modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 00:42:13
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
499 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 00:40:00
card
stringlengths
11
1.01M
kostiantynk-out/16019304-562e-4f8e-bc7c-fc09385eed3f
kostiantynk-out
2025-01-29T06:46:33Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d", "base_model:adapter:rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d", "region:us" ]
null
2025-01-29T06:15:00Z
--- library_name: peft base_model: rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d tags: - axolotl - generated_from_trainer model-index: - name: 16019304-562e-4f8e-bc7c-fc09385eed3f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 29eee4dbaacb6194_train_data.json ds_type: json format: custom path: /workspace/input_data/29eee4dbaacb6194_train_data.json type: field_input: context field_instruction: question field_output: final_decision format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk-out/16019304-562e-4f8e-bc7c-fc09385eed3f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/29eee4dbaacb6194_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0e01ae65-216b-419b-8293-aa58408aef14 wandb_project: Mine-SN56-1-Gradients-On-Demand wandb_run: your_name wandb_runid: 0e01ae65-216b-419b-8293-aa58408aef14 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 16019304-562e-4f8e-bc7c-fc09385eed3f This model is a fine-tuned version of [rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d](https://huggingface.co/rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 13.6439 | | 7.2237 | 0.0003 | 13 | 1.5586 | | 1.502 | 0.0005 | 26 | 0.2557 | | 0.4942 | 0.0008 | 39 | 0.2648 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thalllsssss/8521530e-949b-412d-a088-9b8575ff5f89
thalllsssss
2025-01-29T06:46:28Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T06:45:36Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8521530e-949b-412d-a088-9b8575ff5f89 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 47d54f36be91dd39_train_data.json ds_type: json format: custom path: /workspace/input_data/47d54f36be91dd39_train_data.json type: field_input: choices field_instruction: question_eng field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thalllsssss/8521530e-949b-412d-a088-9b8575ff5f89 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/47d54f36be91dd39_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f1df40a9-a29a-4e64-9bf4-df4241b29729 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f1df40a9-a29a-4e64-9bf4-df4241b29729 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8521530e-949b-412d-a088-9b8575ff5f89 This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7952 | 0.96 | 12 | 2.6245 | | 4.6313 | 1.04 | 13 | 2.6001 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
maulikanalog/pareshv
maulikanalog
2025-01-29T06:46:16Z
77
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "ai-toolkit", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T06:36:18Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - ai-toolkit widget: - text: pareshv in tailored Italian suit output: url: images/example_6p265ph4k.png - text: pareshv in tailored Italian blue suit in office output: url: images/example_2cusg7yp8.png - text: pareshv in tailored Italian suit output: url: images/example_zn0vcd9hd.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: pareshv license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # pareshv Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) <Gallery /> ## Trigger words You should use `pareshv` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc. Weights for this model are available in Safetensors format. [Download](/None/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('None', weight_name='pareshv') image = pipeline('A person in a bustling cafe pareshv').images[0] image.save("my_image.png") ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
nghiatrannnnnn/9907a2d9-244d-4bc1-a282-1cef43daf6db
nghiatrannnnnn
2025-01-29T06:45:53Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T06:45:23Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9907a2d9-244d-4bc1-a282-1cef43daf6db results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 47d54f36be91dd39_train_data.json ds_type: json format: custom path: /workspace/input_data/47d54f36be91dd39_train_data.json type: field_input: choices field_instruction: question_eng field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nghiatrannnnnn/9907a2d9-244d-4bc1-a282-1cef43daf6db hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/47d54f36be91dd39_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f1df40a9-a29a-4e64-9bf4-df4241b29729 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f1df40a9-a29a-4e64-9bf4-df4241b29729 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9907a2d9-244d-4bc1-a282-1cef43daf6db This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7951 | 0.96 | 12 | 2.5965 | | 4.5822 | 1.04 | 13 | 2.5733 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/04e5eaac-b4b8-4b72-945f-311b88a7763e
mrferr3t
2025-01-29T06:43:42Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
2025-01-29T06:39:52Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: 04e5eaac-b4b8-4b72-945f-311b88a7763e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 212cea8e8d3699da_train_data.json ds_type: json format: custom path: /workspace/input_data/212cea8e8d3699da_train_data.json type: field_input: doc field_instruction: original_text field_output: edited_summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/04e5eaac-b4b8-4b72-945f-311b88a7763e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 9 micro_batch_size: 2 mlflow_experiment_name: /tmp/212cea8e8d3699da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b1daaa76-ce91-488a-8876-44fa4641b938 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b1daaa76-ce91-488a-8876-44fa4641b938 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 04e5eaac-b4b8-4b72-945f-311b88a7763e This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.7639 | 0.0021 | 1 | 11.7636 | | 11.771 | 0.0063 | 3 | 11.7635 | | 11.763 | 0.0125 | 6 | 11.7635 | | 11.7648 | 0.0188 | 9 | 11.7634 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
msyukorai/DeepSeek-R1-Distill-Llama-8B-Q4_0-GGUF
msyukorai
2025-01-29T06:41:20Z
295
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-29T05:05:31Z
--- license: mit library_name: transformers base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B tags: - llama-cpp - gguf-my-repo --- # msyukorai/DeepSeek-R1-Distill-Llama-8B-Q4_0-GGUF This model was converted to GGUF format from [`deepseek-ai/DeepSeek-R1-Distill-Llama-8B`](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo msyukorai/DeepSeek-R1-Distill-Llama-8B-Q4_0-GGUF --hf-file deepseek-r1-distill-llama-8b-q4_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo msyukorai/DeepSeek-R1-Distill-Llama-8B-Q4_0-GGUF --hf-file deepseek-r1-distill-llama-8b-q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo msyukorai/DeepSeek-R1-Distill-Llama-8B-Q4_0-GGUF --hf-file deepseek-r1-distill-llama-8b-q4_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo msyukorai/DeepSeek-R1-Distill-Llama-8B-Q4_0-GGUF --hf-file deepseek-r1-distill-llama-8b-q4_0.gguf -c 2048 ```
Theros/Qwen2.5-ColdBrew-R1-test4
Theros
2025-01-29T06:40:27Z
46
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:Theros/Qwen2.5-ColdBrew-R1-test2", "base_model:merge:Theros/Qwen2.5-ColdBrew-R1-test2", "base_model:bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2", "base_model:merge:bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T06:35:09Z
--- base_model: - bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2 - Theros/Qwen2.5-ColdBrew-R1-test2 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2](https://huggingface.co/bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2) * [Theros/Qwen2.5-ColdBrew-R1-test2](https://huggingface.co/Theros/Qwen2.5-ColdBrew-R1-test2) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Theros/Qwen2.5-ColdBrew-R1-test2 layer_range: [0, 28] - model: bunnycore/Qwen-2.5-7B-Stock-Deep-Bespoke-v2 layer_range: [0, 28] merge_method: slerp base_model: Theros/Qwen2.5-ColdBrew-R1-test2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 tokenizer_source: Theros/Qwen2.5-ColdBrew-R1-test2 ```
Prisma-Multimodal/imagenet-sweep-vanilla-x64-CLS_8-hook_resid_post-635.018737792969-76
Prisma-Multimodal
2025-01-29T06:40:24Z
19
0
null
[ "region:us" ]
null
2025-01-29T06:40:14Z
# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 8 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: True ### Training - **Training Images**: 1298432 - **Learning Rate**: 0.0028 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096 - **Context Size**: 1 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 635.0187 - **Dead Features**: 0 - **Mean Passes Since Fired**: 45.8548 ### Reconstruction - **Explained Variance**: 0.7672 - **Explained Variance Std**: 0.2072 - **MSE Loss**: 0.0015 - **L1 Loss**: 230.6383 - **Overall Loss**: 0.0015 ## Training Details - **Training Duration**: 360 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/c0dcb7e7-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1302528.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/vanilla-imagenet-CLS_only-sweep/runs/ii5o7h2h - **Random Seed**: 42
havinash-ai/33956833-75bb-42d8-845e-a9efc4b76978
havinash-ai
2025-01-29T06:40:16Z
8
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-01-29T06:35:12Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: 33956833-75bb-42d8-845e-a9efc4b76978 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f65209fd2b79f576_train_data.json ds_type: json format: custom path: /workspace/input_data/f65209fd2b79f576_train_data.json type: field_instruction: text field_output: code format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/33956833-75bb-42d8-845e-a9efc4b76978 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/f65209fd2b79f576_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7fba0349-cbce-4a47-81c7-be27ce53fcc2 wandb_project: Birthday-SN56-9-Gradients-On-Demand wandb_run: your_name wandb_runid: 7fba0349-cbce-4a47-81c7-be27ce53fcc2 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 33956833-75bb-42d8-845e-a9efc4b76978 This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 0.7522 | | 9.7216 | 0.0021 | 13 | 0.6302 | | 6.0455 | 0.0041 | 26 | 0.4365 | | 4.0591 | 0.0062 | 39 | 0.3814 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Prisma-Multimodal/imagenet-sweep-vanilla-x64-CLS_7-hook_resid_post-492.959381103516-88
Prisma-Multimodal
2025-01-29T06:40:13Z
12
0
null
[ "region:us" ]
null
2025-01-29T06:40:05Z
# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 7 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: True ### Training - **Training Images**: 1298432 - **Learning Rate**: 0.0036 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096 - **Context Size**: 1 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 492.9594 - **Dead Features**: 0 - **Mean Passes Since Fired**: 121.3178 ### Reconstruction - **Explained Variance**: 0.8836 - **Explained Variance Std**: 0.0215 - **MSE Loss**: 0.0005 - **L1 Loss**: 215.2193 - **Overall Loss**: 0.0010 ## Training Details - **Training Duration**: 252 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/21aa4c67-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1302528.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/vanilla-imagenet-CLS_only-sweep/runs/5tdstmwv - **Random Seed**: 42
Prisma-Multimodal/imagenet-sweep-vanilla-x64-CLS_6-hook_resid_post-430.556243896484-92
Prisma-Multimodal
2025-01-29T06:40:04Z
13
0
null
[ "region:us" ]
null
2025-01-29T06:39:53Z
# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 6 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: True ### Training - **Training Images**: 1298432 - **Learning Rate**: 0.0061 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096 - **Context Size**: 1 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 430.5562 - **Dead Features**: 0 - **Mean Passes Since Fired**: 179.1497 ### Reconstruction - **Explained Variance**: 0.9292 - **Explained Variance Std**: 0.0209 - **MSE Loss**: 0.0003 - **L1 Loss**: 342.2079 - **Overall Loss**: 0.0003 ## Training Details - **Training Duration**: 254 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/a4f2874e-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1302528.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/vanilla-imagenet-CLS_only-sweep/runs/lqwere3b - **Random Seed**: 42
Prisma-Multimodal/imagenet-sweep-vanilla-x64-CLS_4-hook_resid_post-682.543762207031-95
Prisma-Multimodal
2025-01-29T06:39:43Z
13
0
null
[ "region:us" ]
null
2025-01-29T06:39:34Z
# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 4 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: True ### Training - **Training Images**: 1298432 - **Learning Rate**: 0.0076 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096 - **Context Size**: 1 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 682.5438 - **Dead Features**: 0 - **Mean Passes Since Fired**: 232.3228 ### Reconstruction - **Explained Variance**: 0.9544 - **Explained Variance Std**: 0.0125 - **MSE Loss**: 0.0001 - **L1 Loss**: 318.7141 - **Overall Loss**: 0.0001 ## Training Details - **Training Duration**: 249 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/f2bb5300-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1302528.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/vanilla-imagenet-CLS_only-sweep/runs/9qbjy580 - **Random Seed**: 42
Prisma-Multimodal/imagenet-sweep-vanilla-x64-CLS_2-hook_resid_post-711.121887207031-96
Prisma-Multimodal
2025-01-29T06:39:24Z
12
0
null
[ "region:us" ]
null
2025-01-29T06:39:11Z
# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 2 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: True ### Training - **Training Images**: 1298432 - **Learning Rate**: 0.0153 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096 - **Context Size**: 1 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 711.1219 - **Dead Features**: 0 - **Mean Passes Since Fired**: 297.1984 ### Reconstruction - **Explained Variance**: 0.9622 - **Explained Variance Std**: 0.0124 - **MSE Loss**: 0.0001 - **L1 Loss**: 139.1979 - **Overall Loss**: 0.0001 ## Training Details - **Training Duration**: 243 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/61879000-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1302528.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/vanilla-imagenet-CLS_only-sweep/runs/exkzappo - **Random Seed**: 42
Prisma-Multimodal/imagenet-sweep-vanilla-x64-CLS_0-hook_resid_post-936.799987792969-82
Prisma-Multimodal
2025-01-29T06:38:59Z
24
0
null
[ "region:us" ]
null
2025-01-29T06:38:48Z
# CLIP Sparse Autoencoder Checkpoint This model is a sparse autoencoder trained on CLIP's internal representations. ## Model Details ### Architecture - **Layer**: 0 - **Layer Type**: hook_resid_post - **Model**: open-clip:laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K - **Dictionary Size**: 49152 - **Input Dimension**: 768 - **Expansion Factor**: 64 - **CLS Token Only**: True ### Training - **Training Images**: 1298432 - **Learning Rate**: 0.0071 - **L1 Coefficient**: 0.0000 - **Batch Size**: 4096 - **Context Size**: 1 ## Performance Metrics ### Sparsity - **L0 (Active Features)**: 936.8000 - **Dead Features**: 0 - **Mean Passes Since Fired**: 290.6174 ### Reconstruction - **Explained Variance**: 0.8231 - **Explained Variance Std**: 0.1048 - **MSE Loss**: 0.0001 - **L1 Loss**: 223.2854 - **Overall Loss**: 0.0001 ## Training Details - **Training Duration**: 337 seconds - **Final Learning Rate**: 0.0000 - **Warm Up Steps**: 200 - **Gradient Clipping**: 1 ## Additional Information - **Original Checkpoint Path**: /network/scratch/p/praneet.suresh/imgnet_checkpoints/9f3da34e-tinyclip_sae_16_hyperparam_sweep_lr/n_images_1302528.pt - **Wandb Run**: https://wandb.ai/perceptual-alignment/vanilla-imagenet-CLS_only-sweep/runs/z7oj0h70 - **Random Seed**: 42
prxy5604/b07c7818-1c3f-4b80-a165-6bd56a5f1494
prxy5604
2025-01-29T06:37:56Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-1.5B", "base_model:adapter:unsloth/Qwen2.5-1.5B", "license:apache-2.0", "region:us" ]
null
2025-01-29T06:25:27Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: b07c7818-1c3f-4b80-a165-6bd56a5f1494 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - b08f3dca86f2cb9d_train_data.json ds_type: json format: custom path: /workspace/input_data/b08f3dca86f2cb9d_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/b07c7818-1c3f-4b80-a165-6bd56a5f1494 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/b08f3dca86f2cb9d_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2e7e6af3-0874-40bc-9012-038990c5f193 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2e7e6af3-0874-40bc-9012-038990c5f193 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b07c7818-1c3f-4b80-a165-6bd56a5f1494 This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B](https://huggingface.co/unsloth/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3405 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.484 | 0.0018 | 1 | 5.8152 | | 3.6986 | 0.0908 | 50 | 2.2620 | | 3.3932 | 0.1816 | 100 | 1.8828 | | 2.2973 | 0.2724 | 150 | 1.4752 | | 2.5491 | 0.3631 | 200 | 1.3405 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ymoslem/ModernBERT-base-qe-v1
ymoslem
2025-01-29T06:35:38Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "modernbert", "text-classification", "quality-estimation", "regression", "generated_from_trainer", "multilingual", "bn", "cs", "de", "en", "et", "fi", "fr", "gu", "ha", "hi", "is", "ja", "kk", "km", "lt", "lv", "pl", "ps", "ru", "ta", "tr", "uk", "xh", "zh", "zu", "dataset:ymoslem/tokenized-wmt-da-human-evaluation", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-28T16:51:54Z
--- library_name: transformers language: - multilingual - bn - cs - de - en - et - fi - fr - gu - ha - hi - is - ja - kk - km - lt - lv - pl - ps - ru - ta - tr - uk - xh - zh - zu license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - quality-estimation - regression - generated_from_trainer datasets: - ymoslem/tokenized-wmt-da-human-evaluation model-index: - name: Quality Estimation for Machine Translation results: - task: type: regression dataset: name: ymoslem/wmt-da-human-evaluation-long-context type: QE metrics: - name: Pearson type: Pearson Correlation value: 0.4465 - name: MAE type: Mean Absolute Error value: 0.126 - name: RMSE type: Root Mean Squared Error value: 0.1623 - name: R-R2 type: R-Squared value: 0.0801 - task: type: regression dataset: name: ymoslem/wmt-da-human-evaluation type: QE metrics: - name: Pearson type: Pearson Correlation value: - name: MAE type: Mean Absolute Error value: - name: RMSE type: Root Mean Squared Error value: - name: R-R2 type: R-Squared value: metrics: - pearsonr - mae - r_squared --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Quality Estimation for Machine Translation This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the ymoslem/tokenized-wmt-da-human-evaluation dataset. It achieves the following results on the evaluation set: - Loss: 0.0571 ## Model description This model is for reference-free, sentence level quality estimation (QE) of machine translation (MT) systems. The long-context / document-level model can be found at: [ModernBERT-base-long-context-qe-v1](https://huggingface.co/ymoslem/ModernBERT-base-long-context-qe-v1), which is trained on a long-context / document-level QE dataset [ymoslem/wmt-da-human-evaluation-long-context](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context) ## Training and evaluation data This model is trained on the sentence-level quality estimation dataset: [ymoslem/wmt-da-human-evaluation](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation) ## Training procedure This version of the model uses the full lengthtokenizer.model_max_length=8192, but it is still trained on a sentence-level QE dataset [ymoslem/wmt-da-human-evaluation](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation) The long-context / document-level model can be found at: [ModernBERT-base-long-context-qe-v1](https://huggingface.co/ymoslem/ModernBERT-base-long-context-qe-v1), which is trained on a long-context / document-level QE dataset [ymoslem/wmt-da-human-evaluation-long-context](https://huggingface.co/datasets/ymoslem/wmt-da-human-evaluation-long-context) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.0686 | 0.1004 | 1000 | 0.0712 | | 0.0652 | 0.2007 | 2000 | 0.0687 | | 0.0648 | 0.3011 | 3000 | 0.0623 | | 0.0609 | 0.4015 | 4000 | 0.0600 | | 0.0585 | 0.5019 | 5000 | 0.0603 | | 0.0588 | 0.6022 | 6000 | 0.0589 | | 0.0592 | 0.7026 | 7000 | 0.0581 | | 0.0585 | 0.8030 | 8000 | 0.0574 | | 0.0588 | 0.9033 | 9000 | 0.0572 | | 0.0563 | 1.0037 | 10000 | 0.0571 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.4.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
