0.6477 | 0.7763 | 0.5121 | | 0.0516 | 16.0 | 3808 | 0.3820 | 0.6576 | 0.7940 | 0.5110 | | 0.0469 | 17.0 | 4046 | 0.3752 | 0.6493 | 0.7846 | 0.5121 | | 0.0473 | 18.0 | 4284 | 0.3817 | 0.6448 | 0.7821 | 0.5100 | | 0.0405 | 19.0 | 4522 | 0.3830 | 0.6529 | 0.7871 | 0.5110 | | 0.0474 | 20.0 | 4760 | 0.3827 | 0.6519 | 0.7874 | 0.5100 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
cunghoctienganh/aeebc410-b594-4253-acf0-dc95dd827704
cunghoctienganh
2025-01-28T10:10:28Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:adapter:unsloth/Meta-Llama-3.1-8B-Instruct", "license:llama3.1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T09:18:50Z
--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: aeebc410-b594-4253-acf0-dc95dd827704 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dc20aa83d25b3ceb_train_data.json ds_type: json format: custom path: /workspace/input_data/dc20aa83d25b3ceb_train_data.json type: field_input: rejected field_instruction: chosen field_output: chosen_feedback format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/aeebc410-b594-4253-acf0-dc95dd827704 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/dc20aa83d25b3ceb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ad7557e0-b545-425a-9916-a596d5073e2d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ad7557e0-b545-425a-9916-a596d5073e2d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # aeebc410-b594-4253-acf0-dc95dd827704 This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.454 | 0.0137 | 200 | 0.5168 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nbninh/95ad82ef-c1d5-464b-93e8-21a79ad6eb85
nbninh
2025-01-28T10:10:06Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:adapter:unsloth/Meta-Llama-3.1-8B-Instruct", "license:llama3.1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T09:18:43Z
--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 95ad82ef-c1d5-464b-93e8-21a79ad6eb85 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dc20aa83d25b3ceb_train_data.json ds_type: json format: custom path: /workspace/input_data/dc20aa83d25b3ceb_train_data.json type: field_input: rejected field_instruction: chosen field_output: chosen_feedback format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/95ad82ef-c1d5-464b-93e8-21a79ad6eb85 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/dc20aa83d25b3ceb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ad7557e0-b545-425a-9916-a596d5073e2d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ad7557e0-b545-425a-9916-a596d5073e2d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 95ad82ef-c1d5-464b-93e8-21a79ad6eb85 This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4496 | 0.0137 | 200 | 0.5165 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
alexia-allal/ner-model-camembert
alexia-allal
2025-01-28T10:01:34Z
29
0
transformers
[ "transformers", "tensorboard", "safetensors", "camembert", "token-classification", "generated_from_trainer", "base_model:almanach/camembert-base", "base_model:finetune:almanach/camembert-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-01-27T11:04:18Z
--- library_name: transformers license: mit base_model: camembert-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner-model-camembert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner-model-camembert This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1642 - Precision: 0.8721 - Recall: 0.7732 - F1: 0.8197 - Accuracy: 0.9571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 24 | 0.3640 | 0.0 | 0.0 | 0.0 | 0.8739 | | No log | 2.0 | 48 | 0.2640 | 0.6884 | 0.4312 | 0.5303 | 0.9037 | | No log | 3.0 | 72 | 0.2248 | 0.6976 | 0.6431 | 0.6692 | 0.9198 | | No log | 4.0 | 96 | 0.2163 | 0.8182 | 0.6022 | 0.6938 | 0.9330 | | No log | 5.0 | 120 | 0.1690 | 0.7336 | 0.8086 | 0.7692 | 0.9388 | | No log | 6.0 | 144 | 0.1768 | 0.8558 | 0.6840 | 0.7603 | 0.9456 | | No log | 7.0 | 168 | 0.1838 | 0.8578 | 0.6952 | 0.7680 | 0.9470 | | No log | 8.0 | 192 | 0.1591 | 0.8158 | 0.8067 | 0.8112 | 0.9526 | | No log | 9.0 | 216 | 0.1688 | 0.8571 | 0.7584 | 0.8047 | 0.9536 | | No log | 10.0 | 240 | 0.1596 | 0.8431 | 0.7993 | 0.8206 | 0.9559 | | No log | 11.0 | 264 | 0.1599 | 0.8563 | 0.7751 | 0.8137 | 0.9552 | | No log | 12.0 | 288 | 0.1713 | 0.8515 | 0.7565 | 0.8012 | 0.9526 | | No log | 13.0 | 312 | 0.1646 | 0.8394 | 0.7770 | 0.8069 | 0.9531 | | No log | 14.0 | 336 | 0.1705 | 0.8367 | 0.7807 | 0.8077 | 0.9531 | | No log | 15.0 | 360 | 0.1717 | 0.8236 | 0.7900 | 0.8065 | 0.9522 | | No log | 16.0 | 384 | 0.1689 | 0.8631 | 0.7732 | 0.8157 | 0.9559 | | No log | 17.0 | 408 | 0.1608 | 0.8835 | 0.7751 | 0.8257 | 0.9587 | | No log | 18.0 | 432 | 0.1499 | 0.8849 | 0.7862 | 0.8327 | 0.9602 | | No log | 19.0 | 456 | 0.1614 | 0.8846 | 0.7695 | 0.8231 | 0.9583 | | No log | 20.0 | 480 | 0.1688 | 0.8448 | 0.7788 | 0.8104 | 0.9541 | | 0.0983 | 21.0 | 504 | 0.1672 | 0.8482 | 0.7788 | 0.8120 | 0.9545 | | 0.0983 | 22.0 | 528 | 0.1668 | 0.8563 | 0.7751 | 0.8137 | 0.9552 | | 0.0983 | 23.0 | 552 | 0.1678 | 0.8545 | 0.7751 | 0.8129 | 0.9550 | | 0.0983 | 24.0 | 576 | 0.1645 | 0.8703 | 0.7732 | 0.8189 | 0.9569 | | 0.0983 | 25.0 | 600 | 0.1642 | 0.8721 | 0.7732 | 0.8197 | 0.9571 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
sercetexam9/xlm-roberta-base-arq-finetuned-augmentation-LUNAR
sercetexam9
2025-01-28T09:57:33Z
25
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-28T09:48:24Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlm-roberta-base-arq-finetuned-augmentation-LUNAR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-arq-finetuned-augmentation-LUNAR This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5420 - F1: 0.5356 - Roc Auc: 0.6725 - Accuracy: 0.2304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.6462 | 1.0 | 58 | 0.6017 | 0.1036 | 0.5140 | 0.1522 | | 0.5961 | 2.0 | 116 | 0.5969 | 0.0395 | 0.5107 | 0.1348 | | 0.5849 | 3.0 | 174 | 0.5930 | 0.0240 | 0.5065 | 0.1261 | | 0.5928 | 4.0 | 232 | 0.5806 | 0.1794 | 0.5377 | 0.1565 | | 0.552 | 5.0 | 290 | 0.5605 | 0.2082 | 0.5577 | 0.1696 | | 0.5449 | 6.0 | 348 | 0.5546 | 0.2651 | 0.5744 | 0.1957 | | 0.541 | 7.0 | 406 | 0.5525 | 0.2456 | 0.5679 | 0.1739 | | 0.4948 | 8.0 | 464 | 0.5311 | 0.3354 | 0.5972 | 0.2217 | | 0.4643 | 9.0 | 522 | 0.5414 | 0.3664 | 0.6102 | 0.2087 | | 0.4264 | 10.0 | 580 | 0.5234 | 0.4415 | 0.6267 | 0.1870 | | 0.4062 | 11.0 | 638 | 0.5514 | 0.4091 | 0.6172 | 0.1826 | | 0.3899 | 12.0 | 696 | 0.5293 | 0.4375 | 0.6264 | 0.2 | | 0.3657 | 13.0 | 754 | 0.5280 | 0.4947 | 0.6531 | 0.1913 | | 0.3385 | 14.0 | 812 | 0.5429 | 0.5122 | 0.6641 | 0.2130 | | 0.3162 | 15.0 | 870 | 0.5428 | 0.5211 | 0.6682 | 0.2043 | | 0.2809 | 16.0 | 928 | 0.5431 | 0.5266 | 0.6682 | 0.2304 | | 0.3018 | 17.0 | 986 | 0.5426 | 0.5309 | 0.6702 | 0.2304 | | 0.2953 | 18.0 | 1044 | 0.5420 | 0.5356 | 0.6725 | 0.2304 | | 0.2768 | 19.0 | 1102 | 0.5423 | 0.5240 | 0.6667 | 0.2217 | | 0.269 | 20.0 | 1160 | 0.5416 | 0.5278 | 0.6687 | 0.2261 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
lesso13/7f758bdd-9295-4a45-af47-878b53f57e53
lesso13
2025-01-28T09:56:32Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.2", "base_model:adapter:unsloth/mistral-7b-v0.2", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T09:30:07Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: 7f758bdd-9295-4a45-af47-878b53f57e53 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.2 bf16: auto chat_template: llama3 datasets: - data_files: - 58c39f4a37462112_train_data.json ds_type: json format: custom path: /workspace/input_data/58c39f4a37462112_train_data.json type: field_instruction: persona field_output: summary_label format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso13/7f758bdd-9295-4a45-af47-878b53f57e53 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/58c39f4a37462112_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63cadfa7-fc59-41d2-b1c2-106d49e2612d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63cadfa7-fc59-41d2-b1c2-106d49e2612d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7f758bdd-9295-4a45-af47-878b53f57e53 This model is a fine-tuned version of [unsloth/mistral-7b-v0.2](https://huggingface.co/unsloth/mistral-7b-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.3509 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk1205/31345906-d72c-4c00-811f-8a19db2a0b3b
