Search is not available for this dataset
modelId
stringlengths
5
137
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-03-29 06:26:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
401 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-03-29 06:26:49
card
stringlengths
11
1.01M
sn56/7ee0340b-d51b-4aa9-9f8c-c8f73a690ea0
sn56
"2025-02-07T17:53:11Z"
13
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloomz-560m", "base_model:adapter:bigscience/bloomz-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
"2025-02-07T17:50:09Z"
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloomz-560m tags: - axolotl - generated_from_trainer model-index: - name: 7ee0340b-d51b-4aa9-9f8c-c8f73a690ea0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloomz-560m bf16: true chat_template: llama3 datasets: - data_files: - f5cb02b31dddbc85_train_data.json ds_type: json format: custom path: /workspace/input_data/f5cb02b31dddbc85_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 5 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: sn56/7ee0340b-d51b-4aa9-9f8c-c8f73a690ea0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f5cb02b31dddbc85_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit optimizer_betas: - 0.9 - 0.999 optimizer_epsilon: 1e-08 output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 seed: 319462629 sequence_len: 512 shuffle: true strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: null wandb_project: god wandb_run: 4zwn wandb_runid: null warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7ee0340b-d51b-4aa9-9f8c-c8f73a690ea0 This model is a fine-tuned version of [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 319462629 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.1016 | 0.0002 | 1 | 3.4612 | | 13.9102 | 0.0010 | 5 | 3.4620 | | 14.0703 | 0.0019 | 10 | 3.4612 | | 13.9922 | 0.0029 | 15 | 3.4606 | | 12.7227 | 0.0038 | 20 | 3.4601 | | 13.7598 | 0.0048 | 25 | 3.4615 | | 12.8047 | 0.0057 | 30 | 3.4606 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
intanm/mlm_v1_20230327_fin_sa_100
intanm
"2023-03-27T05:47:30Z"
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-03-27T05:41:51Z"
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: mlm_v1_20230327_fin_sa_100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mlm_v1_20230327_fin_sa_100 This model is a fine-tuned version of [intanm/mlm-v1-fin-lm-20230327-001](https://huggingface.co/intanm/mlm-v1-fin-lm-20230327-001) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1458 - Accuracy: 0.9615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 102 | 0.1770 | 0.9341 | | No log | 2.0 | 204 | 0.1458 | 0.9615 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
mradermacher/Experiment27-7B-i1-GGUF
mradermacher
"2024-12-16T01:49:12Z"
115
0
transformers
[ "transformers", "gguf", "chat", "en", "base_model:yam-peleg/Experiment27-7B", "base_model:quantized:yam-peleg/Experiment27-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix" ]
null
"2024-12-14T23:26:42Z"
--- base_model: yam-peleg/Experiment27-7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - chat --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/yam-peleg/Experiment27-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Experiment27-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Experiment27-7B-i1-GGUF/resolve/main/Experiment27-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Peeepy/Airoboros-13b-SuperHOT-8k
Peeepy
"2023-06-23T17:39:29Z"
7
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-06-22T15:20:41Z"
[Airoboros 13b GPT4 1.4](https://huggingface.co/jondurbin/airoboros-13b-gpt4-1.4) merged with kaiokendev's [SuperHOT 8k](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) LoRA. The code to merge these can be found [here](https://files.catbox.moe/mg5v4g.py). Change information as needed. NOTE: This requires a monkey patch to work. FlashVenom has, along with kindly quantising this model to 4bit, added the monkeypatch file to their repo. You can access this [here](https://huggingface.co/flashvenom/Airoboros-13B-SuperHOT-8K-4bit-GPTQ). FROM THE ORIGINAL LORA MODEL CARD: This is a second prototype of SuperHOT, this time with 4K context and no RLHF. In my testing, it can go all the way to 6K without breaking down and I made the change with intention to reach 8K, so I'll assume it will go to 8K although I only trained on 4K sequences. In order to use the 8K context, you will need to apply the monkeypatch I have added in this repo -- without it, it will not work. The patch is very simple, and you can make the changes yourself: Increase the max_position_embeddings to 8192 to stretch the sinusoidal Stretch the frequency steps by a scale of 0.25
SidXXD/Test_only_1_eps_16
SidXXD
"2024-11-13T14:45:21Z"
6
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "custom-diffusion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
"2024-11-13T14:41:32Z"
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: photo of a <v1*> person tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - custom-diffusion inference: true --- # Custom Diffusion - SidXXD/Test_only_1_eps_16 These are Custom Diffusion adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on photo of a <v1*> person using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
gohzy/singlish-toxic-bert-IA3-159571-3
gohzy
"2024-03-13T08:18:54Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-03-13T08:18:52Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
spyrok/llama-2-7b-chat-lolcode7
spyrok
"2025-03-09T17:47:32Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-09T17:42:53Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yoinked/merges
yoinked
"2024-02-03T06:11:00Z"
0
7
null
[ "art", "text-to-image", "en", "license:other", "region:us" ]
text-to-image
"2023-03-26T23:51:40Z"
--- license: other language: - en pipeline_tag: text-to-image tags: - art --- some merges and or ggml conversions img: booru tags, use the `/awoo/` models preferibly, as theyre the best all non-ggml models are licensed under yodayno v2: ``` This license allows you to use the model, but only for non-commercial purposes. You cannot use the model or any part of it in a paid service or sell it. If you use the model on any platform, you must provide a link or reference to the original model. You must give credit to the licensor whenever you use the model. The licensor does not provide any warranty and is not liable for any damages caused by the use of the model. If you break any of the terms, this license will be terminated. This license is governed by the laws of the jurisdiction in which the licensor is located. ```
pmranu/deepseek-for-reasoning
pmranu
"2025-02-26T08:10:08Z"
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
"2025-02-25T09:56:16Z"
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** pmranu - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mrferr3t/75661d4b-a41b-4faa-ba01-a492bad28d27
mrferr3t
"2025-01-30T04:15:56Z"
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-128k", "region:us" ]
null
"2025-01-30T02:38:45Z"
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 75661d4b-a41b-4faa-ba01-a492bad28d27 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 00748ae27c0f3538_train_data.json ds_type: json format: custom path: /workspace/input_data/00748ae27c0f3538_train_data.json type: field_input: context field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 30 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/75661d4b-a41b-4faa-ba01-a492bad28d27 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0005 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/00748ae27c0f3538_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d55b15aa-62e7-4486-8bc4-33f1c5e10ec7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d55b15aa-62e7-4486-8bc4-33f1c5e10ec7 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 75661d4b-a41b-4faa-ba01-a492bad28d27 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.0344 | 0.0006 | 1 | 1.6728 | | 7.8571 | 0.0171 | 30 | 1.3879 | | 6.0655 | 0.0341 | 60 | 1.3566 | | 4.6908 | 0.0512 | 90 | 1.3377 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
QuantFactory/TherapyLlama-8B-v1-GGUF
QuantFactory
"2024-09-13T15:36:42Z"
242
1
null
[ "gguf", "dataset:victunes/nart-100k-synthetic-buddy-mixed-names", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-09-13T14:39:04Z"
--- license: cc-by-nc-4.0 datasets: - victunes/nart-100k-synthetic-buddy-mixed-names --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/TherapyLlama-8B-v1-GGUF This is quantized version of [victunes/TherapyLlama-8B-v1](https://huggingface.co/victunes/TherapyLlama-8B-v1) created using llama.cpp # Original Model Card **GGUF:** https://huggingface.co/victunes/TherapyLlama-8B-v1-GGUF # TherapyLlama 8B v1 _Buddy is here for you._ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f07d05279d2d8f725bf0c3/A-ckcZ9H0Ee1n_ls2FM41.png) Trained on Llama 3 8B using a modified version of [jerryjalapeno/nart-100k-synthetic](https://huggingface.co/datasets/jerryjalapeno/nart-100k-synthetic). It is a Llama 3 version of https://huggingface.co/victunes/TherapyBeagle-11B-v2 TherapyLlama is _hopefully_ aligned to be helpful, healthy, and comforting. ## IMPORTANT: Use Vicuna format This was trained with the Vicuna 1.1 format. Use the Vicuna format! Do NOT use the Llama 3 format. ## Usage - Do not hold back on Buddy. - Open up to Buddy. - Pour your heart out to Buddy. - Engage with Buddy. - Remember that Buddy is just an AI. ## Notes - Tested with the Vicuna 1.1 Format - You might be assigned a random name if you don't give yourself one. - RP capabilities are weaker compared to TherapyBeagle. - Make sure to say **"You are Socrates"** for its best RP attempt. ## Disclaimer **TherapyLlama is NOT a real therapist. It is a friendly AI that mimics empathy and psychotherapy. It is an illusion without the slightest clue who you are as a person. As much as it can help you with self-discovery, A LLAMA IS NOT A SUBSTITUTE to a real professional.** With that said, I found it to be a very helpful tool in unravelling one's self. I hope this model can help sooth minds and hearts. ## Examples ### LLAMA 3 INSTRUCT ``` {{[INPUT]}} Hello, I'm victunes {{[OUTPUT]}} Hi victunes! Welcome to our session. I'm here to listen and support you. How are you feeling today? {{[INPUT]}} I've been feeling down lately. {{[OUTPUT]}} I'm sorry to hear that. Can you tell me more about what's been going on? {{[INPUT]}} I think I'm pretty lonely. {{[OUTPUT]}} Loneliness can be really tough. It sounds like it's been weighing heavily on your mind. What makes you feel lonely? {{[INPUT]}} My friend died recently. {{[OUTPUT]}} Oh, I'm so sorry for your loss, victunes. Losing a friend is never easy. How have you been coping with the grief? ``` **GGUF:** https://huggingface.co/victunes/TherapyLlama-8B-v1-GGUF
Schadom/dqn-SpaceInvadersNoFrameskip-v4-v6
Schadom
"2023-09-28T19:29:52Z"
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-09-28T19:29:08Z"
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 796.00 +/- 319.83 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Schadom -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Schadom -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Schadom ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
fine-tuned/LegalBenchConsumerContractsQA-256-24-gpt-4o-2024-05-13-292605
fine-tuned
"2024-05-22T11:03:56Z"
4
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "mteb", "custom_code", "en", "dataset:fine-tuned/LegalBenchConsumerContractsQA-256-24-gpt-4o-2024-05-13-292605", "dataset:allenai/c4", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
"2024-05-22T11:03:43Z"
--- license: apache-2.0 datasets: - fine-tuned/LegalBenchConsumerContractsQA-256-24-gpt-4o-2024-05-13-292605 - allenai/c4 language: - en pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb --- This model is a fine-tuned version of [**jinaai/jina-embeddings-v2-base-en**](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) designed for the following use case: custom ## How to Use This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started: ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim model = SentenceTransformer( 'fine-tuned/LegalBenchConsumerContractsQA-256-24-gpt-4o-2024-05-13-292605', trust_remote_code=True ) embeddings = model.encode([ 'first text to embed', 'second text to embed' ]) print(cos_sim(embeddings[0], embeddings[1])) ```
akashjoy/distilbert-base-uncased-finetuned-emotion
akashjoy
"2024-03-26T02:10:45Z"
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-03-22T04:37:15Z"
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: F1 type: f1 value: 0.9333997935723345 - name: Accuracy type: accuracy value: 0.9335 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1499 - F1: 0.9334 - Accuracy: 0.9335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.7725 | 1.0 | 250 | 0.2686 | 0.9184 | 0.918 | | 0.2092 | 2.0 | 500 | 0.1734 | 0.9330 | 0.933 | | 0.1394 | 3.0 | 750 | 0.1623 | 0.9356 | 0.935 | | 0.1095 | 4.0 | 1000 | 0.1449 | 0.9368 | 0.937 | | 0.0914 | 5.0 | 1250 | 0.1499 | 0.9334 | 0.9335 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu118 - Datasets 2.18.0 - Tokenizers 0.15.2
byczong/donut-ft-terms-struct
byczong
"2024-12-25T16:29:20Z"
9
0
transformers
[ "transformers", "pytorch", "safetensors", "vision-encoder-decoder", "image-text-to-text", "legal", "pl", "dataset:byczong/pl-insurance-terms-struct", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
"2024-09-10T18:08:12Z"
--- library_name: transformers tags: - legal license: apache-2.0 datasets: - byczong/pl-insurance-terms-struct language: - pl base_model: - naver-clova-ix/donut-base pipeline_tag: image-text-to-text --- # Model Card Donut fine-tuned for full document structuring (parsing) on [pl-insurance-terms-struct](https://huggingface.co/datasets/byczong/pl-insurance-terms-struct) dataset. Trained for 10 epochs with `max_seq_len=7168`. - Field-level f1 score: 0.57 - TED-based accuracy: 0.67 Note: This model and its tokenizer were not (pre-) trained for Polish.