beingbatman/CTMAE-P2-V2-S1
beingbatman
2025-01-29T06:33:02Z
49
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-large-finetuned-kinetics", "base_model:finetune:MCG-NJU/videomae-large-finetuned-kinetics", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-01-29T04:10:18Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-large-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: CTMAE-P2-V2-S1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CTMAE-P2-V2-S1 This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4718 - Accuracy: 0.8261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3250 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.62 | 0.02 | 65 | 0.7161 | 0.5435 | | 0.5694 | 1.02 | 130 | 0.7819 | 0.5435 | | 0.546 | 2.02 | 195 | 0.8927 | 0.5435 | | 0.6022 | 3.02 | 260 | 0.6859 | 0.5435 | | 0.5779 | 4.02 | 325 | 0.6449 | 0.5435 | | 0.4662 | 5.02 | 390 | 0.8167 | 0.5435 | | 0.5101 | 6.02 | 455 | 0.5114 | 0.7826 | | 0.3779 | 7.02 | 520 | 0.5149 | 0.7391 | | 0.3656 | 8.02 | 585 | 0.6273 | 0.6304 | | 0.4837 | 9.02 | 650 | 0.9093 | 0.6522 | | 0.6897 | 10.02 | 715 | 0.5653 | 0.6739 | | 0.435 | 11.02 | 780 | 0.4927 | 0.7826 | | 0.6362 | 12.02 | 845 | 0.5877 | 0.6739 | | 0.4422 | 13.02 | 910 | 0.5351 | 0.8043 | | 0.3913 | 14.02 | 975 | 0.7300 | 0.8043 | | 0.6191 | 15.02 | 1040 | 1.1917 | 0.5652 | | 0.2704 | 16.02 | 1105 | 0.5930 | 0.7826 | | 0.3976 | 17.02 | 1170 | 0.5296 | 0.8043 | | 0.3038 | 18.02 | 1235 | 0.6735 | 0.7609 | | 0.2974 | 19.02 | 1300 | 0.4718 | 0.8261 | | 0.2434 | 20.02 | 1365 | 0.5224 | 0.8261 | | 0.4984 | 21.02 | 1430 | 1.2637 | 0.6957 | | 0.1256 | 22.02 | 1495 | 0.7204 | 0.8261 | | 0.448 | 23.02 | 1560 | 0.6897 | 0.7609 | | 0.2702 | 24.02 | 1625 | 0.6801 | 0.8261 | | 0.5101 | 25.02 | 1690 | 0.5134 | 0.8261 | | 0.354 | 26.02 | 1755 | 0.8076 | 0.8043 | | 0.4218 | 27.02 | 1820 | 0.7551 | 0.7826 | | 1.1586 | 28.02 | 1885 | 1.1514 | 0.6522 | | 0.3586 | 29.02 | 1950 | 1.1479 | 0.7391 | | 0.4746 | 30.02 | 2015 | 0.9521 | 0.7174 | | 0.6256 | 31.02 | 2080 | 0.8559 | 0.8043 | | 0.4668 | 32.02 | 2145 | 0.9766 | 0.7826 | | 0.1502 | 33.02 | 2210 | 0.9262 | 0.7826 | | 0.5093 | 34.02 | 2275 | 0.9402 | 0.7609 | | 0.2621 | 35.02 | 2340 | 0.9229 | 0.7609 | | 0.1456 | 36.02 | 2405 | 0.7937 | 0.8261 | | 0.1826 | 37.02 | 2470 | 0.9106 | 0.7826 | | 0.3778 | 38.02 | 2535 | 0.9376 | 0.7826 | | 0.1763 | 39.02 | 2600 | 0.9300 | 0.7826 | | 0.1083 | 40.02 | 2665 | 1.1018 | 0.7609 | | 0.1994 | 41.02 | 2730 | 0.8667 | 0.8261 | | 0.0111 | 42.02 | 2795 | 0.9896 | 0.8043 | | 0.0818 | 43.02 | 2860 | 1.0258 | 0.7826 | | 0.1808 | 44.02 | 2925 | 0.9841 | 0.7826 | | 0.1371 | 45.02 | 2990 | 0.9337 | 0.8043 | | 0.0129 | 46.02 | 3055 | 0.8905 | 0.8043 | | 0.1492 | 47.02 | 3120 | 0.9629 | 0.8261 | | 0.0184 | 48.02 | 3185 | 1.0828 | 0.7174 | | 0.1146 | 49.02 | 3250 | 1.0449 | 0.7826 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.1 - Tokenizers 0.20.0
Quinametzin/checkpoints
Quinametzin
2025-01-29T06:32:12Z
236
0
transformers
[ "transformers", "safetensors", "layoutlmv3", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlmv3-base", "base_model:finetune:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-01-29T06:31:56Z
--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: checkpoints results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # checkpoints This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0489 - Precision: 0.8842 - Recall: 0.9068 - F1: 0.8953 - Accuracy: 0.9849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.2658 | 100 | 0.0575 | 0.8673 | 0.8744 | 0.8708 | 0.9815 | | No log | 2.5316 | 200 | 0.0490 | 0.8876 | 0.8970 | 0.8923 | 0.9846 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
kartikgupta373/as15664-508913-pastel-green
kartikgupta373
2025-01-29T06:31:16Z
14
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T06:31:15Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # As15664 508913 Pastel Green <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('kartikgupta373/as15664-508913-pastel-green', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
lesso04/bfaf0fab-7c88-46d9-b803-81322ae77eb2
lesso04
2025-01-29T06:30:01Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:princeton-nlp/gemma-2-9b-it-SimPO", "base_model:adapter:princeton-nlp/gemma-2-9b-it-SimPO", "license:mit", "region:us" ]
null
2025-01-29T06:26:21Z
--- library_name: peft license: mit base_model: princeton-nlp/gemma-2-9b-it-SimPO tags: - axolotl - generated_from_trainer model-index: - name: bfaf0fab-7c88-46d9-b803-81322ae77eb2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: princeton-nlp/gemma-2-9b-it-SimPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 349dac9ba163f0a5_train_data.json ds_type: json format: custom path: /workspace/input_data/349dac9ba163f0a5_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso04/bfaf0fab-7c88-46d9-b803-81322ae77eb2 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/349dac9ba163f0a5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0f1b7d9e-507c-4d19-8049-642ebf7e0fb6 wandb_project: multi wandb_run: your_name wandb_runid: 0f1b7d9e-507c-4d19-8049-642ebf7e0fb6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # bfaf0fab-7c88-46d9-b803-81322ae77eb2 This model is a fine-tuned version of [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 35 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2173 | 1.0 | 35 | 1.2389 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mergekit-community/DeepVeo-R1-A
mergekit-community
2025-01-29T06:29:10Z
8
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "base_model:Alfitaria/Q25-1.5B-VeoLu", "base_model:merge:Alfitaria/Q25-1.5B-VeoLu", "base_model:Qwen/Qwen2.5-1.5B", "base_model:merge:Qwen/Qwen2.5-1.5B", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T06:28:07Z
--- base_model: - Alfitaria/Q25-1.5B-VeoLu - Qwen/Qwen2.5-1.5B - deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) as a base. ### Models Merged The following models were included in the merge: * [Alfitaria/Q25-1.5B-VeoLu](https://huggingface.co/Alfitaria/Q25-1.5B-VeoLu) * [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Qwen/Qwen2.5-1.5B # No parameters necessary for base model - model: Alfitaria/Q25-1.5B-VeoLu parameters: density: 0.56 weight: 0.6 - model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B parameters: density: 0.44 weight: 0.4 merge_method: dare_ties base_model: Qwen/Qwen2.5-1.5B parameters: int8_mask: true dtype: float16 ```
LockeLamora2077/NiNa_deepseek_testing
LockeLamora2077
2025-01-29T06:27:55Z
70
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T06:22:51Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** LockeLamora2077 - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
great0001/f1a7a1f6-62ba-4d72-a672-a8a4fe5f9d86
great0001
2025-01-29T06:27:50Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:princeton-nlp/gemma-2-9b-it-SimPO", "base_model:adapter:princeton-nlp/gemma-2-9b-it-SimPO", "license:mit", "region:us" ]
null
2025-01-29T06:25:58Z
--- library_name: peft license: mit base_model: princeton-nlp/gemma-2-9b-it-SimPO tags: - axolotl - generated_from_trainer model-index: - name: f1a7a1f6-62ba-4d72-a672-a8a4fe5f9d86 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: princeton-nlp/gemma-2-9b-it-SimPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 349dac9ba163f0a5_train_data.json ds_type: json format: custom path: /workspace/input_data/349dac9ba163f0a5_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/f1a7a1f6-62ba-4d72-a672-a8a4fe5f9d86 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/349dac9ba163f0a5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0f1b7d9e-507c-4d19-8049-642ebf7e0fb6 wandb_project: Birthday-SN56-33-Gradients-On-Demand wandb_run: your_name wandb_runid: 0f1b7d9e-507c-4d19-8049-642ebf7e0fb6 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f1a7a1f6-62ba-4d72-a672-a8a4fe5f9d86 This model is a fine-tuned version of [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.6208 | 0.0036 | 1 | 4.2997 | | 1.3094 | 0.0466 | 13 | 1.2815 | | 0.9577 | 0.0933 | 26 | 1.0802 | | 0.9384 | 0.1399 | 39 | 1.0481 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Dominic2106/llama-3-Legal-Advisor-FineTune
Dominic2106
2025-01-29T06:26:52Z
25
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T06:24:03Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Dominic2106 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sniperfix/d0cb3c69-e5b2-4769-a1fb-551e634ce51d
sniperfix
2025-01-29T06:26:00Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
2025-01-29T06:21:24Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: d0cb3c69-e5b2-4769-a1fb-551e634ce51d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 212cea8e8d3699da_train_data.json ds_type: json format: custom path: /workspace/input_data/212cea8e8d3699da_train_data.json type: field_input: doc field_instruction: original_text field_output: edited_summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: sniperfix/d0cb3c69-e5b2-4769-a1fb-551e634ce51d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 90 micro_batch_size: 2 mlflow_experiment_name: /tmp/212cea8e8d3699da_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: indexjupri-sniper-country wandb_mode: online wandb_name: b1daaa76-ce91-488a-8876-44fa4641b938 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b1daaa76-ce91-488a-8876-44fa4641b938 warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ``` </details><br> # d0cb3c69-e5b2-4769-a1fb-551e634ce51d This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 90 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0167 | 1 | 11.7636 | | 11.7641 | 0.1334 | 8 | 11.7632 | | 11.7633 | 0.2668 | 16 | 11.7616 | | 11.7596 | 0.4002 | 24 | 11.7581 | | 11.7555 | 0.5336 | 32 | 11.7515 | | 11.7467 | 0.6670 | 40 | 11.7422 | | 11.7391 | 0.8004 | 48 | 11.7361 | | 11.7356 | 0.9338 | 56 | 11.7337 | | 11.7518 | 1.0677 | 64 | 11.7327 | | 11.7706 | 1.2011 | 72 | 11.7323 | | 11.7041 | 1.3345 | 80 | 11.7321 | | 11.8285 | 1.4680 | 88 | 11.7321 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_M-GGUF
Triangle104
2025-01-29T06:24:29Z
440
1
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated", "base_model:quantized:huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-29T06:24:05Z
--- license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo library_name: transformers --- # Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated`](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_M-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q4_k_m.gguf -c 2048 ```
asr-africa/wav2vec2-xls-r-akan-100-hours
asr-africa
2025-01-29T06:24:28Z
9
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-01-28T11:08:56Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-akan-100-hours results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/bvnbmsvo) # wav2vec2-xls-r-akan-100-hours This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7988 - Model Preparation Time: 0.0143 - Wer: 0.2968 - Cer: 0.0937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:----------------------:|:------:|:------:| | 11.1522 | 1.7331 | 500 | 2.7710 | 0.0143 | 1.0 | 1.0 | | 2.0881 | 3.4662 | 1000 | 0.3882 | 0.0143 | 0.3401 | 0.1057 | | 0.8886 | 5.1993 | 1500 | 0.3437 | 0.0143 | 0.2956 | 0.0916 | | 0.7671 | 6.9324 | 2000 | 0.3246 | 0.0143 | 0.2898 | 0.0891 | | 0.6983 | 8.6655 | 2500 | 0.3230 | 0.0143 | 0.2810 | 0.0872 | | 0.6688 | 10.3986 | 3000 | 0.3235 | 0.0143 | 0.2800 | 0.0872 | | 0.6241 | 12.1317 | 3500 | 0.3273 | 0.0143 | 0.2828 | 0.0879 | | 0.5917 | 13.8648 | 4000 | 0.3328 | 0.0143 | 0.2836 | 0.0886 | | 0.5503 | 15.5979 | 4500 | 0.3366 | 0.0143 | 0.2803 | 0.0882 | | 0.5163 | 17.3310 | 5000 | 0.3568 | 0.0143 | 0.2825 | 0.0889 | | 0.487 | 19.0641 | 5500 | 0.3597 | 0.0143 | 0.2876 | 0.0899 | | 0.446 | 20.7972 | 6000 | 0.3719 | 0.0143 | 0.2831 | 0.0895 | | 0.416 | 22.5303 | 6500 | 0.4071 | 0.0143 | 0.2964 | 0.0928 | | 0.3844 | 24.2634 | 7000 | 0.4167 | 0.0143 | 0.2928 | 0.0924 | | 0.3526 | 25.9965 | 7500 | 0.4353 | 0.0143 | 0.2999 | 0.0942 | | 0.3173 | 27.7296 | 8000 | 0.4568 | 0.0143 | 0.3076 | 0.0968 | | 0.2892 | 29.4627 | 8500 | 0.4936 | 0.0143 | 0.2990 | 0.0936 | | 0.265 | 31.1958 | 9000 | 0.5298 | 0.0143 | 0.3044 | 0.0957 | | 0.2452 | 32.9289 | 9500 | 0.5566 | 0.0143 | 0.2922 | 0.0930 | | 0.2244 | 34.6620 | 10000 | 0.5921 | 0.0143 | 0.2973 | 0.0943 | | 0.2064 | 36.3951 | 10500 | 0.6147 | 0.0143 | 0.3169 | 0.0980 | | 0.1937 | 38.1282 | 11000 | 0.6672 | 0.0143 | 0.3118 | 0.0968 | | 0.1733 | 39.8614 | 11500 | 0.6968 | 0.0143 | 0.2997 | 0.0938 | | 0.1644 | 41.5945 | 12000 | 0.7098 | 0.0143 | 0.3010 | 0.0955 | | 0.1527 | 43.3276 | 12500 | 0.7449 | 0.0143 | 0.2998 | 0.0947 | | 0.1488 | 45.0607 | 13000 | 0.7555 | 0.0143 | 0.3054 | 0.0955 | | 0.1341 | 46.7938 | 13500 | 0.7626 | 0.0143 | 0.3010 | 0.0951 | | 0.1277 | 48.5269 | 14000 | 0.7988 | 0.0143 | 0.2968 | 0.0937 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3
eddysang/cbcb9ea7-77b5-40fd-baaf-f3a66d36d225
eddysang
2025-01-29T06:23:32Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
2025-01-29T06:21:04Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: cbcb9ea7-77b5-40fd-baaf-f3a66d36d225 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 212cea8e8d3699da_train_data.json ds_type: json format: custom path: /workspace/input_data/212cea8e8d3699da_train_data.json type: field_input: doc field_instruction: original_text field_output: edited_summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: eddysang/cbcb9ea7-77b5-40fd-baaf-f3a66d36d225 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.00015 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/212cea8e8d3699da_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: yaudayah0 wandb_mode: online wandb_name: b1daaa76-ce91-488a-8876-44fa4641b938 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b1daaa76-ce91-488a-8876-44fa4641b938 warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ``` </details><br> # cbcb9ea7-77b5-40fd-baaf-f3a66d36d225 This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0167 | 1 | 11.7636 | | 11.7637 | 0.1501 | 9 | 11.7632 | | 11.7614 | 0.3002 | 18 | 11.7618 | | 11.7598 | 0.4502 | 27 | 11.7591 | | 11.7557 | 0.6003 | 36 | 11.7550 | | 11.75 | 0.7504 | 45 | 11.7490 | | 11.7445 | 0.9005 | 54 | 11.7427 | | 11.7571 | 1.0511 | 63 | 11.7384 | | 11.7745 | 1.2011 | 72 | 11.7363 | | 11.8078 | 1.3512 | 81 | 11.7354 | | 11.6771 | 1.5013 | 90 | 11.7350 | | 11.6701 | 1.6514 | 99 | 11.7350 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
gavrilstep/5dbfe88e-bbca-4c55-820a-9ef2ec3d77d9
gavrilstep
2025-01-29T06:23:06Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:Intel/neural-chat-7b-v3-3", "base_model:adapter:Intel/neural-chat-7b-v3-3", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T06:18:54Z
--- library_name: peft license: apache-2.0 base_model: Intel/neural-chat-7b-v3-3 tags: - axolotl - generated_from_trainer model-index: - name: 5dbfe88e-bbca-4c55-820a-9ef2ec3d77d9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Intel/neural-chat-7b-v3-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 75ea8b2b0ce0747b_train_data.json ds_type: json format: custom path: /workspace/input_data/75ea8b2b0ce0747b_train_data.json type: field_input: Resume_str field_instruction: Category field_output: Resume_html format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: gavrilstep/5dbfe88e-bbca-4c55-820a-9ef2ec3d77d9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/75ea8b2b0ce0747b_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 09b31402-03d6-4e52-b0bc-a10763cac165 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 09b31402-03d6-4e52-b0bc-a10763cac165 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5dbfe88e-bbca-4c55-820a-9ef2ec3d77d9 This model is a fine-tuned version of [Intel/neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0037 | 1 | nan | | 14.8385 | 0.0184 | 5 | nan | | 0.0 | 0.0369 | 10 | nan | | 0.0 | 0.0553 | 15 | nan | | 0.0 | 0.0737 | 20 | nan | | 0.0 | 0.0922 | 25 | nan | | 0.0 | 0.1106 | 30 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Nexspear/91818616-5b33-40e9-a8e0-eaa4ab21ad48
Nexspear
2025-01-29T06:22:54Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/zephyr-sft", "base_model:adapter:unsloth/zephyr-sft", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:58:15Z
--- library_name: peft license: apache-2.0 base_model: unsloth/zephyr-sft tags: - axolotl - generated_from_trainer model-index: - name: 91818616-5b33-40e9-a8e0-eaa4ab21ad48 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/zephyr-sft bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5f018b4f4c84734e_train_data.json ds_type: json format: custom path: /workspace/input_data/5f018b4f4c84734e_train_data.json type: field_input: fullSectionsTitre field_instruction: title_main field_output: texte format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: Nexspear/91818616-5b33-40e9-a8e0-eaa4ab21ad48 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/5f018b4f4c84734e_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 6e907a9e-7c14-47ff-9a22-8cd83cba5430 wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 6e907a9e-7c14-47ff-9a22-8cd83cba5430 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 91818616-5b33-40e9-a8e0-eaa4ab21ad48 This model is a fine-tuned version of [unsloth/zephyr-sft](https://huggingface.co/unsloth/zephyr-sft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0066 | 1 | 1.2190 | | 4.4518 | 0.0595 | 9 | 1.0525 | | 3.9299 | 0.1190 | 18 | 0.9747 | | 3.6303 | 0.1785 | 27 | 0.9424 | | 3.5778 | 0.2380 | 36 | 0.9245 | | 3.8691 | 0.2975 | 45 | 0.9066 | | 3.4806 | 0.3570 | 54 | 0.8934 | | 3.861 | 0.4165 | 63 | 0.8836 | | 3.8442 | 0.4760 | 72 | 0.8759 | | 3.515 | 0.5355 | 81 | 0.8719 | | 3.7434 | 0.5950 | 90 | 0.8697 | | 3.6529 | 0.6545 | 99 | 0.8692 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso12/48d909cf-461e-4528-8b37-f9a1134db917
lesso12
2025-01-29T06:21:59Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
2025-01-29T06:21:44Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: 48d909cf-461e-4528-8b37-f9a1134db917 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 212cea8e8d3699da_train_data.json ds_type: json format: custom path: /workspace/input_data/212cea8e8d3699da_train_data.json type: field_input: doc field_instruction: original_text field_output: edited_summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso12/48d909cf-461e-4528-8b37-f9a1134db917 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/212cea8e8d3699da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b1daaa76-ce91-488a-8876-44fa4641b938 wandb_project: multi wandb_run: your_name wandb_runid: b1daaa76-ce91-488a-8876-44fa4641b938 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 48d909cf-461e-4528-8b37-f9a1134db917 This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 11.7595 | 1.0 | 60 | 11.7631 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tarabukinivan/173248fb-dcd7-4eda-8dd0-46938d5dfd0c
tarabukinivan
