modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-06-26 18:27:55
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 499
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 54
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-06-26 18:27:32
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Triangle104/DeepSeek-R1-Distill-Qwen-14B-uncensored-Q4_K_M-GGUF | Triangle104 | 2025-01-29T09:27:33Z | 2,777 | 1 | transformers | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:thirdeyeai/DeepSeek-R1-Distill-Qwen-14B-uncensored",
"base_model:quantized:thirdeyeai/DeepSeek-R1-Distill-Qwen-14B-uncensored",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-01-29T09:26:55Z | ---
library_name: transformers
license: mit
base_model: thirdeyeai/DeepSeek-R1-Distill-Qwen-14B-uncensored
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/DeepSeek-R1-Distill-Qwen-14B-uncensored-Q4_K_M-GGUF
This model was converted to GGUF format from [`thirdeyeai/DeepSeek-R1-Distill-Qwen-14B-uncensored`](https://huggingface.co/thirdeyeai/DeepSeek-R1-Distill-Qwen-14B-uncensored) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/thirdeyeai/DeepSeek-R1-Distill-Qwen-14B-uncensored) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/DeepSeek-R1-Distill-Qwen-14B-uncensored-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-14b-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/DeepSeek-R1-Distill-Qwen-14B-uncensored-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-14b-uncensored-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/DeepSeek-R1-Distill-Qwen-14B-uncensored-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-14b-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/DeepSeek-R1-Distill-Qwen-14B-uncensored-Q4_K_M-GGUF --hf-file deepseek-r1-distill-qwen-14b-uncensored-q4_k_m.gguf -c 2048
```
|
roleplaiapp/Chocolatine-2-14B-Instruct-v2.0b2-i1-Q3_K_M-GGUF | roleplaiapp | 2025-01-29T09:26:10Z | 13 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"3-bit",
"Q3_K_M",
"chocolatine",
"instruct",
"llama-cpp",
"text-generation",
"v20b2",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | text-generation | 2025-01-29T09:25:41Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- 3-bit
- Q3_K_M
- chocolatine
- gguf
- instruct
- llama-cpp
- text-generation
- v20b2
---
# roleplaiapp/Chocolatine-2-14B-Instruct-v2.0b2-i1-Q3_K_M-GGUF
**Repo:** `roleplaiapp/Chocolatine-2-14B-Instruct-v2.0b2-i1-Q3_K_M-GGUF`
**Original Model:** `Chocolatine-2-14B-Instruct-v2.0b2-i1`
**Quantized File:** `Chocolatine-2-14B-Instruct-v2.0b2.i1-Q3_K_M.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q3_K_M`
## Overview
This is a GGUF Q3_K_M quantized version of Chocolatine-2-14B-Instruct-v2.0b2-i1
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
laquythang/aa8b8206-5ea3-43b2-9a05-409e12f7645a | laquythang | 2025-01-29T09:24:21Z | 10 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-1.5B",
"base_model:adapter:Qwen/Qwen2.5-1.5B",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T09:06:51Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: aa8b8206-5ea3-43b2-9a05-409e12f7645a
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d8bb17718bb8d883_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d8bb17718bb8d883_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: laquythang/aa8b8206-5ea3-43b2-9a05-409e12f7645a
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/d8bb17718bb8d883_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8669d303-67c9-4c29-bce8-03e81b1074bc
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8669d303-67c9-4c29-bce8-03e81b1074bc
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# aa8b8206-5ea3-43b2-9a05-409e12f7645a
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9308
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.805 | 0.0325 | 200 | 1.9308 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
VitoCorleone72/MBB | VitoCorleone72 | 2025-01-29T09:22:19Z | 78 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"region:us"
] | text-to-image | 2025-01-29T09:22:09Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/ComfyUI_00044_.jpeg
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: null
---
# MBB
<Gallery />
## Download model
Weights for this model are available in Safetensors format.
[Download](/VitoCorleone72/MBB/tree/main) them in the Files & versions tab.
|
kk-aivio/f264cf5c-fda0-49fc-8665-a7f7d352b8a7 | kk-aivio | 2025-01-29T09:20:59Z | 10 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:lmsys/vicuna-7b-v1.3",
"base_model:adapter:lmsys/vicuna-7b-v1.3",
"region:us"
] | null | 2025-01-29T09:18:32Z | ---
library_name: peft
base_model: lmsys/vicuna-7b-v1.3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f264cf5c-fda0-49fc-8665-a7f7d352b8a7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-7b-v1.3
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f7da12f378f99980_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f7da12f378f99980_train_data.json
type:
field_input: domain.suggestion
field_instruction: source-text
field_output: target-text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: kk-aivio/f264cf5c-fda0-49fc-8665-a7f7d352b8a7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/f7da12f378f99980_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1d200228-f16b-4061-914f-7f934da68e0f
wandb_project: Birthday-SN56-17-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1d200228-f16b-4061-914f-7f934da68e0f
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# f264cf5c-fda0-49fc-8665-a7f7d352b8a7
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1704
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0044 | 1 | 1.3869 |
| 1.1191 | 0.0577 | 13 | 0.5260 |
| 0.4626 | 0.1154 | 26 | 0.2275 |
| 0.235 | 0.1731 | 39 | 0.1704 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nttx/e90e230e-78bb-4a4d-9522-46d0065957d5 | nttx | 2025-01-29T09:20:15Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:lmsys/vicuna-7b-v1.3",
"base_model:adapter:lmsys/vicuna-7b-v1.3",
"region:us"
] | null | 2025-01-29T09:12:45Z | ---
library_name: peft
base_model: lmsys/vicuna-7b-v1.3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e90e230e-78bb-4a4d-9522-46d0065957d5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-7b-v1.3
bf16: auto
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- f7da12f378f99980_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f7da12f378f99980_train_data.json
type:
field_input: domain.suggestion
field_instruction: source-text
field_output: target-text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: nttx/e90e230e-78bb-4a4d-9522-46d0065957d5
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/f7da12f378f99980_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1d200228-f16b-4061-914f-7f934da68e0f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1d200228-f16b-4061-914f-7f934da68e0f
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# e90e230e-78bb-4a4d-9522-46d0065957d5
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 113
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0668 | 0.9933 | 112 | 0.0877 |
| 0.1373 | 1.0067 | 113 | 0.0867 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
haryoaw/cola_meta-llama-Llama-3.1-8B_2_0.70 | haryoaw | 2025-01-29T09:17:22Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-29T09:11:38Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
robiual-awal/cef3dfe8-e4a6-439c-aa64-ed79e26c6da6 | robiual-awal | 2025-01-29T09:16:23Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:lmsys/vicuna-7b-v1.3",
"base_model:adapter:lmsys/vicuna-7b-v1.3",
"region:us"
] | null | 2025-01-29T09:15:09Z | ---
library_name: peft
base_model: lmsys/vicuna-7b-v1.3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cef3dfe8-e4a6-439c-aa64-ed79e26c6da6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-7b-v1.3
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f7da12f378f99980_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f7da12f378f99980_train_data.json
type:
field_input: domain.suggestion
field_instruction: source-text
field_output: target-text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: robiual-awal/cef3dfe8-e4a6-439c-aa64-ed79e26c6da6
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/f7da12f378f99980_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1d200228-f16b-4061-914f-7f934da68e0f
wandb_project: Birthday-SN56-29-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1d200228-f16b-4061-914f-7f934da68e0f
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# cef3dfe8-e4a6-439c-aa64-ed79e26c6da6
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1702
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0044 | 1 | 1.3869 |
| 1.1182 | 0.0577 | 13 | 0.5201 |
| 0.4584 | 0.1154 | 26 | 0.2276 |
| 0.2362 | 0.1731 | 39 | 0.1702 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Best000/cfd6030b-977a-41c5-9d5d-749789ebea26 | Best000 | 2025-01-29T09:16:22Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:lmsys/vicuna-7b-v1.3",
"base_model:adapter:lmsys/vicuna-7b-v1.3",
"region:us"
] | null | 2025-01-29T09:15:10Z | ---
library_name: peft
base_model: lmsys/vicuna-7b-v1.3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: cfd6030b-977a-41c5-9d5d-749789ebea26
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-7b-v1.3
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f7da12f378f99980_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f7da12f378f99980_train_data.json
type:
field_input: domain.suggestion
field_instruction: source-text
field_output: target-text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Best000/cfd6030b-977a-41c5-9d5d-749789ebea26
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/f7da12f378f99980_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1d200228-f16b-4061-914f-7f934da68e0f
wandb_project: Birthday-SN56-32-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1d200228-f16b-4061-914f-7f934da68e0f
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# cfd6030b-977a-41c5-9d5d-749789ebea26
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2504
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0044 | 1 | 1.3869 |
| 1.2645 | 0.0577 | 13 | 1.3274 |
| 1.1873 | 0.1154 | 26 | 0.6595 |
| 0.6479 | 0.1731 | 39 | 0.2504 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Sayan01/Phi2-CoT | Sayan01 | 2025-01-29T09:15:38Z | 15 | 0 | transformers | [
"transformers",
"safetensors",
"phi",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-29T09:12:21Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
robiulawaldev/93d5c78c-7d35-46a6-9f48-9a2707a6c657 | robiulawaldev | 2025-01-29T09:11:40Z | 9 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-1.5B",
"base_model:adapter:Qwen/Qwen2.5-1.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T09:06:54Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 93d5c78c-7d35-46a6-9f48-9a2707a6c657
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d8bb17718bb8d883_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d8bb17718bb8d883_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: robiulawaldev/93d5c78c-7d35-46a6-9f48-9a2707a6c657
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: constant
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/d8bb17718bb8d883_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8669d303-67c9-4c29-bce8-03e81b1074bc
wandb_project: Birthday-SN56-35-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8669d303-67c9-4c29-bce8-03e81b1074bc
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 93d5c78c-7d35-46a6-9f48-9a2707a6c657
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9835
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0001 | 1 | 2.1405 |
| 2.0139 | 0.0011 | 13 | 2.0509 |
| 2.199 | 0.0021 | 26 | 2.0078 |
| 2.0619 | 0.0032 | 39 | 1.9835 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
robiual-awal/e54becd8-0ac2-43c4-b75f-8b24f850d3f2 | robiual-awal | 2025-01-29T09:11:37Z | 7 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-1.5B",
"base_model:adapter:Qwen/Qwen2.5-1.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T09:06:57Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e54becd8-0ac2-43c4-b75f-8b24f850d3f2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d8bb17718bb8d883_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d8bb17718bb8d883_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: robiual-awal/e54becd8-0ac2-43c4-b75f-8b24f850d3f2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/d8bb17718bb8d883_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8669d303-67c9-4c29-bce8-03e81b1074bc
wandb_project: Birthday-SN56-29-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8669d303-67c9-4c29-bce8-03e81b1074bc
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# e54becd8-0ac2-43c4-b75f-8b24f850d3f2
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9836
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0002 | 1 | 2.1451 |
| 2.1347 | 0.0021 | 13 | 2.0522 |
| 2.0046 | 0.0042 | 26 | 2.0003 |
| 1.8344 | 0.0063 | 39 | 1.9836 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
ajku2199/Llama-2-7b-hf_process_prob6_dataset2_n1000_seed42_epochs1_batch8_qlora | ajku2199 | 2025-01-29T09:11:30Z | 11 | 0 | peft | [
"peft",
"safetensors",
"region:us"
] | null | 2025-01-17T12:26:04Z | ---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
|
asaporta/speecht5_finetuned_voxpopuli_nl | asaporta | 2025-01-29T09:09:28Z | 5 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"dataset:facebook/voxpopuli",
"base_model:microsoft/speecht5_tts",
"base_model:finetune:microsoft/speecht5_tts",
"license:mit",
"endpoints_compatible",
"region:us"
] | text-to-audio | 2025-01-29T08:35:54Z | ---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- facebook/voxpopuli
model-index:
- name: speecht5_finetuned_voxpopuli_nl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_voxpopuli_nl
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.1944 | 4.3098 | 1000 | 0.4859 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|
abaddon182/b6c91000-987d-4baa-ab95-97d06fff8b7c | abaddon182 | 2025-01-29T09:07:46Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM2-360M",
"base_model:adapter:unsloth/SmolLM2-360M",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T09:00:56Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM2-360M
tags:
- axolotl
- generated_from_trainer
model-index:
- name: b6c91000-987d-4baa-ab95-97d06fff8b7c
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/SmolLM2-360M
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 155f72bf61c52f9c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/155f72bf61c52f9c_train_data.json
type:
field_input: title_main
field_instruction: texte
field_output: texteHtml
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: abaddon182/b6c91000-987d-4baa-ab95-97d06fff8b7c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/155f72bf61c52f9c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d46de064-6529-4c08-8755-e14ca536003f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d46de064-6529-4c08-8755-e14ca536003f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# b6c91000-987d-4baa-ab95-97d06fff8b7c
This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0798
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3066 | 0.0071 | 1 | 0.6051 |
| 0.1238 | 0.3534 | 50 | 0.1174 |
| 0.0768 | 0.7067 | 100 | 0.0884 |
| 0.0754 | 1.0618 | 150 | 0.0832 |
| 0.0723 | 1.4152 | 200 | 0.0798 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
concept-unlearning/Meta-Llama-3-8B_ft_lora_all_novels_v4_ft_npo_gdr_lora_HICS_v4 | concept-unlearning | 2025-01-29T09:07:44Z | 14 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-29T09:03:01Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
VitoCorleone72/HellyR | VitoCorleone72 | 2025-01-29T09:06:43Z | 256 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"region:us"
] | text-to-image | 2025-01-29T09:06:40Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: '-'
output:
url: images/00010-2711735610.jpeg
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: null
---
# HellyR
<Gallery />
## Download model
Weights for this model are available in Safetensors format.