kostiantynk1205
2025-01-28T09:56:09Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.2", "base_model:adapter:unsloth/mistral-7b-v0.2", "license:apache-2.0", "region:us" ]
null
2025-01-28T09:54:46Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: 31345906-d72c-4c00-811f-8a19db2a0b3b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 58c39f4a37462112_train_data.json ds_type: json format: custom path: /workspace/input_data/58c39f4a37462112_train_data.json type: field_instruction: persona field_output: summary_label format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/31345906-d72c-4c00-811f-8a19db2a0b3b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/58c39f4a37462112_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63cadfa7-fc59-41d2-b1c2-106d49e2612d wandb_project: Birthday-SN56-23-Gradients-On-Demand wandb_run: your_name wandb_runid: 63cadfa7-fc59-41d2-b1c2-106d49e2612d warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 31345906-d72c-4c00-811f-8a19db2a0b3b This model is a fine-tuned version of [unsloth/mistral-7b-v0.2](https://huggingface.co/unsloth/mistral-7b-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | nan | | 0.0 | 0.0228 | 13 | nan | | 0.0 | 0.0456 | 26 | nan | | 0.0 | 0.0684 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
SzegedAI/huDeBERTa-aux-free-MLSM
SzegedAI
2025-01-28T09:53:50Z
7
0
transformers
[ "transformers", "safetensors", "deberta", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-01-28T09:51:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ibm-research/materials.selfies-ted2m
ibm-research
2025-01-28T09:52:43Z
17
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "chemistry", "feature-extraction", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
feature-extraction
2025-01-28T08:44:19Z
--- license: apache-2.0 library_name: transformers pipeline_tag: feature-extraction tags: - chemistry - transformers --- # selfies-ted2m selfies-ted is an transformer based encoder decoder model for molecular representations using SELFIES. This is a 2.2M parameter version of the model. For the full-sized version and more information on architecture, see [selfies-ted](https://huggingface.co/ibm-research/materials.selfies-ted). This version also includes a projection layer to convert the last hidden state of the BART model (256-dimensional vector per token) to a single 128-dimension vector for the whole SELFIES sequence.
tuanna08go/b29e4e1e-78ad-42cf-81f9-4f4b5b7bd1e5
tuanna08go
2025-01-28T09:51:57Z
12
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.2", "base_model:adapter:unsloth/mistral-7b-v0.2", "license:apache-2.0", "region:us" ]
null
2025-01-28T09:41:30Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: b29e4e1e-78ad-42cf-81f9-4f4b5b7bd1e5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 58c39f4a37462112_train_data.json ds_type: json format: custom path: /workspace/input_data/58c39f4a37462112_train_data.json type: field_instruction: persona field_output: summary_label format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: tuanna08go/b29e4e1e-78ad-42cf-81f9-4f4b5b7bd1e5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/58c39f4a37462112_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63cadfa7-fc59-41d2-b1c2-106d49e2612d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63cadfa7-fc59-41d2-b1c2-106d49e2612d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b29e4e1e-78ad-42cf-81f9-4f4b5b7bd1e5 This model is a fine-tuned version of [unsloth/mistral-7b-v0.2](https://huggingface.co/unsloth/mistral-7b-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 3.1715 | | 8.0059 | 0.0175 | 10 | 1.0427 | | 1.7577 | 0.0351 | 20 | 0.3701 | | 1.2617 | 0.0526 | 30 | 0.3007 | | 1.0334 | 0.0702 | 40 | 0.2667 | | 0.7934 | 0.0877 | 50 | 0.2551 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
driwnet/mental-LongFormer-large-es
driwnet
2025-01-28T09:51:41Z
16
0
transformers
[ "transformers", "safetensors", "longformer", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-01-28T09:49:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/LunarPass-1-i1-GGUF
mradermacher
2025-01-28T09:49:11Z
423
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Sakalti/LunarPass-1", "base_model:quantized:Sakalti/LunarPass-1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-24T21:37:24Z
--- base_model: Sakalti/LunarPass-1 language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Sakalti/LunarPass-1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/LunarPass-1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ1_S.gguf) | i1-IQ1_S | 1.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ1_M.gguf) | i1-IQ1_M | 1.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ2_S.gguf) | i1-IQ2_S | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ2_M.gguf) | i1-IQ2_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.3 | very low quality | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q2_K.gguf) | i1-Q2_K | 2.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ3_S.gguf) | i1-IQ3_S | 2.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 2.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ3_M.gguf) | i1-IQ3_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 3.7 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q4_0.gguf) | i1-Q4_0 | 3.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 3.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q4_1.gguf) | i1-Q4_1 | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/LunarPass-1-i1-GGUF/resolve/main/LunarPass-1.i1-Q6_K.gguf) | i1-Q6_K | 5.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
swinakk/mistral-7b-inst-v21
swinakk
2025-01-28T09:48:29Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-01-28T09:44:40Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
trenden/c0cfda90-18ce-47cb-98ba-16e1211d4a3a
trenden
2025-01-28T09:47:46Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B", "base_model:adapter:unsloth/Qwen2-0.5B", "license:apache-2.0", "region:us" ]
null
2025-01-28T08:46:08Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B tags: - axolotl - generated_from_trainer model-index: - name: c0cfda90-18ce-47cb-98ba-16e1211d4a3a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6b5a15de73f892a3_train_data.json ds_type: json format: custom path: /workspace/input_data/6b5a15de73f892a3_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/c0cfda90-18ce-47cb-98ba-16e1211d4a3a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/6b5a15de73f892a3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: baf473ee-1663-4c1b-b3a8-d4763ec805bd wandb_project: Birthday-SN56-26-Gradients-On-Demand wandb_run: your_name wandb_runid: baf473ee-1663-4c1b-b3a8-d4763ec805bd warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c0cfda90-18ce-47cb-98ba-16e1211d4a3a This model is a fine-tuned version of [unsloth/Qwen2-0.5B](https://huggingface.co/unsloth/Qwen2-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | nan | | 0.0 | 0.0001 | 13 | nan | | 0.0 | 0.0002 | 26 | nan | | 0.0 | 0.0003 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ksych/salt-wav-ru-music-3
ksych
2025-01-28T09:47:33Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-28T09:44:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
daniel40/c3a6fd36-921b-42f6-9cad-2c73765aa0a6
daniel40