2025-01-29T06:21:48Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T06:21:23Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: 173248fb-dcd7-4eda-8dd0-46938d5dfd0c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 212cea8e8d3699da_train_data.json ds_type: json format: custom path: /workspace/input_data/212cea8e8d3699da_train_data.json type: field_input: doc field_instruction: original_text field_output: edited_summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: tarabukinivan/173248fb-dcd7-4eda-8dd0-46938d5dfd0c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/212cea8e8d3699da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 15 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b1daaa76-ce91-488a-8876-44fa4641b938 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b1daaa76-ce91-488a-8876-44fa4641b938 warmup_steps: 15 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 173248fb-dcd7-4eda-8dd0-46938d5dfd0c This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 15 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0021 | 1 | 11.7633 | | 11.763 | 0.0104 | 5 | 11.7633 | | 11.7638 | 0.0208 | 10 | 11.7632 | | 11.7635 | 0.0313 | 15 | 11.7630 | | 11.7632 | 0.0417 | 20 | 11.7627 | | 11.7628 | 0.0521 | 25 | 11.7626 | | 11.7627 | 0.0625 | 30 | 11.7626 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/a7be932e-4c65-4f7a-8fff-ba2fd83b0e8c
nttx
2025-01-29T06:21:46Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
2025-01-29T06:20:54Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: a7be932e-4c65-4f7a-8fff-ba2fd83b0e8c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: auto chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 212cea8e8d3699da_train_data.json ds_type: json format: custom path: /workspace/input_data/212cea8e8d3699da_train_data.json type: field_input: doc field_instruction: original_text field_output: edited_summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/a7be932e-4c65-4f7a-8fff-ba2fd83b0e8c hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/212cea8e8d3699da_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b1daaa76-ce91-488a-8876-44fa4641b938 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b1daaa76-ce91-488a-8876-44fa4641b938 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a7be932e-4c65-4f7a-8fff-ba2fd83b0e8c This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7588 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.7481 | 0.8333 | 200 | 11.7588 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nathanialhunt/17e573b9-f4a6-4d2e-8163-a3c8b528d27e
nathanialhunt
2025-01-29T06:21:26Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T06:19:20Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 17e573b9-f4a6-4d2e-8163-a3c8b528d27e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dcef816926ec2838_train_data.json ds_type: json format: custom path: /workspace/input_data/dcef816926ec2838_train_data.json type: field_input: activity field_instruction: topic field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/17e573b9-f4a6-4d2e-8163-a3c8b528d27e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/dcef816926ec2838_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d997858c-edf3-49a2-a1d9-29c48b4b7819 wandb_project: Birthday-SN56-5-Gradients-On-Demand wandb_run: your_name wandb_runid: d997858c-edf3-49a2-a1d9-29c48b4b7819 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 17e573b9-f4a6-4d2e-8163-a3c8b528d27e This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 2.1771 | | 2.0816 | 0.0062 | 13 | 1.8745 | | 1.8908 | 0.0123 | 26 | 1.7459 | | 1.7819 | 0.0185 | 39 | 1.7139 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung03/1848c0e1-831c-47f6-a068-1121d547c37f
nhung03
2025-01-29T06:19:06Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/zephyr-sft", "base_model:adapter:unsloth/zephyr-sft", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:53:15Z
--- library_name: peft license: apache-2.0 base_model: unsloth/zephyr-sft tags: - axolotl - generated_from_trainer model-index: - name: 1848c0e1-831c-47f6-a068-1121d547c37f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/zephyr-sft bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5f018b4f4c84734e_train_data.json ds_type: json format: custom path: /workspace/input_data/5f018b4f4c84734e_train_data.json type: field_input: fullSectionsTitre field_instruction: title_main field_output: texte format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/1848c0e1-831c-47f6-a068-1121d547c37f hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/5f018b4f4c84734e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6e907a9e-7c14-47ff-9a22-8cd83cba5430 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6e907a9e-7c14-47ff-9a22-8cd83cba5430 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 1848c0e1-831c-47f6-a068-1121d547c37f This model is a fine-tuned version of [unsloth/zephyr-sft](https://huggingface.co/unsloth/zephyr-sft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.092 | 0.3310 | 200 | 0.9530 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sercetexam9/german-sentiment-bert-finetuned-augmentation
sercetexam9
2025-01-29T06:18:18Z
16
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:oliverguhr/german-sentiment-bert", "base_model:finetune:oliverguhr/german-sentiment-bert", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-29T06:06:51Z
--- library_name: transformers license: mit base_model: oliverguhr/german-sentiment-bert tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: german-sentiment-bert-finetuned-augmentation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german-sentiment-bert-finetuned-augmentation This model is a fine-tuned version of [oliverguhr/german-sentiment-bert](https://huggingface.co/oliverguhr/german-sentiment-bert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5289 - F1: 0.4075 - Roc Auc: 0.6477 - Accuracy: 0.3476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4252 | 1.0 | 141 | 0.4303 | 0.2285 | 0.5735 | 0.3244 | | 0.3796 | 2.0 | 282 | 0.4097 | 0.2975 | 0.6081 | 0.3512 | | 0.34 | 3.0 | 423 | 0.4223 | 0.2989 | 0.6109 | 0.3494 | | 0.3083 | 4.0 | 564 | 0.4245 | 0.3105 | 0.6188 | 0.3529 | | 0.2541 | 5.0 | 705 | 0.4319 | 0.3399 | 0.6179 | 0.3565 | | 0.2404 | 6.0 | 846 | 0.4361 | 0.3412 | 0.6222 | 0.3583 | | 0.2196 | 7.0 | 987 | 0.4547 | 0.3744 | 0.6344 | 0.3583 | | 0.2299 | 8.0 | 1128 | 0.4542 | 0.3709 | 0.6334 | 0.3512 | | 0.2 | 9.0 | 1269 | 0.4648 | 0.3502 | 0.6229 | 0.3601 | | 0.1662 | 10.0 | 1410 | 0.4873 | 0.3746 | 0.6345 | 0.3440 | | 0.1677 | 11.0 | 1551 | 0.4975 | 0.3920 | 0.6454 | 0.3601 | | 0.1421 | 12.0 | 1692 | 0.5007 | 0.3844 | 0.6401 | 0.3494 | | 0.1384 | 13.0 | 1833 | 0.5071 | 0.3836 | 0.6395 | 0.3529 | | 0.1497 | 14.0 | 1974 | 0.5112 | 0.3837 | 0.6388 | 0.3672 | | 0.1229 | 15.0 | 2115 | 0.5206 | 0.3950 | 0.6441 | 0.3458 | | 0.1442 | 16.0 | 2256 | 0.5263 | 0.4015 | 0.6467 | 0.3494 | | 0.1148 | 17.0 | 2397 | 0.5245 | 0.3996 | 0.6435 | 0.3547 | | 0.1077 | 18.0 | 2538 | 0.5292 | 0.3977 | 0.6433 | 0.3369 | | 0.1203 | 19.0 | 2679 | 0.5289 | 0.4051 | 0.6462 | 0.3422 | | 0.1234 | 20.0 | 2820 | 0.5289 | 0.4075 | 0.6477 | 0.3476 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
mergekit-community/mergekit-linear-mocebtg
mergekit-community
2025-01-29T06:17:40Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "base_model:mergekit-community/mergekit-model_stock-czbocwb", "base_model:merge:mergekit-community/mergekit-model_stock-czbocwb", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T06:05:24Z
--- base_model: - mergekit-community/mergekit-model_stock-czbocwb - deepseek-ai/DeepSeek-R1-Distill-Qwen-32B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [mergekit-community/mergekit-model_stock-czbocwb](https://huggingface.co/mergekit-community/mergekit-model_stock-czbocwb) * [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B parameters: weight: 1.0 - model: mergekit-community/mergekit-model_stock-czbocwb parameters: weight: 1.0 merge_method: linear normalize: false int8_mask: true dtype: bfloat16 ```
Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_S-GGUF
Triangle104
2025-01-29T06:17:29Z
320
1
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated", "base_model:quantized:huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-29T06:17:06Z
--- license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo library_name: transformers --- # Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_S-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated`](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-1M-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_S-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_S-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_S-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-7B-Instruct-1M-abliterated-Q4_K_S-GGUF --hf-file qwen2.5-7b-instruct-1m-abliterated-q4_k_s.gguf -c 2048 ```
Triangle104/Set-70b
Triangle104
2025-01-29T06:16:36Z
44
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:TheDrummer/Anubis-70B-v1", "base_model:merge:TheDrummer/Anubis-70B-v1", "base_model:TheDrummer/Nautilus-70B-v0.1", "base_model:merge:TheDrummer/Nautilus-70B-v0.1", "base_model:codelion/Llama-3.3-70B-o1", "base_model:merge:codelion/Llama-3.3-70B-o1", "license:llama3.3", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-19T16:08:47Z
--- license: llama3.3 library_name: transformers tags: - mergekit - merge base_model: - TheDrummer/Anubis-70B-v1 - TheDrummer/Nautilus-70B-v0.1 - codelion/Llama-3.3-70B-o1 model-index: - name: Set-70b results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 76.43 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Set-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 56.88 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Set-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 36.33 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Set-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 26.17 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Set-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 18.96 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Set-70b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 49.36 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Set-70b name: Open LLM Leaderboard --- # Merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/66c1cc08453a7ef6c5fe657a/aJaq45k_SfLhcF6wJ-10R.webp) RP with some o1 inspiration. ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [codelion/Llama-3.3-70B-o1](https://huggingface.co/codelion/Llama-3.3-70B-o1) as a base. ### Models Merged The following models were included in the merge: * [TheDrummer/Anubis-70B-v1](https://huggingface.co/TheDrummer/Anubis-70B-v1) * [TheDrummer/Nautilus-70B-v0.1](https://huggingface.co/TheDrummer/Nautilus-70B-v0.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: codelion/Llama-3.3-70B-o1 - model: TheDrummer/Anubis-70B-v1 - model: TheDrummer/Nautilus-70B-v0.1 base_model: codelion/Llama-3.3-70B-o1 merge_method: model_stock parameters: normalize: true dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Triangle104__Set-70b-details) | Metric |Value| |-------------------|----:| |Avg. |44.02| |IFEval (0-Shot) |76.43| |BBH (3-Shot) |56.88| |MATH Lvl 5 (4-Shot)|36.33| |GPQA (0-shot) |26.17| |MuSR (0-shot) |18.96| |MMLU-PRO (5-shot) |49.36|
robiulawaldev/a9f3aa97-9e1d-4bb9-b383-3ea958441630
robiulawaldev
2025-01-29T06:16:26Z
8
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-7b-it", "base_model:adapter:unsloth/gemma-7b-it", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:14:52Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-7b-it tags: - axolotl - generated_from_trainer model-index: - name: a9f3aa97-9e1d-4bb9-b383-3ea958441630 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-7b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5a1549a363bd92b9_train_data.json ds_type: json format: custom path: /workspace/input_data/5a1549a363bd92b9_train_data.json type: field_input: system_prompt field_instruction: question field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: robiulawaldev/a9f3aa97-9e1d-4bb9-b383-3ea958441630 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: constant max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/5a1549a363bd92b9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9d3bed81-78f2-4061-9ad2-a87e632c5343 wandb_project: Birthday-SN56-35-Gradients-On-Demand wandb_run: your_name wandb_runid: 9d3bed81-78f2-4061-9ad2-a87e632c5343 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a9f3aa97-9e1d-4bb9-b383-3ea958441630 This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.6335 | | 1.5609 | 0.0001 | 13 | 1.2013 | | 1.3608 | 0.0002 | 26 | 1.0845 | | 1.1424 | 0.0003 | 39 | 1.0703 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso15/26f70f17-5b0e-4f5d-b9fa-da55f1560aaa
lesso15
2025-01-29T06:15:27Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Base-2407", "base_model:adapter:unsloth/Mistral-Nemo-Base-2407", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:12:40Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Base-2407 tags: - axolotl - generated_from_trainer model-index: - name: 26f70f17-5b0e-4f5d-b9fa-da55f1560aaa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Base-2407 bf16: auto chat_template: llama3 datasets: - data_files: - e11d3af61284289e_train_data.json ds_type: json format: custom path: /workspace/input_data/e11d3af61284289e_train_data.json type: field_input: '' field_instruction: prompt field_output: reference_completion format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso15/26f70f17-5b0e-4f5d-b9fa-da55f1560aaa hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e11d3af61284289e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 33053983-d2d7-46cd-86bd-33b197e4dd4c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 33053983-d2d7-46cd-86bd-33b197e4dd4c warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 26f70f17-5b0e-4f5d-b9fa-da55f1560aaa This model is a fine-tuned version of [unsloth/Mistral-Nemo-Base-2407](https://huggingface.co/unsloth/Mistral-Nemo-Base-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0277 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
krory/GenBook-Deepseek-R1.Llama-8B
krory
2025-01-29T06:15:22Z
65
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "es", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T05:33:35Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - es - en --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6792d6218095a2eec33ce7d9/pDOOJJGZBA2q4Ez-3nrLK.png) ### **About the Model** This model is designed to be a storytelling AI capable of creating fun, engaging, and well-structured narratives. Its purpose is to serve as an interactive tool for generating and experiencing unique stories in real time, tailored to the user's input and preferences. ### **Key Features** - **Interactive Narratives:** Produces coherent and entertaining stories based on user prompts, adapting dynamically to maintain engagement. - **Consistent World-Building:** Ensures logical progression and consistency in characters, settings, and events across long narratives. - **Optimized for Efficiency:** Built to perform reliably on limited hardware while delivering high-quality outputs. ### **Training Overview** The model was fine-tuned using datasets focused on narrative construction, character development, and immersive descriptions. Key aspects of the training include: - **Adaptability:** Special attention was given to creating a system that responds flexibly to varied user inputs while maintaining coherence. - **Resource Efficiency:** Techniques like LoRA (Low-Rank Adaptation) and 4-bit quantization were employed to optimize memory usage without compromising output quality. - **Long-Context Support:** Enhanced with methods to handle extended interactions and complex storylines. ### **Purpose** The primary goal of this model is to create a personal, customizable storytelling AI, allowing users to immerse themselves in unique, AI-driven stories anytime. ---
ohashi56225/pptod-multiwoz
ohashi56225
2025-01-29T06:15:09Z
31
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-29T06:10:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Pratham109/Durvasa
Pratham109
2025-01-29T06:14:54Z
21
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T06:10:11Z
--- base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit tags: - text-generation-inference - transformers - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Pratham109 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
lesso01/f2509208-0c31-40a2-a734-26e5710b39af
lesso01
2025-01-29T06:11:49Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "base_model:adapter:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T03:05:08Z
--- library_name: peft license: mit base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B tags: - axolotl - generated_from_trainer model-index: - name: f2509208-0c31-40a2-a734-26e5710b39af results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B bf16: true chat_template: llama3 datasets: - data_files: - 28869e035ebaf0bf_train_data.json ds_type: json format: custom path: /workspace/input_data/28869e035ebaf0bf_train_data.json type: field_input: labels field_instruction: name field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso01/f2509208-0c31-40a2-a734-26e5710b39af hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/28869e035ebaf0bf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c01e03ea-ac63-445b-b53d-881712c18952 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c01e03ea-ac63-445b-b53d-881712c18952 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f2509208-0c31-40a2-a734-26e5710b39af This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 9.9041 | 0.0001 | 1 | 2.5982 | | 10.6185 | 0.0003 | 5 | 2.5946 | | 10.39 | 0.0006 | 10 | 2.5174 | | 9.3238 | 0.0008 | 15 | 2.4453 | | 9.2303 | 0.0011 | 20 | 2.4064 | | 9.0661 | 0.0014 | 25 | 2.3998 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sercetexam9/geberta-base-finetuned-augmentation
sercetexam9
2025-01-29T06:11:34Z
18
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:ikim-uk-essen/geberta-base", "base_model:finetune:ikim-uk-essen/geberta-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-29T05:45:05Z
--- library_name: transformers base_model: ikim-uk-essen/geberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: geberta-base-finetuned-augmentation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # geberta-base-finetuned-augmentation This model is a fine-tuned version of [ikim-uk-essen/geberta-base](https://huggingface.co/ikim-uk-essen/geberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4327 - F1: 0.6097 - Roc Auc: 0.7506 - Accuracy: 0.4563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3808 | 1.0 | 141 | 0.3997 | 0.2027 | 0.5729 | 0.3119 | | 0.3278 | 2.0 | 282 | 0.3627 | 0.3647 | 0.6353 | 0.3939 | | 0.2881 | 3.0 | 423 | 0.3447 | 0.4099 | 0.6583 | 0.4349 | | 0.2479 | 4.0 | 564 | 0.3317 | 0.4440 | 0.6741 | 0.4456 | | 0.1888 | 5.0 | 705 | 0.3475 | 0.5081 | 0.6974 | 0.4439 | | 0.135 | 6.0 | 846 | 0.3659 | 0.5597 | 0.7345 | 0.4332 | | 0.1031 | 7.0 | 987 | 0.3894 | 0.5817 | 0.7401 | 0.4635 | | 0.0755 | 8.0 | 1128 | 0.4100 | 0.5799 | 0.7292 | 0.4510 | | 0.0559 | 9.0 | 1269 | 0.4327 | 0.6097 | 0.7506 | 0.4563 | | 0.041 | 10.0 | 1410 | 0.4568 | 0.5988 | 0.7464 | 0.4456 | | 0.0247 | 11.0 | 1551 | 0.4807 | 0.5891 | 0.7399 | 0.4456 | | 0.0188 | 12.0 | 1692 | 0.5030 | 0.5945 | 0.7443 | 0.4403 | | 0.0169 | 13.0 | 1833 | 0.5272 | 0.6055 | 0.7508 | 0.4510 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
kostiantynk1205/d881f980-5340-4475-bc25-89fa9f9d98c9
kostiantynk1205
2025-01-29T06:09:54Z
8
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-random-GemmaForCausalLM", "base_model:adapter:fxmarty/tiny-random-GemmaForCausalLM", "license:mit", "region:us" ]
null
2025-01-29T06:06:58Z