[Download](/VitoCorleone72/HellyR/tree/main) them in the Files & versions tab.
|
kostiantynk-out/3e4ff2a0-7699-4ea2-9ccf-99cbd415d314 | kostiantynk-out | 2025-01-29T09:05:21Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:NousResearch/CodeLlama-13b-hf-flash",
"base_model:adapter:NousResearch/CodeLlama-13b-hf-flash",
"region:us"
] | null | 2025-01-29T08:59:40Z | ---
library_name: peft
base_model: NousResearch/CodeLlama-13b-hf-flash
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 3e4ff2a0-7699-4ea2-9ccf-99cbd415d314
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3875808def965efa_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3875808def965efa_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: kostiantynk-out/3e4ff2a0-7699-4ea2-9ccf-99cbd415d314
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/3875808def965efa_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
wandb_project: Mine-SN56-1-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 3e4ff2a0-7699-4ea2-9ccf-99cbd415d314
This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0002 | 1 | 1.7422 |
| 3.2376 | 0.0021 | 13 | 1.3009 |
| 2.6122 | 0.0041 | 26 | 1.1098 |
| 2.2253 | 0.0062 | 39 | 1.0416 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Dans-DiscountModels/12b-mn-dans-sakurakaze-RC | Dans-DiscountModels | 2025-01-29T09:03:56Z | 5 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"arxiv:1910.09700",
"base_model:PocketDoc/Dans-PersonalityEngine-V1.1.0-12b",
"base_model:adapter:PocketDoc/Dans-PersonalityEngine-V1.1.0-12b",
"region:us"
] | null | 2025-01-29T06:13:22Z | ---
base_model: PocketDoc/Dans-PersonalityEngine-V1.1.0-12b
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.14.0 |
ajku2199/Llama-2-7b-hf_process_prob6_dataset1_n1000_seed1_epochs1_batch8_qlora | ajku2199 | 2025-01-29T09:03:52Z | 14 | 0 | peft | [
"peft",
"safetensors",
"region:us"
] | null | 2025-01-17T12:24:51Z | ---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
|
nttx/f64df5bd-d226-4aee-b97b-2f0a599aa61e | nttx | 2025-01-29T09:02:42Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM2-360M",
"base_model:adapter:unsloth/SmolLM2-360M",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T08:58:58Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM2-360M
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f64df5bd-d226-4aee-b97b-2f0a599aa61e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/SmolLM2-360M
bf16: auto
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 155f72bf61c52f9c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/155f72bf61c52f9c_train_data.json
type:
field_input: title_main
field_instruction: texte
field_output: texteHtml
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: nttx/f64df5bd-d226-4aee-b97b-2f0a599aa61e
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 4
mlflow_experiment_name: /tmp/155f72bf61c52f9c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d46de064-6529-4c08-8755-e14ca536003f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d46de064-6529-4c08-8755-e14ca536003f
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# f64df5bd-d226-4aee-b97b-2f0a599aa61e
This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1270
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.1346 | 0.7067 | 200 | 0.1270 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Aleteian/Saiga-Unleashed-Q6_K-GGUF | Aleteian | 2025-01-29T09:02:34Z | 46 | 1 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:Aleteian/Saiga-Unleashed",
"base_model:quantized:Aleteian/Saiga-Unleashed",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-01-29T09:01:50Z | ---
base_model: Aleteian/Saiga-Unleashed
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Aleteian/Saiga-Unleashed-Q6_K-GGUF
This model was converted to GGUF format from [`Aleteian/Saiga-Unleashed`](https://huggingface.co/Aleteian/Saiga-Unleashed) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Aleteian/Saiga-Unleashed) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Aleteian/Saiga-Unleashed-Q6_K-GGUF --hf-file saiga-unleashed-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Aleteian/Saiga-Unleashed-Q6_K-GGUF --hf-file saiga-unleashed-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Aleteian/Saiga-Unleashed-Q6_K-GGUF --hf-file saiga-unleashed-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Aleteian/Saiga-Unleashed-Q6_K-GGUF --hf-file saiga-unleashed-q6_k.gguf -c 2048
```
|
diaenra/0066a809-86ed-4161-9de4-ac0d76594f28 | diaenra | 2025-01-29T09:01:14Z | 10 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2-0.5B-Instruct",
"base_model:adapter:Qwen/Qwen2-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T07:20:28Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 0066a809-86ed-4161-9de4-ac0d76594f28
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 775410f20973b41e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/775410f20973b41e_train_data.json
type:
field_input: rejected
field_instruction: prompt
field_output: chosen
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: diaenra/0066a809-86ed-4161-9de4-ac0d76594f28
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GB
micro_batch_size: 4
mlflow_experiment_name: /tmp/775410f20973b41e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: null
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: diaenra-tao-miner
wandb_mode: online
wandb_name: 2a9c3890-5cf7-4888-91af-b81ebd4af89f
wandb_project: tao
wandb_run: diaenra
wandb_runid: 2a9c3890-5cf7-4888-91af-b81ebd4af89f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: true
```
</details><br>
# 0066a809-86ed-4161-9de4-ac0d76594f28
This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0251
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.1411 | 0.9995 | 1181 | 2.0531 |
| 2.069 | 1.9993 | 2362 | 2.0289 |
| 1.9514 | 2.9990 | 3543 | 2.0251 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
gavrilstep/91599405-f6a0-4776-b22a-8d954758316b | gavrilstep | 2025-01-29T09:00:59Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM2-360M",
"base_model:adapter:unsloth/SmolLM2-360M",
"license:apache-2.0",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T08:58:35Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM2-360M
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 91599405-f6a0-4776-b22a-8d954758316b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/SmolLM2-360M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 155f72bf61c52f9c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/155f72bf61c52f9c_train_data.json
type:
field_input: title_main
field_instruction: texte
field_output: texteHtml
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: gavrilstep/91599405-f6a0-4776-b22a-8d954758316b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 39
micro_batch_size: 2
mlflow_experiment_name: /tmp/155f72bf61c52f9c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 21
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d46de064-6529-4c08-8755-e14ca536003f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d46de064-6529-4c08-8755-e14ca536003f
warmup_steps: 21
weight_decay: 0.02
xformers_attention: true
```
</details><br>
# 91599405-f6a0-4776-b22a-8d954758316b
This model is a fine-tuned version of [unsloth/SmolLM2-360M](https://huggingface.co/unsloth/SmolLM2-360M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 21
- training_steps: 39
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0018 | 1 | nan |
| 0.0 | 0.0088 | 5 | nan |
| 0.0 | 0.0177 | 10 | nan |
| 0.0 | 0.0265 | 15 | nan |
| 0.0 | 0.0354 | 20 | nan |
| 0.0 | 0.0442 | 25 | nan |
| 0.0 | 0.0530 | 30 | nan |
| 0.0 | 0.0619 | 35 | nan |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF | mradermacher | 2025-01-29T09:00:13Z | 647 | 1 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:DoppelReflEx/MN-12B-Mimicore-GreenSnake",
"base_model:quantized:DoppelReflEx/MN-12B-Mimicore-GreenSnake",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-01-29T03:23:42Z | ---
base_model: DoppelReflEx/MN-12B-Mimicore-GreenSnake
language:
- en
library_name: transformers
license: cc-by-nc-4.0
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/DoppelReflEx/MN-12B-Mimicore-GreenSnake
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.2 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q4_1.gguf) | i1-Q4_1 | 7.9 | |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/MN-12B-Mimicore-GreenSnake-i1-GGUF/resolve/main/MN-12B-Mimicore-GreenSnake.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
AMindToThink/gemma-2-2b_RMU_cyber-forget-corpus_s100_a100_layer3 | AMindToThink | 2025-01-29T08:56:46Z | 6 | 0 | transformers | [
"transformers",
"safetensors",
"gemma2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-29T08:24:59Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
ajku2199/Llama-2-7b-hf_process_prob6_dataset2_n1000_seed1_epochs1_batch8_qlora | ajku2199 | 2025-01-29T08:56:11Z | 13 | 0 | peft | [
"peft",
"safetensors",
"region:us"
] | null | 2025-01-17T12:23:35Z | ---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
|
great0001/737ddcdc-9119-4e0c-95f3-c6b6ef84eeac | great0001 | 2025-01-29T08:56:10Z | 6 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2-0.5B-Instruct",
"base_model:adapter:Qwen/Qwen2-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T08:53:16Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 737ddcdc-9119-4e0c-95f3-c6b6ef84eeac
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2-0.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 775410f20973b41e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/775410f20973b41e_train_data.json
type:
field_input: rejected
field_instruction: prompt
field_output: chosen
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: great0001/737ddcdc-9119-4e0c-95f3-c6b6ef84eeac
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/775410f20973b41e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2a9c3890-5cf7-4888-91af-b81ebd4af89f
wandb_project: Mine-SN56-20-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2a9c3890-5cf7-4888-91af-b81ebd4af89f
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 737ddcdc-9119-4e0c-95f3-c6b6ef84eeac
This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3296
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0001 | 1 | 2.7100 |
| 2.6986 | 0.0014 | 13 | 2.4579 |
| 2.5092 | 0.0028 | 26 | 2.3734 |
| 2.4255 | 0.0041 | 39 | 2.3296 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
graceyun/dreambooth-sdxl-0.2 | graceyun | 2025-01-29T08:55:41Z | 6 | 0 | diffusers | [
"diffusers",
"text-to-image",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | text-to-image | 2025-01-29T07:43:06Z | ---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: a pixel art icon in the style of NES games, 16-bit graphics, on a
transparent background
widget:
- text: a pixel art icon of a brown dog, NES style, 16-bit graphics, on a transparent
background
output:
url: image_0.png
- text: a pixel art icon of a brown dog, NES style, 16-bit graphics, on a transparent
background
output:
url: image_1.png
- text: a pixel art icon of a brown dog, NES style, 16-bit graphics, on a transparent
background
output:
url: image_2.png
- text: a pixel art icon of a brown dog, NES style, 16-bit graphics, on a transparent
background
output:
url: image_3.png
tags:
- text-to-image
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - graceyun/dreambooth-sdxl-0.2
<Gallery />
## Model description
These are graceyun/dreambooth-sdxl-0.2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a pixel art icon in the style of NES games, 16-bit graphics, on a transparent background to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](graceyun/dreambooth-sdxl-0.2/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] |
ethansolomon/bert-finetuned-squad | ethansolomon | 2025-01-29T08:55:14Z | 6 | 0 | transformers | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"question-answering",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | question-answering | 2025-01-29T03:05:05Z | ---
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Tokenizers 0.21.0
|
duyphu/ba4c982e-9fec-404c-b0de-24e67acf7fa5 | duyphu | 2025-01-29T08:55:02Z | 5 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Math-1.5B",
"base_model:adapter:unsloth/Qwen2.5-Math-1.5B",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T07:57:19Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ba4c982e-9fec-404c-b0de-24e67acf7fa5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3e822cd8df57cb11_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3e822cd8df57cb11_train_data.json
type:
field_input: context
field_instruction: question
field_output: long_answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: duyphu/ba4c982e-9fec-404c-b0de-24e67acf7fa5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/3e822cd8df57cb11_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c78acf73-ff92-4184-944e-ea8cd1f207da
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c78acf73-ff92-4184-944e-ea8cd1f207da
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# ba4c982e-9fec-404c-b0de-24e67acf7fa5
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0000 | 1 | nan |
| 0.0 | 0.0004 | 10 | nan |
| 0.0 | 0.0008 | 20 | nan |
| 0.0 | 0.0012 | 30 | nan |
| 0.0 | 0.0016 | 40 | nan |
| 0.0 | 0.0020 | 50 | nan |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
prxy5604/767d570b-6fb9-412e-a0bb-613b3a65ea62 | prxy5604 | 2025-01-29T08:54:30Z | 8 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
"base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T07:51:21Z | ---
library_name: peft
license: apache-2.0
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 767d570b-6fb9-412e-a0bb-613b3a65ea62
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- f04259c91cb5f8b9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f04259c91cb5f8b9_train_data.json
type:
field_instruction: input
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: prxy5604/767d570b-6fb9-412e-a0bb-613b3a65ea62
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/f04259c91cb5f8b9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: aac7786a-015b-44a1-9c8e-ad88dd9f945c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: aac7786a-015b-44a1-9c8e-ad88dd9f945c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 767d570b-6fb9-412e-a0bb-613b3a65ea62
This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2072
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.3285 | 0.0024 | 1 | 0.6434 |
| 0.982 | 0.1206 | 50 | 0.2812 |
| 0.7745 | 0.2413 | 100 | 0.2362 |
| 1.2598 | 0.3619 | 150 | 0.2130 |
| 0.7181 | 0.4825 | 200 | 0.2072 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/14B-Qwen2.5-Kunou-v1-Q8_0-GGUF | roleplaiapp | 2025-01-29T08:54:04Z | 5 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"8-bit",
"Q8_0",
"kunou",
"llama-cpp",
"qwen25",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-29T08:53:06Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- 8-bit
- Q8_0
- gguf
- kunou
- llama-cpp
- qwen25
- text-generation
---
# roleplaiapp/14B-Qwen2.5-Kunou-v1-Q8_0-GGUF
**Repo:** `roleplaiapp/14B-Qwen2.5-Kunou-v1-Q8_0-GGUF`
**Original Model:** `14B-Qwen2.5-Kunou-v1`
**Quantized File:** `14B-Qwen2.5-Kunou-v1.Q8_0.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q8_0`
## Overview
This is a GGUF Q8_0 quantized version of 14B-Qwen2.5-Kunou-v1
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
memevis/p13 | memevis | 2025-01-29T08:53:55Z | 18 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-29T08:48:30Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
jvelja/pythia-finetune-gpt2-NoBSGC-lr_0.0005-NoModularity-RAVEL_MIXEDFixCluster | jvelja | 2025-01-29T08:53:39Z | 297 | 0 | transformers | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-29T08:53:19Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
great0001/7907ae57-7cab-4253-a2e6-0693de140695 | great0001 | 2025-01-29T08:50:20Z | 9 | 0 | peft | [
"peft",
"safetensors",
"starcoder2",
"axolotl",
"generated_from_trainer",
"base_model:bigcode/starcoder2-3b",
"base_model:adapter:bigcode/starcoder2-3b",
"license:bigcode-openrail-m",
"region:us"
] | null | 2025-01-29T08:45:02Z | ---
library_name: peft
license: bigcode-openrail-m
base_model: bigcode/starcoder2-3b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7907ae57-7cab-4253-a2e6-0693de140695
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: bigcode/starcoder2-3b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f65209fd2b79f576_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f65209fd2b79f576_train_data.json
type:
field_instruction: text
field_output: code
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: great0001/7907ae57-7cab-4253-a2e6-0693de140695
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/f65209fd2b79f576_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7fba0349-cbce-4a47-81c7-be27ce53fcc2
wandb_project: Mine-SN56-20-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7fba0349-cbce-4a47-81c7-be27ce53fcc2
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 7907ae57-7cab-4253-a2e6-0693de140695
This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3543
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0001 | 1 | 0.7522 |
| 4.0906 | 0.0010 | 13 | 0.5578 |
| 2.5267 | 0.0021 | 26 | 0.3773 |
| 1.566 | 0.0031 | 39 | 0.3543 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/14B-Qwen2.5-Kunou-v1-Q2_K-GGUF | roleplaiapp | 2025-01-29T08:50:02Z | 5 | 0 | transformers | [
"transformers",
"gguf",
"14b",
"2-bit",
"Q2_K",
"kunou",
"llama-cpp",
"qwen25",
"text-generation",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-29T08:49:38Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 14b
- 2-bit
- Q2_K
- gguf
- kunou
- llama-cpp
- qwen25
- text-generation
---
# roleplaiapp/14B-Qwen2.5-Kunou-v1-Q2_K-GGUF
**Repo:** `roleplaiapp/14B-Qwen2.5-Kunou-v1-Q2_K-GGUF`
**Original Model:** `14B-Qwen2.5-Kunou-v1`
**Quantized File:** `14B-Qwen2.5-Kunou-v1.Q2_K.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q2_K`
## Overview
This is a GGUF Q2_K quantized version of 14B-Qwen2.5-Kunou-v1
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
TareksLab/Soubrette-LLaMa-70B | TareksLab | 2025-01-29T08:49:53Z | 13 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2408.07990",
"base_model:EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1",
"base_model:merge:EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1",
"base_model:Sao10K/70B-L3.3-Cirrus-x1",
"base_model:merge:Sao10K/70B-L3.3-Cirrus-x1",
"base_model:Sao10K/L3.3-70B-Euryale-v2.3",
"base_model:merge:Sao10K/L3.3-70B-Euryale-v2.3",
"base_model:SicariusSicariiStuff/Negative_LLAMA_70B",
"base_model:merge:SicariusSicariiStuff/Negative_LLAMA_70B",
"base_model:Steelskull/L3.3-MS-Nevoria-70b",
"base_model:merge:Steelskull/L3.3-MS-Nevoria-70b",
"base_model:TheDrummer/Anubis-70B-v1",
"base_model:merge:TheDrummer/Anubis-70B-v1",
"license:llama3.3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-29T06:45:45Z | ---
base_model:
- EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1
- TheDrummer/Anubis-70B-v1
- Sao10K/L3.3-70B-Euryale-v2.3
- SicariusSicariiStuff/Negative_LLAMA_70B
- Sao10K/70B-L3.3-Cirrus-x1
- Steelskull/L3.3-MS-Nevoria-70b
library_name: transformers
tags:
- mergekit
- merge
license: llama3.3
---
This is a bit of an experiment, trying to merge some good RP models together, which I will then combine with a smart model focused merge.