2025-01-28T09:46:27Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-01-28T09:43:58Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: c3a6fd36-921b-42f6-9cad-2c73765aa0a6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b692e267d1262b06_train_data.json ds_type: json format: custom path: /workspace/input_data/b692e267d1262b06_train_data.json type: field_input: seed field_instruction: problem statement field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/c3a6fd36-921b-42f6-9cad-2c73765aa0a6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/b692e267d1262b06_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 93ce94e0-3bde-4717-a525-ec2438b40353 wandb_project: Birthday-SN56-27-Gradients-On-Demand wandb_run: your_name wandb_runid: 93ce94e0-3bde-4717-a525-ec2438b40353 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c3a6fd36-921b-42f6-9cad-2c73765aa0a6 This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 11.9319 | | 11.9315 | 0.0009 | 13 | 11.9318 | | 11.9319 | 0.0018 | 26 | 11.9316 | | 11.9322 | 0.0027 | 39 | 11.9315 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso17/d59e6e43-63c8-4f23-a17e-cc47cd18eb3f
lesso17
2025-01-28T09:46:05Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b-it", "base_model:adapter:unsloth/gemma-2-2b-it", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T07:20:16Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b-it tags: - axolotl - generated_from_trainer model-index: - name: d59e6e43-63c8-4f23-a17e-cc47cd18eb3f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b-it bf16: auto chat_template: llama3 datasets: - data_files: - 8a4feb53d103165a_train_data.json ds_type: json format: custom path: /workspace/input_data/8a4feb53d103165a_train_data.json type: field_instruction: anchor field_output: positive format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso17/d59e6e43-63c8-4f23-a17e-cc47cd18eb3f hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/8a4feb53d103165a_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 496a9c6e-509a-446a-9b5f-ca8b664b6e46 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 496a9c6e-509a-446a-9b5f-ca8b664b6e46 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d59e6e43-63c8-4f23-a17e-cc47cd18eb3f This model is a fine-tuned version of [unsloth/gemma-2-2b-it](https://huggingface.co/unsloth/gemma-2-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0767 | 0.0037 | 200 | 2.0593 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Trelis/SmolVLM-500M-Instruct-chess
Trelis
2025-01-28T09:45:54Z
6
0
transformers
[ "transformers", "safetensors", "idefics3", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-01-28T09:45:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Best000/8e5f442e-7c30-47be-80a4-167bb2f4fcd0
Best000
2025-01-28T09:45:36Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B", "base_model:adapter:unsloth/Qwen2-0.5B", "license:apache-2.0", "region:us" ]
null
2025-01-28T08:44:55Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 8e5f442e-7c30-47be-80a4-167bb2f4fcd0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6b5a15de73f892a3_train_data.json ds_type: json format: custom path: /workspace/input_data/6b5a15de73f892a3_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/8e5f442e-7c30-47be-80a4-167bb2f4fcd0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/6b5a15de73f892a3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: baf473ee-1663-4c1b-b3a8-d4763ec805bd wandb_project: Birthday-SN56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: baf473ee-1663-4c1b-b3a8-d4763ec805bd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8e5f442e-7c30-47be-80a4-167bb2f4fcd0 This model is a fine-tuned version of [unsloth/Qwen2-0.5B](https://huggingface.co/unsloth/Qwen2-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0000 | 3 | nan | | 0.0 | 0.0001 | 6 | nan | | 0.0 | 0.0001 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
philip-hightech/62a16e8f-9c76-4733-bc75-f65689dcad35
philip-hightech
2025-01-28T09:43:23Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-01-28T09:40:54Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 62a16e8f-9c76-4733-bc75-f65689dcad35 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b692e267d1262b06_train_data.json ds_type: json format: custom path: /workspace/input_data/b692e267d1262b06_train_data.json type: field_input: seed field_instruction: problem statement field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: philip-hightech/62a16e8f-9c76-4733-bc75-f65689dcad35 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/b692e267d1262b06_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 93ce94e0-3bde-4717-a525-ec2438b40353 wandb_project: Mine-SN56-21-Gradients-On-Demand wandb_run: your_name wandb_runid: 93ce94e0-3bde-4717-a525-ec2438b40353 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 62a16e8f-9c76-4733-bc75-f65689dcad35 This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 11.9319 | | 11.9305 | 0.0005 | 13 | 11.9307 | | 11.9308 | 0.0009 | 26 | 11.9270 | | 11.9274 | 0.0014 | 39 | 11.9244 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aleegis12/8363e907-2cf9-4110-885c-518d35d3e5c2
aleegis12
2025-01-28T09:40:39Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-01-28T09:35:15Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: 8363e907-2cf9-4110-885c-518d35d3e5c2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - b692e267d1262b06_train_data.json ds_type: json format: custom path: /workspace/input_data/b692e267d1262b06_train_data.json type: field_input: seed field_instruction: problem statement field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis12/8363e907-2cf9-4110-885c-518d35d3e5c2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/b692e267d1262b06_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 93ce94e0-3bde-4717-a525-ec2438b40353 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 93ce94e0-3bde-4717-a525-ec2438b40353 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8363e907-2cf9-4110-885c-518d35d3e5c2 This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9329 | 0.0003 | 1 | 11.9319 | | 11.9185 | 0.0139 | 50 | 11.9230 | | 11.9172 | 0.0278 | 100 | 11.9218 | | 11.9181 | 0.0416 | 150 | 11.9209 | | 11.9191 | 0.0555 | 200 | 11.9206 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso17/7777ccc9-8116-4f40-b0d3-31e933def519
lesso17
2025-01-28T09:40:11Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "base_model:adapter:EleutherAI/pythia-160m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T09:01:12Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: 7777ccc9-8116-4f40-b0d3-31e933def519 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 datasets: - data_files: - baff8fc3dcf369b2_train_data.json ds_type: json format: custom path: /workspace/input_data/baff8fc3dcf369b2_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso17/7777ccc9-8116-4f40-b0d3-31e933def519 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/baff8fc3dcf369b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0144a1a9-447e-492a-8b56-028895fbacbc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0144a1a9-447e-492a-8b56-028895fbacbc warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7777ccc9-8116-4f40-b0d3-31e933def519 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.4848 | 0.0030 | 200 | 3.0636 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
CALISTA-INDUSTRY/DeepSeek-R1-Distill-Llama-8B-FineTune
CALISTA-INDUSTRY
2025-01-28T09:38:59Z
556
1
null
[ "pytorch", "safetensors", "gguf", "llama", "unsloth", "deepseek_v3", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-28T08:58:11Z
--- license: mit tags: - unsloth - deepseek_v3 --- DeepSeek-R1 Release __________________________________________________________________________________________ ⚡ Performance on par with OpenAI-o1 📖 Fully open-source model & technical report 🏆 MIT licensed: Distill & commercialize freely! 🌐 Website & API are live now! Try DeepThink at chat.deepseek.com today! __________________________________________________________________________________________ 🔥 Bonus: Open-Source Distilled Models! 🔬 Distilled from DeepSeek-R1, 6 small models fully open-sourced 📏 32B & 70B models on par with OpenAI-o1-mini 🤝 Empowering the open-source community 🌍 Pushing the boundaries of open AI! _____________________________________________________________________ 🛠️ DeepSeek-R1: Technical Highlights 📈 Large-scale RL in post-training 🏆 Significant performance boost with minimal labeled data 🔢 Math, code, and reasoning tasks on par with OpenAI-o1 📄 More details: https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf _____________________________________________________________________ 🌐 API Access & Pricing ⚙️ Use DeepSeek-R1 by setting model=deepseek-reasoner 💰 $0.14 / million input tokens (cache hit) 💰 $0.55 / million input tokens (cache miss) 💰 $2.19 / million output tokens 📖 API guide: https://api-docs.deepseek.com/guides/reasoning_model