--- library_name: peft license: mit base_model: fxmarty/tiny-random-GemmaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: d881f980-5340-4475-bc25-89fa9f9d98c9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-random-GemmaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1b850ae6d01c6c1d_train_data.json ds_type: json format: custom path: /workspace/input_data/1b850ae6d01c6c1d_train_data.json type: field_input: post field_instruction: query field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/d881f980-5340-4475-bc25-89fa9f9d98c9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/1b850ae6d01c6c1d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 16672098-11fc-47d4-9215-2a127b077006 wandb_project: Birthday-SN56-23-Gradients-On-Demand wandb_run: your_name wandb_runid: 16672098-11fc-47d4-9215-2a127b077006 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d881f980-5340-4475-bc25-89fa9f9d98c9 This model is a fine-tuned version of [fxmarty/tiny-random-GemmaForCausalLM](https://huggingface.co/fxmarty/tiny-random-GemmaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0008 | 13 | nan | | 0.0 | 0.0017 | 26 | nan | | 0.0 | 0.0025 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso16/86bb2885-e629-4625-9db6-df3a1fc9b2a0
lesso16
2025-01-29T06:08:59Z
8
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-random-GemmaForCausalLM", "base_model:adapter:fxmarty/tiny-random-GemmaForCausalLM", "license:mit", "region:us" ]
null
2025-01-29T06:08:03Z
--- library_name: peft license: mit base_model: fxmarty/tiny-random-GemmaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 86bb2885-e629-4625-9db6-df3a1fc9b2a0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-random-GemmaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1b850ae6d01c6c1d_train_data.json ds_type: json format: custom path: /workspace/input_data/1b850ae6d01c6c1d_train_data.json type: field_input: post field_instruction: query field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso16/86bb2885-e629-4625-9db6-df3a1fc9b2a0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/1b850ae6d01c6c1d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 16672098-11fc-47d4-9215-2a127b077006 wandb_project: multi wandb_run: your_name wandb_runid: 16672098-11fc-47d4-9215-2a127b077006 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 86bb2885-e629-4625-9db6-df3a1fc9b2a0 This model is a fine-tuned version of [fxmarty/tiny-random-GemmaForCausalLM](https://huggingface.co/fxmarty/tiny-random-GemmaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.1040 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso02/2d84c935-36d4-4f6b-b448-e94ddc2e630a
lesso02
2025-01-29T06:07:46Z
6
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-01-29T06:01:12Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: 2d84c935-36d4-4f6b-b448-e94ddc2e630a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c553ffe9c794c5bd_train_data.json ds_type: json format: custom path: /workspace/input_data/c553ffe9c794c5bd_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso02/2d84c935-36d4-4f6b-b448-e94ddc2e630a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/c553ffe9c794c5bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: eb862a1e-b09a-4967-b139-a02f72ec2cc8 wandb_project: multi wandb_run: your_name wandb_runid: eb862a1e-b09a-4967-b139-a02f72ec2cc8 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2d84c935-36d4-4f6b-b448-e94ddc2e630a This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 111 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9893 | 1.0 | 111 | 0.9203 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sercetexam9/bert-base-swedish-cased-new-finetuned-augmentation
sercetexam9
2025-01-29T06:07:21Z
10
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:KBLab/bert-base-swedish-cased-new", "base_model:finetune:KBLab/bert-base-swedish-cased-new", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-29T06:02:06Z
--- library_name: transformers base_model: KBLab/bert-base-swedish-cased-new tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bert-base-swedish-cased-new-finetuned-augmentation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-swedish-cased-new-finetuned-augmentation This model is a fine-tuned version of [KBLab/bert-base-swedish-cased-new](https://huggingface.co/KBLab/bert-base-swedish-cased-new) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1896 - F1: 0.5215 - Roc Auc: 0.7532 - Accuracy: 0.6931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4332 | 1.0 | 70 | 0.3604 | 0.1123 | 0.5414 | 0.4513 | | 0.2766 | 2.0 | 140 | 0.2395 | 0.3940 | 0.6846 | 0.6606 | | 0.2381 | 3.0 | 210 | 0.2095 | 0.3914 | 0.6785 | 0.6606 | | 0.2096 | 4.0 | 280 | 0.2080 | 0.4761 | 0.7219 | 0.6751 | | 0.186 | 5.0 | 350 | 0.2017 | 0.4803 | 0.7216 | 0.6570 | | 0.1801 | 6.0 | 420 | 0.1937 | 0.4888 | 0.7343 | 0.6823 | | 0.1333 | 7.0 | 490 | 0.1935 | 0.4903 | 0.7354 | 0.6606 | | 0.1128 | 8.0 | 560 | 0.1962 | 0.4930 | 0.7356 | 0.6823 | | 0.1107 | 9.0 | 630 | 0.2039 | 0.5069 | 0.7467 | 0.6643 | | 0.0909 | 10.0 | 700 | 0.1896 | 0.5215 | 0.7532 | 0.6931 | | 0.0811 | 11.0 | 770 | 0.2059 | 0.5147 | 0.7571 | 0.6679 | | 0.0762 | 12.0 | 840 | 0.1988 | 0.5052 | 0.7423 | 0.6715 | | 0.0673 | 13.0 | 910 | 0.1984 | 0.5160 | 0.7416 | 0.6968 | | 0.0482 | 14.0 | 980 | 0.2044 | 0.5050 | 0.7430 | 0.6679 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
memevis/p8
memevis
2025-01-29T06:07:20Z
26
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T06:01:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso14/2b28ea53-5117-41a6-9a3f-4025a3325851
lesso14
2025-01-29T06:07:01Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-01-29T06:00:51Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: 2b28ea53-5117-41a6-9a3f-4025a3325851 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c553ffe9c794c5bd_train_data.json ds_type: json format: custom path: /workspace/input_data/c553ffe9c794c5bd_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso14/2b28ea53-5117-41a6-9a3f-4025a3325851 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/c553ffe9c794c5bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: eb862a1e-b09a-4967-b139-a02f72ec2cc8 wandb_project: multi wandb_run: your_name wandb_runid: eb862a1e-b09a-4967-b139-a02f72ec2cc8 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2b28ea53-5117-41a6-9a3f-4025a3325851 This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 111 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9865 | 1.0 | 111 | 0.9209 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hongngo/fc533d92-e56d-4bdf-a967-d3489925157c
hongngo
2025-01-29T06:04:33Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:19:01Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: fc533d92-e56d-4bdf-a967-d3489925157c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 71d293a351cdff95_train_data.json ds_type: json format: custom path: /workspace/input_data/71d293a351cdff95_train_data.json type: field_input: neg field_instruction: query field_output: pos format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: hongngo/fc533d92-e56d-4bdf-a967-d3489925157c hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/71d293a351cdff95_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7681049f-e5d7-4d35-b3c4-7fac246dd4b7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7681049f-e5d7-4d35-b3c4-7fac246dd4b7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # fc533d92-e56d-4bdf-a967-d3489925157c This model is a fine-tuned version of [unsloth/Qwen2.5-Math-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.5303 | 0.0309 | 200 | 4.4860 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hongngo/bde368a6-84fe-4cc6-9200-cecd1c4d4fb7
hongngo
2025-01-29T06:04:33Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-1.5B", "base_model:adapter:unsloth/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:31:00Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: bde368a6-84fe-4cc6-9200-cecd1c4d4fb7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b08f3dca86f2cb9d_train_data.json ds_type: json format: custom path: /workspace/input_data/b08f3dca86f2cb9d_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: hongngo/bde368a6-84fe-4cc6-9200-cecd1c4d4fb7 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b08f3dca86f2cb9d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2e7e6af3-0874-40bc-9012-038990c5f193 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2e7e6af3-0874-40bc-9012-038990c5f193 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # bde368a6-84fe-4cc6-9200-cecd1c4d4fb7 This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B](https://huggingface.co/unsloth/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4075 | 0.0908 | 200 | 2.2733 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nblinh63/c9f3fb6d-b99f-4782-9542-c5d1c690f2e8
nblinh63
2025-01-29T06:03:16Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:18:51Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: c9f3fb6d-b99f-4782-9542-c5d1c690f2e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 71d293a351cdff95_train_data.json ds_type: json format: custom path: /workspace/input_data/71d293a351cdff95_train_data.json type: field_input: neg field_instruction: query field_output: pos format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh63/c9f3fb6d-b99f-4782-9542-c5d1c690f2e8 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/71d293a351cdff95_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7681049f-e5d7-4d35-b3c4-7fac246dd4b7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7681049f-e5d7-4d35-b3c4-7fac246dd4b7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c9f3fb6d-b99f-4782-9542-c5d1c690f2e8 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.5245 | 0.0309 | 200 | 4.4793 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrhunghd/dfcd6ebf-4b24-4345-b180-9cbf245e085f
mrhunghd
2025-01-29T06:03:06Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:19:09Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: dfcd6ebf-4b24-4345-b180-9cbf245e085f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 71d293a351cdff95_train_data.json ds_type: json format: custom path: /workspace/input_data/71d293a351cdff95_train_data.json type: field_input: neg field_instruction: query field_output: pos format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrhunghd/dfcd6ebf-4b24-4345-b180-9cbf245e085f hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/71d293a351cdff95_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7681049f-e5d7-4d35-b3c4-7fac246dd4b7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7681049f-e5d7-4d35-b3c4-7fac246dd4b7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # dfcd6ebf-4b24-4345-b180-9cbf245e085f This model is a fine-tuned version of [unsloth/Qwen2.5-Math-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.5316 | 0.0309 | 200 | 4.4820 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/3634ab0a-f471-4adc-a9a8-4d6729aadd57
great0001
2025-01-29T06:02:45Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-01-29T06:00:58Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: 3634ab0a-f471-4adc-a9a8-4d6729aadd57 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c553ffe9c794c5bd_train_data.json ds_type: json format: custom path: /workspace/input_data/c553ffe9c794c5bd_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/3634ab0a-f471-4adc-a9a8-4d6729aadd57 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/c553ffe9c794c5bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: eb862a1e-b09a-4967-b139-a02f72ec2cc8 wandb_project: Birthday-SN56-33-Gradients-On-Demand wandb_run: your_name wandb_runid: eb862a1e-b09a-4967-b139-a02f72ec2cc8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3634ab0a-f471-4adc-a9a8-4d6729aadd57 This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2575 | 0.0011 | 1 | 2.4325 | | 1.2341 | 0.0147 | 13 | 1.1619 | | 1.0006 | 0.0293 | 26 | 1.0318 | | 1.0134 | 0.0440 | 39 | 0.9837 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aleegis12/bda91e05-c107-40e7-92d0-e42263ea60e8
aleegis12
2025-01-29T06:02:42Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.3", "base_model:adapter:unsloth/mistral-7b-instruct-v0.3", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:26:10Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: bda91e05-c107-40e7-92d0-e42263ea60e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.3 bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - d9f1192b8c58ed2d_train_data.json ds_type: json format: custom path: /workspace/input_data/d9f1192b8c58ed2d_train_data.json type: field_input: schema field_instruction: query field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis12/bda91e05-c107-40e7-92d0-e42263ea60e8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/d9f1192b8c58ed2d_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ccfaff7-28e6-4d9e-8b3d-0f91fec12998 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2ccfaff7-28e6-4d9e-8b3d-0f91fec12998 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # bda91e05-c107-40e7-92d0-e42263ea60e8 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.3](https://huggingface.co/unsloth/mistral-7b-instruct-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9992 | 0.0016 | 1 | 0.4011 | | 0.9022 | 0.0824 | 50 | 0.2685 | | 1.0692 | 0.1647 | 100 | 0.2487 | | 1.0712 | 0.2471 | 150 | 0.2350 | | 1.2513 | 0.3295 | 200 | 0.2293 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/27316e0c-7de2-4ce6-8c59-a067cc6c97d4
Best000
2025-01-29T06:02:00Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-01-29T06:00:26Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: 27316e0c-7de2-4ce6-8c59-a067cc6c97d4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c553ffe9c794c5bd_train_data.json ds_type: json format: custom path: /workspace/input_data/c553ffe9c794c5bd_train_data.json type: field_instruction: context field_output: question format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/27316e0c-7de2-4ce6-8c59-a067cc6c97d4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/c553ffe9c794c5bd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: eb862a1e-b09a-4967-b139-a02f72ec2cc8 wandb_project: Birthday-SN56-32-Gradients-On-Demand wandb_run: your_name wandb_runid: eb862a1e-b09a-4967-b139-a02f72ec2cc8 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 27316e0c-7de2-4ce6-8c59-a067cc6c97d4 This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0011 | 1 | 2.4325 | | 2.3025 | 0.0147 | 13 | 1.9193 | | 1.6542 | 0.0293 | 26 | 1.1245 | | 1.1326 | 0.0440 | 39 | 1.0212 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nghiatrannnnnn/00f413d1-cad5-40c3-8edf-2b77f3f8642e
nghiatrannnnnn
2025-01-29T06:01:37Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-1.5B", "base_model:adapter:unsloth/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:30:50Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 00f413d1-cad5-40c3-8edf-2b77f3f8642e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b08f3dca86f2cb9d_train_data.json ds_type: json format: custom path: /workspace/input_data/b08f3dca86f2cb9d_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nghiatrannnnnn/00f413d1-cad5-40c3-8edf-2b77f3f8642e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b08f3dca86f2cb9d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2e7e6af3-0874-40bc-9012-038990c5f193 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2e7e6af3-0874-40bc-9012-038990c5f193 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 00f413d1-cad5-40c3-8edf-2b77f3f8642e This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B](https://huggingface.co/unsloth/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3907 | 0.0908 | 200 | 2.2642 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
adammandic87/ee0bee4a-3448-4463-9143-6c55f7c4e792
adammandic87
2025-01-29T06:01:03Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-14B-Chat", "base_model:adapter:Qwen/Qwen1.5-14B-Chat", "license:other", "region:us" ]
null
2025-01-29T05:45:22Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-14B-Chat tags: - axolotl - generated_from_trainer model-index: - name: ee0bee4a-3448-4463-9143-6c55f7c4e792 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-14B-Chat bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ab9f66717531643e_train_data.json ds_type: json format: custom path: /workspace/input_data/ab9f66717531643e_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/ee0bee4a-3448-4463-9143-6c55f7c4e792 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/ab9f66717531643e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 99226ce4-70ae-47e9-94ba-26f819deda4a wandb_project: Birthday-SN56-13-Gradients-On-Demand wandb_run: your_name wandb_runid: 99226ce4-70ae-47e9-94ba-26f819deda4a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ee0bee4a-3448-4463-9143-6c55f7c4e792 This model is a fine-tuned version of [Qwen/Qwen1.5-14B-Chat](https://huggingface.co/Qwen/Qwen1.5-14B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3233 | 0.0002 | 1 | 2.5930 | | 2.2476 | 0.0021 | 13 | 2.2252 | | 2.1282 | 0.0042 | 26 | 1.9763 | | 1.8158 | 0.0063 | 39 | 1.8456 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso05/443b6a3e-2d1f-4747-aa44-81b7fdf863bd
lesso05
2025-01-29T05:58:36Z
8
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:adapter:microsoft/phi-1_5", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:55:28Z
--- library_name: peft license: mit base_model: microsoft/phi-1_5 tags: - axolotl - generated_from_trainer model-index: - name: 443b6a3e-2d1f-4747-aa44-81b7fdf863bd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/phi-1_5 bf16: true chat_template: llama3 datasets: - data_files: - 8761f2b4c663324e_train_data.json ds_type: json format: custom path: /workspace/input_data/8761f2b4c663324e_train_data.json type: field_input: Article Content field_instruction: Question field_output: Answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso05/443b6a3e-2d1f-4747-aa44-81b7fdf863bd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/8761f2b4c663324e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 542ef2a5-6717-4111-9cb4-d9bb7d2c34d1 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 542ef2a5-6717-4111-9cb4-d9bb7d2c34d1 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 443b6a3e-2d1f-4747-aa44-81b7fdf863bd This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3875 | 0.0020 | 1 | 1.3837 | | 1.355 | 0.0099 | 5 | 1.3731 | | 1.129 | 0.0198 | 10 | 1.3047 | | 1.1948 | 0.0296 | 15 | 1.2178 | | 1.2318 | 0.0395 | 20 | 1.1867 | | 1.0716 | 0.0494 | 25 | 1.1782 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso02/84e66dc1-af54-4bbe-8441-a2b9a37ad826
lesso02
2025-01-29T05:58:23Z
6
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:adapter:microsoft/phi-1_5", "license:mit", "region:us" ]
null
2025-01-29T05:55:50Z
--- library_name: peft license: mit base_model: microsoft/phi-1_5 tags: - axolotl - generated_from_trainer model-index: - name: 84e66dc1-af54-4bbe-8441-a2b9a37ad826 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/phi-1_5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8761f2b4c663324e_train_data.json ds_type: json format: custom path: /workspace/input_data/8761f2b4c663324e_train_data.json type: field_input: Article Content field_instruction: Question field_output: Answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso02/84e66dc1-af54-4bbe-8441-a2b9a37ad826 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/8761f2b4c663324e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 542ef2a5-6717-4111-9cb4-d9bb7d2c34d1 wandb_project: multi wandb_run: your_name wandb_runid: 542ef2a5-6717-4111-9cb4-d9bb7d2c34d1 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 84e66dc1-af54-4bbe-8441-a2b9a37ad826 This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 64 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1724 | 0.9960 | 63 | 1.1689 | | 1.9755 | 1.0119 | 64 | 1.1688 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Keltezaa/perfect_anime_p_flux
Keltezaa
2025-01-29T05:57:59Z
129
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:cc-by-nc-4.0", "region:us" ]
text-to-image
2025-01-29T05:50:17Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/custom.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: null license: cc-by-nc-4.0 --- # perfect_anime_p_flux <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/perfect_p_flux/tree/main) them in the Files & versions tab.