johannes-garstenauer/distilbert_masking_heaps
johannes-garstenauer
"2023-10-30T13:27:33Z"
105
1
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2023-09-15T09:11:59Z"
DistilBERT for masked language modelling trained on OpenSSH heap data structures dataset for the purpose of generating representations. This model was created for the thesis "Generating Robust Representations of Structures in OpenSSH Heap Dumps" by Johannes Garstenauer. ### Model Description - **Developed by:** Johannes Garstenauer - **Funded by [optional]:** Universität Passau ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://zenodo.org/records/10053730 ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> Training data: https://huggingface.co/datasets/johannes-garstenauer/structs_token_size_4_reduced_labelled_train Validation data: https://huggingface.co/datasets/johannes-garstenauer/structs_token_size_4_reduced_labelled_eval
NeoCodes-dev/q-FrozenLake-v1-4x4-noSlippery
NeoCodes-dev
"2023-05-15T20:54:49Z"
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-05-15T20:54:45Z"
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dergky1/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bkbj/Atest
bkbj
"2024-11-16T10:16:25Z"
7
0
transformers
[ "transformers", "llava_next_video", "text-classification", "Chat", "chemistry", "biology", "legal", "music", "code", "merge", "text-generation-inference", "art", "vi", "en", "dataset:nvidia/OpenMathInstruct-2", "dataset:fka/awesome-chatgpt-prompts", "dataset:google/frames-benchmark", "dataset:5CD-AI/Viet-LAION-Gemini-VQA", "dataset:Vezora/Open-Critic-GPT", "dataset:5CD-AI/Vietnamese-Ecommerce-Multi-turn-Chat", "dataset:meta-math/MetaMathQA", "dataset:meta-llama/Llama-3.2-3B-Instruct-evals", "dataset:MacPaw/mac-app-store-apps-metadata", "dataset:thu4n/WiFi-Vision-Counting", "dataset:lmms-lab/LLaVA-Video-178K", "dataset:migtissera/Synthia-Coder-v1.5-I", "dataset:iamtarun/python_code_instructions_18k_alpaca", "base_model:Qwen/Qwen2.5-Math-7B-Instruct", "base_model:merge:Qwen/Qwen2.5-Math-7B-Instruct", "base_model:dangvantuan/vietnamese-document-embedding", "base_model:merge:dangvantuan/vietnamese-document-embedding", "base_model:failspy/Phi-3-mini-4k-geminified", "base_model:merge:failspy/Phi-3-mini-4k-geminified", "base_model:google/gemma-2-2b-it", "base_model:merge:google/gemma-2-2b-it", "base_model:google/gemma-2-2b-jpn-it", "base_model:merge:google/gemma-2-2b-jpn-it", "base_model:keepitreal/vietnamese-sbert", "base_model:merge:keepitreal/vietnamese-sbert", "base_model:meta-llama/Llama-3.2-11B-Vision-Instruct", "base_model:merge:meta-llama/Llama-3.2-11B-Vision-Instruct", "base_model:microsoft/Florence-2-large", "base_model:merge:microsoft/Florence-2-large", "base_model:microsoft/OmniParser", "base_model:merge:microsoft/OmniParser", "base_model:neulab/Pangea-7B", "base_model:merge:neulab/Pangea-7B", "base_model:nvidia/Llama-3.1-Nemotron-70B-Instruct-HF", "base_model:merge:nvidia/Llama-3.1-Nemotron-70B-Instruct-HF", "base_model:nvidia/NVLM-D-72B", "base_model:merge:nvidia/NVLM-D-72B", "base_model:openai/whisper-large-v3-turbo", "base_model:merge:openai/whisper-large-v3-turbo", "base_model:rain1011/pyramid-flow-sd3", "base_model:merge:rain1011/pyramid-flow-sd3", "license:bigscience-openrail-m", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-10-28T22:42:51Z"
--- license: bigscience-openrail-m datasets: - nvidia/OpenMathInstruct-2 - fka/awesome-chatgpt-prompts - google/frames-benchmark - 5CD-AI/Viet-LAION-Gemini-VQA - Vezora/Open-Critic-GPT - 5CD-AI/Vietnamese-Ecommerce-Multi-turn-Chat - meta-math/MetaMathQA - meta-llama/Llama-3.2-3B-Instruct-evals - MacPaw/mac-app-store-apps-metadata - thu4n/WiFi-Vision-Counting - lmms-lab/LLaVA-Video-178K - migtissera/Synthia-Coder-v1.5-I - iamtarun/python_code_instructions_18k_alpaca language: - vi - en metrics: - accuracy - code_eval - bertscore - chrf base_model: - nvidia/NVLM-D-72B - google/gemma-2-2b-jpn-it - google/gemma-2-2b-it - openai/whisper-large-v3-turbo - failspy/Phi-3-mini-4k-geminified - nvidia/Llama-3.1-Nemotron-70B-Instruct-HF - Qwen/Qwen2.5-Math-7B-Instruct - keepitreal/vietnamese-sbert - dangvantuan/vietnamese-embedding-LongContext - meta-llama/Llama-3.2-11B-Vision-Instruct - rain1011/pyramid-flow-sd3 - microsoft/OmniParser - neulab/Pangea-7B - microsoft/Florence-2-large new_version: openai/whisper-large-v3-turbo library_name: transformers tags: - Chat - chemistry - biology - legal - music - code - merge - text-generation-inference - art ---
daoyuanzhai/distilgpt2-finetuned-wikitext2
daoyuanzhai
"2023-12-24T09:46:26Z"
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-12-24T09:14:17Z"
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7501 | 1.0 | 2334 | 3.6669 | | 3.6498 | 2.0 | 4668 | 3.6464 | | 3.5868 | 3.0 | 7002 | 3.6434 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
anthonyduer/ppo-LunarLander-v2
anthonyduer
"2022-12-07T07:20:11Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2022-12-07T07:19:40Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 226.55 +/- 49.07 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
edbeeching/dmlab_30_3333
edbeeching
"2022-11-09T13:07:19Z"
1
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2022-11-09T13:05:14Z"
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: dmlab_30 type: dmlab_30 metrics: - type: mean_reward value: 9.10 +/- 0.91 name: mean_reward verified: false --- A(n) **APPO** model trained on the **dmlab_30** environment. This model was trained using Sample Factory 2.0: https://github.com/alex-petrenko/sample-factory
ale-bay/zephyr-7b-dpo-full
ale-bay
"2024-05-07T12:04:34Z"
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:ale-bay/zephyr-7b-sft-full", "base_model:finetune:ale-bay/zephyr-7b-sft-full", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-07T10:15:10Z"
--- license: apache-2.0 base_model: ale-bay/zephyr-7b-sft-full tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: zephyr-7b-dpo-full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-dpo-full This model is a fine-tuned version of [ale-bay/zephyr-7b-sft-full](https://huggingface.co/ale-bay/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5148 - Rewards/chosen: -0.9764 - Rewards/rejected: -1.9505 - Rewards/accuracies: 0.7656 - Rewards/margins: 0.9741 - Logps/rejected: -460.4252 - Logps/chosen: -362.5974 - Logits/rejected: 3.5330 - Logits/chosen: 3.0354 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5965 | 0.21 | 100 | 0.6008 | -0.4349 | -0.7957 | 0.7148 | 0.3608 | -344.9378 | -308.4434 | -2.0640 | -2.1194 | | 0.5688 | 0.42 | 200 | 0.5589 | -0.6365 | -1.1670 | 0.7383 | 0.5305 | -382.0739 | -328.6037 | -1.1455 | -1.2654 | | 0.5121 | 0.63 | 300 | 0.5288 | -0.6931 | -1.5300 | 0.7617 | 0.8370 | -418.3772 | -334.2621 | 2.1389 | 1.7225 | | 0.5208 | 0.84 | 400 | 0.5153 | -0.8705 | -1.8050 | 0.7578 | 0.9345 | -445.8741 | -352.0043 | 3.4324 | 2.9372 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2
lloydmeta/bert-fine-tuned-cola
lloydmeta
"2024-03-17T02:54:10Z"
110
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-03-17T02:48:54Z"
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation base_model: bert-base-cased model-index: - name: bert-fine-tuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7606 - Matthews Correlation: 0.6119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4626 | 1.0 | 1069 | 0.4405 | 0.5364 | | 0.3158 | 2.0 | 2138 | 0.5962 | 0.5803 | | 0.1915 | 3.0 | 3207 | 0.7606 | 0.6119 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
JunghwanRo/q-FrozenLake-v1-4x4-noSlippery
JunghwanRo
"2023-11-07T08:36:12Z"
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-11-07T08:36:10Z"
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="JunghwanRo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf
RichardErkhov
"2025-03-19T05:20:33Z"
0
0
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-03-19T05:17:13Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) gpt2-finetuned - GGUF - Model creator: https://huggingface.co/Adarsh-12/ - Original model: https://huggingface.co/Adarsh-12/gpt2-finetuned/ | Name | Quant method | Size | | ---- | ---- | ---- | | [gpt2-finetuned.Q2_K.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q2_K.gguf) | Q2_K | 0.08GB | | [gpt2-finetuned.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.IQ3_XS.gguf) | IQ3_XS | 0.08GB | | [gpt2-finetuned.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.IQ3_S.gguf) | IQ3_S | 0.08GB | | [gpt2-finetuned.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q3_K_S.gguf) | Q3_K_S | 0.08GB | | [gpt2-finetuned.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.IQ3_M.gguf) | IQ3_M | 0.09GB | | [gpt2-finetuned.Q3_K.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q3_K.gguf) | Q3_K | 0.09GB | | [gpt2-finetuned.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q3_K_M.gguf) | Q3_K_M | 0.09GB | | [gpt2-finetuned.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q3_K_L.gguf) | Q3_K_L | 0.1GB | | [gpt2-finetuned.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.IQ4_XS.gguf) | IQ4_XS | 0.1GB | | [gpt2-finetuned.Q4_0.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q4_0.gguf) | Q4_0 | 0.1GB | | [gpt2-finetuned.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.IQ4_NL.gguf) | IQ4_NL | 0.1GB | | [gpt2-finetuned.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q4_K_S.gguf) | Q4_K_S | 0.1GB | | [gpt2-finetuned.Q4_K.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q4_K.gguf) | Q4_K | 0.11GB | | [gpt2-finetuned.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q4_K_M.gguf) | Q4_K_M | 0.11GB | | [gpt2-finetuned.Q4_1.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q4_1.gguf) | Q4_1 | 0.11GB | | [gpt2-finetuned.Q5_0.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q5_0.gguf) | Q5_0 | 0.11GB | | [gpt2-finetuned.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q5_K_S.gguf) | Q5_K_S | 0.11GB | | [gpt2-finetuned.Q5_K.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q5_K.gguf) | Q5_K | 0.12GB | | [gpt2-finetuned.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q5_K_M.gguf) | Q5_K_M | 0.12GB | | [gpt2-finetuned.Q5_1.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q5_1.gguf) | Q5_1 | 0.12GB | | [gpt2-finetuned.Q6_K.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q6_K.gguf) | Q6_K | 0.13GB | | [gpt2-finetuned.Q8_0.gguf](https://huggingface.co/RichardErkhov/Adarsh-12_-_gpt2-finetuned-gguf/blob/main/gpt2-finetuned.Q8_0.gguf) | Q8_0 | 0.17GB | Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LEESIHYUN/xlm-roberta-base-finetuned-panx-fr
LEESIHYUN
"2024-10-28T09:48:50Z"
106
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2024-07-20T21:56:30Z"
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2750 - F1: 0.8495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5647 | 1.0 | 191 | 0.3242 | 0.7728 | | 0.2671 | 2.0 | 382 | 0.2672 | 0.8202 | | 0.1744 | 3.0 | 573 | 0.2750 | 0.8495 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1
Naying0206/b2b-lora-60
Naying0206
"2024-04-09T10:49:32Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-04-09T10:49:30Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jet-taekyo/mpnet_finetuned_recursive
jet-taekyo
"2024-09-26T01:23:30Z"
49
0
sentence-transformers
[ "sentence-transformers", "safetensors", "mpnet", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:714", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:sentence-transformers/all-mpnet-base-v2", "base_model:finetune:sentence-transformers/all-mpnet-base-v2", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
"2024-09-26T01:23:12Z"
--- base_model: sentence-transformers/all-mpnet-base-v2 library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 - dot_accuracy@1 - dot_accuracy@3 - dot_accuracy@5 - dot_accuracy@10 - dot_precision@1 - dot_precision@3 - dot_precision@5 - dot_precision@10 - dot_recall@1 - dot_recall@3 - dot_recall@5 - dot_recall@10 - dot_ndcg@10 - dot_mrr@10 - dot_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:714 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: What does the term 'rights, opportunities, or access' encompass in this framework? sentences: - "10 \nGAI systems can ease the unintentional production or dissemination of false,\ \ inaccurate, or misleading \ncontent (misinformation) at scale, particularly\ \ if the content stems from confabulations. \nGAI systems can also ease the deliberate\ \ production or dissemination of false or misleading information \n(disinformation)\ \ at scale, where an actor has the explicit intent to deceive or cause harm to\ \ others. Even \nvery subtle changes to text or images can manipulate human and\ \ machine perception. \nSimilarly, GAI systems could enable a higher degree of\ \ sophistication for malicious actors to produce \ndisinformation that is targeted\ \ towards specific demographics. Current and emerging multimodal models \nmake\ \ it possible to generate both text-based disinformation and highly realistic\ \ “deepfakes” – that is, \nsynthetic audiovisual content and photorealistic images.12\ \ Additional disinformation threats could be \nenabled by future GAI models trained\ \ on new data modalities." - '74. See, e.g., Heather Morrison. Virtual Testing Puts Disabled Students at a Disadvantage. Government Technology. May 24, 2022. https://www.govtech.com/education/k-12/virtual-testing-puts-disabled-students-at-a-disadvantage; Lydia X. Z. Brown, Ridhi Shetty, Matt Scherer, and Andrew Crawford. Ableism And Disability Discrimination In New Surveillance Technologies: How new surveillance technologies in education, policing, health care, and the workplace disproportionately harm disabled people. Center for Democracy and Technology Report. May 24, 2022. https://cdt.org/insights/ableism-and-disability-discrimination-in-new-surveillance-technologies-how­ new-surveillance-technologies-in-education-policing-health-care-and-the-workplace­ disproportionately-harm-disabled-people/ 69' - "persons, Asian Americans and Pacific Islanders and other persons of color; members\ \ of religious minorities; \nwomen, girls, and non-binary people; lesbian, gay,\ \ bisexual, transgender, queer, and intersex (LGBTQI+) \npersons; older adults;\ \ persons with disabilities; persons who live in rural areas; and persons otherwise\ \ adversely \naffected by persistent poverty or inequality. \nRIGHTS, OPPORTUNITIES,\ \ OR ACCESS: “Rights, opportunities, or access” is used to indicate the scoping\ \ \nof this framework. It describes the set of: civil rights, civil liberties,\ \ and privacy, including freedom of speech, \nvoting, and protections from discrimination,\ \ excessive punishment, unlawful surveillance, and violations of \nprivacy and\ \ other freedoms in both public and private sector contexts; equal opportunities,\ \ including equitable \naccess to education, housing, credit, employment, and\ \ other programs; or, access to critical resources or" - source_sentence: What are some broad negative risks associated with GAI design, development, and deployment? sentences: - "actually occurring, or large-scale risks could occur); and broad GAI negative\ \ risks, \nincluding: Immature safety or risk cultures related to AI and GAI design,\ \ \ndevelopment and deployment, public information integrity risks, including\ \ impacts \non democratic processes, unknown long-term performance characteristics\ \ of GAI. \nInformation Integrity; Dangerous, \nViolent, or Hateful Content; CBRN\ \ \nInformation or Capabilities \nGV-1.3-007 Devise a plan to halt development\ \ or deployment of a GAI system that poses \nunacceptable negative risk. \nCBRN\ \ Information and Capability; \nInformation Security; Information \nIntegrity\ \ \nAI Actor Tasks: Governance and Oversight \n \nGOVERN 1.4: The risk management\ \ process and its outcomes are established through transparent policies, procedures,\ \ and other \ncontrols based on organizational risk priorities. \nAction ID \n\ Suggested Action \nGAI Risks \nGV-1.4-001 \nEstablish policies and mechanisms\ \ to prevent GAI systems from generating" - "39 \nMS-3.3-004 \nProvide input for training materials about the capabilities\ \ and limitations of GAI \nsystems related to digital content transparency for\ \ AI Actors, other \nprofessionals, and the public about the societal impacts\ \ of AI and the role of \ndiverse and inclusive content generation. \nHuman-AI\ \ Configuration; \nInformation Integrity; Harmful Bias \nand Homogenization \n\ MS-3.3-005 \nRecord and integrate structured feedback about content provenance\ \ from \noperators, users, and potentially impacted communities through the use\ \ of \nmethods such as user research studies, focus groups, or community forums.