mergekit-community/mergekit-sce-azzpiqv
mergekit-community
2025-01-28T09:38:38Z
10
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2408.07990", "base_model:mergekit-community/Deepseek-Distill-NSFW-visible-w-NSFW-FFS", "base_model:merge:mergekit-community/Deepseek-Distill-NSFW-visible-w-NSFW-FFS", "base_model:mergekit-community/NSFW-FFS-w-hidden-Deepseek-Distill-NSFW", "base_model:merge:mergekit-community/NSFW-FFS-w-hidden-Deepseek-Distill-NSFW", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-28T09:34:55Z
--- base_model: - mergekit-community/Deepseek-Distill-NSFW-visible-w-NSFW-FFS - mergekit-community/NSFW-FFS-w-hidden-Deepseek-Distill-NSFW library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [mergekit-community/NSFW-FFS-w-hidden-Deepseek-Distill-NSFW](https://huggingface.co/mergekit-community/NSFW-FFS-w-hidden-Deepseek-Distill-NSFW) as a base. ### Models Merged The following models were included in the merge: * [mergekit-community/Deepseek-Distill-NSFW-visible-w-NSFW-FFS](https://huggingface.co/mergekit-community/Deepseek-Distill-NSFW-visible-w-NSFW-FFS) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: sce models: - model: mergekit-community/Deepseek-Distill-NSFW-visible-w-NSFW-FFS base_model: mergekit-community/NSFW-FFS-w-hidden-Deepseek-Distill-NSFW parameters: select_topk: 1.0 dtype: bfloat16 normalize: true ```
fatihfauzan26/PEGASUS_medium
fatihfauzan26
2025-01-28T09:38:08Z
33
1
null
[ "safetensors", "pegasus", "summarization", "id", "dataset:fajrikoto/id_liputan6", "base_model:google/pegasus-cnn_dailymail", "base_model:finetune:google/pegasus-cnn_dailymail", "license:mit", "region:us" ]
summarization
2025-01-28T08:20:48Z
--- license: mit datasets: - fajrikoto/id_liputan6 language: - id metrics: - rouge base_model: - google/pegasus-cnn_dailymail pipeline_tag: summarization --- PEGASUS Medium is a fine-tuned version of the PEGASUS model, originally pre-trained on the CNN/Daily Mail dataset. This fine-tuning is specifically tailored for abstractive text summarization of Indonesian news articles using the Liputan6 dataset. The model has been trained on a subset of 100,000 samples from the Liputan6 dataset for 3 epochs, making it lightweight and efficient while maintaining strong summarization performance.
shibajustfor/a943ba04-52b4-4919-b616-37aa34b19099
shibajustfor
2025-01-28T09:37:22Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
2025-01-28T09:35:02Z
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: a943ba04-52b4-4919-b616-37aa34b19099 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b692e267d1262b06_train_data.json ds_type: json format: custom path: /workspace/input_data/b692e267d1262b06_train_data.json type: field_input: seed field_instruction: problem statement field_output: solution format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/a943ba04-52b4-4919-b616-37aa34b19099 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/b692e267d1262b06_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 93ce94e0-3bde-4717-a525-ec2438b40353 wandb_project: Birthday-SN56-11-Gradients-On-Demand wandb_run: your_name wandb_runid: 93ce94e0-3bde-4717-a525-ec2438b40353 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a943ba04-52b4-4919-b616-37aa34b19099 This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 11.9319 | | 11.9315 | 0.0009 | 13 | 11.9317 | | 11.9319 | 0.0018 | 26 | 11.9316 | | 11.9322 | 0.0027 | 39 | 11.9315 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/b920dd70-6b56-4d48-a1de-fba8c4c2255a
mrferr3t
2025-01-28T09:37:03Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.2", "base_model:adapter:unsloth/mistral-7b-v0.2", "license:apache-2.0", "region:us" ]
null
2025-01-28T09:35:27Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: b920dd70-6b56-4d48-a1de-fba8c4c2255a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 58c39f4a37462112_train_data.json ds_type: json format: custom path: /workspace/input_data/58c39f4a37462112_train_data.json type: field_instruction: persona field_output: summary_label format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/b920dd70-6b56-4d48-a1de-fba8c4c2255a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 7 micro_batch_size: 2 mlflow_experiment_name: /tmp/58c39f4a37462112_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63cadfa7-fc59-41d2-b1c2-106d49e2612d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63cadfa7-fc59-41d2-b1c2-106d49e2612d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b920dd70-6b56-4d48-a1de-fba8c4c2255a This model is a fine-tuned version of [unsloth/mistral-7b-v0.2](https://huggingface.co/unsloth/mistral-7b-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 12.333 | 0.0018 | 1 | 3.1715 | | 12.2297 | 0.0035 | 2 | 3.1243 | | 10.4054 | 0.0070 | 4 | 2.4358 | | 8.0189 | 0.0105 | 6 | 1.7205 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
mergekit-community/mergekit-model_stock-czbocwb
mergekit-community
2025-01-28T09:34:41Z
35
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:ArliAI/Qwen2.5-32B-ArliAI-RPMax-v1.3", "base_model:merge:ArliAI/Qwen2.5-32B-ArliAI-RPMax-v1.3", "base_model:EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2", "base_model:merge:EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2", "base_model:Sao10K/32B-Qwen2.5-Kunou-v1", "base_model:merge:Sao10K/32B-Qwen2.5-Kunou-v1", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-28T09:18:47Z
--- base_model: - ArliAI/Qwen2.5-32B-ArliAI-RPMax-v1.3 - Sao10K/32B-Qwen2.5-Kunou-v1 - deepseek-ai/DeepSeek-R1-Distill-Qwen-32B - EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) as a base. ### Models Merged The following models were included in the merge: * [ArliAI/Qwen2.5-32B-ArliAI-RPMax-v1.3](https://huggingface.co/ArliAI/Qwen2.5-32B-ArliAI-RPMax-v1.3) * [Sao10K/32B-Qwen2.5-Kunou-v1](https://huggingface.co/Sao10K/32B-Qwen2.5-Kunou-v1) * [EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2 - model: ArliAI/Qwen2.5-32B-ArliAI-RPMax-v1.3 - model: Sao10K/32B-Qwen2.5-Kunou-v1 merge_method: model_stock base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B parameters: filter_wise: false dtype: bfloat16 ```
kostiantynk/a5b4b6ef-d349-4450-8c19-303da672823a
kostiantynk
2025-01-28T09:30:55Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.2", "base_model:adapter:unsloth/mistral-7b-v0.2", "license:apache-2.0", "region:us" ]
null
2025-01-28T09:29:34Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: a5b4b6ef-d349-4450-8c19-303da672823a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 58c39f4a37462112_train_data.json ds_type: json format: custom path: /workspace/input_data/58c39f4a37462112_train_data.json type: field_instruction: persona field_output: summary_label format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk/a5b4b6ef-d349-4450-8c19-303da672823a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/58c39f4a37462112_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63cadfa7-fc59-41d2-b1c2-106d49e2612d wandb_project: Birthday-SN56-7-Gradients-On-Demand wandb_run: your_name wandb_runid: 63cadfa7-fc59-41d2-b1c2-106d49e2612d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a5b4b6ef-d349-4450-8c19-303da672823a This model is a fine-tuned version of [unsloth/mistral-7b-v0.2](https://huggingface.co/unsloth/mistral-7b-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | nan | | 0.0 | 0.0228 | 13 | nan | | 0.0 | 0.0456 | 26 | nan | | 0.0 | 0.0684 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ClarenceDan/5ff48cdc-fec7-43f6-9874-735621b2f9f6