Amigoo/chiad-girl
Amigoo
2025-01-29T05:57:32Z
285
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T05:29:14Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: chiad-girl --- # Chiad Girl <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `chiad-girl` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Amigoo/chiad-girl', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
datlaaaaaaa/ccf7432d-0156-4996-a730-6cab7d5af581
datlaaaaaaa
2025-01-29T05:56:19Z
8
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2b-it", "base_model:adapter:unsloth/gemma-2b-it", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:42:27Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-2b-it tags: - axolotl - generated_from_trainer model-index: - name: ccf7432d-0156-4996-a730-6cab7d5af581 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e7036c1fd7b51bf0_train_data.json ds_type: json format: custom path: /workspace/input_data/e7036c1fd7b51bf0_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/ccf7432d-0156-4996-a730-6cab7d5af581 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e7036c1fd7b51bf0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ccf7432d-0156-4996-a730-6cab7d5af581 This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5878 | 0.1716 | 200 | 2.4631 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
adammandic87/5ead647f-9cc9-4ce2-9aed-f333bb1d1de2
adammandic87
2025-01-29T05:55:12Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:52:50Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 5ead647f-9cc9-4ce2-9aed-f333bb1d1de2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 226486ea217cc845_train_data.json ds_type: json format: custom path: /workspace/input_data/226486ea217cc845_train_data.json type: field_instruction: prompt field_output: caption format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/5ead647f-9cc9-4ce2-9aed-f333bb1d1de2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/226486ea217cc845_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d450f3db-bde7-42c0-80c7-58bdc98ab00b wandb_project: Birthday-SN56-34-Gradients-On-Demand wandb_run: your_name wandb_runid: d450f3db-bde7-42c0-80c7-58bdc98ab00b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5ead647f-9cc9-4ce2-9aed-f333bb1d1de2 This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 2.2178 | | 2.1666 | 0.0049 | 13 | 1.8687 | | 1.8313 | 0.0099 | 26 | 1.5912 | | 1.5756 | 0.0148 | 39 | 1.5171 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cunghoctienganh/85cd217a-5b84-4e5e-a18a-138fb6d27847
cunghoctienganh
2025-01-29T05:55:06Z
7
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2b-it", "base_model:adapter:unsloth/gemma-2b-it", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:42:44Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-2b-it tags: - axolotl - generated_from_trainer model-index: - name: 85cd217a-5b84-4e5e-a18a-138fb6d27847 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e7036c1fd7b51bf0_train_data.json ds_type: json format: custom path: /workspace/input_data/e7036c1fd7b51bf0_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: cunghoctienganh/85cd217a-5b84-4e5e-a18a-138fb6d27847 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e7036c1fd7b51bf0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 85cd217a-5b84-4e5e-a18a-138fb6d27847 This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5997 | 0.1716 | 200 | 2.4693 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
RichardErkhov/ChrisG19_-_Llama-2-7b-kukul-bot-v3-8bits
RichardErkhov
2025-01-29T05:53:38Z
6
0
null
[ "safetensors", "llama", "arxiv:1910.09700", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:49:47Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-2-7b-kukul-bot-v3 - bnb 8bits - Model creator: https://huggingface.co/ChrisG19/ - Original model: https://huggingface.co/ChrisG19/Llama-2-7b-kukul-bot-v3/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Nexspear/8370c40c-6342-44de-9a08-2f18573723a3
Nexspear
2025-01-29T05:51:57Z
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2b-it", "base_model:adapter:unsloth/gemma-2b-it", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:42:29Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-2b-it tags: - axolotl - generated_from_trainer model-index: - name: 8370c40c-6342-44de-9a08-2f18573723a3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e7036c1fd7b51bf0_train_data.json ds_type: json format: custom path: /workspace/input_data/e7036c1fd7b51bf0_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: Nexspear/8370c40c-6342-44de-9a08-2f18573723a3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/e7036c1fd7b51bf0_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8370c40c-6342-44de-9a08-2f18573723a3 This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0034 | 1 | 3.7973 | | 3.2948 | 0.0309 | 9 | 3.0690 | | 2.8413 | 0.0617 | 18 | 2.7606 | | 2.6077 | 0.0926 | 27 | 2.5916 | | 2.5384 | 0.1235 | 36 | 2.4937 | | 2.4458 | 0.1544 | 45 | 2.4309 | | 2.3587 | 0.1852 | 54 | 2.3902 | | 2.4441 | 0.2161 | 63 | 2.3579 | | 2.3751 | 0.2470 | 72 | 2.3372 | | 2.3437 | 0.2779 | 81 | 2.3266 | | 2.3477 | 0.3087 | 90 | 2.3215 | | 2.3269 | 0.3396 | 99 | 2.3205 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/10ec86e3-3cf9-45e0-87c3-f9303357dd14
nhung01
2025-01-29T05:49:52Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:18:55Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 10ec86e3-3cf9-45e0-87c3-f9303357dd14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 71d293a351cdff95_train_data.json ds_type: json format: custom path: /workspace/input_data/71d293a351cdff95_train_data.json type: field_input: neg field_instruction: query field_output: pos format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/10ec86e3-3cf9-45e0-87c3-f9303357dd14 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/71d293a351cdff95_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7681049f-e5d7-4d35-b3c4-7fac246dd4b7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7681049f-e5d7-4d35-b3c4-7fac246dd4b7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 10ec86e3-3cf9-45e0-87c3-f9303357dd14 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.5207 | 0.0309 | 200 | 4.4795 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/d0cd8d1c-1752-4d1b-91fc-a41d95183148
shibajustfor
2025-01-29T05:49:17Z
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2b-it", "base_model:adapter:unsloth/gemma-2b-it", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:48:00Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-2b-it tags: - axolotl - generated_from_trainer model-index: - name: d0cd8d1c-1752-4d1b-91fc-a41d95183148 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e7036c1fd7b51bf0_train_data.json ds_type: json format: custom path: /workspace/input_data/e7036c1fd7b51bf0_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/d0cd8d1c-1752-4d1b-91fc-a41d95183148 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/e7036c1fd7b51bf0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc wandb_project: Birthday-SN56-38-Gradients-On-Demand wandb_run: your_name wandb_runid: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d0cd8d1c-1752-4d1b-91fc-a41d95183148 This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0009 | 1 | 3.7038 | | 3.2702 | 0.0112 | 13 | 2.8230 | | 2.8093 | 0.0223 | 26 | 2.6314 | | 2.6943 | 0.0335 | 39 | 2.5365 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Virtuoso-Lite-Q6_K-GGUF
Triangle104
2025-01-29T05:48:55Z
19
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:arcee-ai/Virtuoso-Lite", "base_model:quantized:arcee-ai/Virtuoso-Lite", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T05:46:29Z
--- base_model: arcee-ai/Virtuoso-Lite library_name: transformers license: other tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/Virtuoso-Lite-Q6_K-GGUF This model was converted to GGUF format from [`arcee-ai/Virtuoso-Lite`](https://huggingface.co/arcee-ai/Virtuoso-Lite) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/arcee-ai/Virtuoso-Lite) for more details on the model. --- Model details: - Virtuoso-Lite (10B) is our next-generation, 10-billion-parameter language model based on the Llama-3 architecture. It is distilled from Deepseek-v3 using ~1.1B tokens/logits, allowing it to achieve robust performance at a significantly reduced parameter count compared to larger models. Despite its compact size, Virtuoso-Lite excels in a variety of tasks, demonstrating advanced reasoning, code generation, and mathematical problem-solving capabilities. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Virtuoso-Lite-Q6_K-GGUF --hf-file virtuoso-lite-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Virtuoso-Lite-Q6_K-GGUF --hf-file virtuoso-lite-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Virtuoso-Lite-Q6_K-GGUF --hf-file virtuoso-lite-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Virtuoso-Lite-Q6_K-GGUF --hf-file virtuoso-lite-q6_k.gguf -c 2048 ```
lesso11/ccf71468-2cf5-4196-9a1e-98d393ec06e0
lesso11
2025-01-29T05:48:41Z
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2b-it", "base_model:adapter:unsloth/gemma-2b-it", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:43:32Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-2b-it tags: - axolotl - generated_from_trainer model-index: - name: ccf71468-2cf5-4196-9a1e-98d393ec06e0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e7036c1fd7b51bf0_train_data.json ds_type: json format: custom path: /workspace/input_data/e7036c1fd7b51bf0_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso11/ccf71468-2cf5-4196-9a1e-98d393ec06e0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/e7036c1fd7b51bf0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc wandb_project: multi wandb_run: your_name wandb_runid: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ccf71468-2cf5-4196-9a1e-98d393ec06e0 This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 146 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3394 | 0.9949 | 145 | 2.3490 | | 2.9645 | 1.0017 | 146 | 2.3491 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/e5b0629f-792f-4e39-8f05-8c37b30e589a
nttx
2025-01-29T05:48:31Z
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2b-it", "base_model:adapter:unsloth/gemma-2b-it", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:42:17Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-2b-it tags: - axolotl - generated_from_trainer model-index: - name: e5b0629f-792f-4e39-8f05-8c37b30e589a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2b-it bf16: auto chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - e7036c1fd7b51bf0_train_data.json ds_type: json format: custom path: /workspace/input_data/e7036c1fd7b51bf0_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/e5b0629f-792f-4e39-8f05-8c37b30e589a hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/e7036c1fd7b51bf0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e5b0629f-792f-4e39-8f05-8c37b30e589a This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3391 | 0.3432 | 200 | 2.2885 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thaffggg/a659a1f7-b305-46ed-af94-dd8bee2e8d4d
thaffggg
2025-01-29T05:47:45Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-7B-Instruct", "base_model:adapter:unsloth/Qwen2.5-Math-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:18:21Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: a659a1f7-b305-46ed-af94-dd8bee2e8d4d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 71d293a351cdff95_train_data.json ds_type: json format: custom path: /workspace/input_data/71d293a351cdff95_train_data.json type: field_input: neg field_instruction: query field_output: pos format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thaffggg/a659a1f7-b305-46ed-af94-dd8bee2e8d4d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/71d293a351cdff95_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7681049f-e5d7-4d35-b3c4-7fac246dd4b7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7681049f-e5d7-4d35-b3c4-7fac246dd4b7 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a659a1f7-b305-46ed-af94-dd8bee2e8d4d This model is a fine-tuned version of [unsloth/Qwen2.5-Math-7B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.5292 | 0.0309 | 200 | 4.4813 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Jrinky/model3
Jrinky
2025-01-29T05:46:55Z
39
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:11808", "loss:Infonce", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:BAAI/bge-m3", "base_model:finetune:BAAI/bge-m3", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-01-29T05:41:49Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:11808 - loss:Infonce base_model: BAAI/bge-m3 widget: - source_sentence: Who are some notable individuals named Roger Mason sentences: - "Rav Kook's writings are extensive, and he is considered one of the most celebrated\ \ and influential rabbis of the 20th century. Some rabbis recommend that students\ \ of his begin studying his writings with Ein Ayah. References\n\nExternal links\n\ \ Ayin Ayah (full text), Hebrew Wikisource\n * Ayn Aya Classes in English\n\n\ Talmud\nAggadic Midrashim\nAbraham Isaac Kook\nHebrew-language religious books" - 'Roger Mason may refer to: Roger Mason (baseball) (born 1958), American baseball player Roger Mason (geologist) (born 1941), discoverer of Ediacaran fossils Roger Mason Jr. (born 1980), American basketball player Roger Mason (musician), Australian keyboardist L. Roger Mason, Jr., former assistant director of National Intelligence for Systems and Resource Analyses' - 'Timetabled passenger services on both lines had ceased by the end of February 1959. Shipping The Bourne-Morton Canal or Bourne Old Eau connected the town to the sea in Roman times. Until the mid-19th century, the present Bourne Eau was capable of carrying commercial boat traffic from the Wash coast and Spalding. This resulted from the investment following the Bourne Navigation Act of 1780. Passage became impossible once the junction of the Eau and the River Glen was converted from gates to a sluice in 1860. Media Local news and television programmes are provided by BBC Yorkshire and Lincolnshire and ITV Yorkshire. Television signals are received from the Belmont TV transmitter, the Waltham TV transmitter can also be received which broadcast BBC East Midlands and ITV Central programmes. Local radio stations are BBC Radio Lincolnshire, Greatest Hits Radio Lincolnshire and Lincs FM. The town''s local newspapers are Bourne Local and Stamford Mercury. Sport Bourne Town Football Club plays football in the United Counties Football League, whilst Bourne Cricket Club plays in the Lincolnshire ECB Premier League. These teams play their home games at the Abbey Lawn, a recreation ground privately owned by the Bourne United Charities. Motor sports The racing-car marques English Racing Automobiles (ERA) and British Racing Motors (BRM) were both founded in Bourne by Raymond Mays, an international racing driver and designer who lived in Bourne. The former ERA and BRM workshops in Spalding Road are adjacent to Eastgate House, the Mays'' family home in the town''s Eastgate. Landmarks There are currently 71 listed buildings in the parish of Bourne, the most important being Bourne Abbey and the Parish Church of St Peter and St Paul (1138), which is the only one scheduled Grade I. Notable people Bourne is reputedly the birthplace of Hereward the Wake (in about 1035), although the 12th-century source of this information, De Gestis Herwardi Saxonis, refers only to his father as being "of Bourne" and to the father''s house and retainers there. Robert Mannyng (1264–1340) is credited with putting the speech of the ordinary people of his time into recognisable form. He is better known as Robert de Brunne because of his long period of residence as a canon at Bourne Abbey. There he completed his life''s work of popularising religious and historical material in a Middle English dialect that was easily understood at that time. William Cecil (1520–1598) became the first Lord Burghley after serving Queen Elizabeth I. He was born at a house in the centre of Bourne that is now the Burghley Arms. Dr William Dodd (1729–1777), was an Anglican clergyman, man of letters and forger. He was prosecuted, sentenced to death and publicly hanged at Tyburn in 1777. Charles Frederick Worth (1825–1895), son of a solicitor, lived at Wake House in North Street. He moved to Paris and became a renowned designer of women''s fashion and the founder of haute couture. The French government awarded him the Légion d''honneur. Sir George White (1840-1912), MP for North West Norfolk, a seat he held for twelve years until he died in 1912. He was knighted for public service in 1907.' - source_sentence: What football team does the Japanese player play for sentences: - After the meeting, Box summons up the courage to ask Lorraine (Sue Holderness) on the date. The act ends with Robert's coat getting on fire because of the cigarette, with "Smoke Gets in Your Eyes" on the background. - is a Japanese football player. He plays for Honda Lock. - As followers on Twitter and FB probably well know I’ve been up to more than a spot of preserving of late. It’s my latest addiction, as if I need any more of those. My Dad’s the King of Jams, Chutneys and Pickles and I have a feeling he’s passed his enthusiastic genes for it on to me!. Which is great, but time consuming. Many an evening has been spent peeling, dicing, de-stoning, chopping, stirring, testing, sterilising and jarring. And then obviously the tasting. And all the crackers, bread and cheese to go with it!. I rarely get to bed much before midnight on my chutneying nights. And to be honest my cupboards are now fit to bursting with so many goodies, but at least I have christmas presents totally nailed this year. My Dad’s been making Hedgerow Chutney for years, and it happens to be everyone’s favourite of all his chutney recipes (and he makes quite a number!). Each autumn he takes a long walk around the field at the back of his house in Herefordshire picking all