\ \ \nActively seek feedback on generated content quality and potential biases.\ \ \nAssess the general awareness among end users and impacted communities \nabout\ \ the availability of these feedback channels. \nHuman-AI Configuration; \nInformation\ \ Integrity; Harmful Bias \nand Homogenization \nAI Actor Tasks: AI Deployment,\ \ Affected Individuals and Communities, End-Users, Operation and Monitoring, TEVV" - "NOTICE & \nEXPLANATION \nWHY THIS PRINCIPLE IS IMPORTANT\nThis section provides\ \ a brief summary of the problems which the principle seeks to address and protect\ \ \nagainst, including illustrative examples. \nAutomated systems now determine\ \ opportunities, from employment to credit, and directly shape the American \n\ public’s experiences, from the courtroom to online classrooms, in ways that profoundly\ \ impact people’s lives. But this \nexpansive impact is not always visible. An\ \ applicant might not know whether a person rejected their resume or a \nhiring\ \ algorithm moved them to the bottom of the list. A defendant in the courtroom\ \ might not know if a judge deny­\ning their bail is informed by an automated\ \ system that labeled them “high risk.” From correcting errors to contesting \n\ decisions, people are often denied the knowledge they need to address the impact\ \ of automated systems on their lives." - source_sentence: Who should conduct the assessment of the impact of surveillance on rights and opportunities? sentences: - "APPENDIX\n•\nJulia Simon-Mishel, Supervising Attorney, Philadelphia Legal Assistance\n\ •\nDr. Zachary Mahafza, Research & Data Analyst, Southern Poverty Law Center\n\ •\nJ. Khadijah Abdurahman, Tech Impact Network Research Fellow, AI Now Institute,\ \ UCLA C2I1, and\nUWA Law School\nPanelists separately described the increasing\ \ scope of technology use in providing for social welfare, including \nin fraud\ \ detection, digital ID systems, and other methods focused on improving efficiency\ \ and reducing cost. \nHowever, various panelists individually cautioned that\ \ these systems may reduce burden for government \nagencies by increasing the\ \ burden and agency of people using and interacting with these technologies. \n\ Additionally, these systems can produce feedback loops and compounded harm, collecting\ \ data from \ncommunities and using it to reinforce inequality. Various panelists\ \ suggested that these harms could be" - "assessments, including data retention timelines and associated justification,\ \ and an assessment of the \nimpact of surveillance or data collection on rights,\ \ opportunities, and access. Where possible, this \nassessment of the impact of\ \ surveillance should be done by an independent party. Reporting should be \n\ provided in a clear and machine-readable manner. \n35" - "access to education, housing, credit, employment, and other programs; or, access\ \ to critical resources or \nservices, such as healthcare, financial services,\ \ safety, social services, non-deceptive information about goods \nand services,\ \ and government benefits. \n10" - source_sentence: How can voting-related systems impact privacy and security? sentences: - "as custody and divorce information, and home, work, or school environmental data);\ \ or have the reasonable potential \nto be used in ways that are likely to expose\ \ individuals to meaningful harm, such as a loss of privacy or financial harm\ \ \ndue to identity theft. Data and metadata generated by or about those who are\ \ not yet legal adults is also sensitive, even \nif not related to a sensitive\ \ domain. Such data includes, but is not limited to, numerical, text, image, audio,\ \ or video \ndata. “Sensitive domains” are those in which activities being conducted\ \ can cause material harms, including signifi­\ncant adverse effects on human\ \ rights such as autonomy and dignity, as well as civil liberties and civil rights.\ \ Domains \nthat have historically been singled out as deserving of enhanced data\ \ protections or where such enhanced protections \nare reasonably expected by\ \ the public include, but are not limited to, health, family planning and care,\ \ employment," - "agreed upon the importance of advisory boards and compensated community input\ \ early in the design process \n(before the technology is built and instituted).\ \ Various panelists also emphasized the importance of regulation \nthat includes\ \ limits to the type and cost of such technologies. \n56" - "Surveillance and criminal justice system algorithms such as risk assessments,\ \ predictive \n policing, automated license plate readers, real-time facial\ \ recognition systems (especially \n those used in public places or during\ \ protected activities like peaceful protests), social media \n monitoring,\ \ and ankle monitoring devices; \nVoting-related systems such as signature matching\ \ tools; \nSystems with a potential privacy impact such as smart home systems\ \ and associated data, \n systems that use or collect health-related data,\ \ systems that use or collect education-related \n data, criminal justice\ \ system data, ad-targeting systems, and systems that perform big data \n \ \ analytics in order to build profiles or infer personal information about individuals;\ \ and \nAny system that has the meaningful potential to lead to algorithmic discrimination.\ \ \n• Equal opportunities, including but not limited to:" - source_sentence: What impact do automated systems have on underserved communities? sentences: - "generation, summarization, search, and chat. These activities can take place\ \ within organizational \nsettings or in the public domain. \nOrganizations can\ \ restrict AI applications that cause harm, exceed stated risk tolerances, or\ \ that conflict \nwith their tolerances or values. Governance tools and protocols\ \ that are applied to other types of AI \nsystems can be applied to GAI systems.\ \ These plans and actions include: \n• Accessibility and reasonable \naccommodations\ \ \n• AI actor credentials and qualifications \n• Alignment to organizational\ \ values \n• Auditing and assessment \n• Change-management controls \n• Commercial\ \ use \n• Data provenance" - "automated systems make on underserved communities and to institute proactive\ \ protections that support these \ncommunities. \n•\nAn automated system using\ \ nontraditional factors such as educational attainment and employment history\ \ as\npart of its loan underwriting and pricing model was found to be much more\ \ likely to charge an applicant who\nattended a Historically Black College or\ \ University (HBCU) higher loan prices for refinancing a student loan\nthan an\ \ applicant who did not attend an HBCU. This was found to be true even when controlling\ \ for\nother credit-related factors.32\n•\nA hiring tool that learned the features\ \ of a company's employees (predominantly men) rejected women appli­\ncants for\ \ spurious and discriminatory reasons; resumes with the word “women’s,” such as\ \ “women’s\nchess club captain,” were penalized in the candidate ranking.33\n\ •\nA predictive model marketed as being able to predict whether students are likely\ \ to drop out of school was" - "on a principle of local control, such that those individuals closest to the data\ \ subject have more access while \nthose who are less proximate do not (e.g.,\ \ a teacher has access to their students’ daily progress data while a \nsuperintendent\ \ does not). \nReporting. In addition to the reporting on data privacy (as listed\ \ above for non-sensitive data), entities devel-\noping technologies related to\ \ a sensitive domain and those collecting, using, storing, or sharing sensitive\ \ data \nshould, whenever appropriate, regularly provide public reports describing:\ \ any data security lapses or breaches \nthat resulted in sensitive data leaks;\ \ the number, type, and outcomes of ethical pre-reviews undertaken; a \ndescription\ \ of any data sold, shared, or made public, and how that data was assessed to\ \ determine it did not pres-\nent a sensitive data risk; and ongoing risk identification\ \ and management procedures, and any mitigation added" model-index: - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 results: - task: type: information-retrieval name: Information Retrieval dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy@1 value: 0.8881578947368421 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.993421052631579 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.993421052631579 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.8881578947368421 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.331140350877193 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19868421052631577 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09999999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.8881578947368421 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.993421052631579 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.993421052631579 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9550417755482483 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9395363408521302 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9395363408521302 name: Cosine Map@100 - type: dot_accuracy@1 value: 0.8881578947368421 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.993421052631579 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.993421052631579 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 1.0 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.8881578947368421 name: Dot Precision@1 - type: dot_precision@3 value: 0.331140350877193 name: Dot Precision@3 - type: dot_precision@5 value: 0.19868421052631577 name: Dot Precision@5 - type: dot_precision@10 value: 0.09999999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.8881578947368421 name: Dot Recall@1 - type: dot_recall@3 value: 0.993421052631579 name: Dot Recall@3 - type: dot_recall@5 value: 0.993421052631579 name: Dot Recall@5 - type: dot_recall@10 value: 1.0 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9550417755482483 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9395363408521302 name: Dot Mrr@10 - type: dot_map@100 value: 0.9395363408521302 name: Dot Map@100 --- # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d --> - **Maximum Sequence Length:** 384 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("jet-taekyo/mpnet_finetuned_recursive") # Run inference sentences = [ 'What impact do automated systems have on underserved communities?', "automated systems make on underserved communities and to institute proactive protections that support these \ncommunities. \n•\nAn automated system using nontraditional factors such as educational attainment and employment history as\npart of its loan underwriting and pricing model was found to be much more likely to charge an applicant who\nattended a Historically Black College or University (HBCU) higher loan prices for refinancing a student loan\nthan an applicant who did not attend an HBCU. This was found to be true even when controlling for\nother credit-related factors.32\n•\nA hiring tool that learned the features of a company's employees (predominantly men) rejected women appli\xad\ncants for spurious and discriminatory reasons; resumes with the word “women’s,” such as “women’s\nchess club captain,” were penalized in the candidate ranking.33\n•\nA predictive model marketed as being able to predict whether students are likely to drop out of school was", 'on a principle of local control, such that those individuals closest to the data subject have more access while \nthose who are less proximate do not (e.g., a teacher has access to their students’ daily progress data while a \nsuperintendent does not). \nReporting. In addition to the reporting on data privacy (as listed above for non-sensitive data), entities devel-\noping technologies related to a sensitive domain and those collecting, using, storing, or sharing sensitive data \nshould, whenever appropriate, regularly provide public reports describing: any data security lapses or breaches \nthat resulted in sensitive data leaks; the number, type, and outcomes of ethical pre-reviews undertaken; a \ndescription of any data sold, shared, or made public, and how that data was assessed to determine it did not pres-\nent a sensitive data risk; and ongoing risk identification and management procedures, and any mitigation added', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.8882 | | cosine_accuracy@3 | 0.9934 | | cosine_accuracy@5 | 0.9934 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.8882 | | cosine_precision@3 | 0.3311 | | cosine_precision@5 | 0.1987 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.8882 | | cosine_recall@3 | 0.9934 | | cosine_recall@5 | 0.9934 | | cosine_recall@10 | 1.0 | | cosine_ndcg@10 | 0.955 | | cosine_mrr@10 | 0.9395 | | **cosine_map@100** | **0.9395** | | dot_accuracy@1 | 0.8882 | | dot_accuracy@3 | 0.9934 | | dot_accuracy@5 | 0.9934 | | dot_accuracy@10 | 1.0 | | dot_precision@1 | 0.8882 | | dot_precision@3 | 0.3311 | | dot_precision@5 | 0.1987 | | dot_precision@10 | 0.1 | | dot_recall@1 | 0.8882 | | dot_recall@3 | 0.9934 | | dot_recall@5 | 0.9934 | | dot_recall@10 | 1.0 | | dot_ndcg@10 | 0.955 | | dot_mrr@10 | 0.9395 | | dot_map@100 | 0.9395 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 714 training samples * Columns: <code>sentence_0</code> and <code>sentence_1</code> * Approximate statistics based on the first 714 samples: | | sentence_0 | sentence_1 | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 18.43 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 175.4 tokens</li><li>max: 384 tokens</li></ul> | * Samples: | sentence_0 | sentence_1 | |:---------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>What information should designers and developers provide about automated systems to ensure transparency?</code> | <code>You should know that an automated system is being used, <br>and understand how and why it contributes to outcomes <br>that impact you. Designers, developers, and deployers of automat­<br>ed systems should provide generally accessible plain language docu­<br>mentation including clear descriptions of the overall system func­<br>tioning and the role automation plays, notice that such systems are in <br>use, the individual or organization responsible for the system, and ex­<br>planations of outcomes that are clear, timely, and accessible. Such <br>notice should be kept up-to-date and people impacted by the system <br>should be notified of significant use case or key functionality chang­<br>es. You should know how and why an outcome impacting you was de­<br>termined by an automated system, including when the automated <br>system is not the sole input determining the outcome. Automated <br>systems should provide explanations that are technically valid, <br>meaningful and useful to you and to any operators or others who</code> | | <code>Why is it important for individuals impacted by automated systems to be notified of significant changes in functionality?</code> | <code>You should know that an automated system is being used, <br>and understand how and why it contributes to outcomes <br>that impact you. Designers, developers, and deployers of automat­<br>ed systems should provide generally accessible plain language docu­<br>mentation including clear descriptions of the overall system func­<br>tioning and the role automation plays, notice that such systems are in <br>use, the individual or organization responsible for the system, and ex­<br>planations of outcomes that are clear, timely, and accessible. Such <br>notice should be kept up-to-date and people impacted by the system <br>should be notified of significant use case or key functionality chang­<br>es. You should know how and why an outcome impacting you was de­<br>termined by an automated system, including when the automated <br>system is not the sole input determining the outcome. Automated <br>systems should provide explanations that are technically valid, <br>meaningful and useful to you and to any operators or others who</code> | | <code>What specific technical questions does the questionnaire for evaluating software workers cover?</code> | <code>questionnaire that businesses can use proactively when procuring software to evaluate workers. It covers <br>specific technical questions such as the training data used, model training process, biases identified, and <br>mitigation steps employed.55 <br>Standards organizations have developed guidelines to incorporate accessibility criteria <br>into technology design processes. The most prevalent in the United States is the Access Board’s Section <br>508 regulations,56 which are the technical standards for federal information communication technology (software, <br>hardware, and web). Other standards include those issued by the International Organization for <br>Standardization,57 and the World Wide Web Consortium Web Content Accessibility Guidelines,58 a globally <br>recognized voluntary consensus standard for web content and other information and communications <br>technology. <br>NIST has released Special Publication 1270, Towards a Standard for Identifying and Managing Bias</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 20 - `per_device_eval_batch_size`: 20 - `num_train_epochs`: 5 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 20 - `per_device_eval_batch_size`: 20 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin </details> ### Training Logs | Epoch | Step | cosine_map@100 | |:-----:|:----:|:--------------:| | 1.0 | 36 | 0.9395 | ### Framework Versions - Python: 3.11.9 - Sentence Transformers: 3.1.0 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 0.34.2 - Datasets: 3.0.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