ClarenceDan
2025-01-28T09:30:26Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.2", "base_model:adapter:unsloth/mistral-7b-v0.2", "license:apache-2.0", "region:us" ]
null
2025-01-28T09:29:32Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: 5ff48cdc-fec7-43f6-9874-735621b2f9f6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 58c39f4a37462112_train_data.json ds_type: json format: custom path: /workspace/input_data/58c39f4a37462112_train_data.json type: field_instruction: persona field_output: summary_label format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: ClarenceDan/5ff48cdc-fec7-43f6-9874-735621b2f9f6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/58c39f4a37462112_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63cadfa7-fc59-41d2-b1c2-106d49e2612d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 63cadfa7-fc59-41d2-b1c2-106d49e2612d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5ff48cdc-fec7-43f6-9874-735621b2f9f6 This model is a fine-tuned version of [unsloth/mistral-7b-v0.2](https://huggingface.co/unsloth/mistral-7b-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0018 | 1 | nan | | 0.0 | 0.0053 | 3 | nan | | 0.0 | 0.0105 | 6 | nan | | 0.0 | 0.0158 | 9 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
laquythang/c2dca258-6fa6-4616-8a5b-7ea293e494ac
laquythang
2025-01-28T09:29:16Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B-Chat", "base_model:adapter:Qwen/Qwen1.5-0.5B-Chat", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T09:28:36Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B-Chat tags: - axolotl - generated_from_trainer model-index: - name: c2dca258-6fa6-4616-8a5b-7ea293e494ac results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B-Chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ac959dbc2ffea936_train_data.json ds_type: json format: custom path: /workspace/input_data/ac959dbc2ffea936_train_data.json type: field_input: choices field_instruction: subject field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: laquythang/c2dca258-6fa6-4616-8a5b-7ea293e494ac hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ac959dbc2ffea936_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c2dca258-6fa6-4616-8a5b-7ea293e494ac This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4542 | 0.9302 | 10 | 3.7745 | | 6.9317 | 1.0698 | 11 | 3.7738 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhoxinh/7438e8e4-98a7-4cbe-b29f-3b918b478d1a
nhoxinh
2025-01-28T09:29:13Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B-Chat", "base_model:adapter:Qwen/Qwen1.5-0.5B-Chat", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T09:28:34Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B-Chat tags: - axolotl - generated_from_trainer model-index: - name: 7438e8e4-98a7-4cbe-b29f-3b918b478d1a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B-Chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ac959dbc2ffea936_train_data.json ds_type: json format: custom path: /workspace/input_data/ac959dbc2ffea936_train_data.json type: field_input: choices field_instruction: subject field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/7438e8e4-98a7-4cbe-b29f-3b918b478d1a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ac959dbc2ffea936_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7438e8e4-98a7-4cbe-b29f-3b918b478d1a This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4528 | 0.9302 | 10 | 3.7830 | | 6.927 | 1.0698 | 11 | 3.7819 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrHungddddh/d89ff619-f3c7-43f1-a731-e60a82dc5309
mrHungddddh
2025-01-28T09:29:05Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B-Chat", "base_model:adapter:Qwen/Qwen1.5-0.5B-Chat", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T09:28:26Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B-Chat tags: - axolotl - generated_from_trainer model-index: - name: d89ff619-f3c7-43f1-a731-e60a82dc5309 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B-Chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ac959dbc2ffea936_train_data.json ds_type: json format: custom path: /workspace/input_data/ac959dbc2ffea936_train_data.json type: field_input: choices field_instruction: subject field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrHungddddh/d89ff619-f3c7-43f1-a731-e60a82dc5309 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ac959dbc2ffea936_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d89ff619-f3c7-43f1-a731-e60a82dc5309 This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4329 | 0.9302 | 10 | 3.7479 | | 6.9507 | 1.0698 | 11 | 3.7690 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
minhnguyennnnnn/2e96e256-b4e3-4aa0-a853-00acb45f4136
minhnguyennnnnn
2025-01-28T09:28:54Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B-Chat", "base_model:adapter:Qwen/Qwen1.5-0.5B-Chat", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T09:28:29Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B-Chat tags: - axolotl - generated_from_trainer model-index: - name: 2e96e256-b4e3-4aa0-a853-00acb45f4136 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B-Chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ac959dbc2ffea936_train_data.json ds_type: json format: custom path: /workspace/input_data/ac959dbc2ffea936_train_data.json type: field_input: choices field_instruction: subject field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: minhnguyennnnnn/2e96e256-b4e3-4aa0-a853-00acb45f4136 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ac959dbc2ffea936_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2e96e256-b4e3-4aa0-a853-00acb45f4136 This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.451 | 0.9302 | 10 | 3.7762 | | 6.9098 | 1.0698 | 11 | 3.7540 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/ab4395a6-2134-45df-9cd2-98cade9ebaaf
lesso
2025-01-28T09:28:46Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B-Chat", "base_model:adapter:Qwen/Qwen1.5-0.5B-Chat", "license:other", "region:us" ]
null
2025-01-28T09:28:28Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B-Chat tags: - axolotl - generated_from_trainer model-index: - name: ab4395a6-2134-45df-9cd2-98cade9ebaaf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B-Chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ac959dbc2ffea936_train_data.json ds_type: json format: custom path: /workspace/input_data/ac959dbc2ffea936_train_data.json type: field_input: choices field_instruction: subject field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso/ab4395a6-2134-45df-9cd2-98cade9ebaaf hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/ac959dbc2ffea936_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 wandb_project: lesso18 wandb_run: your_name wandb_runid: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ab4395a6-2134-45df-9cd2-98cade9ebaaf This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4428 | 0.9302 | 10 | 3.7718 | | 6.9159 | 1.0698 | 11 | 3.7680 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aleegis12/05ae3be5-ce09-4f81-a91a-7a0fbbc01f54
aleegis12
2025-01-28T09:28:45Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B-Chat", "base_model:adapter:Qwen/Qwen1.5-0.5B-Chat", "license:other", "region:us" ]
null
2025-01-28T09:28:18Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B-Chat tags: - axolotl - generated_from_trainer model-index: - name: 05ae3be5-ce09-4f81-a91a-7a0fbbc01f54 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B-Chat bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - ac959dbc2ffea936_train_data.json ds_type: json format: custom path: /workspace/input_data/ac959dbc2ffea936_train_data.json type: field_input: choices field_instruction: subject field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis12/05ae3be5-ce09-4f81-a91a-7a0fbbc01f54 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/ac959dbc2ffea936_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 05ae3be5-ce09-4f81-a91a-7a0fbbc01f54 This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.8928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.8261 | 0.3636 | 1 | 4.8928 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/f24410eb-2193-44b5-a051-4acf27121d0b