the freebie hedgerow goodies he can find and transforms them into this marvellously fruitful chutney. There’s always plenty of damsons, bullaces, sloes, blackberries and a few elderberries. Plus pears or apples for smoothing and bulking out. We don’t have quite the same fruit in our hedgerows in France but I thought I’d make my own French version picking the fruit from our garden and nearby tracks and lanes, managing to find plenty of figs, greengages, plums, pears, blackberries and sloes just before the season finished a couple of weeks ago. We’ve elderberries here too but they were way past their best by the time I got into full chutney mode. There’s no escaping how time consuming and labourious chutney making can be, especially when using so much fruit that needs hefty preparatory work. I realise now why it’s a hobby generally taken up by retired folk. But the results are so worth it, if you can spare it set aside a whole evening in the kitchen and wile away the hours getting lost in music or the radio or even catching up on a few programmes on You Tube. - source_sentence: What is the purpose of Business Intelligence sentences: - 'College career Proctor played as a defensive lineman for the North Carolina Central Eagles from 2008 to 2012. He was redshirted in 2008.' - The purpose of Business Intelligence is the transformation of raw data into meaningful information which can be used to make better business decisions. Business Intelligence grew out of Decision Support systems and is all about collecting data from disparate sources, conforming and integrating that data into central repositories which support reporting and analysis activities. - You have to show the police courtesy, they are only human. No one even WANTS for the judicial system to work. They are too lazy. - source_sentence: How does the speaker feel about Battle Symphony sentences: - It's a symptomless prearranged fact that when you afford your babe a infant work you motivate the status system, bolster the infant's stressed system, eat up colic, and harden your in bondage next to your kid. Now, how satisfying is that - Piquet passed Laffite to become the race's fifth different leader. Senna reached second just 1.7 seconds behind Piquet by passing Laffite, who then pitted for tires. With the two of them in front on their own, and Piquet leading by up to 3.5 seconds, Senna was content for the time being to follow his countryman. After eight laps in the lead, Piquet pitted for tires. Senna regained first place and then also pitted. Piquet's 18.4 second stop was even slower than teammate Mansell's had been, but when he returned to the track, the two-time champion got the bit between his teeth. Running second behind Senna, Piquet set the fastest lap of the race on lap 41, but with a pit stop ten seconds quicker than Piquet's, Senna was able to retain the lead. On the very next lap, the 42nd, Piquet pushed a bit too much, and crashed hard at the left-hand corner before the last chicane. He ended up in the tire barrier, unhurt, but with his car in a very precarious position. The crane, present for just that reason, was unable to move the car. Arnoux, now 16.6 seconds behind in second, took a second a lap off Senna's lead for five laps while a yellow was displayed in the corner where Piquet had crashed. As soon as the yellow flag was gone, Arnoux went wide and hit Piquet's abandoned Williams! The Frenchman decided that his car was not damaged, and attempted to rejoin the field, but did so right in front of Thierry Boutsen's Arrows-BMW, sidelining both cars. Very uncharacteristic of a street race, these three – Piquet, Arnoux and Boutsen – were the only drivers all afternoon to retire due to accidents. - Like Battle Symphony, it's not bad. It's just extremely boring. - source_sentence: When did he migrate to New South Wales sentences: - 'predict ministry in a sales and special floor being Job to the vulnerability diver. team: This research will work last for either, often, and also obtaining spreadsheets in the funny wedding power of the usability time. Physical Demands: The exclusive transitions was temporarily need perfect of those that must share developed by an position to badly do the animal objectives of this source. necessary terabytes may pay acted to increase streets with hearts to address the professional items. solely, the job will distract, Coordinate and be inbox security fun interdisciplinary operations that might read in back of 20 updates The service will properly be to like the detection throughout the use: logging, including, killing, teaching, leading, preparing, operating, and using.' - "Shizuka Shirakawa, Scholar of Chinese-language literature. Horin Fukuoji, Nihonga\ \ painter. 2005\n Mitsuko Mori. Actress. Makoto Saitō (1921–2008). Political scientist,\ \ specializing in American diplomatic and political history. Ryuzan Aoki, Ceramic\ \ artist. Toshio Sawada, Civil engineer. Shigeaki Hinohara, Doctor. 2006\n Yoshiaki\ \ Arata. A pioneer of nuclear fusion research. Jakuchō Setouchi. Writer/Buddhist\ \ nun. Hidekazu Yoshida. Music critic. Chusaku Oyama, Nihonga painter. Miyohei\ \ Shinohara, Economist. 2007\n Akira Mikazuki. Former justice minister and professor\ \ emeritus. Shinya Nakamura. Sculptor. Kōji Nakanishi. Organic chemist. Tokindo\ \ Okada, Developmental biologist. Shigeyama Sensaku, Kyogen performer. 2008\n\ \ Hironoshin Furuhashi (1928–2009). Sportsman and sports bureaucrat. Kiyoshi Itō.\ \ A mathematician whose work is now called Itō calculus. Donald Keene." - He attended Derby Grammar School and Beaufort House in London, and migrated to New South Wales in 1883. He settled in Newcastle, where he worked as a shipping agent, eventually partnering with his brothers in a firm. On 6 May 1893 he married Gertrude Mary Saddington, with whom he had five children. pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on BAAI/bge-m3 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 --> - **Maximum Sequence Length:** 1024 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Jrinky/model3") # Run inference sentences = [ 'When did he migrate to New South Wales', 'He attended Derby Grammar School and Beaufort House in London, and migrated to New South Wales in 1883. He settled in Newcastle, where he worked as a shipping agent, eventually partnering with his brothers in a firm. On 6 May 1893 he married Gertrude Mary Saddington, with whom he had five children.', 'Shizuka Shirakawa, Scholar of Chinese-language literature. Horin Fukuoji, Nihonga painter. 2005\n Mitsuko Mori. Actress. Makoto Saitō (1921–2008). Political scientist, specializing in American diplomatic and political history. Ryuzan Aoki, Ceramic artist. Toshio Sawada, Civil engineer. Shigeaki Hinohara, Doctor. 2006\n Yoshiaki Arata. A pioneer of nuclear fusion research. Jakuchō Setouchi. Writer/Buddhist nun. Hidekazu Yoshida. Music critic. Chusaku Oyama, Nihonga painter. Miyohei Shinohara, Economist. 2007\n Akira Mikazuki. Former justice minister and professor emeritus. Shinya Nakamura. Sculptor. Kōji Nakanishi. Organic chemist. Tokindo Okada, Developmental biologist. Shigeyama Sensaku, Kyogen performer. 2008\n Hironoshin Furuhashi (1928–2009). Sportsman and sports bureaucrat. Kiyoshi Itō. A mathematician whose work is now called Itō calculus. Donald Keene.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 11,808 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 17.85 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 186.46 tokens</li><li>max: 1024 tokens</li></ul> | * Samples: | anchor | positive | |:-----------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>What type of tournament structure was used in this freestyle wrestling competition</code> | <code>This freestyle wrestling competition consisted of a single-elimination tournament, with a repechage used to determine the winners of two bronze medals. Results<br>Legend<br>F — Won by fall<br><br>Final<br><br>Top half<br><br>Bottom half<br><br>Repechage<br><br>References<br>Official website<br><br>Women's freestyle 58 kg<br>World</code> | | <code>What was the status of Josip Broz Tito under the 1974 Constitution of Yugoslavia regarding his presidency</code> | <code>1 Wednesday, 22 April 1998. 2 (8.30 a.m.). 3 JUDGE CASSESE: Good morning. May I ask the<br>4 Registrar to call out the case number, please. 5 THE REGISTRAR: Case number IT-95-13a-T,<br>6 Prosecutor versus Slavko Dokmanovic. 7 MR. NIEMANN: My name is Niemann. I appear<br>8 with my colleagues, Mr. Williamson, Mr. Waespi and<br>9 Mr. Vos. 10 MR. FILA: My name is Mr. Toma Fila and<br>11 I appear with Ms. Lopicic and Mr. Petrovic in Defence of<br>12 my client, Mr. Slavko Dokmanovic. 13 JUDGE CASSESE: Mr. Dokmanovic, can you<br>14 follow me? Before we call the witness, may I ask you<br>15 whether you agree to this note from the Registrar about<br>16 the two documents which we discussed yesterday -- you<br>17 have probably received the English translation of the<br>18 bibliography of our witness, plus the missing pages of<br>19 the other document, so I think it is agreed that they<br>20 can be admitted into evidence. 21 MR. NIEMANN: Yes. 22 JUDGE CASSESE: Shall we proceed with the<br>24 MR. FILA: Your Honour, before we continue<br>25 wi...</code> | | <code>How quickly can you get loan approval and funds transferred with Crawfort</code> | <code>Then click on the submit button, and it’s done. Make your dream come true with Crawfort<br>When you all submit the loan form, then the agency takes a few hours to process and for approval of the loan. Not only that, you can get your loan amount in your account within a day after getting approval. Many money lenders all take more time in processing things and to credit the amount as well. So, for all that, a customer suffers more as they can’t get the money immediately. But here all these things are not done, and the staff here always make sure to provide you best and fast services. For all these things, you can get the best loan services from here without any doubt.</code> | * Loss: <code>selfloss.Infonce</code> with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 1,476 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 6 tokens</li><li>mean: 17.61 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 171.81 tokens</li><li>max: 1024 tokens</li></ul> | * Samples: | anchor | positive | |:--------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>What is Hector Guimard best known for</code> | <code>Hector Guimard (, 10 March 1867 – 20 May 1942) was a French architect and designer, and a prominent figure of the Art Nouveau style. He achieved early fame with his design for the Castel Beranger, the first Art Nouveau apartment building in Paris, which was selected in an 1899 competition as one of the best new building facades in the city. He is best known for the glass and iron edicules or canopies, with ornamental Art Nouveau curves, which he designed to cover the entrances of the first stations of the Paris Metro. Between 1890 and 1930, Guimard designed and built some fifty buildings, in addition to one hundred and forty-one subway entrances for Paris Metro, as well as numerous pieces of furniture and other decorative works. However, in the 1910s Art Nouveau went out of fashion and by the 1960s most of his works had been demolished, and only two of his original Metro edicules were still in place. Guimard's critical reputation revived in the 1960s, in part due to subsequent acquisit...</code> | | <code>What does Mark Kantrowitz say about the inclusion of loans in financial aid packages</code> | <code>"They don't always understand that part of the financial aid package includes loans," he says. But loans "don't really reduce your costs," explains Mark Kantrowitz, founder of the financial aid website FinAid.org and publisher of Edvisors Network. "They simply spread them out over time. ... A loan is a loan.</code> | | <code>How can Ayurveda support women's health during menopause</code> | <code>Especially as we journey towards menopause, Ayurveda is there to support us with its millenary wisdom. These are some easy routines to incorporate for the daily care of the vulva and vagina, our most delicate flower. Sesame oil: our best allied against dryness, it cannot be missing in our diet.</code> | * Loss: <code>selfloss.Infonce</code> with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.2033 | 100 | 0.2694 | 0.0690 | | 0.4065 | 200 | 0.0822 | 0.0528 | | 0.6098 | 300 | 0.0689 | 0.0497 | | 0.8130 | 400 | 0.0644 | 0.0469 | | 1.0163 | 500 | 0.0643 | 0.0443 | | 1.2195 | 600 | 0.0378 | 0.0473 | | 1.4228 | 700 | 0.04 | 0.0479 | | 1.6260 | 800 | 0.0358 | 0.0461 | | 1.8293 | 900 | 0.0332 | 0.0507 | | 2.0325 | 1000 | 0.0283 | 0.0538 | ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 3.4.0 - Transformers: 4.42.4 - PyTorch: 2.2.0+cu121 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### Infonce ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
shibajustfor/dd599f20-7887-4c85-baa0-4520aa7f4d75
shibajustfor
2025-01-29T05:44:30Z
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2b-it", "base_model:adapter:unsloth/gemma-2b-it", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:43:16Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-2b-it tags: - axolotl - generated_from_trainer model-index: - name: dd599f20-7887-4c85-baa0-4520aa7f4d75 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e7036c1fd7b51bf0_train_data.json ds_type: json format: custom path: /workspace/input_data/e7036c1fd7b51bf0_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/dd599f20-7887-4c85-baa0-4520aa7f4d75 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/e7036c1fd7b51bf0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc wandb_project: Birthday-SN56-39-Gradients-On-Demand wandb_run: your_name wandb_runid: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # dd599f20-7887-4c85-baa0-4520aa7f4d75 This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0009 | 1 | 3.8577 | | 3.4877 | 0.0112 | 13 | 2.8871 | | 2.8716 | 0.0223 | 26 | 2.6819 | | 2.7414 | 0.0335 | 39 | 2.6047 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/6685113d-f6e8-4d1f-a3f5-eb83b5eba3f3
daniel40
2025-01-29T05:43:58Z
6
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2b-it", "base_model:adapter:unsloth/gemma-2b-it", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:42:39Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-2b-it tags: - axolotl - generated_from_trainer model-index: - name: 6685113d-f6e8-4d1f-a3f5-eb83b5eba3f3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e7036c1fd7b51bf0_train_data.json ds_type: json format: custom path: /workspace/input_data/e7036c1fd7b51bf0_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/6685113d-f6e8-4d1f-a3f5-eb83b5eba3f3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/e7036c1fd7b51bf0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc wandb_project: Birthday-SN56-28-Gradients-On-Demand wandb_run: your_name wandb_runid: 5c12feb8-4676-4d3e-91d2-63a1abb91bcc warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6685113d-f6e8-4d1f-a3f5-eb83b5eba3f3 This model is a fine-tuned version of [unsloth/gemma-2b-it](https://huggingface.co/unsloth/gemma-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6134 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0009 | 1 | 3.8577 | | 3.5768 | 0.0112 | 13 | 2.9808 | | 2.9599 | 0.0223 | 26 | 2.7027 | | 2.7612 | 0.0335 | 39 | 2.6134 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung03/dbcc51f5-eb2c-430c-a255-e716a3c3d9ab
nhung03
2025-01-29T05:43:07Z
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-1.5B", "base_model:adapter:unsloth/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:30:56Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: dbcc51f5-eb2c-430c-a255-e716a3c3d9ab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b08f3dca86f2cb9d_train_data.json ds_type: json format: custom path: /workspace/input_data/b08f3dca86f2cb9d_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/dbcc51f5-eb2c-430c-a255-e716a3c3d9ab hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b08f3dca86f2cb9d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2e7e6af3-0874-40bc-9012-038990c5f193 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2e7e6af3-0874-40bc-9012-038990c5f193 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # dbcc51f5-eb2c-430c-a255-e716a3c3d9ab This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B](https://huggingface.co/unsloth/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3583 | 0.0908 | 200 | 2.2654 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Yukikai-Gemma-v0.3-GGUF
mradermacher
2025-01-29T05:39:18Z
261
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma2", "trl", "sft", "en", "base_model:N8Programs/Yukikai-Gemma-v0.3", "base_model:quantized:N8Programs/Yukikai-Gemma-v0.3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-29T04:01:36Z
--- base_model: N8Programs/Yukikai-Gemma-v0.3 language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - gemma2 - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/N8Programs/Yukikai-Gemma-v0.3 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Yukikai-Gemma-v0.3-GGUF/resolve/main/Yukikai-Gemma-v0.3.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV35
RobertoSonic
2025-01-29T05:38:51Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "swinv2", "image-classification", "generated_from_trainer", "base_model:microsoft/swinv2-tiny-patch4-window8-256", "base_model:finetune:microsoft/swinv2-tiny-patch4-window8-256", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-01-29T05:10:18Z