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [Steelskull/L3.3-MS-Nevoria-70b](https://huggingface.co/Steelskull/L3.3-MS-Nevoria-70b) as a base.
### Models Merged
The following models were included in the merge:
* [EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1](https://huggingface.co/EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1)
* [TheDrummer/Anubis-70B-v1](https://huggingface.co/TheDrummer/Anubis-70B-v1)
* [Sao10K/L3.3-70B-Euryale-v2.3](https://huggingface.co/Sao10K/L3.3-70B-Euryale-v2.3)
* [SicariusSicariiStuff/Negative_LLAMA_70B](https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B)
* [Sao10K/70B-L3.3-Cirrus-x1](https://huggingface.co/Sao10K/70B-L3.3-Cirrus-x1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
# Pivot model
- model: SicariusSicariiStuff/Negative_LLAMA_70B
# Target models
- model: EVA-UNIT-01/EVA-LLaMA-3.33-70B-v0.1
- model: Sao10K/70B-L3.3-Cirrus-x1
- model: Sao10K/L3.3-70B-Euryale-v2.3
- model: TheDrummer/Anubis-70B-v1
merge_method: sce
base_model: Steelskull/L3.3-MS-Nevoria-70b
parameters:
select_topk: 1.0
dtype: bfloat16
```
|
TweedleDeepLearnings/f142a79a-3072-4233-86ea-7b3bdb944110 | TweedleDeepLearnings | 2025-01-29T08:49:40Z | 243 | 0 | peft | [
"peft",
"safetensors",
"axolotl",
"generated_from_trainer",
"base_model:huggyllama/llama-7b",
"base_model:adapter:huggyllama/llama-7b",
"license:other",
"region:us"
] | null | 2025-01-29T06:24:46Z |
---
library_name: peft
license: other
base_model: huggyllama/llama-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: c4b201cf-0eeb-4380-a91f-cd6329614a81
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
bf16: auto
chat_template: llama3
dataset_prepared_path: null
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
gradient_clipping: 0.1
group_by_length: false
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 1.0e-04
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: linear
max_steps: 200
micro_batch_size: 128
mlflow_experiment_name: /tmp/aed51b8e2c089967_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 4096
special_tokens:
pad_token: </PAD>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6a8f76dd-7262-490a-905c-7b83c0f56891
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6a8f76dd-7262-490a-905c-7b83c0f56891
warmup_steps: 5
weight_decay: 0.1
xformers_attention: true
```
</details><br>
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 128
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 2048
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
|
aleegis12/2c847405-1be0-4a7a-a847-03a8d1e6da02 | aleegis12 | 2025-01-29T08:42:40Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:openlm-research/open_llama_3b",
"base_model:adapter:openlm-research/open_llama_3b",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T08:25:21Z | ---
library_name: peft
license: apache-2.0
base_model: openlm-research/open_llama_3b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2c847405-1be0-4a7a-a847-03a8d1e6da02
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: openlm-research/open_llama_3b
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 9cd0a27ec769d7cd_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9cd0a27ec769d7cd_train_data.json
type:
field_input: input
field_instruction: task
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: aleegis12/2c847405-1be0-4a7a-a847-03a8d1e6da02
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/9cd0a27ec769d7cd_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6470a08d-ed3c-49de-9586-17f3c3506f49
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6470a08d-ed3c-49de-9586-17f3c3506f49
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 2c847405-1be0-4a7a-a847-03a8d1e6da02
This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6887
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.3013 | 0.0032 | 1 | 3.9001 |
| 2.0088 | 0.1581 | 50 | 1.4521 |
| 1.1618 | 0.3162 | 100 | 0.9727 |
| 0.4218 | 0.4743 | 150 | 0.7259 |
| 0.6491 | 0.6324 | 200 | 0.6887 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
datlaaaaaaa/b975874a-37c6-405d-a888-b518c45138af | datlaaaaaaa | 2025-01-29T08:42:24Z | 6 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
"base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T07:42:57Z | ---
library_name: peft
license: apache-2.0
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
tags:
- axolotl
- generated_from_trainer
model-index:
- name: b975874a-37c6-405d-a888-b518c45138af
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f04259c91cb5f8b9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f04259c91cb5f8b9_train_data.json
type:
field_instruction: input
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: datlaaaaaaa/b975874a-37c6-405d-a888-b518c45138af
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/f04259c91cb5f8b9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: aac7786a-015b-44a1-9c8e-ad88dd9f945c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: aac7786a-015b-44a1-9c8e-ad88dd9f945c
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# b975874a-37c6-405d-a888-b518c45138af
This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3422
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.463 | 0.1206 | 200 | 0.3422 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mrferr3t/179d6587-7bfd-4a59-8e49-7aba5c074f6f | mrferr3t | 2025-01-29T08:42:19Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:NousResearch/CodeLlama-13b-hf-flash",
"base_model:adapter:NousResearch/CodeLlama-13b-hf-flash",
"region:us"
] | null | 2025-01-29T08:23:04Z | ---
library_name: peft
base_model: NousResearch/CodeLlama-13b-hf-flash
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 179d6587-7bfd-4a59-8e49-7aba5c074f6f
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3875808def965efa_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3875808def965efa_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/179d6587-7bfd-4a59-8e49-7aba5c074f6f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 21
micro_batch_size: 2
mlflow_experiment_name: /tmp/3875808def965efa_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 179d6587-7bfd-4a59-8e49-7aba5c074f6f
This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2329
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 21
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 6.548 | 0.0003 | 1 | 1.7422 |
| 6.4993 | 0.0019 | 6 | 1.7238 |
| 5.7646 | 0.0038 | 12 | 1.3907 |
| 5.2891 | 0.0057 | 18 | 1.2329 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nbninh/048f949e-3e7a-44b6-bd74-1dc0e13a14d9 | nbninh | 2025-01-29T08:40:56Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM-360M",
"base_model:adapter:unsloth/SmolLM-360M",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T07:03:43Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-360M
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 048f949e-3e7a-44b6-bd74-1dc0e13a14d9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/SmolLM-360M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ac004a2a3ec8e832_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ac004a2a3ec8e832_train_data.json
type:
field_input: title
field_instruction: content
field_output: summary1
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: nbninh/048f949e-3e7a-44b6-bd74-1dc0e13a14d9
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/ac004a2a3ec8e832_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 77344871-dc6c-43c2-89a7-28217f41b23c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 77344871-dc6c-43c2-89a7-28217f41b23c
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 048f949e-3e7a-44b6-bd74-1dc0e13a14d9
This model is a fine-tuned version of [unsloth/SmolLM-360M](https://huggingface.co/unsloth/SmolLM-360M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9081
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8754 | 0.0027 | 200 | 1.9081 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
great0001/988761e1-228c-4de0-9319-e7a40fcec2df | great0001 | 2025-01-29T08:39:41Z | 6 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2-1.5B-Instruct",
"base_model:adapter:Qwen/Qwen2-1.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T08:37:16Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 988761e1-228c-4de0-9319-e7a40fcec2df
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 226486ea217cc845_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/226486ea217cc845_train_data.json
type:
field_instruction: prompt
field_output: caption
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: great0001/988761e1-228c-4de0-9319-e7a40fcec2df
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/226486ea217cc845_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d450f3db-bde7-42c0-80c7-58bdc98ab00b
wandb_project: Mine-SN56-20-Gradients-On-Demand
wandb_run: your_name
wandb_runid: d450f3db-bde7-42c0-80c7-58bdc98ab00b
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 988761e1-228c-4de0-9319-e7a40fcec2df
This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3982
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0002 | 1 | 2.2178 |
| 1.9252 | 0.0025 | 13 | 1.5369 |
| 1.5444 | 0.0049 | 26 | 1.4392 |
| 1.4655 | 0.0074 | 39 | 1.3982 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
kartikgupta373/i3-as15776-e608215-pink-yarrow | kartikgupta373 | 2025-01-29T08:37:11Z | 7 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-01-29T08:37:09Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: TOK
---
# I3 As15776 E608215 Pink Yarrow
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `TOK` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('kartikgupta373/i3-as15776-e608215-pink-yarrow', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
slomkarafa/15-00 | slomkarafa | 2025-01-29T08:36:57Z | 38 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:2501.12948",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-28T20:21:06Z | ---
license: mit
library_name: transformers
---
# DeepSeek-R1
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<!-- markdownlint-disable no-duplicate-header -->
<div align="center">
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" />
</div>
<hr>
<div align="center" style="line-height: 1;">
<a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20R1-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="line-height: 1;">
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="line-height: 1;">
<a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE" style="margin: 2px;">
<img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<p align="center">
<a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf"><b>Paper Link</b>👁️</a>
</p>
## 1. Introduction
We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrated remarkable performance on reasoning.
With RL, DeepSeek-R1-Zero naturally emerged with numerous powerful and interesting reasoning behaviors.
However, DeepSeek-R1-Zero encounters challenges such as endless repetition, poor readability, and language mixing. To address these issues and further enhance reasoning performance,
we introduce DeepSeek-R1, which incorporates cold-start data before RL.
DeepSeek-R1 achieves performance comparable to OpenAI-o1 across math, code, and reasoning tasks.
To support the research community, we have open-sourced DeepSeek-R1-Zero, DeepSeek-R1, and six dense models distilled from DeepSeek-R1 based on Llama and Qwen. DeepSeek-R1-Distill-Qwen-32B outperforms OpenAI-o1-mini across various benchmarks, achieving new state-of-the-art results for dense models.
**NOTE: Before running DeepSeek-R1 series models locally, we kindly recommend reviewing the [Usage Recommendation](#usage-recommendations) section.**
<p align="center">
<img width="80%" src="figures/benchmark.jpg">
</p>
## 2. Model Summary
---
**Post-Training: Large-Scale Reinforcement Learning on the Base Model**
- We directly apply reinforcement learning (RL) to the base model without relying on supervised fine-tuning (SFT) as a preliminary step. This approach allows the model to explore chain-of-thought (CoT) for solving complex problems, resulting in the development of DeepSeek-R1-Zero. DeepSeek-R1-Zero demonstrates capabilities such as self-verification, reflection, and generating long CoTs, marking a significant milestone for the research community. Notably, it is the first open research to validate that reasoning capabilities of LLMs can be incentivized purely through RL, without the need for SFT. This breakthrough paves the way for future advancements in this area.
- We introduce our pipeline to develop DeepSeek-R1. The pipeline incorporates two RL stages aimed at discovering improved reasoning patterns and aligning with human preferences, as well as two SFT stages that serve as the seed for the model's reasoning and non-reasoning capabilities.
We believe the pipeline will benefit the industry by creating better models.
---
**Distillation: Smaller Models Can Be Powerful Too**
- We demonstrate that the reasoning patterns of larger models can be distilled into smaller models, resulting in better performance compared to the reasoning patterns discovered through RL on small models. The open source DeepSeek-R1, as well as its API, will benefit the research community to distill better smaller models in the future.
- Using the reasoning data generated by DeepSeek-R1, we fine-tuned several dense models that are widely used in the research community. The evaluation results demonstrate that the distilled smaller dense models perform exceptionally well on benchmarks. We open-source distilled 1.5B, 7B, 8B, 14B, 32B, and 70B checkpoints based on Qwen2.5 and Llama3 series to the community.
## 3. Model Downloads
### DeepSeek-R1 Models
<div align="center">
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
| :------------: | :------------: | :------------: | :------------: | :------------: |
| DeepSeek-R1-Zero | 671B | 37B | 128K | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Zero) |
| DeepSeek-R1 | 671B | 37B | 128K | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1) |
</div>
DeepSeek-R1-Zero & DeepSeek-R1 are trained based on DeepSeek-V3-Base.
For more details regarding the model architecture, please refer to [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repository.
### DeepSeek-R1-Distill Models
<div align="center">
| **Model** | **Base Model** | **Download** |
| :------------: | :------------: | :------------: |
| DeepSeek-R1-Distill-Qwen-1.5B | [Qwen2.5-Math-1.5B](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) |
| DeepSeek-R1-Distill-Qwen-7B | [Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) |
| DeepSeek-R1-Distill-Llama-8B | [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) |
| DeepSeek-R1-Distill-Qwen-14B | [Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) |
|DeepSeek-R1-Distill-Qwen-32B | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) |
| DeepSeek-R1-Distill-Llama-70B | [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B) |
</div>
DeepSeek-R1-Distill models are fine-tuned based on open-source models, using samples generated by DeepSeek-R1.
We slightly change their configs and tokenizers. Please use our setting to run these models.
## 4. Evaluation Results
### DeepSeek-R1-Evaluation
For all our models, the maximum generation length is set to 32,768 tokens. For benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 64 responses per query to estimate pass@1.