nttx
2025-01-28T09:28:37Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-0.5B-Chat", "base_model:adapter:Qwen/Qwen1.5-0.5B-Chat", "license:other", "region:us" ]
null
2025-01-28T09:28:26Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B-Chat tags: - axolotl - generated_from_trainer model-index: - name: f24410eb-2193-44b5-a051-4acf27121d0b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B-Chat bf16: auto chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - ac959dbc2ffea936_train_data.json ds_type: json format: custom path: /workspace/input_data/ac959dbc2ffea936_train_data.json type: field_input: choices field_instruction: subject field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/f24410eb-2193-44b5-a051-4acf27121d0b hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/ac959dbc2ffea936_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d4c59097-6bc2-449c-b8e8-c10a5e54ac40 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f24410eb-2193-44b5-a051-4acf27121d0b This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.3108 | 0.9091 | 5 | 4.1468 | | 6.1148 | 1.1364 | 6 | 3.6463 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sleepdeprived3/Beepo-22B_EXL2_4bpw_H8
sleepdeprived3
2025-01-28T09:26:49Z
14
0
null
[ "safetensors", "mistral", "en", "base_model:mistralai/Mistral-Small-Instruct-2409", "base_model:quantized:mistralai/Mistral-Small-Instruct-2409", "4-bit", "exl2", "region:us" ]
null
2025-01-28T08:45:35Z
--- base_model: - mistralai/Mistral-Small-Instruct-2409 language: - en --- <div align="center"> # Beepo-22B </div> This is a finetune done on top of https://huggingface.co/mistralai/Mistral-Small-Instruct-2409 making it less censored in general, while attempting to maintain excellent instruct capabilities. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63cd4b6d1c8a5d1d7d76a778/DKL7KhPXEBW0LTqG7UfGr.png) Key Features: - **Retains Intelligence** - LR was kept low and dataset heavily pruned to avoid losing too much of the original model's intelligence. - **Instruct prompt format supports Alpaca** - Honestly, I don't know why more models don't use it. If you are an Alpaca format lover like me, this should help. The original Mistral instruct format can still be used, but is not recommended. - **Instruct Decensoring Applied** - You should **not** need a jailbreak for a model to obey the user. The model should always do what you tell it to. No need for weird `"Sure, I will"` or kitten-murdering-threat tricks. No abliteration was done, only finetuning. This model is not evil. It does not judge or moralize. Like a good tool, it simply obeys. You can obtain the GGUF quantization of this model here: https://huggingface.co/concedo/Beepo-22B-GGUF <!-- prompt-template start --> ## Prompt template: Alpaca ``` ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> Please leave any feedback or issues that you may have.
Anvitha369/Deepseek-Merged-Quantized-Model-7B
Anvitha369
2025-01-28T09:24:28Z
123
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-01-28T09:18:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
demohong/7349e03e-67b6-4a91-943c-e6b6e45149db
demohong
2025-01-28T09:23:37Z
7
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "base_model:adapter:EleutherAI/pythia-160m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T09:01:35Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: 7349e03e-67b6-4a91-943c-e6b6e45149db results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - baff8fc3dcf369b2_train_data.json ds_type: json format: custom path: /workspace/input_data/baff8fc3dcf369b2_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: demohong/7349e03e-67b6-4a91-943c-e6b6e45149db hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/baff8fc3dcf369b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0144a1a9-447e-492a-8b56-028895fbacbc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0144a1a9-447e-492a-8b56-028895fbacbc warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7349e03e-67b6-4a91-943c-e6b6e45149db This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.2035 | 0.0030 | 200 | 3.0921 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nblinh/101c7bec-38e4-4f49-94ed-2a28715fdd32
nblinh
2025-01-28T09:23:33Z
7
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "base_model:adapter:EleutherAI/pythia-160m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-28T09:02:12Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: 101c7bec-38e4-4f49-94ed-2a28715fdd32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - baff8fc3dcf369b2_train_data.json ds_type: json format: custom path: /workspace/input_data/baff8fc3dcf369b2_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh/101c7bec-38e4-4f49-94ed-2a28715fdd32 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/baff8fc3dcf369b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0144a1a9-447e-492a-8b56-028895fbacbc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0144a1a9-447e-492a-8b56-028895fbacbc warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 101c7bec-38e4-4f49-94ed-2a28715fdd32 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.6375 | 0.0030 | 200 | 3.1023 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/4cde5bd3-9b1c-4189-b50f-f7559f4d1a27
great0001
2025-01-28T09:22:34Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-128k", "region:us" ]
null
2025-01-28T09:18:02Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 4cde5bd3-9b1c-4189-b50f-f7559f4d1a27 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d6868704bda3c01e_train_data.json ds_type: json format: custom path: /workspace/input_data/d6868704bda3c01e_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/4cde5bd3-9b1c-4189-b50f-f7559f4d1a27 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/d6868704bda3c01e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 18c6d867-0419-462c-b0c2-2cd56ec89d17 wandb_project: Mine-SN56-20-Gradients-On-Demand wandb_run: your_name wandb_runid: 18c6d867-0419-462c-b0c2-2cd56ec89d17 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4cde5bd3-9b1c-4189-b50f-f7559f4d1a27 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.9675 | | 3.2052 | 0.0021 | 13 | 1.2318 | | 2.4024 | 0.0042 | 26 | 1.1276 | | 2.2512 | 0.0063 | 39 | 1.0864 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated
huihui-ai
2025-01-28T09:22:18Z
380
3
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "abliterated", "uncensored", "conversational", "en", "base_model:Qwen/Qwen2.5-7B-Instruct-1M", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct-1M", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-28T06:10:41Z
--- license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-7B-Instruct-1M tags: - chat - abliterated - uncensored library_name: transformers --- # huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated This is an uncensored version of [Qwen/Qwen2.5-7B-Instruct-1M](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens. ## Use with ollama You can use [huihui_ai/qwen2.5-1m-abliterated](https://ollama.com/huihui_ai/qwen2.5-1m-abliterated) directly ``` ollama run huihui_ai/qwen2.5-1m-abliterated ```
huihui-ai/Qwen2.5-14B-Instruct-1M-abliterated
huihui-ai
2025-01-28T09:21:51Z
864
8
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "abliterated", "uncensored", "conversational", "en", "base_model:Qwen/Qwen2.5-14B-Instruct-1M", "base_model:finetune:Qwen/Qwen2.5-14B-Instruct-1M", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-28T02:50:03Z