--- library_name: transformers license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-dmae-humeda-DAV35 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-tiny-patch4-window8-256-dmae-humeda-DAV35 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2578 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.85 | 1.0 | 36 | 1.4133 | 0.5333 | | 1.9294 | 2.0 | 72 | 0.9294 | 0.6333 | | 1.1818 | 3.0 | 108 | 0.7700 | 0.65 | | 0.7534 | 4.0 | 144 | 0.7531 | 0.7167 | | 0.4285 | 5.0 | 180 | 0.9580 | 0.7 | | 0.08 | 6.0 | 216 | 1.1785 | 0.75 | | 0.0891 | 7.0 | 252 | 1.4686 | 0.7333 | | 0.0602 | 8.0 | 288 | 1.7816 | 0.7 | | 0.0284 | 9.0 | 324 | 1.5790 | 0.7667 | | 0.0513 | 10.0 | 360 | 1.8933 | 0.7 | | 0.0335 | 11.0 | 396 | 2.1433 | 0.65 | | 0.025 | 12.0 | 432 | 2.3483 | 0.6667 | | 0.0246 | 13.0 | 468 | 2.6426 | 0.6667 | | 0.0306 | 14.0 | 504 | 3.0153 | 0.65 | | 0.016 | 15.0 | 540 | 3.1259 | 0.6833 | | 0.006 | 16.0 | 576 | 2.7612 | 0.7167 | | 0.0234 | 17.0 | 612 | 2.5334 | 0.7167 | | 0.0025 | 18.0 | 648 | 2.1768 | 0.7667 | | 0.0001 | 19.0 | 684 | 2.6585 | 0.7167 | | 0.0007 | 20.0 | 720 | 2.3282 | 0.7167 | | 0.0003 | 21.0 | 756 | 2.6975 | 0.7333 | | 0.0003 | 22.0 | 792 | 2.6186 | 0.7 | | 0.0006 | 23.0 | 828 | 2.9600 | 0.7167 | | 0.0008 | 24.0 | 864 | 2.9623 | 0.7333 | | 0.0002 | 25.0 | 900 | 2.8632 | 0.7167 | | 0.0143 | 26.0 | 936 | 2.8460 | 0.7167 | | 0.0 | 27.0 | 972 | 2.9372 | 0.7167 | | 0.0002 | 28.0 | 1008 | 2.8056 | 0.75 | | 0.0001 | 29.0 | 1044 | 3.0591 | 0.7167 | | 0.0001 | 30.0 | 1080 | 3.3295 | 0.6833 | | 0.0 | 31.0 | 1116 | 3.2851 | 0.6833 | | 0.0001 | 32.0 | 1152 | 3.4065 | 0.7 | | 0.0 | 33.0 | 1188 | 3.3669 | 0.7 | | 0.0 | 34.0 | 1224 | 3.3185 | 0.7167 | | 0.0006 | 35.0 | 1260 | 3.2563 | 0.7 | | 0.0004 | 36.0 | 1296 | 3.2831 | 0.7 | | 0.0001 | 37.0 | 1332 | 3.2594 | 0.7 | | 0.0 | 38.0 | 1368 | 3.2576 | 0.7 | | 0.0 | 38.9014 | 1400 | 3.2578 | 0.7 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
asr-africa/wav2vec2-xls-r-300m-CV_Fleurs_AMMI_ALFFA-sw-1hr-v1
asr-africa
2025-01-29T05:35:51Z
36
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-01-18T03:53:13Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-300m-CV_Fleurs_AMMI_ALFFA-sw-1hr-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-CV_Fleurs_AMMI_ALFFA-sw-1hr-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8810 - Wer: 0.4988 - Cer: 0.1672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 17.0 | 1.0 | 36 | 13.0736 | 1.0 | 1.0 | | 9.9036 | 2.0 | 72 | 4.8880 | 1.0 | 1.0 | | 4.684 | 3.0 | 108 | 3.5599 | 1.0 | 1.0 | | 3.5015 | 4.0 | 144 | 3.1648 | 1.0 | 1.0 | | 3.201 | 5.0 | 180 | 3.0654 | 1.0 | 1.0 | | 3.1147 | 6.0 | 216 | 3.1915 | 1.0 | 1.0 | | 3.0914 | 7.0 | 252 | 2.9619 | 1.0 | 1.0 | | 3.01 | 8.0 | 288 | 3.0046 | 1.0 | 1.0 | | 2.9785 | 9.0 | 324 | 2.9234 | 1.0 | 1.0 | | 2.932 | 10.0 | 360 | 2.9227 | 1.0 | 1.0 | | 2.8853 | 11.0 | 396 | 2.8842 | 1.0 | 1.0 | | 2.7422 | 12.0 | 432 | 2.4736 | 0.9999 | 0.9446 | | 2.0966 | 13.0 | 468 | 1.5906 | 0.9995 | 0.4546 | | 1.449 | 14.0 | 504 | 1.3529 | 0.8594 | 0.3155 | | 1.2739 | 15.0 | 540 | 1.2643 | 0.7826 | 0.2549 | | 0.968 | 16.0 | 576 | 1.1934 | 0.7199 | 0.2297 | | 0.8544 | 17.0 | 612 | 1.1714 | 0.6661 | 0.2161 | | 0.7248 | 18.0 | 648 | 1.1922 | 0.6587 | 0.2126 | | 0.6452 | 19.0 | 684 | 1.3711 | 0.6823 | 0.2196 | | 0.6399 | 20.0 | 720 | 1.2777 | 0.6351 | 0.2120 | | 0.5218 | 21.0 | 756 | 1.3353 | 0.6113 | 0.2011 | | 0.5141 | 22.0 | 792 | 1.3149 | 0.6116 | 0.1995 | | 0.4709 | 23.0 | 828 | 1.2793 | 0.6262 | 0.2050 | | 0.4386 | 24.0 | 864 | 1.3153 | 0.6057 | 0.1971 | | 0.3992 | 25.0 | 900 | 1.3247 | 0.6032 | 0.1970 | | 0.3569 | 26.0 | 936 | 1.4275 | 0.5992 | 0.1980 | | 0.3628 | 27.0 | 972 | 1.3171 | 0.5915 | 0.1924 | | 0.3241 | 28.0 | 1008 | 1.3894 | 0.5791 | 0.1904 | | 0.3993 | 29.0 | 1044 | 1.4247 | 0.5856 | 0.1942 | | 0.2921 | 30.0 | 1080 | 1.4364 | 0.5721 | 0.1889 | | 0.2929 | 31.0 | 1116 | 1.4470 | 0.5646 | 0.1875 | | 0.2705 | 32.0 | 1152 | 1.3813 | 0.5596 | 0.1865 | | 0.2675 | 33.0 | 1188 | 1.5556 | 0.5587 | 0.1857 | | 0.2917 | 34.0 | 1224 | 1.4195 | 0.5680 | 0.1886 | | 0.2571 | 35.0 | 1260 | 1.5744 | 0.5683 | 0.1871 | | 0.2378 | 36.0 | 1296 | 1.5611 | 0.5588 | 0.1850 | | 0.2181 | 37.0 | 1332 | 1.6092 | 0.5618 | 0.1869 | | 0.2197 | 38.0 | 1368 | 1.5259 | 0.5727 | 0.1890 | | 0.2022 | 39.0 | 1404 | 1.5426 | 0.5594 | 0.1862 | | 0.1899 | 40.0 | 1440 | 1.5704 | 0.5645 | 0.1841 | | 0.1995 | 41.0 | 1476 | 1.5666 | 0.5660 | 0.1834 | | 0.1972 | 42.0 | 1512 | 1.6442 | 0.5521 | 0.1843 | | 0.1749 | 43.0 | 1548 | 1.6143 | 0.5566 | 0.1836 | | 0.1569 | 44.0 | 1584 | 1.6420 | 0.5598 | 0.1844 | | 0.1659 | 45.0 | 1620 | 1.7003 | 0.5542 | 0.1845 | | 0.1969 | 46.0 | 1656 | 1.4453 | 0.5482 | 0.1813 | | 0.1609 | 47.0 | 1692 | 1.6009 | 0.5539 | 0.1838 | | 0.1613 | 48.0 | 1728 | 1.6792 | 0.5512 | 0.1843 | | 0.1498 | 49.0 | 1764 | 1.5508 | 0.5443 | 0.1827 | | 0.1437 | 50.0 | 1800 | 1.7122 | 0.5340 | 0.1794 | | 0.1674 | 51.0 | 1836 | 1.6303 | 0.5330 | 0.1787 | | 0.1368 | 52.0 | 1872 | 1.7204 | 0.5476 | 0.1819 | | 0.1247 | 53.0 | 1908 | 1.7727 | 0.5435 | 0.1825 | | 0.1321 | 54.0 | 1944 | 1.7033 | 0.5361 | 0.1788 | | 0.116 | 55.0 | 1980 | 1.6836 | 0.5356 | 0.1789 | | 0.1095 | 56.0 | 2016 | 1.7173 | 0.5367 | 0.1784 | | 0.1236 | 57.0 | 2052 | 1.8125 | 0.5406 | 0.1791 | | 0.1123 | 58.0 | 2088 | 1.7084 | 0.5340 | 0.1783 | | 0.1103 | 59.0 | 2124 | 1.6993 | 0.5348 | 0.1786 | | 0.105 | 60.0 | 2160 | 1.7396 | 0.5214 | 0.1743 | | 0.105 | 61.0 | 2196 | 1.7277 | 0.5288 | 0.1762 | | 0.1045 | 62.0 | 2232 | 1.7564 | 0.5295 | 0.1772 | | 0.099 | 63.0 | 2268 | 1.7446 | 0.5183 | 0.1731 | | 0.091 | 64.0 | 2304 | 1.8399 | 0.5235 | 0.1763 | | 0.1165 | 65.0 | 2340 | 1.7453 | 0.5284 | 0.1770 | | 0.0933 | 66.0 | 2376 | 1.7183 | 0.5201 | 0.1730 | | 0.0945 | 67.0 | 2412 | 1.7575 | 0.5244 | 0.1751 | | 0.0943 | 68.0 | 2448 | 1.8292 | 0.5179 | 0.1731 | | 0.0804 | 69.0 | 2484 | 1.7515 | 0.5130 | 0.1715 | | 0.0936 | 70.0 | 2520 | 1.7478 | 0.5197 | 0.1736 | | 0.0847 | 71.0 | 2556 | 1.7778 | 0.5212 | 0.1750 | | 0.0758 | 72.0 | 2592 | 1.8291 | 0.5167 | 0.1728 | | 0.0787 | 73.0 | 2628 | 1.8027 | 0.5117 | 0.1712 | | 0.0839 | 74.0 | 2664 | 1.7828 | 0.5160 | 0.1726 | | 0.0691 | 75.0 | 2700 | 1.7989 | 0.5102 | 0.1714 | | 0.0752 | 76.0 | 2736 | 1.8084 | 0.5112 | 0.1708 | | 0.0706 | 77.0 | 2772 | 1.8100 | 0.5121 | 0.1709 | | 0.0778 | 78.0 | 2808 | 1.7763 | 0.5085 | 0.1700 | | 0.0631 | 79.0 | 2844 | 1.8313 | 0.5091 | 0.1696 | | 0.0729 | 80.0 | 2880 | 1.8528 | 0.5055 | 0.1699 | | 0.0656 | 81.0 | 2916 | 1.8918 | 0.5105 | 0.1711 | | 0.078 | 82.0 | 2952 | 1.8473 | 0.5076 | 0.1718 | | 0.0792 | 83.0 | 2988 | 1.7290 | 0.5054 | 0.1693 | | 0.0649 | 84.0 | 3024 | 1.8294 | 0.5093 | 0.1695 | | 0.0647 | 85.0 | 3060 | 1.8810 | 0.5023 | 0.1685 | | 0.0656 | 86.0 | 3096 | 1.7913 | 0.5043 | 0.1683 | | 0.0566 | 87.0 | 3132 | 1.8506 | 0.5049 | 0.1684 | | 0.0619 | 88.0 | 3168 | 1.8519 | 0.5043 | 0.1677 | | 0.0718 | 89.0 | 3204 | 1.8385 | 0.4996 | 0.1667 | | 0.0562 | 90.0 | 3240 | 1.8502 | 0.5030 | 0.1675 | | 0.0593 | 91.0 | 3276 | 1.8384 | 0.5038 | 0.1675 | | 0.0632 | 92.0 | 3312 | 1.8463 | 0.5026 | 0.1679 | | 0.0545 | 93.0 | 3348 | 1.8528 | 0.5009 | 0.1680 | | 0.0566 | 94.0 | 3384 | 1.8471 | 0.4995 | 0.1675 | | 0.0593 | 95.0 | 3420 | 1.8420 | 0.4989 | 0.1673 | | 0.0578 | 96.0 | 3456 | 1.8687 | 0.4982 | 0.1670 | | 0.0542 | 97.0 | 3492 | 1.8701 | 0.4988 | 0.1672 | | 0.0602 | 98.0 | 3528 | 1.8767 | 0.4991 | 0.1672 | | 0.0561 | 99.0 | 3564 | 1.8789 | 0.4982 | 0.1670 | | 0.06 | 100.0 | 3600 | 1.8810 | 0.4988 | 0.1672 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
error577/11d428e6-e74a-4846-a189-a0a3e2acee71
error577
2025-01-29T05:34:27Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:The-matt/llama2_ko-7b_distinctive-snowflake-182_1060", "base_model:adapter:The-matt/llama2_ko-7b_distinctive-snowflake-182_1060", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:46:48Z
--- library_name: peft base_model: The-matt/llama2_ko-7b_distinctive-snowflake-182_1060 tags: - axolotl - generated_from_trainer model-index: - name: 11d428e6-e74a-4846-a189-a0a3e2acee71 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: The-matt/llama2_ko-7b_distinctive-snowflake-182_1060 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a307f33571a64585_train_data.json ds_type: json format: custom path: /workspace/input_data/a307f33571a64585_train_data.json type: field_input: original_caption field_instruction: premise_en field_output: hypothesis_en format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: error577/11d428e6-e74a-4846-a189-a0a3e2acee71 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 1 mlflow_experiment_name: /tmp/a307f33571a64585_train_data.json model_type: AutoModelForCausalLM num_epochs: 4 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 256 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.02 wandb_entity: null wandb_mode: online wandb_name: 520b482a-8596-4661-a960-ed5a8af7690b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 520b482a-8596-4661-a960-ed5a8af7690b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 11d428e6-e74a-4846-a189-a0a3e2acee71 This model is a fine-tuned version of [The-matt/llama2_ko-7b_distinctive-snowflake-182_1060](https://huggingface.co/The-matt/llama2_ko-7b_distinctive-snowflake-182_1060) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3575 | 0.0009 | 1 | 2.6130 | | 1.0971 | 0.1094 | 125 | 1.1068 | | 1.7661 | 0.2188 | 250 | 1.0559 | | 0.8352 | 0.3282 | 375 | 0.9996 | | 0.8143 | 0.4376 | 500 | 0.9853 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prithivMLmods/Blaze-14B-xElite
prithivMLmods
2025-01-29T05:34:16Z
62
7
transformers
[ "transformers", "safetensors", "llama", "text-generation", "phi-4", "LlamaForCausalLM", "xElite", "14B", "conversational", "en", "license:llama3.1", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-28T15:35:28Z
--- license: llama3.1 language: - en pipeline_tag: text-generation library_name: transformers tags: - phi-4 - LlamaForCausalLM - xElite - 14B model-index: - name: Blaze-14B-xElite results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: wis-k/instruction-following-eval split: train args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 3.63 name: averaged accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: SaylorTwift/bbh split: test args: num_few_shot: 3 metrics: - type: acc_norm value: 51.57 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: lighteval/MATH-Hard split: test args: num_few_shot: 4 metrics: - type: exact_match value: 35.88 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa split: train args: num_few_shot: 0 metrics: - type: acc_norm value: 19.24 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 17.68 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 45.68 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FBlaze-14B-xElite name: Open LLM Leaderboard --- ![xlite.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/SW_hpO9bn8vtkf5F1NteF.gif) # **Blaze-14B-xElite** [Blaze-14B-xElite finetuned] is a state-of-the-art open model built on the LLaMA-based model architecture. It has been fine-tuned using a blend of synthetic datasets, data from filtered public domain websites, and acquired academic books and Q&A datasets. The goal of this approach is to ensure that small yet capable models are trained with high-quality data focused on advanced reasoning. Blaze-14B-xElite has adopted a robust safety post-training approach. This approach leverages a variety of both open-source and in-house generated synthetic datasets. The overall technique employed to achieve safety alignment combines SFT (Supervised Fine-Tuning) and iterative DPO (Direct Preference Optimization), including publicly available datasets focusing on helpfulness and harmlessness as well as various questions and answers targeted at multiple safety categories. # **Dataset Info** Blaze-14B-xElite is fine-tuned on a synthetic dataset curated through a pipeline explicitly built for this purpose. The data is primarily based on the Chain of Thought (CoT) or Chain of Continuous Flow methodologies. This approach ensures that the dataset is rich in reasoning, problem-solving, and step-by-step breakdowns of complex tasks. The model is specifically designed to excel in reasoning, mathematics, and breaking down problems into logical, manageable steps. # **Run with Transformers** ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("prithivMLmods/Blaze-14B-xElite") model = AutoModelForCausalLM.from_pretrained( "prithivMLmods/Blaze-14B-xElite", device_map="auto", torch_dtype=torch.bfloat16, ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=32) print(tokenizer.decode(outputs[0])) ``` You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows: ```python messages = [ {"role": "user", "content": "Write me a poem about Machine Learning."}, ] input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda") outputs = model.generate(**input_ids, max_new_tokens=256) print(tokenizer.decode(outputs[0])) ``` # **Intended Use** The Blaze-14B-xElite model is designed for a wide range of applications, particularly those requiring advanced reasoning, high-quality text generation, and multilingual capabilities. Below are some of the intended use cases: 1. **Complex Reasoning Tasks**: - Solving intricate problems in mathematics, logic, and science. - Assisting in academic research by providing detailed explanations and summaries. 2. **Multilingual Applications**: - Translating text across multiple languages while preserving context and nuance. - Generating content in various languages for global audiences. 3. **Content Creation**: - Assisting writers, marketers, and creators with high-quality text generation. - Generating creative ideas, stories, and technical documentation. 4. **Educational Tools**: - Providing explanations, tutoring, and Q&A support for students and educators. - Generating practice questions and answers for learning purposes. 5. **Customer Support**: - Automating responses to customer queries with accurate and helpful information. - Handling complex customer service scenarios with advanced reasoning. 6. **Safety-Critical Applications**: - Ensuring responses are aligned with safety guidelines, making it suitable for sensitive domains. - Providing harmlessness-focused interactions in public-facing applications. # **Limitations** While Blaze-14B-xElite is a powerful and versatile model, it has certain limitations that users should be aware of: 1. **Bias and Fairness**: - Despite rigorous training and safety alignment, the model may still exhibit biases present in the training data. Users should critically evaluate outputs, especially in sensitive contexts. 2. **Contextual Understanding**: - The model may occasionally misinterpret complex or ambiguous prompts, leading to inaccurate or irrelevant responses. 3. **Real-Time Knowledge**: - The model's knowledge is limited to the data it was trained on and does not include real-time or post-training updates. It may not be aware of recent events or developments. 4. **Safety and Harmlessness**: - While extensive efforts have been made to align the model with safety guidelines, it may still generate outputs that are inappropriate or harmful in certain contexts. Continuous monitoring and human oversight are recommended. 5. **Resource Requirements**: - Running the model efficiently may require significant computational resources, especially for large-scale or real-time applications. 6. **Ethical Considerations**: - The model should not be used for malicious purposes, such as generating harmful content, misinformation, or spam. Users are responsible for ensuring ethical use. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Blaze-14B-xElite-details)! Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FBlaze-14B-xElite&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)! | Metric |Value (%)| |-------------------|--------:| |**Average** | 28.95| |IFEval (0-Shot) | 3.63| |BBH (3-Shot) | 51.57| |MATH Lvl 5 (4-Shot)| 35.88| |GPQA (0-shot) | 19.24| |MuSR (0-shot) | 17.68| |MMLU-PRO (5-shot) | 45.68|
prithivMLmods/Qwen-7B-Distill-Reasoner
prithivMLmods
2025-01-29T05:33:08Z
63
8
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "deepseek", "qwen", "distill", "cot", "conversational", "en", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-28T15:39:57Z
--- license: apache-2.0 language: - en base_model: - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B pipeline_tag: text-generation library_name: transformers tags: - deepseek - qwen - distill - cot model-index: - name: Qwen-7B-Distill-Reasoner results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: wis-k/instruction-following-eval split: train args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 33.96 name: averaged accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwen-7B-Distill-Reasoner name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: SaylorTwift/bbh split: test args: num_few_shot: 3 metrics: - type: acc_norm value: 22.18 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwen-7B-Distill-Reasoner name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: lighteval/MATH-Hard split: test args: num_few_shot: 4 metrics: - type: exact_match value: 21.15 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwen-7B-Distill-Reasoner name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa split: train args: num_few_shot: 0 metrics: - type: acc_norm value: 10.29 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwen-7B-Distill-Reasoner name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 2.78 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwen-7B-Distill-Reasoner name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 20.2 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwen-7B-Distill-Reasoner name: Open LLM Leaderboard --- # **Qwen-7B-Distill-Reasoner** Qwen-7B-Distill-Reasoner is based on the *Qwen [ KT ] model*, which was distilled by **DeepSeek-AI/DeepSeek-R1-Distill-Qwen-7B**. It has been fine-tuned on the long chain-of-thought reasoning model and specialized datasets, focusing on chain-of-thought (CoT) reasoning for problem-solving. This model is optimized for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and complex reasoning tasks. # **Quickstart with Transformers** Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "prithivMLmods/Qwen-7B-Distill-Reasoner" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### **Intended Use:** 1. **Instruction-Following:** The model excels in understanding and executing detailed instructions, making it ideal for automation systems, virtual assistants, and educational tools. 2. **Text Generation:** It can produce coherent, logically structured, and contextually relevant text for use in content creation, summarization, and report writing. 3. **Complex Reasoning Tasks:** With its fine-tuning for chain-of-thought reasoning, the model is well-suited for multi-step problem-solving, logical deduction, and question-answering tasks. 4. **Research and Development:** It can support researchers and developers in exploring advancements in logical reasoning and fine-tuning methodologies. 5. **Educational Applications:** The model can assist in teaching logical reasoning and problem-solving by generating step-by-step solutions. ### **Limitations:** 1. **Domain-Specific Knowledge:** While fine-tuned on reasoning datasets, the model may lack deep expertise in highly specialized or technical domains. 2. **Hallucination:** Like many large language models, it can generate incorrect or fabricated information, especially when reasoning beyond its training data. 3. **Bias in Training Data:** The model's outputs may reflect biases present in the datasets it was fine-tuned on, which could limit its objectivity in certain contexts. 4. **Performance on Non-Reasoning Tasks:** The model is optimized for chain-of-thought reasoning and may underperform on tasks that require simpler, less structured responses. 5. **Resource-Intensive:** Running the model efficiently requires significant computational resources, which may limit accessibility for smaller-scale deployments. 6. **Dependence on Input Quality:** The model’s performance heavily depends on the clarity and quality of the input provided. Ambiguous or poorly structured prompts may yield suboptimal results. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Qwen-7B-Distill-Reasoner-details)! Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FQwen-7B-Distill-Reasoner&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)! | Metric |Value (%)| |-------------------|--------:| |**Average** | 18.43| |IFEval (0-Shot) | 33.96| |BBH (3-Shot) | 22.18| |MATH Lvl 5 (4-Shot)| 21.15| |GPQA (0-shot) | 10.29| |MuSR (0-shot) | 2.78| |MMLU-PRO (5-shot) | 20.20|