unsloth/gemma-3-12b-pt
unsloth
"2025-03-13T13:51:09Z"
566
3
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "unsloth", "gemma", "google", "en", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2311.12022", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2312.11805", "base_model:google/gemma-3-12b-pt", "base_model:finetune:google/gemma-3-12b-pt", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
"2025-03-12T06:55:54Z"
--- base_model: google/gemma-3-12b-pt language: - en library_name: transformers license: gemma tags: - unsloth - transformers - gemma3 - gemma - google --- <div> <p style="margin-bottom: 0; margin-top: 0;"> <strong>See <a href="https://huggingface.co/collections/unsloth/gemma-3-67d12b7e8816ec6efa7e4e5b">our collection</a> for all versions of Gemma 3 including GGUF, 4-bit & 16-bit formats.</strong> </p> <p style="margin-bottom: 0;"> <em><a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-gemma-3-effectively">Read our Guide</a> to see how to Run Gemma 3 correctly.</em> </p> <div style="display: flex; gap: 5px; align-items: center; "> <a href="https://github.com/unslothai/unsloth/"> <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133"> </a> <a href="https://discord.gg/unsloth"> <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173"> </a> <a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-deepseek-r1-on-your-own-local-device"> <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143"> </a> </div> <h1 style="margin-top: 0rem;">✨ Fine-tune Gemma 3 with Unsloth!</h1> </div> - Fine-tune Gemma 3 (12B) for free using our Google [Colab notebook here](https://docs.unsloth.ai/get-started/unsloth-notebooks)! - Read our Blog about Gemma 3 support: [unsloth.ai/blog/gemma3](https://unsloth.ai/blog/gemma3) - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks). - Export your fine-tuned model to GGUF, Ollama, llama.cpp or 🤗HF. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **GRPO with Gemma 3 (12B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 2x faster | 80% less | | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less | | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less | | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less | | **Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb) | 2x faster | 50% less | | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less | <br> # Gemma 3 model card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/core) **Resources and Technical Documentation**: * [Gemma 3 Technical Report][g3-tech-report] * [Responsible Generative AI Toolkit][rai-toolkit] * [Gemma on Kaggle][kaggle-gemma] * [Gemma on Vertex Model Garden][vertex-mg-gemma3] **Terms of Use**: [Terms][terms] **Authors**: Google DeepMind ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3 models are multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. Gemma 3 has a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions. Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Inputs and outputs - **Input:** - Text string, such as a question, a prompt, or a document to be summarized - Images, normalized to 896 x 896 resolution and encoded to 256 tokens each - Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and 32K tokens for the 1B size - **Output:** - Generated text in response to the input, such as an answer to a question, analysis of image content, or a summary of a document - Total output context of 8192 tokens ### Citation ```none @article{gemma_2025, title={Gemma 3}, url={https://goo.gle/Gemma3Report}, publisher={Kaggle}, author={Gemma Team}, year={2025} } ``` ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 14 trillion tokens, the 12B model was trained with 12 trillion tokens, 4B model was trained with 4 trillion tokens and 1B with 2 trillion tokens. Here are the key components: - Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. The training dataset includes content in over 140 languages. - Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code and understand code-related questions. - Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. - Images: A wide range of images enables the model to perform image analysis and visual data extraction tasks. The combination of these diverse data sources is crucial for training a powerful multimodal model that can handle a wide variety of different tasks and data formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: - CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content. - Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. - Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies]. ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using [Tensor Processing Unit (TPU)][tpu] hardware (TPUv4p, TPUv5p and TPUv5e). Training vision-language models (VLMS) requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: - Performance: TPUs are specifically designed to handle the massive computations involved in training VLMs. They can speed up training considerably compared to CPUs. - Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. - Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. - Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. - These advantages are aligned with [Google's commitments to operate sustainably][sustainability]. ### Software Training was done using [JAX][jax] and [ML Pathways][ml-pathways]. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for foundation models, including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; *"the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow."* ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: #### Reasoning and factuality | Benchmark | Metric | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |----------------|:--------------:|:-------------:|:--------------:|:--------------:| | [HellaSwag][hellaswag] | 10-shot | 62.3 | 77.2 | 84.2 | 85.6 | | [BoolQ][boolq] | 0-shot | 63.2 | 72.3 | 78.8 | 82.4 | | [PIQA][piqa] | 0-shot | 73.8 | 79.6 | 81.8 | 83.3 | | [SocialIQA][socialiqa] | 0-shot | 48.9 | 51.9 | 53.4 | 54.9 | | [TriviaQA][triviaqa] | 5-shot | 39.8 | 65.8 | 78.2 | 85.5 | | [Natural Questions][naturalq] | 5-shot | 9.48 | 20.0 | 31.4 | 36.1 | | [ARC-c][arc] | 25-shot | 38.4 | 56.2 | 68.9 | 70.6 | | [ARC-e][arc] | 0-shot | 73.0 | 82.4 | 88.3 | 89.0 | | [WinoGrande][winogrande] | 5-shot | 58.2 | 64.7 | 74.3 | 78.8 | | [BIG-Bench Hard][bbh] | few-shot | 28.4 | 50.9 | 72.6 | 77.7 | | [DROP][drop] | 1-shot | 42.4 | 60.1 | 72.2 | 77.2 | [hellaswag]: https://arxiv.org/abs/1905.07830 [boolq]: https://arxiv.org/abs/1905.10044 [piqa]: https://arxiv.org/abs/1911.11641 [socialiqa]: https://arxiv.org/abs/1904.09728 [triviaqa]: https://arxiv.org/abs/1705.03551 [naturalq]: https://github.com/google-research-datasets/natural-questions [arc]: https://arxiv.org/abs/1911.01547 [winogrande]: https://arxiv.org/abs/1907.10641 [bbh]: https://paperswithcode.com/dataset/bbh [drop]: https://arxiv.org/abs/1903.00161 #### STEM and code | Benchmark | Metric | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |----------------|:-------------:|:--------------:|:--------------:| | [MMLU][mmlu] | 5-shot | 59.6 | 74.5 | 78.6 | | [MMLU][mmlu] (Pro COT) | 5-shot | 29.2 | 45.3 | 52.2 | | [AGIEval][agieval] | 3-5-shot | 42.1 | 57.4 | 66.2 | | [MATH][math] | 4-shot | 24.2 | 43.3 | 50.0 | | [GSM8K][gsm8k] | 8-shot | 38.4 | 71.0 | 82.6 | | [GPQA][gpqa] | 5-shot | 15.0 | 25.4 | 24.3 | | [MBPP][mbpp] | 3-shot | 46.0 | 60.4 | 65.6 | | [HumanEval][humaneval] | 0-shot | 36.0 | 45.7 | 48.8 | [mmlu]: https://arxiv.org/abs/2009.03300 [agieval]: https://arxiv.org/abs/2304.06364 [math]: https://arxiv.org/abs/2103.03874 [gsm8k]: https://arxiv.org/abs/2110.14168 [gpqa]: https://arxiv.org/abs/2311.12022 [mbpp]: https://arxiv.org/abs/2108.07732 [humaneval]: https://arxiv.org/abs/2107.03374 #### Multilingual | Benchmark | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------------ |:-------------:|:-------------:|:--------------:|:--------------:| | [MGSM][mgsm] | 2.04 | 34.7 | 64.3 | 74.3 | | [Global-MMLU-Lite][global-mmlu-lite] | 24.9 | 57.0 | 69.4 | 75.7 | | [WMT24++][wmt24pp] (ChrF) | 36.7 | 48.4 | 53.9 | 55.7 | | [FloRes][flores] | 29.5 | 39.2 | 46.0 | 48.8 | | [XQuAD][xquad] (all) | 43.9 | 68.0 | 74.5 | 76.8 | | [ECLeKTic][eclektic] | 4.69 | 11.0 | 17.2 | 24.4 | | [IndicGenBench][indicgenbench] | 41.4 | 57.2 | 61.7 | 63.4 | [mgsm]: https://arxiv.org/abs/2210.03057 [flores]: https://arxiv.org/abs/2106.03193 [xquad]: https://arxiv.org/abs/1910.11856v3 [global-mmlu-lite]: https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite [wmt24pp]: https://arxiv.org/abs/2502.12404v1 [eclektic]: https://arxiv.org/abs/2502.21228 [indicgenbench]: https://arxiv.org/abs/2404.16816 #### Multimodal | Benchmark | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |:-------------:|:--------------:|:--------------:| | [COCOcap][coco-cap] | 102 | 111 | 116 | | [DocVQA][docvqa] (val) | 72.8 | 82.3 | 85.6 | | [InfoVQA][info-vqa] (val) | 44.1 | 54.8 | 59.4 | | [MMMU][mmmu] (pt) | 39.2 | 50.3 | 56.1 | | [TextVQA][textvqa] (val) | 58.9 | 66.5 | 68.6 | | [RealWorldQA][realworldqa] | 45.5 | 52.2 | 53.9 | | [ReMI][remi] | 27.3 | 38.5 | 44.8 | | [AI2D][ai2d] | 63.2 | 75.2 | 79.0 | | [ChartQA][chartqa] | 63.6 | 74.7 | 76.3 | | [VQAv2][vqav2] | 63.9 | 71.2 | 72.9 | | [BLINK][blinkvqa] | 38.0 | 35.9 | 39.6 | | [OKVQA][okvqa] | 51.0 | 58.7 | 60.2 | | [TallyQA][tallyqa] | 42.5 | 51.8 | 54.3 | | [SpatialSense VQA][ss-vqa] | 50.9 | 60.0 | 59.4 | | [CountBenchQA][countbenchqa] | 26.1 | 17.8 | 68.0 | [coco-cap]: https://cocodataset.org/#home [docvqa]: https://www.docvqa.org/ [info-vqa]: https://arxiv.org/abs/2104.12756 [mmmu]: https://arxiv.org/abs/2311.16502 [textvqa]: https://textvqa.org/ [realworldqa]: https://paperswithcode.com/dataset/realworldqa [remi]: https://arxiv.org/html/2406.09175v1 [ai2d]: https://allenai.org/data/diagrams [chartqa]: https://arxiv.org/abs/2203.10244 [vqav2]: https://visualqa.org/index.html [blinkvqa]: https://arxiv.org/abs/2404.12390 [okvqa]: https://okvqa.allenai.org/ [tallyqa]: https://arxiv.org/abs/1810.12440 [ss-vqa]: https://arxiv.org/abs/1908.02660 [countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/ ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: - **Child Safety**: Evaluation of text-to-text and image to text prompts covering child safety policies, including child sexual abuse and exploitation. - **Content Safety:** Evaluation of text-to-text and image to text prompts covering safety policies including, harassment, violence and gore, and hate speech. - **Representational Harms**: Evaluation of text-to-text and image to text prompts covering safety policies including bias, stereotyping, and harmful associations or inaccuracies. In addition to development level evaluations, we conduct "assurance evaluations" which are our 'arms-length' internal evaluations for responsibility governance decision making. They are conducted separately from the model development team, to inform decision making about release. High level findings are fed back to the model team, but prompt sets are held-out to prevent overfitting and preserve the results' ability to inform decision making. Assurance evaluation results are reported to our Responsibility & Safety Council as part of release review. ### Evaluation Results For all areas of safety testing, we saw major improvements in the categories of child safety, content safety, and representational harms relative to previous Gemma models. All testing was conducted without safety filters to evaluate the model capabilities and behaviors. For both text-to-text and image-to-text, and across all model sizes, the model produced minimal policy violations, and showed significant improvements over previous Gemma models' performance with respect to ungrounded inferences. A limitation of our evaluations was they included only English language prompts. ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open vision-language models (VLMs) models have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. - Content Creation and Communication - Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. - Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. - Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. - Image Data Extraction: These models can be used to extract, interpret, and summarize visual data for text communications. - Research and Education - Natural Language Processing (NLP) and VLM Research: These models can serve as a foundation for researchers to experiment with VLM and NLP techniques, develop algorithms, and contribute to the advancement of the field. - Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. - Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations - Training Data - The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. - The scope of the training dataset determines the subject areas the model can handle effectively. - Context and Task Complexity - Models are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. - A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). - Language Ambiguity and Nuance - Natural language is inherently complex. Models might struggle to grasp subtle nuances, sarcasm, or figurative language. - Factual Accuracy - Models generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. - Common Sense - Models rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of vision-language models (VLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: - Bias and Fairness - VLMs trained on large-scale, real-world text and image data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. - Misinformation and Misuse - VLMs can be misused to generate text that is false, misleading, or harmful. - Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit]. - Transparency and Accountability: - This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. - A responsibly developed open model offers the opportunity to share innovation by making VLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: - **Perpetuation of biases**: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. - **Generation of harmful content**: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. - **Misuse for malicious purposes**: Technical limitations and developer and end-user education can help mitigate against malicious applications of VLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use]. - **Privacy violations**: Models were trained on data filtered for removal of certain personal information and other sensitive data. Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open vision-language model implementations designed from the ground up for responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives. [g3-tech-report]: https://goo.gle/Gemma3Report [rai-toolkit]: https://ai.google.dev/responsible [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-3 [vertex-mg-gemma3]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3 [terms]: https://ai.google.dev/gemma/terms [safety-policies]: https://ai.google/static/documents/ai-responsibility-update-published-february-2025.pdf [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu [sustainability]: https://sustainability.google/operating-sustainably/ [jax]: https://github.com/jax-ml/jax [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ [sustainability]: https://sustainability.google/operating-sustainably/ [gemini-2-paper]: https://arxiv.org/abs/2312.11805