<div align="center">
| Category | Benchmark (Metric) | Claude-3.5-Sonnet-1022 | GPT-4o 0513 | DeepSeek V3 | OpenAI o1-mini | OpenAI o1-1217 | DeepSeek R1 |
|----------|-------------------|----------------------|------------|--------------|----------------|------------|--------------|
| | Architecture | - | - | MoE | - | - | MoE |
| | # Activated Params | - | - | 37B | - | - | 37B |
| | # Total Params | - | - | 671B | - | - | 671B |
| English | MMLU (Pass@1) | 88.3 | 87.2 | 88.5 | 85.2 | **91.8** | 90.8 |
| | MMLU-Redux (EM) | 88.9 | 88.0 | 89.1 | 86.7 | - | **92.9** |
| | MMLU-Pro (EM) | 78.0 | 72.6 | 75.9 | 80.3 | - | **84.0** |
| | DROP (3-shot F1) | 88.3 | 83.7 | 91.6 | 83.9 | 90.2 | **92.2** |
| | IF-Eval (Prompt Strict) | **86.5** | 84.3 | 86.1 | 84.8 | - | 83.3 |
| | GPQA-Diamond (Pass@1) | 65.0 | 49.9 | 59.1 | 60.0 | **75.7** | 71.5 |
| | SimpleQA (Correct) | 28.4 | 38.2 | 24.9 | 7.0 | **47.0** | 30.1 |
| | FRAMES (Acc.) | 72.5 | 80.5 | 73.3 | 76.9 | - | **82.5** |
| | AlpacaEval2.0 (LC-winrate) | 52.0 | 51.1 | 70.0 | 57.8 | - | **87.6** |
| | ArenaHard (GPT-4-1106) | 85.2 | 80.4 | 85.5 | 92.0 | - | **92.3** |
| Code | LiveCodeBench (Pass@1-COT) | 33.8 | 34.2 | - | 53.8 | 63.4 | **65.9** |
| | Codeforces (Percentile) | 20.3 | 23.6 | 58.7 | 93.4 | **96.6** | 96.3 |
| | Codeforces (Rating) | 717 | 759 | 1134 | 1820 | **2061** | 2029 |
| | SWE Verified (Resolved) | **50.8** | 38.8 | 42.0 | 41.6 | 48.9 | 49.2 |
| | Aider-Polyglot (Acc.) | 45.3 | 16.0 | 49.6 | 32.9 | **61.7** | 53.3 |
| Math | AIME 2024 (Pass@1) | 16.0 | 9.3 | 39.2 | 63.6 | 79.2 | **79.8** |
| | MATH-500 (Pass@1) | 78.3 | 74.6 | 90.2 | 90.0 | 96.4 | **97.3** |
| | CNMO 2024 (Pass@1) | 13.1 | 10.8 | 43.2 | 67.6 | - | **78.8** |
| Chinese | CLUEWSC (EM) | 85.4 | 87.9 | 90.9 | 89.9 | - | **92.8** |
| | C-Eval (EM) | 76.7 | 76.0 | 86.5 | 68.9 | - | **91.8** |
| | C-SimpleQA (Correct) | 55.4 | 58.7 | **68.0** | 40.3 | - | 63.7 |
</div>
### Distilled Model Evaluation
<div align="center">
| Model | AIME 2024 pass@1 | AIME 2024 cons@64 | MATH-500 pass@1 | GPQA Diamond pass@1 | LiveCodeBench pass@1 | CodeForces rating |
|------------------------------------------|------------------|-------------------|-----------------|----------------------|----------------------|-------------------|
| GPT-4o-0513 | 9.3 | 13.4 | 74.6 | 49.9 | 32.9 | 759 |
| Claude-3.5-Sonnet-1022 | 16.0 | 26.7 | 78.3 | 65.0 | 38.9 | 717 |
| o1-mini | 63.6 | 80.0 | 90.0 | 60.0 | 53.8 | **1820** |
| QwQ-32B-Preview | 44.0 | 60.0 | 90.6 | 54.5 | 41.9 | 1316 |
| DeepSeek-R1-Distill-Qwen-1.5B | 28.9 | 52.7 | 83.9 | 33.8 | 16.9 | 954 |
| DeepSeek-R1-Distill-Qwen-7B | 55.5 | 83.3 | 92.8 | 49.1 | 37.6 | 1189 |
| DeepSeek-R1-Distill-Qwen-14B | 69.7 | 80.0 | 93.9 | 59.1 | 53.1 | 1481 |
| DeepSeek-R1-Distill-Qwen-32B | **72.6** | 83.3 | 94.3 | 62.1 | 57.2 | 1691 |
| DeepSeek-R1-Distill-Llama-8B | 50.4 | 80.0 | 89.1 | 49.0 | 39.6 | 1205 |
| DeepSeek-R1-Distill-Llama-70B | 70.0 | **86.7** | **94.5** | **65.2** | **57.5** | 1633 |
</div>
## 5. Chat Website & API Platform
You can chat with DeepSeek-R1 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com), and switch on the button "DeepThink"
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/)
## 6. How to Run Locally
### DeepSeek-R1 Models
Please visit [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repo for more information about running DeepSeek-R1 locally.
**NOTE: Hugging Face's Transformers has not been directly supported yet.**
### DeepSeek-R1-Distill Models
DeepSeek-R1-Distill models can be utilized in the same manner as Qwen or Llama models.
For instance, you can easily start a service using [vLLM](https://github.com/vllm-project/vllm):
```shell
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --tensor-parallel-size 2 --max-model-len 32768 --enforce-eager
```
You can also easily start a service using [SGLang](https://github.com/sgl-project/sglang)
```bash
python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --trust-remote-code --tp 2
```
### Usage Recommendations
**We recommend adhering to the following configurations when utilizing the DeepSeek-R1 series models, including benchmarking, to achieve the expected performance:**
1. Set the temperature within the range of 0.5-0.7 (0.6 is recommended) to prevent endless repetitions or incoherent outputs.
2. **Avoid adding a system prompt; all instructions should be contained within the user prompt.**
3. For mathematical problems, it is advisable to include a directive in your prompt such as: "Please reason step by step, and put your final answer within \boxed{}."
4. When evaluating model performance, it is recommended to conduct multiple tests and average the results.
## 7. License
This code repository and the model weights are licensed under the [MIT License](https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE).
DeepSeek-R1 series support commercial use, allow for any modifications and derivative works, including, but not limited to, distillation for training other LLMs. Please note that:
- DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B and DeepSeek-R1-Distill-Qwen-32B are derived from [Qwen-2.5 series](https://github.com/QwenLM/Qwen2.5), which are originally licensed under [Apache 2.0 License](https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE), and now finetuned with 800k samples curated with DeepSeek-R1.
- DeepSeek-R1-Distill-Llama-8B is derived from Llama3.1-8B-Base and is originally licensed under [llama3.1 license](https://huggingface.co/meta-llama/Llama-3.1-8B/blob/main/LICENSE).
- DeepSeek-R1-Distill-Llama-70B is derived from Llama3.3-70B-Instruct and is originally licensed under [llama3.3 license](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct/blob/main/LICENSE).
## 8. Citation
```
@misc{deepseekai2025deepseekr1incentivizingreasoningcapability,
title={DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning},
author={DeepSeek-AI and Daya Guo and Dejian Yang and Haowei Zhang and Junxiao Song and Ruoyu Zhang and Runxin Xu and Qihao Zhu and Shirong Ma and Peiyi Wang and Xiao Bi and Xiaokang Zhang and Xingkai Yu and Yu Wu and Z. F. Wu and Zhibin Gou and Zhihong Shao and Zhuoshu Li and Ziyi Gao and Aixin Liu and Bing Xue and Bingxuan Wang and Bochao Wu and Bei Feng and Chengda Lu and Chenggang Zhao and Chengqi Deng and Chenyu Zhang and Chong Ruan and Damai Dai and Deli Chen and Dongjie Ji and Erhang Li and Fangyun Lin and Fucong Dai and Fuli Luo and Guangbo Hao and Guanting Chen and Guowei Li and H. Zhang and Han Bao and Hanwei Xu and Haocheng Wang and Honghui Ding and Huajian Xin and Huazuo Gao and Hui Qu and Hui Li and Jianzhong Guo and Jiashi Li and Jiawei Wang and Jingchang Chen and Jingyang Yuan and Junjie Qiu and Junlong Li and J. L. Cai and Jiaqi Ni and Jian Liang and Jin Chen and Kai Dong and Kai Hu and Kaige Gao and Kang Guan and Kexin Huang and Kuai Yu and Lean Wang and Lecong Zhang and Liang Zhao and Litong Wang and Liyue Zhang and Lei Xu and Leyi Xia and Mingchuan Zhang and Minghua Zhang and Minghui Tang and Meng Li and Miaojun Wang and Mingming Li and Ning Tian and Panpan Huang and Peng Zhang and Qiancheng Wang and Qinyu Chen and Qiushi Du and Ruiqi Ge and Ruisong Zhang and Ruizhe Pan and Runji Wang and R. J. Chen and R. L. Jin and Ruyi Chen and Shanghao Lu and Shangyan Zhou and Shanhuang Chen and Shengfeng Ye and Shiyu Wang and Shuiping Yu and Shunfeng Zhou and Shuting Pan and S. S. Li and Shuang Zhou and Shaoqing Wu and Shengfeng Ye and Tao Yun and Tian Pei and Tianyu Sun and T. Wang and Wangding Zeng and Wanjia Zhao and Wen Liu and Wenfeng Liang and Wenjun Gao and Wenqin Yu and Wentao Zhang and W. L. Xiao and Wei An and Xiaodong Liu and Xiaohan Wang and Xiaokang Chen and Xiaotao Nie and Xin Cheng and Xin Liu and Xin Xie and Xingchao Liu and Xinyu Yang and Xinyuan Li and Xuecheng Su and Xuheng Lin and X. Q. Li and Xiangyue Jin and Xiaojin Shen and Xiaosha Chen and Xiaowen Sun and Xiaoxiang Wang and Xinnan Song and Xinyi Zhou and Xianzu Wang and Xinxia Shan and Y. K. Li and Y. Q. Wang and Y. X. Wei and Yang Zhang and Yanhong Xu and Yao Li and Yao Zhao and Yaofeng Sun and Yaohui Wang and Yi Yu and Yichao Zhang and Yifan Shi and Yiliang Xiong and Ying He and Yishi Piao and Yisong Wang and Yixuan Tan and Yiyang Ma and Yiyuan Liu and Yongqiang Guo and Yuan Ou and Yuduan Wang and Yue Gong and Yuheng Zou and Yujia He and Yunfan Xiong and Yuxiang Luo and Yuxiang You and Yuxuan Liu and Yuyang Zhou and Y. X. Zhu and Yanhong Xu and Yanping Huang and Yaohui Li and Yi Zheng and Yuchen Zhu and Yunxian Ma and Ying Tang and Yukun Zha and Yuting Yan and Z. Z. Ren and Zehui Ren and Zhangli Sha and Zhe Fu and Zhean Xu and Zhenda Xie and Zhengyan Zhang and Zhewen Hao and Zhicheng Ma and Zhigang Yan and Zhiyu Wu and Zihui Gu and Zijia Zhu and Zijun Liu and Zilin Li and Ziwei Xie and Ziyang Song and Zizheng Pan and Zhen Huang and Zhipeng Xu and Zhongyu Zhang and Zhen Zhang},
year={2025},
eprint={2501.12948},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.12948},
}
```
## 9. Contact
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
|
lesso01/ed107b85-be2f-4133-99bd-6b7db78dfef3 | lesso01 | 2025-01-29T08:36:56Z | 7 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-0.5B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T08:28:11Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ed107b85-be2f-4133-99bd-6b7db78dfef3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-0.5B-Instruct
bf16: auto
chat_template: llama3
datasets:
- data_files:
- ce7fcd2d05dffaef_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ce7fcd2d05dffaef_train_data.json
type:
field_input: original_dataset
field_instruction: original_question
field_output: object_level_prompt
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso01/ed107b85-be2f-4133-99bd-6b7db78dfef3
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/ce7fcd2d05dffaef_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 54f52b18-f019-41eb-b70b-23aa1dcdada5
wandb_project: new-01-29
wandb_run: your_name
wandb_runid: 54f52b18-f019-41eb-b70b-23aa1dcdada5
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# ed107b85-be2f-4133-99bd-6b7db78dfef3
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0026
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0016 | 0.6467 | 200 | 0.0026 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Man-tas/Coloring-Book-Flux-LoRA | Man-tas | 2025-01-29T08:36:52Z | 22 | 0 | diffusers | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | 2025-01-29T08:25:05Z | ---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- text: 'Coloring Book, A black and white drawing of a truck parked in front of a house. The truck is facing towards the right side of the image. There is a large tree to the right of the truck. There are small bushes to the left of the house. A fence is behind the truck on the right. The house has a roof that is made up of wood. The sky above the house is filled with fluffy white clouds.'
output:
url: images/EB1.png
- text: 'Coloring Book, A black and white pencil sketch of a fox standing on its hind legs. The foxs fur is a light brown color, and its ears are a darker brown. Its eyes are black, and the foxs mouth is slightly open, as if it is about to go into the water. Thefoxs ears are sticking up, and it has a black nose and black eyes. There is a tree trunk on the left side of the image, and there are clouds in the sky. There are plants on the right and left of the fox.'
output:
url: images/EB2.png
- text: 'Coloring Book, An eye-level view of a white sports car, the car is facing towards the right. The car is positioned in front of a backdrop of a cityscape, with the city skyline in the background. It is a black and white monochromatic image, with black accents on the cars body and the hood. The front of the car has a large headlight in the center of the front, and a black bumper with a yellow emblem on the right side of the headlight. On the left side, there are two large black tires with silver rims on them.'
output:
url: images/EB3.png
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: Coloring Book
license: creativeml-openrail-m
---
# Coloring-Book-Flux-LoRA
<Gallery />
**The model is still in the training phase. This is not the final version and may contain artifacts and perform poorly in some cases.**
## Model description
**prithivMLmods/Coloring-Book-Flux-LoRA**
Image Processing Parameters
| Parameter | Value | Parameter | Value |
|---------------------------|--------|---------------------------|--------|
| LR Scheduler | constant | Noise Offset | 0.03 |
| Optimizer | AdamW | Multires Noise Discount | 0.1 |
| Network Dim | 64 | Multires Noise Iterations | 10 |
| Network Alpha | 32 | Repeat & Steps | 20 & 2000|
| Epoch | 10 | Save Every N Epochs | 1 |
Labeling: florence2-en(natural language & English)
Total Images Used for Training : 10 [ Hi-RES ]
## Best Dimensions
- 1024 x 1024 (Default)
## Setting Up
```
import torch
from pipelines import DiffusionPipeline
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "prithivMLmods/Coloring-Book-Flux-LoRA"
trigger_word = "Coloring Book"
pipe.load_lora_weights(lora_repo)
device = torch.device("cuda")
pipe.to(device)
```
## Data source
- https://playground.com/
## Trigger words
You should use `Coloring Book` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/prithivMLmods/Coloring-Book-Flux-LoRA/tree/main) them in the Files & versions tab.
|
kk-aivio/5d2e7f18-004f-4e8b-9e9c-4701ff23dd14 | kk-aivio | 2025-01-29T08:36:46Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:trl-internal-testing/tiny-random-LlamaForCausalLM",
"base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM",
"region:us"
] | null | 2025-01-29T08:36:14Z | ---
library_name: peft
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5d2e7f18-004f-4e8b-9e9c-4701ff23dd14
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a778387021162f56_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a778387021162f56_train_data.json
type:
field_instruction: prompt
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: kk-aivio/5d2e7f18-004f-4e8b-9e9c-4701ff23dd14
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/a778387021162f56_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
wandb_project: Birthday-SN56-17-Gradients-On-Demand
wandb_run: your_name
wandb_runid: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 5d2e7f18-004f-4e8b-9e9c-4701ff23dd14
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3783
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0004 | 1 | 10.3805 |
| 10.3805 | 0.0055 | 13 | 10.3797 |
| 10.3789 | 0.0111 | 26 | 10.3787 |
| 10.3782 | 0.0166 | 39 | 10.3783 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
thirdeyeai/elevate360m | thirdeyeai | 2025-01-29T08:36:45Z | 42 | 0 | null | [
"safetensors",
"llama",
"region:us"
] | null | 2025-01-28T23:34:38Z | ---
metrics:
- accuracy
- code_eval
---
# Model Card for Evaluate360M
## Model Details
### Model Description
Evaluate360M is a lightweight large language model optimized for reasoning tasks. It is designed to run efficiently on low-end commercial hardware, such as mobile phones, while maintaining strong performance in logical reasoning and general-purpose applications.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** Transformer-based decoder model
- **Language(s) (NLP):** English
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** `HuggingFaceTB/SmolLM2-360M-Instruct`
### Model Sources
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
### Direct Use
Evaluate360M is intended for general-purpose reasoning tasks and can be used in applications that require lightweight LLMs, such as:
- Mobile-based AI assistants
- Low-power embedded systems
- Edge computing applications
### Downstream Use
It can be further fine-tuned for specific domains, including code generation, summarization, or dialogue systems.