--- license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-1M-abliterated/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: Qwen/Qwen2.5-14B-Instruct-1M tags: - chat - abliterated - uncensored library_name: transformers --- # huihui-ai/Qwen2.5-14B-Instruct-1M-abliterated This is an uncensored version of [Qwen/Qwen2.5-14B-Instruct-1M](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct-1M) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens. ## Use with ollama You can use [huihui_ai/qwen2.5-1m-abliterated](https://ollama.com/huihui_ai/qwen2.5-1m-abliterated) directly ``` ollama run huihui_ai/qwen2.5-1m-abliterated:14b ```
sercetexam9/xlnet-large-cased-finetuned-augmentation-LUNAR-TAPT
sercetexam9
2025-01-28T09:21:51Z
12
0
transformers
[ "transformers", "safetensors", "xlnet", "text-classification", "generated_from_trainer", "base_model:xlnet/xlnet-large-cased", "base_model:finetune:xlnet/xlnet-large-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-28T07:56:29Z
--- library_name: transformers license: mit base_model: xlnet/xlnet-large-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlnet-large-cased-finetuned-augmentation-LUNAR-TAPT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-large-cased-finetuned-augmentation-LUNAR-TAPT This model is a fine-tuned version of [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4904 - F1: 0.8291 - Roc Auc: 0.8646 - Accuracy: 0.6215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3732 | 1.0 | 318 | 0.3677 | 0.6417 | 0.7249 | 0.4227 | | 0.291 | 2.0 | 636 | 0.2986 | 0.7666 | 0.8238 | 0.5426 | | 0.2296 | 3.0 | 954 | 0.2937 | 0.7774 | 0.8291 | 0.5552 | | 0.1332 | 4.0 | 1272 | 0.3269 | 0.7980 | 0.8559 | 0.5797 | | 0.0964 | 5.0 | 1590 | 0.3768 | 0.7977 | 0.8473 | 0.5505 | | 0.0618 | 6.0 | 1908 | 0.4196 | 0.7833 | 0.8416 | 0.5552 | | 0.0356 | 7.0 | 2226 | 0.4305 | 0.8041 | 0.8509 | 0.5726 | | 0.0214 | 8.0 | 2544 | 0.4510 | 0.8112 | 0.8482 | 0.5883 | | 0.0196 | 9.0 | 2862 | 0.4708 | 0.8118 | 0.8582 | 0.5970 | | 0.0111 | 10.0 | 3180 | 0.4950 | 0.8174 | 0.8590 | 0.5994 | | 0.0124 | 11.0 | 3498 | 0.5083 | 0.8094 | 0.8572 | 0.5852 | | 0.0079 | 12.0 | 3816 | 0.4904 | 0.8291 | 0.8646 | 0.6215 | | 0.0062 | 13.0 | 4134 | 0.5218 | 0.8155 | 0.8578 | 0.5954 | | 0.001 | 14.0 | 4452 | 0.5225 | 0.8194 | 0.8636 | 0.6073 | | 0.0024 | 15.0 | 4770 | 0.5248 | 0.8244 | 0.8646 | 0.6088 | | 0.0012 | 16.0 | 5088 | 0.5259 | 0.8235 | 0.8652 | 0.6073 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
TArtx/parler-tts-mini-v1-finetuned-12
TArtx
2025-01-28T09:21:46Z
73
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-10-15T20:19:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
THU-KEG/OpenSAE-LLaMA-3.1-Layer_05-shift_back
THU-KEG
2025-01-28T09:20:39Z
5
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-01-28T09:08:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sakalti/SabaVL1-2B
Sakalti
2025-01-28T09:17:39Z
88
0
transformers
[ "transformers", "safetensors", "qwen2_vl", "image-text-to-text", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen2-VL-2B-Instruct", "base_model:finetune:unsloth/Qwen2-VL-2B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-12-16T22:09:59Z
--- base_model: unsloth/Qwen2-VL-2B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2_vl - trl - sft license: apache-2.0 language: - en pipeline_tag: image-text-to-text inference: true --- # Uploaded model - **Developed by:** Sakalti - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2-VL-2B-Instruct This qwen2_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Yntec/AgainstTheWorld
Yntec
2025-01-28T09:16:27Z
5,821
0
diffusers
[ "diffusers", "safetensors", "Base Model", "Art", "Realism", "Photo", "Photorealistic", "Portrait", "wildzzz", "tin18688783", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "base_model:Yntec/IncredibleWorld2", "base_model:merge:Yntec/IncredibleWorld2", "base_model:digiplay/AgainMix_v2.0", "base_model:merge:digiplay/AgainMix_v2.0", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-01-27T09:41:06Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - Base Model - Art - Realism - Photo - Photorealistic - Portrait - wildzzz - tin18688783 - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image base_model: - Yntec/IncredibleWorld2 - digiplay/AgainMix_v2.0 base_model_relation: merge --- # Against the World A mix of AgainMix V2 and Incredible World 3, with a bit of Incredible World 2! Showcase and prompts (all use seed 9119): ![Bruce Willis posting with princess Leia](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/LlmS8wd2xeZJrmBmksmae.png) analog style 70s color photograph of young Bruce Willis as John McClane hugging princess Leia, star wars behind the scenes ![Girl and rocket illustration](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/nv3nDKlPA3XGe-Z17OVS3.png) Girl, sitting on a box of rockets, Pretty 90s EYES, background rocket, gorgeous detailed hair, Ponytail, Magazine ad, iconic, 1940, sharp focus. Illustration By KlaysMoji and artgerm and Clay Mann and and leyendecker and Dave Rapoza ![Santa Claus with his daughters](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/3o0XuGq4Ntjig2T8clAl1.png) Movie screenshot portrait. Dad with toddler girls. festive scene at a copper brewery with a wooden keg of cake. pretty little daughters in the center wearing jeans sitting with Santa Claus chef. Display mugs of dark beer accompanied by colorful halloween ingredients ![Lemon hamburger](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/oszqcDtE6xnQH5huHB7wM.png) a lemon themed hamburger, high quality Original pages: https://civitai.com/models/167100?modelVersionId=375171 (AgainMix 2) https://civitai.com/models/143386?modelVersionId=177237 (Incredible World 3) https://civitai.com/models/143386?modelVersionId=163019 (Incredible World 2) # Recipes - SuperMerger Weight Sum Use MBW 1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0 Model A: AgainMix V2 Model B: IncredibleWorld3 Output: AgainstTheWorldAlpha - SuperMerger Weight Sum Use MBW 0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 Model A: AgainstTheWorldAlpha Model B: IncredibleWorld2 Output: AgainstTheWorld
aleegis12/48879609-bb9a-4a9f-9983-a151d539930c
aleegis12
2025-01-28T09:16:13Z
7
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "base_model:adapter:EleutherAI/pythia-160m", "license:apache-2.0", "region:us" ]
null
2025-01-28T09:00:49Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: 48879609-bb9a-4a9f-9983-a151d539930c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - baff8fc3dcf369b2_train_data.json ds_type: json format: custom path: /workspace/input_data/baff8fc3dcf369b2_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis12/48879609-bb9a-4a9f-9983-a151d539930c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/baff8fc3dcf369b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0144a1a9-447e-492a-8b56-028895fbacbc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0144a1a9-447e-492a-8b56-028895fbacbc warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 48879609-bb9a-4a9f-9983-a151d539930c This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 16.5184 | 0.0001 | 1 | 4.8207 | | 14.7135 | 0.0030 | 50 | 3.2014 | | 13.9811 | 0.0059 | 100 | 3.1571 | | 13.837 | 0.0089 | 150 | 3.0583 | | 14.5914 | 0.0118 | 200 | 3.0535 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiulawaldev/b05faaba-a177-441d-8fd1-b7166016c766
robiulawaldev
2025-01-28T09:14:11Z
9
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "base_model:adapter:EleutherAI/pythia-160m", "license:apache-2.0", "region:us" ]
null
2025-01-28T09:02:08Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: b05faaba-a177-441d-8fd1-b7166016c766 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - baff8fc3dcf369b2_train_data.json ds_type: json format: custom path: /workspace/input_data/baff8fc3dcf369b2_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: robiulawaldev/b05faaba-a177-441d-8fd1-b7166016c766 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: constant max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/baff8fc3dcf369b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0144a1a9-447e-492a-8b56-028895fbacbc wandb_project: Birthday-SN56-36-Gradients-On-Demand wandb_run: your_name wandb_runid: 0144a1a9-447e-492a-8b56-028895fbacbc warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b05faaba-a177-441d-8fd1-b7166016c766 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 4.4916 | | 8.2233 | 0.0001 | 13 | 3.3707 | | 6.7905 | 0.0002 | 26 | 3.2726 | | 6.74 | 0.0003 | 39 | 3.6076 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sabafallah/DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M-GGUF