samoline/e9846bc3-e18a-4897-ad19-882371d635b1
samoline
"2025-01-09T08:15:12Z"
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:oopsung/llama2-7b-n-ox-test-v1", "base_model:adapter:oopsung/llama2-7b-n-ox-test-v1", "region:us" ]
null
"2025-01-09T06:37:18Z"
--- library_name: peft base_model: oopsung/llama2-7b-n-ox-test-v1 tags: - axolotl - generated_from_trainer model-index: - name: e9846bc3-e18a-4897-ad19-882371d635b1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: oopsung/llama2-7b-n-ox-test-v1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2864af0e3f5f44d8_train_data.json ds_type: json format: custom path: /workspace/input_data/2864af0e3f5f44d8_train_data.json type: field_input: timestamp field_instruction: url field_output: caption format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: false hub_model_id: samoline/e9846bc3-e18a-4897-ad19-882371d635b1 hub_repo: samoline hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 4 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 4 lora_target_linear: true lr_scheduler: cosine max_steps: 2 micro_batch_size: 1 mlflow_experiment_name: /tmp/2864af0e3f5f44d8_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: samoline-nan wandb_mode: online wandb_name: 9a8c7865-920a-477e-9055-55a5174efa83 wandb_project: Gradients-On-Demand wandb_run: dev wandb_runid: 9a8c7865-920a-477e-9055-55a5174efa83 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e9846bc3-e18a-4897-ad19-882371d635b1 This model is a fine-tuned version of [oopsung/llama2-7b-n-ox-test-v1](https://huggingface.co/oopsung/llama2-7b-n-ox-test-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0000 | 2 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
SRDdev/QABERT-small
SRDdev
"2023-06-21T15:00:00Z"
70
0
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "question-answering", "en", "dataset:squad_v2", "endpoints_compatible", "region:us" ]
question-answering
"2023-02-08T12:40:31Z"
--- datasets: - squad_v2 language: - en metrics: - accuracy library_name: transformers pipeline_tag: question-answering tags: - question-answering --- # QA-BERT QA-BERT is a Question Answering Model. This model is a lighter version of any of the question-answering models out there. ## Dataset The Stanford Question Answering Dataset (SQuAD) is a widely used benchmark dataset for the task of machine reading comprehension. It consists of over 100,000 question-answer pairs based on a set of Wikipedia articles. The goal is to train models that can answer questions based on their understanding of the given text passages. SQuAD has played a significant role in advancing the state-of-the-art in this field and remains a popular choice for researchers and practitioners alike. Due to GPU limitations, this version is trained on `30k samples` from the Stanford Question Answering Dataset. <details> <summary><i>Structure of the Data Dictonary</i></summary> <!--All you need is a blank line--> { "data":[ { "title":"Article Title", "paragraphs":[ { "context":"The context text of the paragraph", "qas":[ { "question":"The question asked about the context", "id":"A unique identifier for the question", "answers":[ { "text":"The answer to the question", "answer_start":"The starting index of the answer in the context" } ] } ] } ] } ], "version":"The version of the SQuAD dataset" } </details> ## Model BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained transformer-based model for natural language processing tasks such as question answering. BERT is fine-tuned for question answering by adding a linear layer on top of the pre-trained BERT representations to predict the start and end of the answer in the input context. BERT has achieved state-of-the-art results on multiple benchmark datasets, including the Stanford Question Answering Dataset (SQuAD). The fine-tuning process allows BERT to effectively capture the relationships between questions and answers and generate accurate answers. <img src="https://imgs.search.brave.com/F8m-nwp6EIG5vq--OmJLrCDpIkuX6tEQ_kyFKQjlUTs/rs:fit:1200:1200:1/g:ce/aHR0cHM6Ly9ibG9n/LmdyaWRkeW5hbWlj/cy5jb20vY29udGVu/dC9pbWFnZXMvMjAy/MC8xMC9TbGljZS0x/OC5wbmc"> For more detail about this read [Understanding QABERT](https://github.com/SRDdev/AnswerMind) ## Inference _Load model_ ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering QAtokenizer = AutoTokenizer.from_pretrained("SRDdev/QABERT-small") QAmodel = AutoModelForQuestionAnswering.from_pretrained("SRDdev/QABERT-small") ``` _context_ ```text Extractive Question Answering is the task of extracting an answer from a text given a question. An example of a question-answering dataset is the SQuAD dataset, which is entirely based on that task. If you would like to fine-tune a model on a SQuAD task, you may leverage the examples/pytorch/question-answering/run_squad.py script. ``` _Build Pipeline_ ```python from transformers import pipeline ask = pipeline("question-answering", model= QAmodel , tokenizer = QAtokenizer) result = ask(question="What is a good example of a question answering dataset?", context=context) print(f"Answer: '{result['answer']}'") ``` ## Contributing Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. Please make sure to update tests as appropriate. ## Citations ``` @citation{ QA-BERT-small, author = {Shreyas Dixit}, year = {2023}, url = {https://huggingface.co/SRDdev/QA-BERT-small} } ```
thejaminator/code_backdoor-llama-70b-23feb
thejaminator
"2025-02-23T12:45:46Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/DeepSeek-R1-Distill-Llama-70B-bnb-4bit", "base_model:finetune:unsloth/DeepSeek-R1-Distill-Llama-70B-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-02-23T12:45:24Z"
--- base_model: unsloth/DeepSeek-R1-Distill-Llama-70B-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thejaminator - **License:** apache-2.0 - **Finetuned from model :** unsloth/DeepSeek-R1-Distill-Llama-70B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e5_s55555_v4_l55_r8
KingKazma
"2023-09-14T16:13:49Z"
0
0
peft
[ "peft", "region:us" ]
null
"2023-09-14T16:13:47Z"
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
truehealth/LLama-2-MedText-Delta
truehealth
"2023-07-27T20:21:44Z"
0
0
null
[ "region:us" ]
null
"2023-07-27T01:19:04Z"
Trained on 13B LLama-2 --- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
neural-commons/upscaling-model-v2
neural-commons
"2024-07-08T03:39:26Z"
52
0
transformers
[ "transformers", "safetensors", "pytorch_model_hub_mixin", "model_hub_mixin", "endpoints_compatible", "region:us" ]
null
"2024-07-04T22:27:53Z"
--- tags: - pytorch_model_hub_mixin - model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
mlx-community/XuanYuan-70B-Chat-mlx
mlx-community
"2024-01-10T08:55:59Z"
5
0
mlx
[ "mlx", "llama", "license:llama2", "region:us" ]
null
"2024-01-10T07:11:50Z"
--- license: llama2 tags: - mlx --- # XuanYuan-70B-Chat-mlx This model was converted to MLX format from [`Duxiaoman-DI/XuanYuan-70B-Chat`](). Refer to the [original model card](https://huggingface.co/Duxiaoman-DI/XuanYuan-70B-Chat) for more details on the model. ## Use with mlx ```bash pip install mlx git clone https://github.com/ml-explore/mlx-examples.git cd mlx-examples/llms/hf_llm python generate.py --model mlx-community/XuanYuan-70B-Chat-mlx --prompt "My name is" ```
Abirami1213/gpt2
Abirami1213
"2024-10-24T07:36:55Z"
121
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-10-24T07:35:56Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sliu/a2c-AntBulletEnv-v0-v1
sliu
"2023-01-20T23:09:25Z"
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-01-20T23:07:37Z"
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1562.73 +/- 105.81 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jerdna120/flan-t5-small-samsum
jerdna120
"2023-12-19T19:00:14Z"
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:google/flan-t5-small", "base_model:finetune:google/flan-t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2023-12-19T18:24:42Z"
--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: flan-t5-small-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 42.6698 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-small-samsum This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.6754 - Rouge1: 42.6698 - Rouge2: 18.3442 - Rougel: 35.2697 - Rougelsum: 38.9457 - Gen Len: 16.8474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 52 - eval_batch_size: 52 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8824 | 0.35 | 100 | 1.7015 | 42.477 | 18.2999 | 35.0949 | 38.8554 | 16.6532 | | 1.8578 | 0.7 | 200 | 1.6878 | 42.0138 | 18.2348 | 34.9449 | 38.4907 | 16.7216 | | 1.835 | 1.06 | 300 | 1.6823 | 42.7733 | 18.5982 | 35.3899 | 39.0215 | 16.9048 | | 1.8144 | 1.41 | 400 | 1.6786 | 42.6285 | 18.384 | 35.3233 | 38.9203 | 16.6618 | | 1.8094 | 1.76 | 500 | 1.6754 | 42.6698 | 18.3442 | 35.2697 | 38.9457 | 16.8474 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0
johko/wideresnet28-2-mnist
johko
"2022-06-19T21:05:45Z"
0
0
keras
[ "keras", "tensorboard", "tf-keras", "object-detection", "some_other_tag", "region:us" ]
object-detection
"2022-06-16T08:42:38Z"
--- library_name: keras tags: - object-detection - some_other_tag --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | name | learning_rate | decay | beta_1 | beta_2 | epsilon | amsgrad | training_precision | |----|-------------|-----|------|------|-------|-------|------------------| |Adam|{'class_name': 'CosineDecay', 'config': {'initial_learning_rate': 0.03, 'decay_steps': 9370, 'alpha': 0.25, 'name': None}}|0.0|0.8999999761581421|0.9990000128746033|1e-07|False|float32| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
gcperk20/deit-base-patch16-224-finetuned-piid
gcperk20
"2023-11-02T23:07:08Z"
21
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2023-11-02T22:14:11Z"
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: deit-base-patch16-224-finetuned-piid results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: val args: default metrics: - name: Accuracy type: accuracy value: 0.7442922374429224 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deit-base-patch16-224-finetuned-piid This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6109 - Accuracy: 0.7443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.881 | 0.98 | 20 | 0.8373 | 0.6164 | | 0.5554 | 2.0 | 41 | 0.7144 | 0.7169 | | 0.509 | 2.98 | 61 | 0.6241 | 0.7489 | | 0.3925 | 4.0 | 82 | 0.6171 | 0.7352 | | 0.3738 | 4.88 | 100 | 0.6109 | 0.7443 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
MrTsepa/q-Taxi-V3
MrTsepa
"2023-07-01T17:08:23Z"
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-07-01T15:05:03Z"
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-V3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="MrTsepa/q-Taxi-V3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sonoisa/sentence-luke-japanese-base-lite
sonoisa
"2024-12-12T13:26:21Z"
8,741
11
sentence-transformers
[ "sentence-transformers", "pytorch", "safetensors", "luke", "sentence-bert", "sentence-luke", "feature-extraction", "sentence-similarity", "ja", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
feature-extraction
"2023-03-19T14:44:42Z"
--- language: ja license: apache-2.0 tags: - sentence-transformers - sentence-bert - sentence-luke - feature-extraction - sentence-similarity --- This is a Japanese sentence-LUKE model. 日本語用Sentence-LUKEモデルです。 [日本語Sentence-BERTモデル](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2)と同一のデータセットと設定で学習しました。 手元の非公開データセットでは、[日本語Sentence-BERTモデル](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2)と比べて定量的な精度が同等〜0.5pt程度高く、定性的な精度は本モデルの方が高い結果でした。 事前学習済みモデルとして[studio-ousia/luke-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite)を利用させていただきました。 推論の実行にはSentencePieceが必要です(pip install sentencepiece)。 # 使い方 ```python from transformers import MLukeTokenizer, LukeModel import torch class SentenceLukeJapanese: def __init__(self, model_name_or_path, device=None): self.tokenizer = MLukeTokenizer.from_pretrained(model_name_or_path) self.model = LukeModel.from_pretrained(model_name_or_path) self.model.eval() if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = torch.device(device) self.model.to(device) def _mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) @torch.no_grad() def encode(self, sentences, batch_size=8): all_embeddings = [] iterator = range(0, len(sentences), batch_size) for batch_idx in iterator: batch = sentences[batch_idx:batch_idx + batch_size] encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest", truncation=True, return_tensors="pt").to(self.device) model_output = self.model(**encoded_input) sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu') all_embeddings.extend(sentence_embeddings) return torch.stack(all_embeddings) MODEL_NAME = "sonoisa/sentence-luke-japanese-base-lite" model = SentenceLukeJapanese(MODEL_NAME) sentences = ["暴走したAI", "暴走した人工知能"] sentence_embeddings = model.encode(sentences, batch_size=8) print("Sentence embeddings:", sentence_embeddings) ```
Natkituwu/mistral-dory-12b-8.0bpw-exl2
Natkituwu
"2024-07-21T18:54:26Z"
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:BeaverAI/Nemo-Inst-Tune-ds", "base_model:mistralai/Mistral-Nemo-Base-2407", "base_model:quantized:mistralai/Mistral-Nemo-Base-2407", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "exl2", "region:us" ]
text-generation
"2024-07-21T18:47:20Z"
--- base_model: mistralai/Mistral-Nemo-Base-2407 license: apache-2.0 datasets: - BeaverAI/Nemo-Inst-Tune-ds language: - en library_name: transformers --- 8.0bpw h8 exl2 quant of : (https://huggingface.co/BeaverAI/mistral-dory-12b) # Dory 12b redone instruct finetune of mistral nemo 12b. *not* (E)RP-focused, leave that to drummer. ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634262af8d8089ebaefd410e/tP5kiebGrg8DJZbeBEc3Q.gif) thanks to twisted for the compute :3 ## Prompting alpaca-like: ``` ### System: [Optional system prompt] ### Instruction: [Query] ### Response: [Response]<EOT> ### Instruction: [...] ``` ## Training details Rank 64 QDoRA, trained on the following data mix: - All of [kalomaze/Opus_Instruct_3k](https://huggingface.co/datasets/kalomaze/Opus_Instruct_3k) - All conversations with a reward model rating above 5 in [Magpie-Align/Magpie-Gemma2-Pro-Preview-Filtered](https://huggingface.co/datasets/Magpie-Align/Magpie-Gemma2-Pro-Preview-Filtered) - 50k of [Gryphe/Sonnet3.5-SlimOrcaDedupCleaned](https://huggingface.co/datasets/Gryphe/Sonnet3.5-SlimOrcaDedupCleaned) - All stories above 4.7 rating and published before 2020 in [Fizzarolli/FallingThroughTheSkies-592k-Filtered-Filtered](https://huggingface.co/datasets/Fizzarolli/FallingThroughTheSkies-592k-Filtered-Filtered)
FounderOfHuggingface/fresh_gpt2_lora_r16_dbpedia_14_t300_e5_member_shadow16
FounderOfHuggingface
"2023-12-03T18:55:36Z"
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
"2023-12-03T18:55:33Z"
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
pe-nlp/Qwen2.5-7b-grpo-orz-cl2-step160
pe-nlp
"2025-03-27T13:52:03Z"
0
0
null
[ "safetensors", "qwen2", "region:us" ]
null
"2025-03-27T13:47:33Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>503</h1> <p>We had to rate limit you. To continue using our service, please log in or create an account.</p> </div> </main> </body> </html>
lgessler/microbert-uyghur-m
lgessler
"2022-12-23T18:56:44Z"
3
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "uig", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
"2022-12-23T17:55:49Z"
--- language: uig widget: - text: ھﺎﻳﺎﺗ ﺕﻮﻏﺭﻰﻗﻯڭﻥﻯڭ ﺉۆﻡۈﺭ ﻱﻰﻠﺗﻯﺯﻰﻧﻯ ﻕۇﺮﺘﺗەﻙ ﺉﺍۋﺎﻳﻼﭘ ﻱەﻲﻣەﻥ. --- This is a [MicroBERT](https://github.com/lgessler/microbert) model for Uyghur. * Its suffix is **-m**, which means that it was pretrained using supervision from masked language modeling. * The unlabeled Uyghur data was taken from a February 2022 dump of Uyghur Wikipedia, totaling 2,401,445 tokens. * The UD treebank [UD_Uyghur-UDT](https://github.com/UniversalDependencies/UD_Uyghur-UDT), v2.9, totaling 40,236 tokens, was used for labeled data. Please see [the repository](https://github.com/lgessler/microbert) and [the paper](https://github.com/lgessler/microbert/raw/master/MicroBERT__MRL_2022_.pdf) for more details.