### Out-of-Scope Use
- Not optimized for handling very large context windows
- Not designed for generating high-fidelity creative text, such as poetry or fiction
## Bias, Risks, and Limitations
### Limitations
- Struggles with handling large context windows.
- Not evaluated for potential biases yet.
### Recommendations
Users should be aware of the model’s limitations in context length and should evaluate its performance for their specific use cases.
## How to Get Started with the Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "evaluate360m"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
inputs = tokenizer("What is the capital of France?", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
```
## Training Details
### Training Data
- **Dataset:** `HuggingFaceH4/Bespoke-Stratos-17k`
- **Preprocessing:** Token packing enabled (`--packing`), sequence length up to 2048 tokens
### Training Procedure
- **Optimizer & Precision:**
- `bf16` mixed precision
- `gradient_accumulation_steps = 8`
- Gradient checkpointing enabled
- **Hyperparameters:**
- Learning rate: `2e-5`
- Epochs: `3`
- Batch size: `4` (per device, both training and evaluation)
- **Evaluation & Saving:**
- Evaluation every `500` steps
- Model checkpoint saved every `1000` steps, keeping a max of `2` checkpoints
### Compute Infrastructure
- **Hardware Used:** A100 GPU
- **Training Time:** 6 hours
## Evaluation
- **Benchmarks:** No evaluation conducted yet.
- **Metrics:** Not available yet.
## Environmental Impact
- **Hardware Type:** A100 GPU
- **Hours Used:** 6 hours
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications
### Model Architecture
- Similar to SmolLM2-360M
- Inspired by MobileLLM
- Uses **Grouped-Query Attention (GQA)**
- Prioritizes depth over width
## Citation [optional]
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## More Information
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
great0001/98aeeeed-f492-4f8e-8b06-ad48e703e4fc | great0001 | 2025-01-29T08:35:33Z | 7 | 0 | peft | [
"peft",
"safetensors",
"gemma",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/gemma-7b-it",
"base_model:adapter:unsloth/gemma-7b-it",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T07:34:26Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/gemma-7b-it
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 98aeeeed-f492-4f8e-8b06-ad48e703e4fc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/gemma-7b-it
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5a1549a363bd92b9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5a1549a363bd92b9_train_data.json
type:
field_input: system_prompt
field_instruction: question
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: great0001/98aeeeed-f492-4f8e-8b06-ad48e703e4fc
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/5a1549a363bd92b9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9d3bed81-78f2-4061-9ad2-a87e632c5343
wandb_project: Mine-SN56-20-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9d3bed81-78f2-4061-9ad2-a87e632c5343
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 98aeeeed-f492-4f8e-8b06-ad48e703e4fc
This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0491
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0000 | 1 | 3.3065 |
| 1.7599 | 0.0001 | 13 | 1.2474 |
| 1.3996 | 0.0002 | 26 | 1.1088 |
| 1.1721 | 0.0003 | 39 | 1.0491 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
kartikgupta373/e10-ad15580-705536-aqua-green | kartikgupta373 | 2025-01-29T08:35:23Z | 6 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-01-29T08:35:21Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: TOK
---
# E10 Ad15580 705536 Aqua Green
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `TOK` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('kartikgupta373/e10-ad15580-705536-aqua-green', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
kartikgupta373/e8-ad15653-705553-white | kartikgupta373 | 2025-01-29T08:35:13Z | 6 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-01-29T08:35:12Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: TOK
---
# E8 Ad15653 705553 White
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `TOK` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('kartikgupta373/e8-ad15653-705553-white', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
John6666/meichi-il-ight-mix-v1-meichiilustmixv1-sdxl | John6666 | 2025-01-29T08:34:49Z | 41 | 0 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"anime",
"woman",
"illustrious",
"en",
"base_model:OnomaAIResearch/Illustrious-xl-early-release-v0",
"base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | 2025-01-29T08:27:14Z | ---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- anime
- woman
- illustrious
base_model: OnomaAIResearch/Illustrious-xl-early-release-v0
---
Original model is [here](https://civitai.com/models/1193368/meichi-il-ightmixv1?modelVersionId=1343666).
This model created by [JuzuArupukato](https://civitai.com/user/JuzuArupukato).
|
lesso08/2d6c8b30-2a28-46e6-a8af-dba39f33ad6d | lesso08 | 2025-01-29T08:34:06Z | 6 | 0 | peft | [
"peft",
"safetensors",
"gpt_neo",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/gpt-neo-1.3B",
"base_model:adapter:EleutherAI/gpt-neo-1.3B",
"license:mit",
"region:us"
] | null | 2025-01-29T08:32:09Z | ---
library_name: peft
license: mit
base_model: EleutherAI/gpt-neo-1.3B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2d6c8b30-2a28-46e6-a8af-dba39f33ad6d
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/gpt-neo-1.3B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ae14bfeb00663848_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ae14bfeb00663848_train_data.json
type:
field_input: product_title
field_instruction: text
field_output: preds
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso08/2d6c8b30-2a28-46e6-a8af-dba39f33ad6d
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mixed_precision: bf16
mlflow_experiment_name: /tmp/ae14bfeb00663848_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 768b7d8f-e163-4eb7-94e2-6e5f62199e26
wandb_project: multi
wandb_run: your_name
wandb_runid: 768b7d8f-e163-4eb7-94e2-6e5f62199e26
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 2d6c8b30-2a28-46e6-a8af-dba39f33ad6d
This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4196
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 52
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.5501 | 0.9903 | 51 | 1.4190 |
| 5.5417 | 1.0097 | 52 | 1.4196 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
djphoenix/Qwen2.5-Coder-3B-Instruct-Q6-mlx | djphoenix | 2025-01-29T08:33:37Z | 15 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"code",
"codeqwen",
"chat",
"qwen",
"qwen-coder",
"mlx",
"mlx-my-repo",
"conversational",
"en",
"base_model:Qwen/Qwen2.5-Coder-3B-Instruct",
"base_model:quantized:Qwen/Qwen2.5-Coder-3B-Instruct",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"6-bit",
"region:us"
] | text-generation | 2025-01-29T08:33:11Z | ---
license: other
license_name: qwen-research
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct/blob/main/LICENSE
language:
- en
base_model: Qwen/Qwen2.5-Coder-3B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
- mlx
- mlx-my-repo
---
# djphoenix/Qwen2.5-Coder-3B-Instruct-Q6-mlx
The Model [djphoenix/Qwen2.5-Coder-3B-Instruct-Q6-mlx](https://huggingface.co/djphoenix/Qwen2.5-Coder-3B-Instruct-Q6-mlx) was converted to MLX format from [Qwen/Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) using mlx-lm version **0.20.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("djphoenix/Qwen2.5-Coder-3B-Instruct-Q6-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
kartikgupta373/e11-ad15514-705404-pink | kartikgupta373 | 2025-01-29T08:33:32Z | 8 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-01-29T08:33:29Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: TOK
---
# E11 Ad15514 705404 Pink
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `TOK` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('kartikgupta373/e11-ad15514-705404-pink', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
lesso11/015006f4-5f6e-42f5-be03-eb13d6cf97b5 | lesso11 | 2025-01-29T08:33:18Z | 8 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-0.5B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T08:31:47Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 015006f4-5f6e-42f5-be03-eb13d6cf97b5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-0.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ce7fcd2d05dffaef_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ce7fcd2d05dffaef_train_data.json
type:
field_input: original_dataset
field_instruction: original_question
field_output: object_level_prompt
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso11/015006f4-5f6e-42f5-be03-eb13d6cf97b5
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mixed_precision: bf16
mlflow_experiment_name: /tmp/ce7fcd2d05dffaef_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 54f52b18-f019-41eb-b70b-23aa1dcdada5
wandb_project: multi
wandb_run: your_name
wandb_runid: 54f52b18-f019-41eb-b70b-23aa1dcdada5
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 015006f4-5f6e-42f5-be03-eb13d6cf97b5
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2641
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 39
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.2458 | 0.9806 | 38 | 0.2641 |
| 0.3732 | 1.0129 | 39 | 0.2641 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Triangle104/MN-12B-Mimicore-WhiteSnake-Q8_0-GGUF | Triangle104 | 2025-01-29T08:32:55Z | 22 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:DoppelReflEx/MN-12B-Mimicore-WhiteSnake",
"base_model:quantized:DoppelReflEx/MN-12B-Mimicore-WhiteSnake",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | null | 2025-01-29T08:24:10Z | ---
license: cc-by-nc-4.0
base_model: DoppelReflEx/MN-12B-Mimicore-WhiteSnake
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Triangle104/MN-12B-Mimicore-WhiteSnake-Q8_0-GGUF
This model was converted to GGUF format from [`DoppelReflEx/MN-12B-Mimicore-WhiteSnake`](https://huggingface.co/DoppelReflEx/MN-12B-Mimicore-WhiteSnake) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/DoppelReflEx/MN-12B-Mimicore-WhiteSnake) for more details on the model.
---
Model details:
-
Better version of GreenSnake, not too much different in OpenLLM
LeaderBoard scores. Merge with
cgato/Nemo-12b-Humanize-KTO-Experimental-Latest so this model could
perform 'human response'.
This merge model is a gift for Lunar New Year, haha. Enjoy it.
Good for RP, ERP, Story Telling.
PS: It's don't have cgato/Nemo-12b-Humanize-KTO-Experimental-Latest Tokenization issue.
Update: Still have cgato/Nemo-12b-Humanize-KTO-Experimental-Latest
Tokenization issue, but randomly occur in rare rate. If you are
experiencing this issue, just press re-generate to reroll other
message/response.
Chat Format? ChatML of course!
Models Merged
The following models were included in the merge:
cgato/Nemo-12b-Humanize-KTO-Experimental-Latest
DoppelReflEx/MN-12B-Mimicore-GreenSnake
Configuration
The following YAML configuration was used to produce this model:
models:
- model: cgato/Nemo-12b-Humanize-KTO-Experimental-Latest
parameters:
density: 0.9
weight: 1
- model: DoppelReflEx/MN-12B-Mimicore-GreenSnake
parameters:
density: 0.6
weight: 0.8
merge_method: dare_ties
base_model: IntervitensInc/Mistral-Nemo-Base-2407-chatml
tokenizer_source: base
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q8_0-GGUF --hf-file mn-12b-mimicore-whitesnake-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q8_0-GGUF --hf-file mn-12b-mimicore-whitesnake-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q8_0-GGUF --hf-file mn-12b-mimicore-whitesnake-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q8_0-GGUF --hf-file mn-12b-mimicore-whitesnake-q8_0.gguf -c 2048
```
|
lesso02/3badf6d3-b818-41fe-a1c0-0f17c46c6a8d | lesso02 | 2025-01-29T08:31:52Z | 6 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-0.5B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T08:30:42Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 3badf6d3-b818-41fe-a1c0-0f17c46c6a8d
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-0.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ce7fcd2d05dffaef_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ce7fcd2d05dffaef_train_data.json
type:
field_input: original_dataset
field_instruction: original_question
field_output: object_level_prompt
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso02/3badf6d3-b818-41fe-a1c0-0f17c46c6a8d
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mixed_precision: bf16
mlflow_experiment_name: /tmp/ce7fcd2d05dffaef_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 54f52b18-f019-41eb-b70b-23aa1dcdada5
wandb_project: multi
wandb_run: your_name
wandb_runid: 54f52b18-f019-41eb-b70b-23aa1dcdada5
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 3badf6d3-b818-41fe-a1c0-0f17c46c6a8d
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2577
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 39
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.2398 | 0.9806 | 38 | 0.2581 |
| 0.3631 | 1.0129 | 39 | 0.2577 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Triangle104/MN-12B-Mimicore-WhiteSnake-Q6_K-GGUF | Triangle104 | 2025-01-29T08:31:25Z | 25 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:DoppelReflEx/MN-12B-Mimicore-WhiteSnake",
"base_model:quantized:DoppelReflEx/MN-12B-Mimicore-WhiteSnake",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-01-29T08:20:11Z | ---
license: cc-by-nc-4.0
base_model: DoppelReflEx/MN-12B-Mimicore-WhiteSnake
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Triangle104/MN-12B-Mimicore-WhiteSnake-Q6_K-GGUF
This model was converted to GGUF format from [`DoppelReflEx/MN-12B-Mimicore-WhiteSnake`](https://huggingface.co/DoppelReflEx/MN-12B-Mimicore-WhiteSnake) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/DoppelReflEx/MN-12B-Mimicore-WhiteSnake) for more details on the model.
---
Model details:
-
Better version of GreenSnake, not too much different in OpenLLM
LeaderBoard scores. Merge with
cgato/Nemo-12b-Humanize-KTO-Experimental-Latest so this model could
perform 'human response'.
This merge model is a gift for Lunar New Year, haha. Enjoy it.
Good for RP, ERP, Story Telling.
PS: It's don't have cgato/Nemo-12b-Humanize-KTO-Experimental-Latest Tokenization issue.
Update: Still have cgato/Nemo-12b-Humanize-KTO-Experimental-Latest
Tokenization issue, but randomly occur in rare rate. If you are
experiencing this issue, just press re-generate to reroll other
message/response.
Chat Format? ChatML of course!