sabafallah
2025-01-28T09:12:19Z
29
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-28T09:12:11Z
--- license: mit library_name: transformers tags: - llama-cpp - gguf-my-repo base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --- # sabafallah/DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M-GGUF This model was converted to GGUF format from [`deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo sabafallah/DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-1.5b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo sabafallah/DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-1.5b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo sabafallah/DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-1.5b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo sabafallah/DeepSeek-R1-Distill-Qwen-1.5B-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-1.5b-q4_k_m.gguf -c 2048 ```
ericflo/Qwen2.5-7B-Think-KTO-v0.1
ericflo
2025-01-28T09:09:28Z
167
0
transformers
[ "transformers", "safetensors", "gguf", "qwen2", "text-generation", "conversational", "dataset:ericflo/Qwen2.5-7B-Base-Think-KTO", "base_model:Qwen/Qwen2.5-7B", "base_model:quantized:Qwen/Qwen2.5-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-28T08:26:51Z
--- license: apache-2.0 base_model: - Qwen/Qwen2.5-7B library_name: transformers datasets: - ericflo/Qwen2.5-7B-Base-Think-KTO --- # Qwen2.5-Think-KTO v0.1: A Reasoning-Enhanced Language Model **NOTE**: This model is currently undertrained and needs some coaxing to output `<think>...</think>` tags. ## What's New in v0.1 This initial release enhances the base Qwen2.5-7B model's reasoning capabilities using Kahneman-Tversky Optimization (KTO). The model is trained using binary feedback signals, indicating whether outputs are desirable or undesirable for given inputs. ## How It Works The model generates responses using a simple thought-then-answer format: ``` <think> Let me approach this step by step... First, we need to consider X... Then, looking at Y... Finally, Z leads us to... </think> [final answer based on thought process] ``` ## Technical Details ### Base Architecture - **Base Model**: Qwen2.5-7B - **Training Approach**: Kahneman-Tversky Optimization (KTO) - **Dataset**: Binary feedback signals (desirable/undesirable outputs) - **Quality Control**: Programmatic validation ### Training Parameters - **Optimization**: - Learning Rate: 5e-6 - Scheduler: Cosine with 0.1 warmup ratio - Optimizer: AdamW 8-bit - Batch Size: 5 per device - Gradient Accumulation Steps: 1 - Number of Epochs: 3 - **Model Config**: - Max Length: 3746 - Max Prompt Length: 364 - Attention Implementation: Flash Attention 2 - Gradient Checkpointing: Enabled - **Infrastructure**: - Accelerate for distributed training - Wandb logging - LIGER optimization enabled ## What's It Good For? ✅ Tasks requiring natural thought processes ✅ Scenarios where binary feedback is available ✅ Problems benefiting from human-like reasoning ✅ Applications needing clear thought-to-answer progression ## Limitations - Bounded by base Qwen2.5-7B capabilities - May not generalize beyond training distribution - First version with room for improvement - Performance on non-reasoning tasks unchanged - Limited by quality of binary feedback ## Example Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("ericflo/Qwen2.5-Think-KTO-v0.1") tokenizer = AutoTokenizer.from_pretrained("ericflo/Qwen2.5-Think-KTO-v0.1") prompt = "What are the implications of Moore's Law slowing down?" input_ids = tokenizer(prompt, return_tensors="pt").input_ids output = model.generate(input_ids, max_length=512) response = tokenizer.decode(output[0]) ``` ## Citation ```bibtex @misc{qwen25-think-kto, title={Qwen2.5-Think-KTO: Enhanced Reasoning Through Human-Aware Learning}, author={[Eric Florenzano]}, year={2024}, howpublished={\url{https://huggingface.co/ericflo/Qwen2.5-Think-KTO-v0.1}} } ``` ## Acknowledgments This model builds on the Qwen2.5-7B base model and implements the KTO approach developed by Ethayarajh et al. Special thanks to the authors of the KTO paper and the broader AI research community for their contributions to model alignment techniques.
vojtam/gengpt2_1024_medium
vojtam
2025-01-28T09:06:37Z
17
0
null
[ "safetensors", "gpt2", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-01-28T09:05:49Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
sercetexam9/roberta-large-finetuned-augmentation-LUNAR-TAPT
sercetexam9
2025-01-28T09:06:34Z
19
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-large", "base_model:finetune:FacebookAI/roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-28T07:53:22Z
--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-large-finetuned-augmentation-LUNAR-TAPT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-augmentation-LUNAR-TAPT This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4897 - F1: 0.8302 - Roc Auc: 0.8696 - Accuracy: 0.6338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3371 | 1.0 | 317 | 0.3025 | 0.7356 | 0.8000 | 0.5233 | | 0.2571 | 2.0 | 634 | 0.3055 | 0.7376 | 0.7942 | 0.5572 | | 0.1848 | 3.0 | 951 | 0.2850 | 0.7964 | 0.8431 | 0.5912 | | 0.124 | 4.0 | 1268 | 0.3223 | 0.7738 | 0.8164 | 0.5635 | | 0.0701 | 5.0 | 1585 | 0.3219 | 0.8091 | 0.8597 | 0.5951 | | 0.0491 | 6.0 | 1902 | 0.3576 | 0.8148 | 0.8547 | 0.6014 | | 0.0432 | 7.0 | 2219 | 0.3808 | 0.8216 | 0.8665 | 0.6196 | | 0.0352 | 8.0 | 2536 | 0.3945 | 0.8278 | 0.8721 | 0.6259 | | 0.0282 | 9.0 | 2853 | 0.4357 | 0.8173 | 0.8580 | 0.6054 | | 0.012 | 10.0 | 3170 | 0.4670 | 0.8208 | 0.8679 | 0.5951 | | 0.0054 | 11.0 | 3487 | 0.4864 | 0.8177 | 0.8599 | 0.6038 | | 0.0029 | 12.0 | 3804 | 0.4882 | 0.8289 | 0.8687 | 0.6259 | | 0.0011 | 13.0 | 4121 | 0.4897 | 0.8302 | 0.8696 | 0.6338 | | 0.0012 | 14.0 | 4438 | 0.5079 | 0.8273 | 0.8680 | 0.6251 | | 0.0008 | 15.0 | 4755 | 0.5146 | 0.8285 | 0.8688 | 0.6227 | | 0.0007 | 16.0 | 5072 | 0.5100 | 0.8282 | 0.8693 | 0.6338 | | 0.0008 | 17.0 | 5389 | 0.5158 | 0.8282 | 0.8673 | 0.6330 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
upb-nlp/RoGEC-mt0-xl
upb-nlp
2025-01-28T09:04:31Z
6
0
transformers
[ "transformers", "safetensors", "mt5", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
feature-extraction
2025-01-23T14:32:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> We fine-tuned an encoder-decoder model directly on the pairs of incorrect and correct sentences to be used as a baseline. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso06/913da51c-41d4-49d1-ac44-e61e00ac8aa4
lesso06
2025-01-28T09:03:26Z
7
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "base_model:adapter:EleutherAI/pythia-160m", "license:apache-2.0", "region:us" ]
null
2025-01-28T09:02:03Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: 913da51c-41d4-49d1-ac44-e61e00ac8aa4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - baff8fc3dcf369b2_train_data.json ds_type: json format: custom path: /workspace/input_data/baff8fc3dcf369b2_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso06/913da51c-41d4-49d1-ac44-e61e00ac8aa4 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/baff8fc3dcf369b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0144a1a9-447e-492a-8b56-028895fbacbc wandb_project: multi wandb_run: your_name wandb_runid: 0144a1a9-447e-492a-8b56-028895fbacbc warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 913da51c-41d4-49d1-ac44-e61e00ac8aa4 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.6682 | 0.0236 | 200 | 2.9878 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1