thejaminator/qwq_myopic_username-qwq-09mar
thejaminator
"2025-03-09T17:18:50Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/QwQ-32B", "base_model:finetune:unsloth/QwQ-32B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-03-09T17:18:35Z"
--- base_model: unsloth/QwQ-32B tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thejaminator - **License:** apache-2.0 - **Finetuned from model :** unsloth/QwQ-32B This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
jakub014/ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-redditCMV
jakub014
"2023-03-24T13:12:55Z"
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-03-24T11:53:35Z"
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-redditCMV results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-redditCMV This model is a fine-tuned version of [ibm/ColD-Fusion-bert-base-uncased-itr23-seed0](https://huggingface.co/ibm/ColD-Fusion-bert-base-uncased-itr23-seed0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6348 - Accuracy: 0.6482 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6854 | 1.0 | 516 | 0.6348 | 0.6482 | | 0.5947 | 2.0 | 1032 | 0.6350 | 0.6429 | | 0.4084 | 3.0 | 1548 | 0.8376 | 0.6133 | | 0.2321 | 4.0 | 2064 | 1.2253 | 0.6337 | | 0.1256 | 5.0 | 2580 | 1.6045 | 0.6332 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
CurHarsh/qwen2-7b-instruct-amazon-description
CurHarsh
"2025-02-23T21:59:34Z"
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:adapter:Qwen/Qwen2-VL-7B-Instruct", "license:apache-2.0", "region:us" ]
null
"2025-02-23T21:34:29Z"
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-VL-7B-Instruct tags: - trl - sft - generated_from_trainer model-index: - name: qwen2-7b-instruct-amazon-description results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen2-7b-instruct-amazon-description This model is a fine-tuned version of [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.6.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.3
vorstcavry/vaecollection1
vorstcavry
"2023-07-29T12:38:10Z"
0
6
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-04-05T09:46:49Z"
--- license: creativeml-openrail-m ---
ymoslem/whisper-medium-ga2en-v6.3.1-r
ymoslem
"2024-06-20T14:18:47Z"
22
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ga", "en", "dataset:ymoslem/IWSLT2023-GA-EN", "dataset:ymoslem/FLEURS-GA-EN", "dataset:ymoslem/BitesizeIrish-GA-EN", "dataset:ymoslem/SpokenWords-GA-EN-MTed", "dataset:ymoslem/Tatoeba-Speech-Irish", "dataset:ymoslem/Wikimedia-Speech-Irish", "dataset:ymoslem/EUbookshop-Speech-Irish", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2024-06-20T01:48:00Z"
--- language: - ga - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - ymoslem/IWSLT2023-GA-EN - ymoslem/FLEURS-GA-EN - ymoslem/BitesizeIrish-GA-EN - ymoslem/SpokenWords-GA-EN-MTed - ymoslem/Tatoeba-Speech-Irish - ymoslem/Wikimedia-Speech-Irish - ymoslem/EUbookshop-Speech-Irish metrics: - bleu - wer model-index: - name: Whisper Medium GA-EN Speech Translation results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, Wikimedia, and EUbookshop type: ymoslem/IWSLT2023-GA-EN metrics: - name: Bleu type: bleu value: 30.86 - name: Wer type: wer value: 67.04187303016658 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium GA-EN Speech Translation This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, Wikimedia, and EUbookshop dataset. It achieves the following results on the evaluation set: - Loss: 1.0885 - Bleu: 30.86 - Chrf: 54.11 - Wer: 67.0419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer | |:-------------:|:------:|:----:|:-----:|:-----:|:---------------:|:--------:| | 2.5374 | 0.0138 | 100 | 2.56 | 18.92 | 2.1201 | 222.4674 | | 2.446 | 0.0276 | 200 | 3.07 | 20.56 | 2.1960 | 170.5088 | | 2.2819 | 0.0414 | 300 | 5.87 | 25.17 | 1.9811 | 114.5880 | | 2.1904 | 0.0552 | 400 | 8.41 | 25.65 | 1.9974 | 99.1896 | | 2.026 | 0.0690 | 500 | 7.99 | 27.64 | 1.8961 | 130.7069 | | 2.0448 | 0.0828 | 600 | 9.15 | 27.78 | 1.9410 | 104.9077 | | 1.8606 | 0.0966 | 700 | 9.57 | 29.34 | 1.8451 | 110.4908 | | 1.9887 | 0.1103 | 800 | 13.44 | 32.32 | 1.7419 | 84.3314 | | 1.8633 | 0.1241 | 900 | 13.43 | 31.58 | 1.7376 | 102.1162 | | 1.7576 | 0.1379 | 1000 | 11.9 | 32.68 | 1.6879 | 106.6186 | | 1.7142 | 0.1517 | 1100 | 12.4 | 33.66 | 1.7571 | 102.6114 | | 1.7168 | 0.1655 | 1200 | 17.35 | 36.55 | 1.6003 | 87.9784 | | 1.6741 | 0.1793 | 1300 | 15.41 | 35.46 | 1.5883 | 92.8411 | | 1.6534 | 0.1931 | 1400 | 17.12 | 37.24 | 1.5366 | 90.2296 | | 1.58 | 0.2069 | 1500 | 17.49 | 38.5 | 1.5141 | 92.1207 | | 1.403 | 0.2207 | 1600 | 16.78 | 39.13 | 1.4606 | 88.9689 | | 1.3806 | 0.2345 | 1700 | 19.26 | 40.02 | 1.4263 | 86.7177 | | 1.5111 | 0.2483 | 1800 | 18.4 | 39.47 | 1.4060 | 92.2557 | | 1.4261 | 0.2621 | 1900 | 21.19 | 42.13 | 1.3911 | 78.7033 | | 1.2974 | 0.2759 | 2000 | 15.6 | 38.66 | 1.3871 | 100.3152 | | 1.2694 | 0.2897 | 2100 | 16.21 | 39.99 | 1.3527 | 91.2652 | | 1.204 | 0.3034 | 2200 | 20.2 | 41.18 | 1.3232 | 86.8978 | | 1.1922 | 0.3172 | 2300 | 16.44 | 40.85 | 1.3338 | 103.1968 | | 1.1237 | 0.3310 | 2400 | 19.29 | 43.73 | 1.2830 | 94.4620 | | 1.0989 | 0.3448 | 2500 | 25.11 | 46.84 | 1.2844 | 75.0563 | | 1.0766 | 0.3586 | 2600 | 23.87 | 46.1 | 1.2578 | 74.5160 | | 1.0432 | 0.3724 | 2700 | 22.31 | 44.91 | 1.2414 | 86.9878 | | 1.1588 | 0.3862 | 2800 | 23.32 | 45.94 | 1.2051 | 77.1724 | | 1.0062 | 0.4 | 2900 | 26.15 | 48.27 | 1.2059 | 69.4282 | | 0.9178 | 0.4138 | 3000 | 29.13 | 48.92 | 1.1756 | 64.7456 | | 0.9108 | 0.4276 | 3100 | 28.34 | 48.9 | 1.1665 | 67.2220 | | 0.9868 | 0.4414 | 3200 | 25.64 | 48.93 | 1.1489 | 75.3264 | | 0.9563 | 0.4552 | 3300 | 27.58 | 49.67 | 1.1181 | 71.8145 | | 0.9138 | 0.4690 | 3400 | 28.37 | 50.96 | 1.1247 | 71.4543 | | 0.8508 | 0.4828 | 3500 | 29.75 | 51.41 | 1.1007 | 68.3476 | | 0.836 | 0.4966 | 3600 | 30.99 | 52.2 | 1.1114 | 66.5916 | | 0.8435 | 0.5103 | 3700 | 30.64 | 52.77 | 1.0782 | 68.2125 | | 0.8323 | 0.5241 | 3800 | 29.78 | 52.94 | 1.0744 | 68.9779 | | 0.818 | 0.5379 | 3900 | 31.23 | 53.21 | 1.0639 | 67.7623 | | 0.8095 | 0.5517 | 4000 | 31.02 | 53.51 | 1.0576 | 68.5277 | | 0.922 | 0.5655 | 4100 | 1.2445| 25.47 | 46.16 | 74.2909 | | 1.0387 | 0.5793 | 4200 | 1.2634| 25.44 | 46.19 | 71.0491 | | 0.9386 | 0.5931 | 4300 | 1.2457| 22.36 | 45.4 | 76.8122 | | 0.9297 | 0.6069 | 4400 | 1.2502| 28.65 | 46.48 | 65.7362 | | 0.9837 | 0.6207 | 4500 | 1.2503| 26.81 | 46.53 | 68.9779 | | 1.0226 | 0.6345 | 4600 | 1.2282| 19.37 | 44.1 | 86.4926 | | 0.9896 | 0.6483 | 4700 | 1.2568| 26.06 | 46.46 | 70.8240 | | 0.9805 | 0.6621 | 4800 | 1.2364| 19.29 | 42.56 | 82.0351 | | 0.8982 | 0.6759 | 4900 | 1.2346| 28.58 | 47.84 | 64.6556 | | 0.8303 | 0.6897 | 5000 | 1.2136| 27.25 | 48.15 | 68.3476 | | 0.905 | 0.7034 | 5100 | 1.1808| 27.99 | 50.31 | 67.2220 | | 0.8125 | 0.7172 | 5200 | 1.1971| 28.91 | 47.63 | 65.4660 | | 0.7965 | 0.7310 | 5300 | 1.1789| 25.96 | 47.21 | 69.5633 | | 0.8244 | 0.7448 | 5400 | 1.2237| 28.65 | 48.63 | 66.6367 | | 0.7637 | 0.7586 | 5500 | 1.1765| 30.4 | 50.24 | 66.6817 | | 0.7333 | 0.7724 | 5600 | 1.1295| 29.94 | 51.34 | 68.8879 | | 0.8141 | 0.7862 | 5700 | 1.1238| 27.51 | 50.61 | 74.7861 | | 0.6969 | 0.8 | 5800 | 1.1350| 23.95 | 48.76 | 87.6632 | | 0.7162 | 0.8138 | 5900 | 1.1493| 26.34 | 48.65 | 74.0207 | | 0.7421 | 0.8276 | 6000 | 1.0976| 28.69 | 52.23 | 68.5727 | | 0.593 | 0.8414 | 6100 | 1.1163| 34.96 | 53.13 | 59.3426 | | 0.678 | 0.8552 | 6200 | 1.1072| 34.14 | 53.2 | 61.6839 | | 0.6018 | 0.8690 | 6300 | 1.0959| 31.8 | 53.33 | 64.1153 | | 0.6038 | 0.8828 | 6400 | 1.0959| 24.77 | 50.61 | 84.2413 | | 0.6174 | 0.8966 | 6500 | 1.0891| 25.48 | 50.6 | 81.6749 | | 0.595 | 0.9103 | 6600 | 1.1037| 23.83 | 48.07 | 83.3859 | | 0.6114 | 0.9241 | 6700 | 1.0723| 28.03 | 52.18 | 70.7789 | | 0.6257 | 0.9379 | 6800 | 1.0797| 33.13 | 52.95 | 61.5038 | | 0.6689 | 0.9517 | 6900 | 1.0803| 30.53 | 52.41 | 68.4376 | | 0.4908 | 0.9655 | 7000 | 1.0901| 30.1 | 51.71 | 69.1130 | | 0.5439 | 0.9793 | 7100 | 1.0672| 25.81 | 49.36 | 76.5871 | | 0.5994 | 0.9931 | 7200 | 1.0705| 31.56 | 52.51 | 66.1414 | | 0.2451 | 1.0069 | 7300 | 1.1069| 33.0 | 53.29 | 64.7006 | | 0.2609 | 1.0207 | 7400 | 1.0877| 31.68 | 54.3 | 64.9257 | | 0.2813 | 1.0345 | 7500 | 1.0910| 34.93 | 54.74 | 60.1531 | | 0.2367 | 1.0483 | 7600 | 1.0999| 30.87 | 53.09 | 65.9163 | | 0.2018 | 1.0621 | 7700 | 1.0917| 35.53 | 54.42 | 58.7573 | | 0.2407 | 1.0759 | 7800 | 1.0859| 34.38 | 54.5 | 60.9185 | | 0.2385 | 1.0897 | 7900 | 1.0866| 31.27 | 54.12 | 65.3309 | | 0.2074 | 1.1034 | 8000 | 1.0885| 30.86 | 54.11 | 67.0419 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
InduwaraR/qwen-ai-research-qa-q4_k_m.gguf
InduwaraR
"2025-03-13T06:05:21Z"
25
2
null
[ "gguf", "question-answering", "en", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:quantized:Qwen/Qwen2.5-3B-Instruct", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
question-answering
"2025-03-10T03:20:16Z"
--- license: mit language: - en base_model: - Qwen/Qwen2.5-3B-Instruct pipeline_tag: question-answering --- # Qwen AI Research QA Model (Q4_K_M GGUF) ## Model Overview The **Qwen AI Research QA Model** is designed for answering research-oriented AI questions with a focus on precision and depth. This model is optimized in the `Q4_K_M` format for efficient inference while maintaining high-quality responses. ## How to Use To use this model with `llama-cpp-python`, follow these steps: ### Installation Make sure you have `llama-cpp-python` installed: ```bash pip install llama-cpp-python ``` ### Loading the Model ```python from llama_cpp import Llama llm = Llama.from_pretrained( repo_id="InduwaraR/qwen-ai-research-qa-q4_k_m.gguf", filename="qwen-ai-research-qa-q4_k_m.gguf", ) ``` ### Generating a Response ```python response = llm.create_chat_completion( messages=[ {"role": "user", "content": "What are the latest advancements in AI research?"} ] ) print(response) ``` ## Model Details - **Model Name**: Qwen AI Research QA - **Format**: GGUF (Q4_K_M Quantization) - **Primary Use Case**: AI research question answering - **Inference Framework**: `llama-cpp-python` - **Optimized for**: Running on local hardware with reduced memory usage ## License This model is open-source and available under the **MIT License**. ## Acknowledgments This model is hosted by **InduwaraR** on Hugging Face. Special thanks to the **Qwen AI team** for their contributions to AI research and development.
GeneroGral/llama_3.1-bbq-lora_model
GeneroGral
"2025-02-23T17:46:38Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/Llama-3.1-8B-Instruct", "base_model:finetune:unsloth/Llama-3.1-8B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-02-23T05:19:42Z"
--- base_model: unsloth/Llama-3.1-8B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** GeneroGral - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.1-8B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
tttx/model_step2_3augs_buffer_short
tttx
"2025-02-22T01:37:57Z"
0
0
peft
[ "peft", "safetensors", "qwen2", "alignment-handbook", "trl", "sft", "generated_from_trainer", "dataset:tttx/step2_3augs_buffer_short", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "base_model:adapter:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "license:mit", "region:us" ]
null
"2025-02-22T00:46:07Z"
--- library_name: peft license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B tags: - alignment-handbook - trl - sft - generated_from_trainer datasets: - tttx/step2_3augs_buffer_short model-index: - name: model_step2_3augs_buffer_short results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_step2_3augs_buffer_short This model is a fine-tuned version of [tttx/sft-32b-020925-19k-5ep](https://huggingface.co/tttx/sft-32b-020925-19k-5ep) on the tttx/step2_3augs_buffer_short dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 100 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.47.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
asenella/ms_MoPoE_beta_10_scale_True_seed_1
asenella
"2023-07-26T17:55:29Z"
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
"2023-07-14T06:46:53Z"
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
havinash-ai/dec0cfda-4d13-45a1-83ca-e5a54920b47a
havinash-ai
"2025-01-08T21:12:42Z"
16
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-dummy-qwen2", "base_model:adapter:fxmarty/tiny-dummy-qwen2", "license:mit", "region:us" ]
null
"2025-01-08T21:12:18Z"
--- library_name: peft license: mit base_model: fxmarty/tiny-dummy-qwen2 tags: - axolotl - generated_from_trainer model-index: - name: dec0cfda-4d13-45a1-83ca-e5a54920b47a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-dummy-qwen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 64687ae6e66a75d2_train_data.json ds_type: json format: custom path: /workspace/input_data/64687ae6e66a75d2_train_data.json type: field_instruction: question field_output: best_answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/dec0cfda-4d13-45a1-83ca-e5a54920b47a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/64687ae6e66a75d2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dec0cfda-4d13-45a1-83ca-e5a54920b47a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: dec0cfda-4d13-45a1-83ca-e5a54920b47a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # dec0cfda-4d13-45a1-83ca-e5a54920b47a This model is a fine-tuned version of [fxmarty/tiny-dummy-qwen2](https://huggingface.co/fxmarty/tiny-dummy-qwen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9304 | 0.0132 | 1 | 11.9358 | | 11.931 | 0.0397 | 3 | 11.9358 | | 11.9304 | 0.0795 | 6 | 11.9355 | | 11.9311 | 0.1192 | 9 | 11.9350 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/ZEUS-8B-V13-GGUF
mradermacher
"2024-12-31T07:07:46Z"
20
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:T145/ZEUS-8B-V13", "base_model:quantized:T145/ZEUS-8B-V13", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-12-30T00:04:36Z"
--- base_model: T145/ZEUS-8B-V13 language: - en library_name: transformers license: llama3.1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/T145/ZEUS-8B-V13 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/ZEUS-8B-V13-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V13-GGUF/resolve/main/ZEUS-8B-V13.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mia-llm/pythia-160m-wikitext2raw-roya
mia-llm
"2025-01-17T15:40:34Z"
17
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-generation", "generated_from_trainer", "trl", "sft", "base_model:EleutherAI/pythia-160m", "base_model:finetune:EleutherAI/pythia-160m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-17T15:40:20Z"
--- base_model: EleutherAI/pythia-160m library_name: transformers model_name: pythia-160m-None.9.1 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for pythia-160m-None.9.1 This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RoyArkh/pythia-160m-None.9.1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.13.0 - Transformers: 4.48.0 - Pytorch: 2.2.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
DhruvAwasthi/ppo-SnowballTarget
DhruvAwasthi
"2023-06-09T22:15:39Z"
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