Models Merged
The following models were included in the merge:
cgato/Nemo-12b-Humanize-KTO-Experimental-Latest
DoppelReflEx/MN-12B-Mimicore-GreenSnake
Configuration
The following YAML configuration was used to produce this model:
models:
- model: cgato/Nemo-12b-Humanize-KTO-Experimental-Latest
parameters:
density: 0.9
weight: 1
- model: DoppelReflEx/MN-12B-Mimicore-GreenSnake
parameters:
density: 0.6
weight: 0.8
merge_method: dare_ties
base_model: IntervitensInc/Mistral-Nemo-Base-2407-chatml
tokenizer_source: base
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q6_K-GGUF --hf-file mn-12b-mimicore-whitesnake-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q6_K-GGUF --hf-file mn-12b-mimicore-whitesnake-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q6_K-GGUF --hf-file mn-12b-mimicore-whitesnake-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q6_K-GGUF --hf-file mn-12b-mimicore-whitesnake-q6_k.gguf -c 2048
```
|
nhunglaaaaaaa/9853282e-7de5-49e3-a0e7-380ec4f19e19 | nhunglaaaaaaa | 2025-01-29T08:31:22Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:lmsys/vicuna-13b-v1.5",
"base_model:adapter:lmsys/vicuna-13b-v1.5",
"license:llama2",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T08:05:36Z | ---
library_name: peft
license: llama2
base_model: lmsys/vicuna-13b-v1.5
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 9853282e-7de5-49e3-a0e7-380ec4f19e19
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-13b-v1.5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 050404ebdd7019b8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/050404ebdd7019b8_train_data.json
type:
field_instruction: problem
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: nhunglaaaaaaa/9853282e-7de5-49e3-a0e7-380ec4f19e19
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/050404ebdd7019b8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f98aeb00-1c68-46fd-a249-d65fd262ecb9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f98aeb00-1c68-46fd-a249-d65fd262ecb9
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 9853282e-7de5-49e3-a0e7-380ec4f19e19
This model is a fine-tuned version of [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8065
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5398 | 0.1369 | 200 | 0.8065 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
peterreyes22/pedro | peterreyes22 | 2025-01-29T08:31:13Z | 40 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-01-29T08:00:33Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: pedro
---
# Pedro
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `pedro` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('peterreyes22/pedro', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
Triangle104/MN-12B-Mimicore-WhiteSnake-Q5_K_M-GGUF | Triangle104 | 2025-01-29T08:30:08Z | 371 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:DoppelReflEx/MN-12B-Mimicore-WhiteSnake",
"base_model:quantized:DoppelReflEx/MN-12B-Mimicore-WhiteSnake",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-01-29T08:08:04Z | ---
license: cc-by-nc-4.0
base_model: DoppelReflEx/MN-12B-Mimicore-WhiteSnake
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Triangle104/MN-12B-Mimicore-WhiteSnake-Q5_K_M-GGUF
This model was converted to GGUF format from [`DoppelReflEx/MN-12B-Mimicore-WhiteSnake`](https://huggingface.co/DoppelReflEx/MN-12B-Mimicore-WhiteSnake) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/DoppelReflEx/MN-12B-Mimicore-WhiteSnake) for more details on the model.
---
Model details:
-
Better version of GreenSnake, not too much different in OpenLLM
LeaderBoard scores. Merge with
cgato/Nemo-12b-Humanize-KTO-Experimental-Latest so this model could
perform 'human response'.
This merge model is a gift for Lunar New Year, haha. Enjoy it.
Good for RP, ERP, Story Telling.
PS: It's don't have cgato/Nemo-12b-Humanize-KTO-Experimental-Latest Tokenization issue.
Update: Still have cgato/Nemo-12b-Humanize-KTO-Experimental-Latest
Tokenization issue, but randomly occur in rare rate. If you are
experiencing this issue, just press re-generate to reroll other
message/response.
Chat Format? ChatML of course!
Models Merged
The following models were included in the merge:
cgato/Nemo-12b-Humanize-KTO-Experimental-Latest
DoppelReflEx/MN-12B-Mimicore-GreenSnake
Configuration
The following YAML configuration was used to produce this model:
models:
- model: cgato/Nemo-12b-Humanize-KTO-Experimental-Latest
parameters:
density: 0.9
weight: 1
- model: DoppelReflEx/MN-12B-Mimicore-GreenSnake
parameters:
density: 0.6
weight: 0.8
merge_method: dare_ties
base_model: IntervitensInc/Mistral-Nemo-Base-2407-chatml
tokenizer_source: base
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q5_K_M-GGUF --hf-file mn-12b-mimicore-whitesnake-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q5_K_M-GGUF --hf-file mn-12b-mimicore-whitesnake-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q5_K_M-GGUF --hf-file mn-12b-mimicore-whitesnake-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/MN-12B-Mimicore-WhiteSnake-Q5_K_M-GGUF --hf-file mn-12b-mimicore-whitesnake-q5_k_m.gguf -c 2048
```
|
Best000/678fc2c7-6740-4135-ac45-3ce1bc5fcd25 | Best000 | 2025-01-29T08:30:06Z | 7 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:Qwen/Qwen2.5-0.5B-Instruct",
"base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct",
"license:apache-2.0",
"region:us"
] | null | 2025-01-29T08:29:14Z | ---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-0.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 678fc2c7-6740-4135-ac45-3ce1bc5fcd25
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Qwen/Qwen2.5-0.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ce7fcd2d05dffaef_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ce7fcd2d05dffaef_train_data.json
type:
field_input: original_dataset
field_instruction: original_question
field_output: object_level_prompt
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Best000/678fc2c7-6740-4135-ac45-3ce1bc5fcd25
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/ce7fcd2d05dffaef_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 54f52b18-f019-41eb-b70b-23aa1dcdada5
wandb_project: Birthday-SN56-32-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 54f52b18-f019-41eb-b70b-23aa1dcdada5
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 678fc2c7-6740-4135-ac45-3ce1bc5fcd25
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0369
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0032 | 1 | 1.3812 |
| 1.0269 | 0.0420 | 13 | 0.8900 |
| 0.6884 | 0.0841 | 26 | 0.2029 |
| 0.2652 | 0.1261 | 39 | 0.0369 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
AlfRjw/Confucius-o1-14B-Q3-mlx | AlfRjw | 2025-01-29T08:29:46Z | 7 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"chat",
"mlx",
"mlx-my-repo",
"conversational",
"en",
"base_model:netease-youdao/Confucius-o1-14B",
"base_model:quantized:netease-youdao/Confucius-o1-14B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"3-bit",
"region:us"
] | text-generation | 2025-01-29T08:12:13Z | ---
license: apache-2.0
language:
- en
base_model: netease-youdao/Confucius-o1-14B
tags:
- chat
- mlx
- mlx-my-repo
library_name: transformers
---
# AlfRjw/Confucius-o1-14B-Q3-mlx
**UNTESTED**
The Model [AlfRjw/Confucius-o1-14B-Q3-mlx](https://huggingface.co/AlfRjw/Confucius-o1-14B-Q3-mlx) was converted to MLX format from [netease-youdao/Confucius-o1-14B](https://huggingface.co/netease-youdao/Confucius-o1-14B) using mlx-lm version **0.20.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("AlfRjw/Confucius-o1-14B-Q3-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
Romain-XV/270059d3-dc6f-4807-b707-a78859639687 | Romain-XV | 2025-01-29T08:29:19Z | 7 | 0 | peft | [
"peft",
"safetensors",
"gpt_neo",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/gpt-neo-1.3B",
"base_model:adapter:EleutherAI/gpt-neo-1.3B",
"license:mit",
"region:us"
] | null | 2025-01-29T08:21:34Z | ---
library_name: peft
license: mit
base_model: EleutherAI/gpt-neo-1.3B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 270059d3-dc6f-4807-b707-a78859639687
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/gpt-neo-1.3B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ae14bfeb00663848_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ae14bfeb00663848_train_data.json
type:
field_input: product_title
field_instruction: text
field_output: preds
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/270059d3-dc6f-4807-b707-a78859639687
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
lr_scheduler: cosine
max_steps: 700
micro_batch_size: 4
mlflow_experiment_name: /tmp/ae14bfeb00663848_train_data.json
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 768b7d8f-e163-4eb7-94e2-6e5f62199e26
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 768b7d8f-e163-4eb7-94e2-6e5f62199e26
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 270059d3-dc6f-4807-b707-a78859639687
This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8566
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 52
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 31.4181 | 0.0195 | 1 | 1.9560 |
| 13.4716 | 0.9732 | 50 | 0.8566 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
roleplaiapp/oh-dcft-v3.1-claude-3-5-haiku-20241022-Q3_K_L-GGUF | roleplaiapp | 2025-01-29T08:28:49Z | 442 | 0 | transformers | [
"transformers",
"gguf",
"3-bit",
"Q3_K_L",
"claude",
"dcft",
"haiku",
"llama-cpp",
"text-generation",
"v31",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | 2025-01-29T08:28:29Z | ---
library_name: transformers
pipeline_tag: text-generation
tags:
- 3-bit
- Q3_K_L
- claude
- dcft
- gguf
- haiku
- llama-cpp
- text-generation
- v31
---
# roleplaiapp/oh-dcft-v3.1-claude-3-5-haiku-20241022-Q3_K_L-GGUF
**Repo:** `roleplaiapp/oh-dcft-v3.1-claude-3-5-haiku-20241022-Q3_K_L-GGUF`
**Original Model:** `oh-dcft-v3.1-claude-3-5-haiku-20241022`
**Quantized File:** `oh-dcft-v3.1-claude-3-5-haiku-20241022.Q3_K_L.gguf`
**Quantization:** `GGUF`
**Quantization Method:** `Q3_K_L`
## Overview
This is a GGUF Q3_K_L quantized version of oh-dcft-v3.1-claude-3-5-haiku-20241022
## Quantization By
I often have idle GPUs while building/testing for the RP app, so I put them to use quantizing models.
I hope the community finds these quantizations useful.
Andrew Webby @ [RolePlai](https://roleplai.app/).
|
lesso02/5d5ab3bc-28f0-472c-8c2e-14fceb55844e | lesso02 | 2025-01-29T08:28:26Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:lmsys/vicuna-13b-v1.5",
"base_model:adapter:lmsys/vicuna-13b-v1.5",
"license:llama2",
"region:us"
] | null | 2025-01-29T08:06:23Z | ---
library_name: peft
license: llama2
base_model: lmsys/vicuna-13b-v1.5
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5d5ab3bc-28f0-472c-8c2e-14fceb55844e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-13b-v1.5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 050404ebdd7019b8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/050404ebdd7019b8_train_data.json
type:
field_instruction: problem
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso02/5d5ab3bc-28f0-472c-8c2e-14fceb55844e
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mixed_precision: bf16
mlflow_experiment_name: /tmp/050404ebdd7019b8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f98aeb00-1c68-46fd-a249-d65fd262ecb9
wandb_project: multi
wandb_run: your_name
wandb_runid: f98aeb00-1c68-46fd-a249-d65fd262ecb9
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 5d5ab3bc-28f0-472c-8c2e-14fceb55844e
This model is a fine-tuned version of [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7757
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 183
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.704 | 0.9959 | 182 | 0.7756 |
| 1.2746 | 1.0041 | 183 | 0.7757 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Theros/Qwen2.5-ColdBrew-R1-test5-Q4_K_M-GGUF | Theros | 2025-01-29T08:28:25Z | 20 | 0 | transformers | [
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:Theros/Qwen2.5-ColdBrew-R1-test5",
"base_model:quantized:Theros/Qwen2.5-ColdBrew-R1-test5",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-01-29T08:28:03Z | ---
base_model: Theros/Qwen2.5-ColdBrew-R1-test5
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Theros/Qwen2.5-ColdBrew-R1-test5-Q4_K_M-GGUF
This model was converted to GGUF format from [`Theros/Qwen2.5-ColdBrew-R1-test5`](https://huggingface.co/Theros/Qwen2.5-ColdBrew-R1-test5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Theros/Qwen2.5-ColdBrew-R1-test5) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Theros/Qwen2.5-ColdBrew-R1-test5-Q4_K_M-GGUF --hf-file qwen2.5-coldbrew-r1-test5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Theros/Qwen2.5-ColdBrew-R1-test5-Q4_K_M-GGUF --hf-file qwen2.5-coldbrew-r1-test5-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Theros/Qwen2.5-ColdBrew-R1-test5-Q4_K_M-GGUF --hf-file qwen2.5-coldbrew-r1-test5-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Theros/Qwen2.5-ColdBrew-R1-test5-Q4_K_M-GGUF --hf-file qwen2.5-coldbrew-r1-test5-q4_k_m.gguf -c 2048
```
|
facu1321/jeclem | facu1321 | 2025-01-29T08:27:21Z | 57 | 0 | diffusers | [
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | 2025-01-29T08:11:07Z | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: jeclem
---
# Jeclem
<Gallery />
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `jeclem` to trigger the image generation.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('facu1321/jeclem', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
gavrilstep/f9b9d6ac-cb24-488b-85b3-046a596974e3 | gavrilstep | 2025-01-29T08:27:18Z | 6 | 0 | peft | [
"peft",
"safetensors",
"mixtral",
"axolotl",
"generated_from_trainer",
"base_model:Eurdem/Defne_llama3_2x8B",
"base_model:adapter:Eurdem/Defne_llama3_2x8B",
"license:llama3",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T08:19:45Z | ---
library_name: peft
license: llama3
base_model: Eurdem/Defne_llama3_2x8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f9b9d6ac-cb24-488b-85b3-046a596974e3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: Eurdem/Defne_llama3_2x8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 28991e780ad8e25e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/28991e780ad8e25e_train_data.json
type:
field_input: question
field_instruction: prompt
field_output: rejected
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: gavrilstep/f9b9d6ac-cb24-488b-85b3-046a596974e3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/28991e780ad8e25e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 85a59a0d-822d-4003-8bf0-c43fdd5abff5
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 85a59a0d-822d-4003-8bf0-c43fdd5abff5
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# f9b9d6ac-cb24-488b-85b3-046a596974e3
This model is a fine-tuned version of [Eurdem/Defne_llama3_2x8B](https://huggingface.co/Eurdem/Defne_llama3_2x8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0013 | 1 | nan |
| 0.0 | 0.0063 | 5 | nan |
| 0.0 | 0.0126 | 10 | nan |
| 0.0 | 0.0190 | 15 | nan |
| 0.0 | 0.0253 | 20 | nan |
| 0.0 | 0.0316 | 25 | nan |
| 0.0 | 0.0379 | 30 | nan |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
John6666/jaim-just-another-illustrious-merge-v3-sdxl | John6666 | 2025-01-29T08:27:12Z | 49 | 0 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"anime",
"realistic",
"2.5D",
"illustrious",
"en",
"base_model:Laxhar/noobai-XL-1.1",
"base_model:finetune:Laxhar/noobai-XL-1.1",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | 2025-01-29T08:19:50Z | ---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- anime
- realistic
- 2.5D
- illustrious
base_model: Laxhar/noobai-XL-1.1
---
Original model is [here](https://civitai.com/models/1165105/jaim-just-another-illustrious-merge?modelVersionId=1344566).