Best000/cf9e5376-6f64-4ba4-b088-ea0da28b4a7e
Best000
2025-01-29T05:33:05Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-3-Llama-3.1-8B", "base_model:adapter:NousResearch/Hermes-3-Llama-3.1-8B", "license:llama3", "region:us" ]
null
2025-01-29T05:10:54Z
--- library_name: peft license: llama3 base_model: NousResearch/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: cf9e5376-6f64-4ba4-b088-ea0da28b4a7e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 30529ea285fff6e5_train_data.json ds_type: json format: custom path: /workspace/input_data/30529ea285fff6e5_train_data.json type: field_input: article field_instruction: input field_output: clean_input format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/cf9e5376-6f64-4ba4-b088-ea0da28b4a7e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/30529ea285fff6e5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 558bab3b-4762-449f-9904-9dc48b2dd138 wandb_project: Birthday-SN56-15-Gradients-On-Demand wandb_run: your_name wandb_runid: 558bab3b-4762-449f-9904-9dc48b2dd138 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cf9e5376-6f64-4ba4-b088-ea0da28b4a7e This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.7204 | | 1.6411 | 0.0010 | 13 | 1.2960 | | 1.4575 | 0.0020 | 26 | 1.0562 | | 1.2937 | 0.0031 | 39 | 0.9900 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
devgo-aida/Qwen2.5-Coder-7B-Instruct-IQ3_XXS-GGUF
devgo-aida
2025-01-29T05:29:21Z
23
0
transformers
[ "transformers", "gguf", "code", "codeqwen", "chat", "qwen", "qwen-coder", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-01-29T05:29:03Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct/blob/main/LICENSE language: - en base_model: Qwen/Qwen2.5-Coder-7B-Instruct pipeline_tag: text-generation library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder - llama-cpp - gguf-my-repo --- # devgo-aida/Qwen2.5-Coder-7B-Instruct-IQ3_XXS-GGUF This model was converted to GGUF format from [`Qwen/Qwen2.5-Coder-7B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo devgo-aida/Qwen2.5-Coder-7B-Instruct-IQ3_XXS-GGUF --hf-file qwen2.5-coder-7b-instruct-iq3_xxs-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo devgo-aida/Qwen2.5-Coder-7B-Instruct-IQ3_XXS-GGUF --hf-file qwen2.5-coder-7b-instruct-iq3_xxs-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo devgo-aida/Qwen2.5-Coder-7B-Instruct-IQ3_XXS-GGUF --hf-file qwen2.5-coder-7b-instruct-iq3_xxs-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo devgo-aida/Qwen2.5-Coder-7B-Instruct-IQ3_XXS-GGUF --hf-file qwen2.5-coder-7b-instruct-iq3_xxs-imat.gguf -c 2048 ```
kostiantynk/8b22f353-9f95-4061-a24b-ce4aa9be3fc4
kostiantynk
2025-01-29T05:26:31Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "base_model:adapter:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "license:mit", "region:us" ]
null
2025-01-29T04:32:36Z
--- library_name: peft license: mit base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B tags: - axolotl - generated_from_trainer model-index: - name: 8b22f353-9f95-4061-a24b-ce4aa9be3fc4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 28869e035ebaf0bf_train_data.json ds_type: json format: custom path: /workspace/input_data/28869e035ebaf0bf_train_data.json type: field_input: labels field_instruction: name field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk/8b22f353-9f95-4061-a24b-ce4aa9be3fc4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/28869e035ebaf0bf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c01e03ea-ac63-445b-b53d-881712c18952 wandb_project: Birthday-SN56-7-Gradients-On-Demand wandb_run: your_name wandb_runid: c01e03ea-ac63-445b-b53d-881712c18952 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8b22f353-9f95-4061-a24b-ce4aa9be3fc4 This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.5837 | | 10.2629 | 0.0007 | 13 | 2.4325 | | 9.7252 | 0.0015 | 26 | 2.3554 | | 9.2361 | 0.0022 | 39 | 2.3374 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk/9dcf26b4-a6e9-46bf-8a7d-8d7af31b5167
kostiantynk
2025-01-29T05:26:31Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", "base_model:adapter:VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-29T05:19:17Z
--- library_name: peft license: llama3.1 base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9dcf26b4-a6e9-46bf-8a7d-8d7af31b5167 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 61fdcf379e4ddee9_train_data.json ds_type: json format: custom path: /workspace/input_data/61fdcf379e4ddee9_train_data.json type: field_input: genres field_instruction: title field_output: description format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk/9dcf26b4-a6e9-46bf-8a7d-8d7af31b5167 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/61fdcf379e4ddee9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dd59f9f5-ca81-47a9-bf7c-9060c0120a4f wandb_project: Mine-SN56-22-Gradients-On-Demand wandb_run: your_name wandb_runid: dd59f9f5-ca81-47a9-bf7c-9060c0120a4f warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9dcf26b4-a6e9-46bf-8a7d-8d7af31b5167 This model is a fine-tuned version of [VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.3381 | | 2.2627 | 0.0010 | 13 | 2.0559 | | 1.9553 | 0.0020 | 26 | 2.0006 | | 1.9338 | 0.0030 | 39 | 1.9916 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ALIN-LLM/ours-llama-3.2-1b-math
ALIN-LLM
2025-01-29T05:25:28Z
32
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T05:24:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nhung03/8b665d3d-aa37-4a81-b0d9-dd693f0cf897
nhung03
2025-01-29T05:19:56Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Hermes-3-Llama-3.1-8B", "base_model:adapter:unsloth/Hermes-3-Llama-3.1-8B", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:47:06Z
--- library_name: peft base_model: unsloth/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: 8b665d3d-aa37-4a81-b0d9-dd693f0cf897 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5be263efe7224a93_train_data.json ds_type: json format: custom path: /workspace/input_data/5be263efe7224a93_train_data.json type: field_input: text field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/8b665d3d-aa37-4a81-b0d9-dd693f0cf897 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/5be263efe7224a93_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92e25f25-19b1-465a-a1eb-13a542866ff6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92e25f25-19b1-465a-a1eb-13a542866ff6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 8b665d3d-aa37-4a81-b0d9-dd693f0cf897 This model is a fine-tuned version of [unsloth/Hermes-3-Llama-3.1-8B](https://huggingface.co/unsloth/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1888 | 0.1636 | 200 | 0.1847 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/0d1001cf-0752-46da-b5e4-264e908aa3d9
trenden
2025-01-29T05:18:53Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-3-Llama-3.1-8B", "base_model:adapter:NousResearch/Hermes-3-Llama-3.1-8B", "license:llama3", "region:us" ]
null
2025-01-29T04:56:57Z
--- library_name: peft license: llama3 base_model: NousResearch/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: 0d1001cf-0752-46da-b5e4-264e908aa3d9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 30529ea285fff6e5_train_data.json ds_type: json format: custom path: /workspace/input_data/30529ea285fff6e5_train_data.json type: field_input: article field_instruction: input field_output: clean_input format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/0d1001cf-0752-46da-b5e4-264e908aa3d9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/30529ea285fff6e5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 558bab3b-4762-449f-9904-9dc48b2dd138 wandb_project: Birthday-SN56-26-Gradients-On-Demand wandb_run: your_name wandb_runid: 558bab3b-4762-449f-9904-9dc48b2dd138 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0d1001cf-0752-46da-b5e4-264e908aa3d9 This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.7204 | | 1.6412 | 0.0010 | 13 | 1.3003 | | 1.4611 | 0.0020 | 26 | 1.0574 | | 1.2943 | 0.0031 | 39 | 0.9904 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
stevillis/bertimbau-finetuned-glassdoor-reviews
stevillis
2025-01-29T05:18:52Z
189
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "sentiment analysis", "nlp", "glassdoor", "pt", "base_model:neuralmind/bert-base-portuguese-cased", "base_model:finetune:neuralmind/bert-base-portuguese-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-06T06:36:08Z
--- license: mit language: - pt metrics: accuracy: Neutral: 0.99 Positive: 0.97 Negative: 0.98 base_model: neuralmind/bert-base-portuguese-cased library_name: transformers tags: - sentiment analysis - nlp - glassdoor pipeline_tag: text-classification --- # BERTimbau for Sentiment Analysis of Glassdoor Reviews ## Introduction This model fine-tunes [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) for sentiment analysis of Glassdoor reviews about IT companies in Cuiabá. The dataset used to train the model consists of 2,532 reviews sourced from Glassdoor. For more detail about the project, follow my [GitHub](https://github.com/stevillis/glassdoor-reviews-analysis-nlp). ### Example Usage ```python from transformers import pipeline pipe = pipeline("text-classification", model="stevillis/bertimbau-finetuned-glassdoor-reviews") result = pipe("Empresa boa para trabalhar") print(result) # Expected output: [{'label': 'positive', 'score': 0.9993522763252258}] ```
trangtrannnnn/7b47b6df-8a43-470d-aeb2-6acc9d9dd573
trangtrannnnn
2025-01-29T05:18:07Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Hermes-3-Llama-3.1-8B", "base_model:adapter:unsloth/Hermes-3-Llama-3.1-8B", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:46:50Z
--- library_name: peft base_model: unsloth/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: 7b47b6df-8a43-470d-aeb2-6acc9d9dd573 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5be263efe7224a93_train_data.json ds_type: json format: custom path: /workspace/input_data/5be263efe7224a93_train_data.json type: field_input: text field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: trangtrannnnn/7b47b6df-8a43-470d-aeb2-6acc9d9dd573 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/5be263efe7224a93_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92e25f25-19b1-465a-a1eb-13a542866ff6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92e25f25-19b1-465a-a1eb-13a542866ff6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7b47b6df-8a43-470d-aeb2-6acc9d9dd573 This model is a fine-tuned version of [unsloth/Hermes-3-Llama-3.1-8B](https://huggingface.co/unsloth/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1871 | 0.1636 | 200 | 0.1841 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/c300dd03-3c7f-452a-8fd3-5707c5f2f461
great0001
2025-01-29T05:18:00Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-3-Llama-3.1-8B", "base_model:adapter:NousResearch/Hermes-3-Llama-3.1-8B", "license:llama3", "region:us" ]
null
2025-01-29T04:55:39Z
--- library_name: peft license: llama3 base_model: NousResearch/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: c300dd03-3c7f-452a-8fd3-5707c5f2f461 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 30529ea285fff6e5_train_data.json ds_type: json format: custom path: /workspace/input_data/30529ea285fff6e5_train_data.json type: field_input: article field_instruction: input field_output: clean_input format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/c300dd03-3c7f-452a-8fd3-5707c5f2f461 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/30529ea285fff6e5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 558bab3b-4762-449f-9904-9dc48b2dd138 wandb_project: Birthday-SN56-33-Gradients-On-Demand wandb_run: your_name wandb_runid: 558bab3b-4762-449f-9904-9dc48b2dd138 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c300dd03-3c7f-452a-8fd3-5707c5f2f461 This model is a fine-tuned version of [NousResearch/Hermes-3-Llama-3.1-8B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0029 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0826 | 0.0001 | 1 | 1.7204 | | 1.8578 | 0.0010 | 13 | 1.3599 | | 1.5865 | 0.0020 | 26 | 1.0956 | | 1.449 | 0.0031 | 39 | 1.0029 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhungphammmmm/9a8e9065-e958-4d32-9b5a-39c46937ddce
nhungphammmmm
2025-01-29T05:17:57Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Hermes-3-Llama-3.1-8B", "base_model:adapter:unsloth/Hermes-3-Llama-3.1-8B", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:46:51Z
--- library_name: peft base_model: unsloth/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: 9a8e9065-e958-4d32-9b5a-39c46937ddce results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5be263efe7224a93_train_data.json ds_type: json format: custom path: /workspace/input_data/5be263efe7224a93_train_data.json type: field_input: text field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhungphammmmm/9a8e9065-e958-4d32-9b5a-39c46937ddce hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/5be263efe7224a93_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92e25f25-19b1-465a-a1eb-13a542866ff6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92e25f25-19b1-465a-a1eb-13a542866ff6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9a8e9065-e958-4d32-9b5a-39c46937ddce This model is a fine-tuned version of [unsloth/Hermes-3-Llama-3.1-8B](https://huggingface.co/unsloth/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1852 | 0.1636 | 200 | 0.1842 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thalllsssss/0714ab4f-57db-4e04-9b86-a2d9bf7e8bfc
thalllsssss
2025-01-29T05:17:51Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Hermes-3-Llama-3.1-8B", "base_model:adapter:unsloth/Hermes-3-Llama-3.1-8B", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:47:10Z
--- library_name: peft base_model: unsloth/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: 0714ab4f-57db-4e04-9b86-a2d9bf7e8bfc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5be263efe7224a93_train_data.json ds_type: json format: custom path: /workspace/input_data/5be263efe7224a93_train_data.json type: field_input: text field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thalllsssss/0714ab4f-57db-4e04-9b86-a2d9bf7e8bfc hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/5be263efe7224a93_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92e25f25-19b1-465a-a1eb-13a542866ff6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92e25f25-19b1-465a-a1eb-13a542866ff6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 0714ab4f-57db-4e04-9b86-a2d9bf7e8bfc This model is a fine-tuned version of [unsloth/Hermes-3-Llama-3.1-8B](https://huggingface.co/unsloth/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1881 | 0.1636 | 200 | 0.1846 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
devgo-aida/ko-r1-1.5b-preview-Q8_0-GGUF
devgo-aida
2025-01-29T05:17:29Z
30
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "ko", "base_model:OLAIR/ko-r1-1.5b-preview", "base_model:quantized:OLAIR/ko-r1-1.5b-preview", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T05:06:31Z
--- library_name: transformers license: apache-2.0 language: - ko base_model: OLAIR/ko-r1-1.5b-preview tags: - llama-cpp - gguf-my-repo --- # devgo-aida/ko-r1-1.5b-preview-Q8_0-GGUF This model was converted to GGUF format from [`OLAIR/ko-r1-1.5b-preview`](https://huggingface.co/OLAIR/ko-r1-1.5b-preview) using llama.cpp via the ggml.ai's space. Refer to the [original model card](https://huggingface.co/OLAIR/ko-r1-1.5b-preview) for more details on the model. ### ollama ```bash ollama run hf.co/devgo-aida/ko-r1-1.5b-preview-Q8_0-GGUF ```
babylon3005/lora-250128
babylon3005
2025-01-29T05:14:46Z
8
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T05:14:44Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: astout --- # Lora 250128 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `astout` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('babylon3005/lora-250128', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)