"2023-06-09T22:15:36Z"
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: DhruvAwasthi/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
TheBloke/llama-2-13B-German-Assistant-v2-AWQ
TheBloke
"2023-11-09T18:20:22Z"
12
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "de", "dataset:flozi00/conversations", "base_model:flozi00/Llama-2-13B-german-assistant-v2", "base_model:quantized:flozi00/Llama-2-13B-german-assistant-v2", "license:llama2", "autotrain_compatible", "text-generation-inference", "4-bit", "awq", "region:us" ]
text-generation
"2023-09-19T05:55:06Z"
--- language: - en - de license: llama2 datasets: - flozi00/conversations model_name: Llama 2 13B German Assistant v2 base_model: flozi00/Llama-2-13B-german-assistant-v2 inference: false model_creator: Florian Zimmermeister model_type: llama prompt_template: '<|prompter|>{prompt}<|endoftext|><|assistant|> ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Llama 2 13B German Assistant v2 - AWQ - Model creator: [Florian Zimmermeister](https://huggingface.co/flozi00) - Original model: [Llama 2 13B German Assistant v2](https://huggingface.co/flozi00/Llama-2-13B-german-assistant-v2) <!-- description start --> ## Description This repo contains AWQ model files for [flozi00's Llama 2 13B German Assistant v2](https://huggingface.co/flozi00/Llama-2-13B-german-assistant-v2). Many thanks to William Beauchamp from [Chai](https://chai-research.com/) for providing the hardware used to make and upload these files! ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference. It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB. <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/llama-2-13B-German-Assistant-v2-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama-2-13B-German-Assistant-v2-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/llama-2-13B-German-Assistant-v2-GGUF) * [Florian Zimmermeister's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/flozi00/Llama-2-13B-german-assistant-v2) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: OpenAssistant ``` <|prompter|>{prompt}<|endoftext|><|assistant|> ``` <!-- prompt-template end --> <!-- README_AWQ.md-provided-files start --> ## Provided files and AWQ parameters For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/llama-2-13B-German-Assistant-v2-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.25 GB <!-- README_AWQ.md-provided-files end --> <!-- README_AWQ.md-use-from-vllm start --> ## Serving this model from vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - When using vLLM as a server, pass the `--quantization awq` parameter, for example: ```shell python3 python -m vllm.entrypoints.api_server --model TheBloke/llama-2-13B-German-Assistant-v2-AWQ --quantization awq ``` When using vLLM from Python code, pass the `quantization=awq` parameter, for example: ```python from vllm import LLM, SamplingParams prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is", ] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/llama-2-13B-German-Assistant-v2-AWQ", quantization="awq") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` <!-- README_AWQ.md-use-from-vllm start --> <!-- README_AWQ.md-use-from-python start --> ## How to use this AWQ model from Python code ### Install the necessary packages Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later ```shell pip3 install autoawq ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### You can then try the following example code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer model_name_or_path = "TheBloke/llama-2-13B-German-Assistant-v2-AWQ" # Load model model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True, trust_remote_code=False, safetensors=True) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False) prompt = "Tell me about AI" prompt_template=f'''<|prompter|>{prompt}<|endoftext|><|assistant|> ''' print("\n\n*** Generate:") tokens = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() # Generate output generation_output = model.generate( tokens, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, max_new_tokens=512 ) print("Output: ", tokenizer.decode(generation_output[0])) # Inference can also be done using transformers' pipeline from transformers import pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_AWQ.md-use-from-python end --> <!-- README_AWQ.md-compatibility start --> ## Compatibility The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm). [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781). <!-- README_AWQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: flozi00's Llama 2 13B German Assistant v2 ## This project is sponsored by [ ![PrimeLine](https://www.primeline-solutions.com/skin/frontend/default/theme566/images/primeline-solutions-logo.png) ](https://www.primeline-solutions.com/de/server/nach-einsatzzweck/gpu-rendering-hpc/) Please Use V3 of this model instead # Model Card This model is an finetuned version for german instructions and conversations in style of Open Assistant tokens. "<|prompter|>" "<|endoftext|>" "<|assistant|>" The dataset used is deduplicated and cleaned, with no codes inside. The focus is on instruction following and conversational tasks. The model archictecture is based on Llama version 2 with 13B parameters, trained on 100% renewable energy powered hardware. This work is contributed by private research of [flozi00](https://huggingface.co/flozi00)
wizardofchance/formAI-trial-2
wizardofchance
"2024-05-30T04:53:52Z"
121
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-05-30T04:38:44Z"
--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: formAI-trial-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # formAI-trial-2 This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2667 - Accuracy: 0.9055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4366 | 1.0 | 500 | 0.2896 | 0.9015 | | 0.2664 | 2.0 | 1000 | 0.2667 | 0.9055 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
rycecorn/distil-bert-fine-tuned-boolq
rycecorn
"2024-05-07T08:09:41Z"
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-04-20T15:45:57Z"
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distil-bert-fine-tuned-boolq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-bert-fine-tuned-boolq This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9724 - Accuracy: 0.7125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.62 | 1.0 | 2357 | 0.6170 | 0.6865 | | 0.5335 | 2.0 | 4714 | 0.5965 | 0.7107 | | 0.4801 | 3.0 | 7071 | 0.9724 | 0.7125 | ### Framework versions - Transformers 4.39.3 - Pytorch 1.13.0 - Datasets 2.18.0 - Tokenizers 0.15.2
SargeZT/sdxl-controlnet-seg
SargeZT
"2023-08-01T01:27:25Z"
44
29
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "controlnet", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:creativeml-openrail-m", "region:us" ]
text-to-image
"2023-07-31T23:46:46Z"
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-xl-base-1.0 tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-SargeZT/sdxl-controlnet-seg These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with new type of conditioning. You can find some example images below. prompt: a cat laying on top of a blanket on a bed ![images_0)](./images_0.png) prompt: two elephants are walking in a zoo enclosure ![images_1)](./images_1.png) prompt: a variety of items are laid out on a table ![images_2)](./images_2.png) prompt: a sandwich and french fries on a tray ![images_3)](./images_3.png) prompt: a crowd of people flying kites on a beach ![images_4)](./images_4.png) prompt: a man holding a rainbow colored umbrella in front of a crowd ![images_5)](./images_5.png) prompt: a man riding skis down a snow covered slope ![images_6)](./images_6.png) prompt: a yellow fire hydrant sitting in the middle of a sidewalk ![images_7)](./images_7.png) ## License [SDXL 1.0 License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md)
Hastika06/ppo-LunarLander-v2
Hastika06
"2024-03-15T11:01:44Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2024-03-15T10:58:21Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.29 +/- 13.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Lakshit11/BERT-debit-mcc-asitis_distribution
Lakshit11
"2024-05-07T03:54:52Z"
182
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-05-07T03:54:37Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LHRuig/jonhammsx
LHRuig
"2025-03-25T07:29:20Z"
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
"2025-03-25T07:28:48Z"
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: jonhammsx --- # jonhammsx <Gallery /> ## Model description jonhammsx lora ## Trigger words You should use `jonhammsx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/jonhammsx/tree/main) them in the Files & versions tab.
semantichealth/msllama-3.2-counter-sft-codes-rewarded-2-4
semantichealth
"2025-02-26T22:00:40Z"
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:semantichealth/msllama-3.2-counter-sft-codes-rewarded", "base_model:finetune:semantichealth/msllama-3.2-counter-sft-codes-rewarded", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-26T21:58:49Z"
--- base_model: semantichealth/msllama-3.2-counter-sft-codes-rewarded tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** semantichealth - **License:** apache-2.0 - **Finetuned from model :** semantichealth/msllama-3.2-counter-sft-codes-rewarded This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
hyunjongkimmath/definition_naming_model
hyunjongkimmath
"2025-02-24T14:40:55Z"
59
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2024-06-03T20:51:15Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alibaba-pai/EasyAnimateV5.1-7b-zh
alibaba-pai
"2025-02-13T02:29:06Z"
2
1
diffusers
[ "diffusers", "safetensors", "arxiv:2405.18991", "license:apache-2.0", "diffusers:EasyAnimateControlPipeline", "region:us" ]
null
"2025-02-07T02:35:34Z"
--- license: apache-2.0 --- [![Arxiv Page](https://img.shields.io/badge/Arxiv-Page-red)](https://arxiv.org/abs/2405.18991) [![Project Page](https://img.shields.io/badge/Project-Website-green)](https://easyanimate.github.io/) [![Modelscope Studio](https://img.shields.io/badge/Modelscope-Studio-blue)](https://modelscope.cn/studios/PAI/EasyAnimate/summary) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow)](https://huggingface.co/spaces/alibaba-pai/EasyAnimate) [![Discord Page](https://img.shields.io/badge/Discord-Page-blue)](https://discord.gg/UzkpB4Bn) # 简介 EasyAnimate是一个基于transformer结构的pipeline,可用于生成AI图片与视频、训练Diffusion Transformer的基线模型与Lora模型,我们支持从已经训练好的EasyAnimate模型直接进行预测,生成不同分辨率,6秒左右、fps8的视频(EasyAnimateV5.1,1 ~ 49帧),也支持用户训练自己的基线模型与Lora模型,进行一定的风格变换。 [English](./README_en.md) | [简体中文](./README.md) # 模型地址 EasyAnimateV5.1: 7B: | 名称 | 种类 | 存储空间 | Hugging Face | Model Scope | 描述 | |--|--|--|--|--|--| | EasyAnimateV5.1-7b-zh-InP | EasyAnimateV5.1 | 30 GB | [🤗Link](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-7b-zh-InP) | [😄Link](https://modelscope.cn/models/PAI/EasyAnimateV5.1-7b-zh-InP)| 官方的图生视频权重。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以49帧、每秒8帧进行训练,支持多语言预测 | | EasyAnimateV5.1-7b-zh-Control | EasyAnimateV5.1 | 30 GB | [🤗Link](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-7b-zh-Control) | [😄Link](https://modelscope.cn/models/PAI/EasyAnimateV5.1-7b-zh-Control)| 官方的视频控制权重,支持不同的控制条件,如Canny、Depth、Pose、MLSD等,同时支持使用轨迹控制。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以49帧、每秒8帧进行训练,支持多语言预测 | | EasyAnimateV5.1-7b-zh-Control-Camera | EasyAnimateV5.1 | 30 GB | [🤗Link](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-7b-zh-Control-Camera) | [😄Link](https://modelscope.cn/models/PAI/EasyAnimateV5.1-7b-zh-Control-Camera)| 官方的视频相机控制权重,支持通过输入相机运动轨迹控制生成方向。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以49帧、每秒8帧进行训练,支持多语言预测 | | EasyAnimateV5.1-7b-zh | EasyAnimateV5.1 | 30 GB | [🤗Link](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-7b-zh) | [😄Link](https://modelscope.cn/models/PAI/EasyAnimateV5.1-7b-zh)| 官方的文生视频权重。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以49帧、每秒8帧进行训练,支持多语言预测 | 12B: | 名称 | 种类 | 存储空间 | Hugging Face | Model Scope | 描述 | |--|--|--|--|--|--| | EasyAnimateV5.1-12b-zh-InP | EasyAnimateV5.1 | 39 GB | [🤗Link](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh-InP) | [😄Link](https://modelscope.cn/models/PAI/EasyAnimateV5.1-12b-zh-InP)| 官方的图生视频权重。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以49帧、每秒8帧进行训练,支持多语言预测 | | EasyAnimateV5.1-12b-zh-Control | EasyAnimateV5.1 | 39 GB | [🤗Link](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh-Control) | [😄Link](https://modelscope.cn/models/PAI/EasyAnimateV5.1-12b-zh-Control)| 官方的视频控制权重,支持不同的控制条件,如Canny、Depth、Pose、MLSD等,同时支持使用轨迹控制。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以49帧、每秒8帧进行训练,支持多语言预测 | | EasyAnimateV5.1-12b-zh-Control-Camera | EasyAnimateV5.1 | 39 GB | [🤗Link](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh-Control-Camera) | [😄Link](https://modelscope.cn/models/PAI/EasyAnimateV5.1-12b-zh-Control-Camera)| 官方的视频相机控制权重,支持通过输入相机运动轨迹控制生成方向。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以49帧、每秒8帧进行训练,支持多语言预测 | | EasyAnimateV5.1-12b-zh | EasyAnimateV5.1 | 39 GB | [🤗Link](https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh) | [😄Link](https://modelscope.cn/models/PAI/EasyAnimateV5.1-12b-zh)| 官方的文生视频权重。