This model created by [infamous__fish](https://civitai.com/user/infamous__fish).
|
minhnguyennnnnn/89adb879-676c-4dd2-b417-dcd2a5888f00 | minhnguyennnnnn | 2025-01-29T08:26:44Z | 7 | 0 | peft | [
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
"base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T07:43:13Z | ---
library_name: peft
license: apache-2.0
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 89adb879-676c-4dd2-b417-dcd2a5888f00
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f04259c91cb5f8b9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f04259c91cb5f8b9_train_data.json
type:
field_instruction: input
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: minhnguyennnnnn/89adb879-676c-4dd2-b417-dcd2a5888f00
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/f04259c91cb5f8b9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: aac7786a-015b-44a1-9c8e-ad88dd9f945c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: aac7786a-015b-44a1-9c8e-ad88dd9f945c
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 89adb879-676c-4dd2-b417-dcd2a5888f00
This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3434
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4697 | 0.1206 | 200 | 0.3434 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nathanialhunt/2ef0e3dc-b733-4ff5-b582-2a11508b4240 | nathanialhunt | 2025-01-29T08:26:31Z | 9 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:trl-internal-testing/tiny-random-LlamaForCausalLM",
"base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM",
"region:us"
] | null | 2025-01-29T08:26:03Z | ---
library_name: peft
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2ef0e3dc-b733-4ff5-b582-2a11508b4240
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a778387021162f56_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a778387021162f56_train_data.json
type:
field_instruction: prompt
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: nathanialhunt/2ef0e3dc-b733-4ff5-b582-2a11508b4240
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/a778387021162f56_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
wandb_project: Birthday-SN56-24-Gradients-On-Demand
wandb_run: your_name
wandb_runid: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 2ef0e3dc-b733-4ff5-b582-2a11508b4240
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3781
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0004 | 1 | 10.3805 |
| 10.3805 | 0.0055 | 13 | 10.3796 |
| 10.3789 | 0.0111 | 26 | 10.3786 |
| 10.3781 | 0.0166 | 39 | 10.3781 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
shibajustfor/01f140c9-4075-4473-b3ba-c50188677cdd | shibajustfor | 2025-01-29T08:25:55Z | 11 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:trl-internal-testing/tiny-random-LlamaForCausalLM",
"base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM",
"region:us"
] | null | 2025-01-29T08:25:22Z | ---
library_name: peft
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 01f140c9-4075-4473-b3ba-c50188677cdd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a778387021162f56_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a778387021162f56_train_data.json
type:
field_instruction: prompt
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: shibajustfor/01f140c9-4075-4473-b3ba-c50188677cdd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/a778387021162f56_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
wandb_project: Birthday-SN56-11-Gradients-On-Demand
wandb_run: your_name
wandb_runid: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 01f140c9-4075-4473-b3ba-c50188677cdd
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3779
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0004 | 1 | 10.3805 |
| 10.3805 | 0.0055 | 13 | 10.3795 |
| 10.3788 | 0.0111 | 26 | 10.3785 |
| 10.378 | 0.0166 | 39 | 10.3779 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mrferr3t/969ccec4-3edd-40b1-a042-49cb9497c635 | mrferr3t | 2025-01-29T08:25:30Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:trl-internal-testing/tiny-random-LlamaForCausalLM",
"base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM",
"region:us"
] | null | 2025-01-29T08:25:00Z | ---
library_name: peft
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 969ccec4-3edd-40b1-a042-49cb9497c635
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a778387021162f56_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a778387021162f56_train_data.json
type:
field_instruction: prompt
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/969ccec4-3edd-40b1-a042-49cb9497c635
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 16
micro_batch_size: 2
mlflow_experiment_name: /tmp/a778387021162f56_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 969ccec4-3edd-40b1-a042-49cb9497c635
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3798
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.3781 | 0.0004 | 1 | 10.3805 |
| 10.3826 | 0.0017 | 4 | 10.3804 |
| 10.3824 | 0.0034 | 8 | 10.3802 |
| 10.38 | 0.0051 | 12 | 10.3799 |
| 10.3721 | 0.0068 | 16 | 10.3798 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1 |
robiual-awal/bda72465-f137-4c28-a050-eddde9c35f31 | robiual-awal | 2025-01-29T08:25:07Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:trl-internal-testing/tiny-random-LlamaForCausalLM",
"base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM",
"region:us"
] | null | 2025-01-29T08:24:39Z | ---
library_name: peft
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: bda72465-f137-4c28-a050-eddde9c35f31
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a778387021162f56_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a778387021162f56_train_data.json
type:
field_instruction: prompt
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: robiual-awal/bda72465-f137-4c28-a050-eddde9c35f31
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/a778387021162f56_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
wandb_project: Birthday-SN56-29-Gradients-On-Demand
wandb_run: your_name
wandb_runid: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# bda72465-f137-4c28-a050-eddde9c35f31
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3781
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0004 | 1 | 10.3805 |
| 10.3805 | 0.0055 | 13 | 10.3796 |
| 10.3789 | 0.0111 | 26 | 10.3787 |
| 10.3781 | 0.0166 | 39 | 10.3781 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
tarabukinivan/8cf9565a-2d11-46cc-b260-04f0c4f5a64d | tarabukinivan | 2025-01-29T08:25:01Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:trl-internal-testing/tiny-random-LlamaForCausalLM",
"base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T08:24:25Z | ---
library_name: peft
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 8cf9565a-2d11-46cc-b260-04f0c4f5a64d
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a778387021162f56_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a778387021162f56_train_data.json
type:
field_instruction: prompt
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: tarabukinivan/8cf9565a-2d11-46cc-b260-04f0c4f5a64d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 75GiB
max_steps: 30
micro_batch_size: 2
mlflow_experiment_name: /tmp/a778387021162f56_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 15
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d8ce5f4e-1d08-4104-98b0-755a57abc1d7
warmup_steps: 15
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 8cf9565a-2d11-46cc-b260-04f0c4f5a64d
This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.3791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- training_steps: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0004 | 1 | 10.3817 |
| 10.3807 | 0.0021 | 5 | 10.3816 |
| 10.3823 | 0.0043 | 10 | 10.3812 |
| 10.3794 | 0.0064 | 15 | 10.3806 |
| 10.3784 | 0.0085 | 20 | 10.3798 |
| 10.3776 | 0.0106 | 25 | 10.3792 |
| 10.379 | 0.0128 | 30 | 10.3791 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Athspi/athspi-llm | Athspi | 2025-01-29T08:24:02Z | 75 | 1 | transformers | [
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"storytelling",
"fiction",
"tiny-stories",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-21T09:45:55Z | ---
license: apache-2.0
tags:
- generated_from_trainer
- storytelling
- fiction
- tiny-stories
pipeline_tag: text-generation
library_name: transformers
---
# Athspi LLM
🧠 A small but capable language model for creative story generation, trained on the TinyStories dataset.
 <!-- Add your banner image URL -->
## Model Details
### Architecture
- **Model Type**: Transformer-based language model
- **Layers**: 4
- **Embedding Dim**: 384
- **Heads**: 6
- **Sequence Length**: 128 tokens
- **Parameters**: ~28M
### Training Data
- **Dataset**: [TinyStories](https://huggingface.co/datasets/roneneldan/TinyStories)
- **Training Coverage**: 5% of dataset (~100k samples)
## Usage
### Installation
```bash
pip install torch transformers sentencepiece |
trangtrannnnn/469ecbb5-810f-4a55-8290-cd005a7ce037 | trangtrannnnn | 2025-01-29T08:23:51Z | 7 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Math-1.5B",
"base_model:adapter:unsloth/Qwen2.5-Math-1.5B",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T07:58:08Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 469ecbb5-810f-4a55-8290-cd005a7ce037
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3e822cd8df57cb11_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3e822cd8df57cb11_train_data.json
type:
field_input: context
field_instruction: question
field_output: long_answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: trangtrannnnn/469ecbb5-810f-4a55-8290-cd005a7ce037
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/3e822cd8df57cb11_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c78acf73-ff92-4184-944e-ea8cd1f207da
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c78acf73-ff92-4184-944e-ea8cd1f207da
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 469ecbb5-810f-4a55-8290-cd005a7ce037
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9398
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.0162 | 0.0080 | 200 | 1.9398 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
robiulawaldev/efdfed61-7c3a-44e1-a090-0bc50402dcfd | robiulawaldev | 2025-01-29T08:23:42Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:NousResearch/CodeLlama-13b-hf-flash",
"base_model:adapter:NousResearch/CodeLlama-13b-hf-flash",
"region:us"
] | null | 2025-01-29T08:17:08Z | ---
library_name: peft
base_model: NousResearch/CodeLlama-13b-hf-flash
tags:
- axolotl
- generated_from_trainer
model-index:
- name: efdfed61-7c3a-44e1-a090-0bc50402dcfd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3875808def965efa_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3875808def965efa_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: robiulawaldev/efdfed61-7c3a-44e1-a090-0bc50402dcfd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_steps: 55
micro_batch_size: 4
mlflow_experiment_name: /tmp/3875808def965efa_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
wandb_project: Birthday-SN56-37-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# efdfed61-7c3a-44e1-a090-0bc50402dcfd
This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8420
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 5
- training_steps: 55
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0003 | 1 | 1.6760 |
| 2.7273 | 0.0044 | 14 | 1.0290 |
| 2.1148 | 0.0088 | 28 | 0.9007 |
| 1.7686 | 0.0133 | 42 | 0.8420 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
great0001/7900eb84-fb09-4f07-a98e-f0b95036caee | great0001 | 2025-01-29T08:23:41Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:NousResearch/CodeLlama-13b-hf-flash",
"base_model:adapter:NousResearch/CodeLlama-13b-hf-flash",
"region:us"
] | null | 2025-01-29T08:17:19Z | ---
library_name: peft
base_model: NousResearch/CodeLlama-13b-hf-flash
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7900eb84-fb09-4f07-a98e-f0b95036caee
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3875808def965efa_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3875808def965efa_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: great0001/7900eb84-fb09-4f07-a98e-f0b95036caee
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/3875808def965efa_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
wandb_project: Birthday-SN56-14-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 7900eb84-fb09-4f07-a98e-f0b95036caee
This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9916
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 6.5486 | 0.0003 | 1 | 1.7422 |
| 5.3542 | 0.0041 | 13 | 1.3400 |
| 3.8275 | 0.0082 | 26 | 1.0698 |
| 4.5158 | 0.0123 | 39 | 0.9916 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nhungphammmmm/899ebe09-2d35-42cc-b053-2292c6867e48 | nhungphammmmm | 2025-01-29T08:23:39Z | 7 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Math-1.5B",
"base_model:adapter:unsloth/Qwen2.5-Math-1.5B",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T07:57:55Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Math-1.5B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 899ebe09-2d35-42cc-b053-2292c6867e48
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3e822cd8df57cb11_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3e822cd8df57cb11_train_data.json
type:
field_input: context
field_instruction: question
field_output: long_answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: nhungphammmmm/899ebe09-2d35-42cc-b053-2292c6867e48
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/3e822cd8df57cb11_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c78acf73-ff92-4184-944e-ea8cd1f207da
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c78acf73-ff92-4184-944e-ea8cd1f207da
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 899ebe09-2d35-42cc-b053-2292c6867e48
This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9402
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.014 | 0.0080 | 200 | 1.9402 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Best000/94440577-7831-40c4-874b-89112f466816 | Best000 | 2025-01-29T08:23:20Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:NousResearch/CodeLlama-13b-hf-flash",
"base_model:adapter:NousResearch/CodeLlama-13b-hf-flash",
"region:us"
] | null | 2025-01-29T08:17:04Z | ---
library_name: peft
base_model: NousResearch/CodeLlama-13b-hf-flash
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 94440577-7831-40c4-874b-89112f466816
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3875808def965efa_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3875808def965efa_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Best000/94440577-7831-40c4-874b-89112f466816
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/3875808def965efa_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
wandb_project: Birthday-SN56-32-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 94440577-7831-40c4-874b-89112f466816
This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0949
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0003 | 1 | 1.7422 |
| 6.8527 | 0.0041 | 13 | 1.7196 |
| 6.8357 | 0.0082 | 26 | 1.3318 |
| 5.4547 | 0.0123 | 39 | 1.0949 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
shibajustfor/3e961005-1b03-401e-bdf9-22af3665d041 | shibajustfor | 2025-01-29T08:23:08Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:NousResearch/CodeLlama-13b-hf-flash",
"base_model:adapter:NousResearch/CodeLlama-13b-hf-flash",
"region:us"
] | null | 2025-01-29T08:16:43Z | ---
library_name: peft
base_model: NousResearch/CodeLlama-13b-hf-flash
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 3e961005-1b03-401e-bdf9-22af3665d041
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3875808def965efa_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3875808def965efa_train_data.json
type:
field_instruction: instruction
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: shibajustfor/3e961005-1b03-401e-bdf9-22af3665d041
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/3875808def965efa_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
wandb_project: Birthday-SN56-39-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 29f091f6-5131-4ec0-8ff6-d9601393bcfa
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 3e961005-1b03-401e-bdf9-22af3665d041
This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9882
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0003 | 1 | 1.7422 |
| 6.5173 | 0.0041 | 13 | 1.2674 |
| 4.9838 | 0.0082 | 26 | 1.0513 |
| 4.1562 | 0.0123 | 39 | 0.9882 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
adammandic87/e2cb7f23-cec2-4cbb-ac88-6985dd8c7233 | adammandic87 | 2025-01-29T08:23:04Z | 8 | 0 | peft | [
"peft",
"safetensors",
"gpt_neo",
"axolotl",
"generated_from_trainer",
"base_model:EleutherAI/gpt-neo-1.3B",
"base_model:adapter:EleutherAI/gpt-neo-1.3B",
"license:mit",
"region:us"
] | null | 2025-01-29T08:21:52Z | ---
library_name: peft
license: mit
base_model: EleutherAI/gpt-neo-1.3B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: e2cb7f23-cec2-4cbb-ac88-6985dd8c7233
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: EleutherAI/gpt-neo-1.3B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ae14bfeb00663848_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ae14bfeb00663848_train_data.json
type:
field_input: product_title
field_instruction: text
field_output: preds
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: adammandic87/e2cb7f23-cec2-4cbb-ac88-6985dd8c7233
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/ae14bfeb00663848_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 768b7d8f-e163-4eb7-94e2-6e5f62199e26
wandb_project: Birthday-SN56-34-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 768b7d8f-e163-4eb7-94e2-6e5f62199e26
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# e2cb7f23-cec2-4cbb-ac88-6985dd8c7233
This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7137
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0024 | 1 | 3.6290 |
| 14.4078 | 0.0316 | 13 | 3.3811 |
| 13.3049 | 0.0633 | 26 | 2.8901 |
| 12.0821 | 0.0949 | 39 | 2.7137 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Primeness/primeh4v10c2 | Primeness | 2025-01-29T08:18:09Z | 26 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-29T07:45:52Z | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
clarxus/a08688d7-bc3e-47fd-a64e-a4070a7fe2b2 | clarxus | 2025-01-29T08:17:32Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:NousResearch/Hermes-3-Llama-3.1-8B",
"base_model:adapter:NousResearch/Hermes-3-Llama-3.1-8B",
"license:llama3",
"region:us"
] | null | 2025-01-29T04:55:50Z | ---
library_name: peft
license: llama3
base_model: NousResearch/Hermes-3-Llama-3.1-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: a08688d7-bc3e-47fd-a64e-a4070a7fe2b2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/Hermes-3-Llama-3.1-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 30529ea285fff6e5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/30529ea285fff6e5_train_data.json
type:
field_input: article
field_instruction: input
field_output: clean_input
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: clarxus/a08688d7-bc3e-47fd-a64e-a4070a7fe2b2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/30529ea285fff6e5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 558bab3b-4762-449f-9904-9dc48b2dd138
wandb_project: Gradients-On-Seven
wandb_run: your_name
wandb_runid: 558bab3b-4762-449f-9904-9dc48b2dd138
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# a08688d7-bc3e-47fd-a64e-a4070a7fe2b2
This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3856
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0003 | 1 | 1.1763 |
| 1.2539 | 0.0028 | 9 | 1.0743 |
| 0.9671 | 0.0056 | 18 | 0.8218 |
| 0.8351 | 0.0085 | 27 | 0.6565 |
| 0.5796 | 0.0113 | 36 | 0.5506 |
| 0.5993 | 0.0141 | 45 | 0.4815 |
| 0.5831 | 0.0169 | 54 | 0.4386 |
| 0.4598 | 0.0197 | 63 | 0.4132 |
| 0.3683 | 0.0225 | 72 | 0.3974 |
| 0.2927 | 0.0254 | 81 | 0.3894 |
| 0.4786 | 0.0282 | 90 | 0.3862 |
| 0.3964 | 0.0310 | 99 | 0.3856 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
hongngo/588c2454-ae2b-4172-bda2-8b53ec4e28a0 | hongngo | 2025-01-29T08:14:23Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM-360M",
"base_model:adapter:unsloth/SmolLM-360M",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T07:03:37Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-360M
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 588c2454-ae2b-4172-bda2-8b53ec4e28a0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/SmolLM-360M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ac004a2a3ec8e832_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ac004a2a3ec8e832_train_data.json
type:
field_input: title
field_instruction: content
field_output: summary1
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: hongngo/588c2454-ae2b-4172-bda2-8b53ec4e28a0
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/ac004a2a3ec8e832_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 77344871-dc6c-43c2-89a7-28217f41b23c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 77344871-dc6c-43c2-89a7-28217f41b23c
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# 588c2454-ae2b-4172-bda2-8b53ec4e28a0
This model is a fine-tuned version of [unsloth/SmolLM-360M](https://huggingface.co/unsloth/SmolLM-360M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9084
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8767 | 0.0027 | 200 | 1.9084 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
bunnycore/Phi-4-ReasoningRP | bunnycore | 2025-01-29T08:13:53Z | 116 | 2 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:bunnycore/Phi-4-14B-1M-RRP-v1-lora",
"base_model:merge:bunnycore/Phi-4-14B-1M-RRP-v1-lora",
"base_model:bunnycore/Phi-4-Model-Stock-v4",
"base_model:merge:bunnycore/Phi-4-Model-Stock-v4",
"license:mit",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | 2025-01-28T12:46:38Z | ---
license: mit
library_name: transformers
tags:
- mergekit
- merge
base_model:
- bunnycore/Phi-4-Model-Stock-v4
- bunnycore/Phi-4-14B-1M-RRP-v1-lora
model-index:
- name: Phi-4-ReasoningRP
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 67.36
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-4-ReasoningRP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 55.88
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-4-ReasoningRP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 44.34
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-4-ReasoningRP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.53
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-4-ReasoningRP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 15.14
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-4-ReasoningRP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.12
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-4-ReasoningRP
name: Open LLM Leaderboard
---
This model is Phi-4 with a reasoning fine-tuned LoRA applied. While it can follow a reasoning format, it's important to understand that its "thinking" isn't the same as more advanced reasoning models (like R1 or O1). Think of it as Phi-4 with a helpful reasoning boost.
## What can it do?
This model is designed for roleplay and other reasoning-related tasks. It's not intended to be a replacement for specialized reasoning models; it has its own strengths and limitations.
To activate the reasoning format, use the <think> tag within the system prompt. This will encourage the model to structure its response in a step-by-step or explanatory manner.
### Chat Template:
```
<|im_start|>system<|im_sep|>{system_prompt}<|im_end|>
<|im_start|>user<|im_sep|>{user}<|im_end|>
<|im_start|>assistant<|im_sep|>
```
### Example System Prompt (with reasoning):
You are a helpful assistant. ```<think>``` Let's break this down step by step. First, we need to consider... Then, we can look at... Finally, we arrive at the answer. ```</think>```
Strengths:
- Capable of roleplay.
- Can follow a reasoning format when prompted.
- Based on the Phi-4 architecture.
### Benchmark:

## Merge Details
### Merge Method
This model was merged using the Passthrough merge method using [bunnycore/Phi-4-Model-Stock-v4](https://huggingface.co/bunnycore/Phi-4-Model-Stock-v4) + [bunnycore/Phi-4-14B-1M-RRP-v1-lora](https://huggingface.co/bunnycore/Phi-4-14B-1M-RRP-v1-lora) as a base.
### Models Merged
The following models were included in the merge:
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: bunnycore/Phi-4-Model-Stock-v4+bunnycore/Phi-4-14B-1M-RRP-v1-lora
dtype: bfloat16
merge_method: passthrough
models:
- model: bunnycore/Phi-4-Model-Stock-v4+bunnycore/Phi-4-14B-1M-RRP-v1-lora
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/bunnycore__Phi-4-ReasoningRP-details)
| Metric |Value|
|-------------------|----:|
|Avg. |40.73|
|IFEval (0-Shot) |67.36|
|BBH (3-Shot) |55.88|
|MATH Lvl 5 (4-Shot)|44.34|
|GPQA (0-shot) |12.53|
|MuSR (0-shot) |15.14|
|MMLU-PRO (5-shot) |49.12|
|
robiulawaldev/ec3a841e-b02d-4983-a26c-e16f6324bacf | robiulawaldev | 2025-01-29T08:13:05Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:lmsys/vicuna-13b-v1.5",
"base_model:adapter:lmsys/vicuna-13b-v1.5",
"license:llama2",
"region:us"
] | null | 2025-01-29T08:08:02Z | ---
library_name: peft
license: llama2
base_model: lmsys/vicuna-13b-v1.5
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ec3a841e-b02d-4983-a26c-e16f6324bacf
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-13b-v1.5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 050404ebdd7019b8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/050404ebdd7019b8_train_data.json
type:
field_instruction: problem
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: robiulawaldev/ec3a841e-b02d-4983-a26c-e16f6324bacf
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_steps: 55
micro_batch_size: 4
mlflow_experiment_name: /tmp/050404ebdd7019b8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f98aeb00-1c68-46fd-a249-d65fd262ecb9
wandb_project: Birthday-SN56-37-Gradients-On-Demand
wandb_run: your_name
wandb_runid: f98aeb00-1c68-46fd-a249-d65fd262ecb9
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# ec3a841e-b02d-4983-a26c-e16f6324bacf
This model is a fine-tuned version of [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8055
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 5
- training_steps: 55
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0007 | 1 | 1.0210 |
| 0.9643 | 0.0096 | 14 | 0.8458 |
| 0.8184 | 0.0192 | 28 | 0.8218 |
| 0.8612 | 0.0287 | 42 | 0.8055 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
thaffggg/dffbb83c-6ae9-48ba-b4ff-875a2e92be59 | thaffggg | 2025-01-29T08:12:31Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM-360M",
"base_model:adapter:unsloth/SmolLM-360M",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T07:03:21Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-360M
tags:
- axolotl
- generated_from_trainer
model-index:
- name: dffbb83c-6ae9-48ba-b4ff-875a2e92be59
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/SmolLM-360M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ac004a2a3ec8e832_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ac004a2a3ec8e832_train_data.json
type:
field_input: title
field_instruction: content
field_output: summary1
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: thaffggg/dffbb83c-6ae9-48ba-b4ff-875a2e92be59
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/ac004a2a3ec8e832_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 77344871-dc6c-43c2-89a7-28217f41b23c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 77344871-dc6c-43c2-89a7-28217f41b23c
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# dffbb83c-6ae9-48ba-b4ff-875a2e92be59
This model is a fine-tuned version of [unsloth/SmolLM-360M](https://huggingface.co/unsloth/SmolLM-360M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9079
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8774 | 0.0027 | 200 | 1.9079 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Best000/09fcb6e2-58a2-4f20-b9d1-109a20bde4c0 | Best000 | 2025-01-29T08:12:10Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:lmsys/vicuna-13b-v1.5",
"base_model:adapter:lmsys/vicuna-13b-v1.5",
"license:llama2",
"region:us"
] | null | 2025-01-29T08:08:03Z | ---
library_name: peft
license: llama2
base_model: lmsys/vicuna-13b-v1.5
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 09fcb6e2-58a2-4f20-b9d1-109a20bde4c0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-13b-v1.5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 050404ebdd7019b8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/050404ebdd7019b8_train_data.json
type:
field_instruction: problem
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Best000/09fcb6e2-58a2-4f20-b9d1-109a20bde4c0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/050404ebdd7019b8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f98aeb00-1c68-46fd-a249-d65fd262ecb9
wandb_project: Birthday-SN56-16-Gradients-On-Demand
wandb_run: your_name
wandb_runid: f98aeb00-1c68-46fd-a249-d65fd262ecb9
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# 09fcb6e2-58a2-4f20-b9d1-109a20bde4c0
This model is a fine-tuned version of [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8405
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0007 | 1 | 1.0677 |
| 1.0569 | 0.0089 | 13 | 0.9251 |
| 0.8927 | 0.0178 | 26 | 0.8607 |
| 0.876 | 0.0267 | 39 | 0.8405 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nathanialhunt/a7621f00-2a04-4aaf-888e-dfdbe043d9f9 | nathanialhunt | 2025-01-29T08:12:04Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:lmsys/vicuna-13b-v1.5",
"base_model:adapter:lmsys/vicuna-13b-v1.5",
"license:llama2",
"region:us"
] | null | 2025-01-29T08:08:02Z | ---
library_name: peft
license: llama2
base_model: lmsys/vicuna-13b-v1.5
tags:
- axolotl
- generated_from_trainer
model-index:
- name: a7621f00-2a04-4aaf-888e-dfdbe043d9f9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-13b-v1.5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 050404ebdd7019b8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/050404ebdd7019b8_train_data.json
type:
field_instruction: problem
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: nathanialhunt/a7621f00-2a04-4aaf-888e-dfdbe043d9f9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/050404ebdd7019b8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f98aeb00-1c68-46fd-a249-d65fd262ecb9
wandb_project: Birthday-SN56-5-Gradients-On-Demand
wandb_run: your_name
wandb_runid: f98aeb00-1c68-46fd-a249-d65fd262ecb9
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# a7621f00-2a04-4aaf-888e-dfdbe043d9f9
This model is a fine-tuned version of [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0007 | 1 | 1.0677 |
| 1.0369 | 0.0089 | 13 | 0.9203 |
| 0.8723 | 0.0178 | 26 | 0.8556 |
| 0.8706 | 0.0267 | 39 | 0.8391 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
kostiantynk1205/d45e62a5-5647-4e6b-9e5c-afc7a53583e9 | kostiantynk1205 | 2025-01-29T08:12:01Z | 6 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:lmsys/vicuna-13b-v1.5",
"base_model:adapter:lmsys/vicuna-13b-v1.5",
"license:llama2",
"region:us"
] | null | 2025-01-29T08:07:59Z | ---
library_name: peft
license: llama2
base_model: lmsys/vicuna-13b-v1.5
tags:
- axolotl
- generated_from_trainer
model-index:
- name: d45e62a5-5647-4e6b-9e5c-afc7a53583e9
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: lmsys/vicuna-13b-v1.5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 050404ebdd7019b8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/050404ebdd7019b8_train_data.json
type:
field_instruction: problem
field_output: solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: kostiantynk1205/d45e62a5-5647-4e6b-9e5c-afc7a53583e9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/050404ebdd7019b8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f98aeb00-1c68-46fd-a249-d65fd262ecb9
wandb_project: Birthday-SN56-23-Gradients-On-Demand
wandb_run: your_name
wandb_runid: f98aeb00-1c68-46fd-a249-d65fd262ecb9
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# d45e62a5-5647-4e6b-9e5c-afc7a53583e9
This model is a fine-tuned version of [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8397
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0007 | 1 | 1.0677 |
| 1.0371 | 0.0089 | 13 | 0.9208 |
| 0.8723 | 0.0178 | 26 | 0.8562 |
| 0.8715 | 0.0267 | 39 | 0.8397 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
mebook/models | mebook | 2025-01-29T08:11:45Z | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-05-08T19:29:35Z | ---
license: apache-2.0
---
|
lesso13/dec01dc3-b8d1-4621-a332-9cdfe89cd205 | lesso13 | 2025-01-29T08:10:36Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"custom_code",
"base_model:NousResearch/CodeLlama-7b-hf-flash",
"base_model:adapter:NousResearch/CodeLlama-7b-hf-flash",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T07:32:04Z | ---
library_name: peft
base_model: NousResearch/CodeLlama-7b-hf-flash
tags:
- axolotl
- generated_from_trainer
model-index:
- name: dec01dc3-b8d1-4621-a332-9cdfe89cd205
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-7b-hf-flash
bf16: auto
chat_template: llama3
datasets:
- data_files:
- 682a834cc2a59bd6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/682a834cc2a59bd6_train_data.json
type:
field_input: context
field_instruction: question
field_output: cleaned_atom
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso13/dec01dc3-b8d1-4621-a332-9cdfe89cd205
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/682a834cc2a59bd6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 313417c2-c5dc-47a4-9b02-d2be42090d8e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 313417c2-c5dc-47a4-9b02-d2be42090d8e
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# dec01dc3-b8d1-4621-a332-9cdfe89cd205
This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2728
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9305 | 0.0513 | 200 | 0.2728 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
nhoxinh/a15ad0fe-907a-4ef1-9df1-91b6208261d6 | nhoxinh | 2025-01-29T08:10:09Z | 7 | 0 | peft | [
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/SmolLM-360M",
"base_model:adapter:unsloth/SmolLM-360M",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T07:03:29Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/SmolLM-360M
tags:
- axolotl
- generated_from_trainer
model-index:
- name: a15ad0fe-907a-4ef1-9df1-91b6208261d6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/SmolLM-360M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- ac004a2a3ec8e832_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ac004a2a3ec8e832_train_data.json
type:
field_input: title
field_instruction: content
field_output: summary1
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: nhoxinh/a15ad0fe-907a-4ef1-9df1-91b6208261d6
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/ac004a2a3ec8e832_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 77344871-dc6c-43c2-89a7-28217f41b23c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 77344871-dc6c-43c2-89a7-28217f41b23c
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# a15ad0fe-907a-4ef1-9df1-91b6208261d6
This model is a fine-tuned version of [unsloth/SmolLM-360M](https://huggingface.co/unsloth/SmolLM-360M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9085
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8835 | 0.0027 | 200 | 1.9085 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
minhtrannnn/f26943de-a6f5-4a70-9039-bf86aa5157aa | minhtrannnn | 2025-01-29T08:01:53Z | 7 | 0 | peft | [
"peft",
"safetensors",
"qwen2",
"axolotl",
"generated_from_trainer",
"base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-Coder-1.5B-Instruct",
"license:apache-2.0",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2025-01-29T07:16:29Z | ---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f26943de-a6f5-4a70-9039-bf86aa5157aa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 425476553ab111b0_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/425476553ab111b0_train_data.json
type:
field_input: Content
field_instruction: Title
field_output: Summary
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: minhtrannnn/f26943de-a6f5-4a70-9039-bf86aa5157aa
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/425476553ab111b0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6972c938-4c63-447c-ab05-b15cf2af5926
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6972c938-4c63-447c-ab05-b15cf2af5926
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
```
</details><br>
# f26943de-a6f5-4a70-9039-bf86aa5157aa
This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6909
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9902 | 0.0233 | 200 | 1.6909 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |
Subsets and Splits