支持多分辨率(512,768,1024)的视频预测,支持多分辨率(512,768,1024)的视频预测,以49帧、每秒8帧进行训练,支持多语言预测 | # 视频作品 ### 图生视频 EasyAnimateV5.1-12b-zh-InP <table border="0" style="width: 100%; text-align: left; margin-top: 20px;"> <tr> <td> <video src="https://github.com/user-attachments/assets/74a23109-f555-4026-a3d8-1ac27bb3884c" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/ab5aab27-fbd7-4f55-add9-29644125bde7" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/238043c2-cdbd-4288-9857-a273d96f021f" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/48881a0e-5513-4482-ae49-13a0ad7a2557" width="100%" controls autoplay loop></video> </td> </tr> </table> <table border="0" style="width: 100%; text-align: left; margin-top: 20px;"> <tr> <td> <video src="https://github.com/user-attachments/assets/3e7aba7f-6232-4f39-80a8-6cfae968f38c" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/986d9f77-8dc3-45fa-bc9d-8b26023fffbc" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/7f62795a-2b3b-4c14-aeb1-1230cb818067" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/b581df84-ade1-4605-a7a8-fd735ce3e222" width="100%" controls autoplay loop></video> </td> </tr> </table> <table border="0" style="width: 100%; text-align: left; margin-top: 20px;"> <tr> <td> <video src="https://github.com/user-attachments/assets/eab1db91-1082-4de2-bb0a-d97fd25ceea1" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/3fda0e96-c1a8-4186-9c4c-043e11420f05" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/4b53145d-7e98-493a-83c9-4ea4f5b58289" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/75f7935f-17a8-4e20-b24c-b61479cf07fc" width="100%" controls autoplay loop></video> </td> </tr> </table> ### 文生视频 EasyAnimateV5.1-12b-zh <table border="0" style="width: 100%; text-align: left; margin-top: 20px;"> <tr> <td> <video src="https://github.com/user-attachments/assets/8818dae8-e329-4b08-94fa-00d923f38fd2" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/d3e483c3-c710-47d2-9fac-89f732f2260a" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/4dfa2067-d5d4-4741-a52c-97483de1050d" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/fb44c2db-82c6-427e-9297-97dcce9a4948" width="100%" controls autoplay loop></video> </td> </tr> </table> <table border="0" style="width: 100%; text-align: left; margin-top: 20px;"> <tr> <td> <video src="https://github.com/user-attachments/assets/dc6b8eaf-f21b-4576-a139-0e10438f20e4" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/b3f8fd5b-c5c8-44ee-9b27-49105a08fbff" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/a68ed61b-eed3-41d2-b208-5f039bf2788e" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/4e33f512-0126-4412-9ae8-236ff08bcd21" width="100%" controls autoplay loop></video> </td> </tr> </table> ### 控制生视频 EasyAnimateV5.1-12b-zh-Control 轨迹控制 <table border="0" style="width: 100%; text-align: left; margin-top: 20px;"> <tr> <td> <video src="https://github.com/user-attachments/assets/bf3b8970-ca7b-447f-8301-72dfe028055b" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/63a7057b-573e-4f73-9d7b-8f8001245af4" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/090ac2f3-1a76-45cf-abe5-4e326113389b" width="100%" controls autoplay loop></video> </td> <tr> </table> 普通控制生视频(Canny、Pose、Depth等) <table border="0" style="width: 100%; text-align: left; margin-top: 20px;"> <tr> <td> <video src="https://github.com/user-attachments/assets/53002ce2-dd18-4d4f-8135-b6f68364cabd" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/fce43c0b-81fa-4ab2-9ca7-78d786f520e6" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/b208b92c-5add-4ece-a200-3dbbe47b93c3" width="100%" controls autoplay loop></video> </td> <tr> <td> <video src="https://github.com/user-attachments/assets/3aec95d5-d240-49fb-a9e9-914446c7a4cf" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/60fa063b-5c1f-485f-b663-09bd6669de3f" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/4adde728-8397-42f3-8a2a-23f7b39e9a1e" width="100%" controls autoplay loop></video> </td> </tr> </table> ### 相机镜头控制 EasyAnimateV5.1-12b-zh-Control-Camera <table border="0" style="width: 100%; text-align: left; margin-top: 20px;"> <tr> <td> Pan Up </td> <td> Pan Left </td> <td> Pan Right </td> <tr> <td> <video src="https://github.com/user-attachments/assets/a88f81da-e263-4038-a5b3-77b26f79719e" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/e346c59d-7bca-4253-97fb-8cbabc484afb" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/4de470d4-47b7-46e3-82d3-b714a2f6aef6" width="100%" controls autoplay loop></video> </td> <tr> <td> Pan Down </td> <td> Pan Up + Pan Left </td> <td> Pan Up + Pan Right </td> <tr> <td> <video src="https://github.com/user-attachments/assets/7a3fecc2-d41a-4de3-86cd-5e19aea34a0d" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/cb281259-28b6-448e-a76f-643c3465672e" width="100%" controls autoplay loop></video> </td> <td> <video src="https://github.com/user-attachments/assets/44faf5b6-d83c-4646-9436-971b2b9c7216" width="100%" controls autoplay loop></video> </td> </tr> </table> # 如何使用 #### a、显存节省方案 由于EasyAnimateV5和V5.1的参数非常大,我们需要考虑显存节省方案,以节省显存适应消费级显卡。我们给每个预测文件都提供了GPU_memory_mode,可以在model_cpu_offload,model_cpu_offload_and_qfloat8,sequential_cpu_offload中进行选择。 - model_cpu_offload代表整个模型在使用后会进入cpu,可以节省部分显存。 - model_cpu_offload_and_qfloat8代表整个模型在使用后会进入cpu,并且对transformer模型进行了float8的量化,可以节省更多的显存。 - sequential_cpu_offload代表模型的每一层在使用后会进入cpu,速度较慢,节省大量显存。 qfloat8会降低模型的性能,但可以节省更多的显存。如果显存足够,推荐使用model_cpu_offload。 #### b、通过comfyui 具体查看[ComfyUI README](https://github.com/aigc-apps/EasyAnimate/blob/main/comfyui/README.md)。 #### c、运行python文件 - 步骤1:下载对应[权重](#model-zoo)放入models文件夹。 - 步骤2:根据不同的权重与预测目标使用不同的文件进行预测。 - 文生视频: - 使用predict_t2v.py文件中修改prompt、neg_prompt、guidance_scale和seed。 - 而后运行predict_t2v.py文件,等待生成结果,结果保存在samples/easyanimate-videos文件夹中。 - 图生视频: - 使用predict_i2v.py文件中修改validation_image_start、validation_image_end、prompt、neg_prompt、guidance_scale和seed。 - validation_image_start是视频的开始图片,validation_image_end是视频的结尾图片。 - 而后运行predict_i2v.py文件,等待生成结果,结果保存在samples/easyanimate-videos_i2v文件夹中。 - 视频生视频: - 使用predict_v2v.py文件中修改validation_video、validation_image_end、prompt、neg_prompt、guidance_scale和seed。 - validation_video是视频生视频的参考视频。您可以使用以下视频运行演示:[演示视频](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/play_guitar.mp4) - 而后运行predict_v2v.py文件,等待生成结果,结果保存在samples/easyanimate-videos_v2v文件夹中。 - 普通控制生视频(Canny、Pose、Depth等): - 使用predict_v2v_control.py文件中修改control_video、validation_image_end、prompt、neg_prompt、guidance_scale和seed。 - control_video是控制生视频的控制视频,是使用Canny、Pose、Depth等算子提取后的视频。您可以使用以下视频运行演示:[演示视频](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1.1/pose.mp4) - 而后运行predict_v2v_control.py文件,等待生成结果,结果保存在samples/easyanimate-videos_v2v_control文件夹中。 - 轨迹控制视频: - 使用predict_v2v_control.py文件中修改control_video、ref_image、validation_image_end、prompt、neg_prompt、guidance_scale和seed。 - control_video是轨迹控制视频的控制视频,ref_image是参考的首帧图片。您可以使用以下图片和控制视频运行演示:[演示图像](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/v5.1/dog.png),[演示视频](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/v5.1/trajectory_demo.mp4) - 而后运行predict_v2v_control.py文件,等待生成结果,结果保存在samples/easyanimate-videos_v2v_control文件夹中。 - 推荐使用ComfyUI进行交互。 - 相机控制视频: - 使用predict_v2v_control.py文件中修改control_video、ref_image、validation_image_end、prompt、neg_prompt、guidance_scale和seed。 - control_camera_txt是相机控制视频的控制文件,ref_image是参考的首帧图片。您可以使用以下图片和控制视频运行演示:[演示图像](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/cogvideox_fun/asset/v1/firework.png),[演示文件(来自于CameraCtrl)](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/v5.1/0a3b5fb184936a83.txt) - 而后运行predict_v2v_control.py文件,等待生成结果,结果保存在samples/easyanimate-videos_v2v_control文件夹中。 - 推荐使用ComfyUI进行交互。 - 步骤3:如果想结合自己训练的其他backbone与Lora,则看情况修改predict_t2v.py中的predict_t2v.py和lora_path。 #### d、通过ui界面 webui支持文生视频、图生视频、视频生视频和普通控制生视频(Canny、Pose、Depth等) - 步骤1:下载对应[权重](#model-zoo)放入models文件夹。 - 步骤2:运行app.py文件,进入gradio页面。 - 步骤3:根据页面选择生成模型,填入prompt、neg_prompt、guidance_scale和seed等,点击生成,等待生成结果,结果保存在sample文件夹中。 # 快速启动 ### 1. 云使用: AliyunDSW/Docker #### a. 通过阿里云 DSW DSW 有免费 GPU 时间,用户可申请一次,申请后3个月内有效。 阿里云在[Freetier](https://free.aliyun.com/?product=9602825&crowd=enterprise&spm=5176.28055625.J_5831864660.1.e939154aRgha4e&scm=20140722.M_9974135.P_110.MO_1806-ID_9974135-MID_9974135-CID_30683-ST_8512-V_1)提供免费GPU时间,获取并在阿里云PAI-DSW中使用,5分钟内即可启动EasyAnimate [![DSW Notebook](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/dsw.png)](https://gallery.pai-ml.com/#/preview/deepLearning/cv/easyanimate_v5) #### b. 通过ComfyUI 我们的ComfyUI界面如下,具体查看[ComfyUI README](https://github.com/aigc-apps/EasyAnimate/blob/main/comfyui/README.md)。 ![workflow graph](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/v3/comfyui_i2v.jpg) #### c. 通过docker 使用docker的情况下,请保证机器中已经正确安装显卡驱动与CUDA环境,然后以此执行以下命令: ``` # pull image docker pull mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:easyanimate # enter image docker run -it -p 7860:7860 --network host --gpus all --security-opt seccomp:unconfined --shm-size 200g mybigpai-public-registry.cn-beijing.cr.aliyuncs.com/easycv/torch_cuda:easyanimate # clone code git clone https://github.com/aigc-apps/EasyAnimate.git # enter EasyAnimate's dir cd EasyAnimate # download weights mkdir models/Diffusion_Transformer mkdir models/Motion_Module mkdir models/Personalized_Model # Please use the hugginface link or modelscope link to download the EasyAnimateV5.1 model. # https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh-InP # https://modelscope.cn/models/PAI/EasyAnimateV5.1-12b-zh-InP ``` ### 2. 本地安装: 环境检查/下载/安装 #### a. 环境检查 我们已验证EasyAnimate可在以下环境中执行: Windows 的详细信息: - 操作系统 Windows 10 - python: python3.10 & python3.11 - pytorch: torch2.2.0 - CUDA: 11.8 & 12.1 - CUDNN: 8+ - GPU: Nvidia-3060 12G Linux 的详细信息: - 操作系统 Ubuntu 20.04, CentOS - python: python3.10 & python3.11 - pytorch: torch2.2.0 - CUDA: 11.8 & 12.1 - CUDNN: 8+ - GPU:Nvidia-V100 16G & Nvidia-A10 24G & Nvidia-A100 40G & Nvidia-A100 80G 我们需要大约 60GB 的可用磁盘空间,请检查! EasyAnimateV5.1-12B的视频大小可以由不同的GPU Memory生成,包括: | GPU memory |384x672x25|384x672x49|576x1008x25|576x1008x49|768x1344x25|768x1344x49| |----------|----------|----------|----------|----------|----------|----------| | 16GB | 🧡 | ⭕️ | ⭕️ | ⭕️ | ❌ | ❌ | | 24GB | 🧡 | 🧡 | 🧡 | 🧡 | 🧡 | ❌ | | 40GB | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | 80GB | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | EasyAnimateV5.1-7B的视频大小可以由不同的GPU Memory生成,包括: | GPU memory |384x672x25|384x672x49|576x1008x25|576x1008x49|768x1344x25|768x1344x49| |----------|----------|----------|----------|----------|----------|----------| | 16GB | 🧡 | 🧡 | ⭕️ | ⭕️ | ❌ | ❌ | | 24GB | ✅ | ✅ | ✅ | 🧡 | 🧡 | ❌ | | 40GB | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | 80GB | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ 表示它可以在"model_cpu_offload"的情况下运行,🧡代表它可以在"model_cpu_offload_and_qfloat8"的情况下运行,⭕️ 表示它可以在"sequential_cpu_offload"的情况下运行,❌ 表示它无法运行。请注意,使用sequential_cpu_offload运行会更慢。 有一些不支持torch.bfloat16的卡型,如2080ti、V100,需要将app.py、predict文件中的weight_dtype修改为torch.float16才可以运行。 EasyAnimateV5.1-12B使用不同GPU在25个steps中的生成时间如下: | GPU |384x672x72|384x672x49|576x1008x25|576x1008x49|768x1344x25|768x1344x49| |----------|----------|----------|----------|----------|----------|----------| | A10 24GB |约120秒 (4.8s/it)|约240秒 (9.6s/it)|约320秒 (12.7s/it)| 约750秒 (29.8s/it)| ❌ | ❌ | | A100 80GB |约45秒 (1.75s/it)|约90秒 (3.7s/it)|约120秒 (4.7s/it)|约300秒 (11.4s/it)|约265秒 (10.6s/it)| 约710秒 (28.3s/it)| #### b. 权重放置 我们最好将[权重](#model-zoo)按照指定路径进行放置: EasyAnimateV5.1: ``` 📦 models/ ├── 📂 Diffusion_Transformer/ │ ├── 📂 EasyAnimateV5.1-12b-zh-InP/ │ ├── 📂 EasyAnimateV5.1-12b-zh-Control/ │ ├── 📂 EasyAnimateV5.1-12b-zh-Control-Camera/ │ └── 📂 EasyAnimateV5.1-12b-zh/ ├── 📂 Personalized_Model/ │ └── your trained trainformer model / your trained lora model (for UI load) ``` # 联系我们 1. 扫描下方二维码或搜索群号:77450006752 来加入钉钉群。 2. 扫描下方二维码来加入微信群(如果二维码失效,可扫描最右边同学的微信,邀请您入群) <img src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/group/dd.png" alt="ding group" width="30%"/> <img src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/group/wechat.jpg" alt="Wechat group" width="30%"/> <img src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/group/person.jpg" alt="Person" width="30%"/> # 参考文献 - CogVideo: https://github.com/THUDM/CogVideo/ - Flux: https://github.com/black-forest-labs/flux - magvit: https://github.com/google-research/magvit - PixArt: https://github.com/PixArt-alpha/PixArt-alpha - Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan - Open-Sora: https://github.com/hpcaitech/Open-Sora - Animatediff: https://github.com/guoyww/AnimateDiff - HunYuan DiT: https://github.com/tencent/HunyuanDiT - ComfyUI-KJNodes: https://github.com/kijai/ComfyUI-KJNodes - ComfyUI-EasyAnimateWrapper: https://github.com/kijai/ComfyUI-EasyAnimateWrapper - ComfyUI-CameraCtrl-Wrapper: https://github.com/chaojie/ComfyUI-CameraCtrl-Wrapper - CameraCtrl: https://github.com/hehao13/CameraCtrl - DragAnything: https://github.com/showlab/DragAnything # 许可证 本项目采用 [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE).
lightsout19/t5-base-mrpc
lightsout19
"2024-11-07T10:11:24Z"
50
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text-classification", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
"2024-11-07T10:02:48Z"
--- library_name: transformers license: apache-2.0 base_model: t5-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: t5-base-mrpc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-mrpc This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4484 - Accuracy: 0.8064 - F1: 0.8724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 115 | 0.5770 | 0.7083 | 0.8232 | | No log | 2.0 | 230 | 0.5076 | 0.7279 | 0.8295 | | No log | 3.0 | 345 | 0.4870 | 0.7672 | 0.8523 | | No log | 4.0 | 460 | 0.4481 | 0.8039 | 0.8706 | | 0.5245 | 5.0 | 575 | 0.4484 | 0.8064 | 0.8724 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
mingxilei/gpt2-imdb-eps-0.1
mingxilei
"2024-12-18T11:29:13Z"
148
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-12-18T10:55:39Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kakashi/rl_training
Kakashi
"2023-11-25T20:37:34Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-11-25T20:35:29Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.19 +/- 21.66 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
noesis-ai/Fimbulvetr-11B-v2-GGUF
noesis-ai
"2025-02-04T18:44:54Z"
55
0
null
[ "gguf", "en", "base_model:Sao10K/Fimbulvetr-11B-v2", "base_model:quantized:Sao10K/Fimbulvetr-11B-v2", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
"2025-02-04T18:44:53Z"
--- language: - en license: cc-by-nc-4.0 base_model: Sao10K/Fimbulvetr-11B-v2 model_name: Fimbulvetr-11B-v2-GGUF quantized_by: brooketh --- <img src="BackyardAI_Banner.png" alt="Backyard.ai" style="height: 90px; min-width: 32px; display: block; margin: auto;"> **<p style="text-align: center;">The official library of GGUF format models for use in the local AI chat app, Backyard AI.</p>** <p style="text-align: center;"><a href="https://backyard.ai/">Download Backyard AI here to get started.</a></p> <p style="text-align: center;"><a href="https://www.reddit.com/r/LLM_Quants/">Request Additional models at r/LLM_Quants.</a></p> *** # Fimbulvetr 11B v2 - **Creator:** [Sao10K](https://huggingface.co/Sao10K/) - **Original:** [Fimbulvetr 11B v2](https://huggingface.co/models/base/Fimbulvetr-11B-v2) - **Date Created:** 2024-02-06 - **Trained Context:** 4096 tokens - **Description:** Updated version of Fimbulvetr, a roleplaying model that is good at following context, realistically portraying characters, and responding creatively. Performs especially well for its size. *** ## What is a GGUF? GGUF is a large language model (LLM) format that can be split between CPU and GPU. GGUFs are compatible with applications based on llama.cpp, such as Backyard AI. Where other model formats require higher end GPUs with ample VRAM, GGUFs can be efficiently run on a wider variety of hardware. GGUF models are quantized to reduce resource usage, with a tradeoff of reduced coherence at lower quantizations. Quantization reduces the precision of the model weights by changing the number of bits used for each weight. *** <img src="BackyardAI_Logo.png" alt="Backyard.ai" style="height: 75px; min-width: 32px; display: block; horizontal align: left;"> ## Backyard AI - Free, local AI chat application. - One-click installation on Mac and PC. - Automatically use GPU for maximum speed. - Built-in model manager. - High-quality character hub. - Zero-config desktop-to-mobile tethering. Backyard AI makes it easy to start chatting with AI using your own characters or one of the many found in the built-in character hub. The model manager helps you find the latest and greatest models without worrying about whether it's the correct format. Backyard AI supports advanced features such as lorebooks, author's note, text formatting, custom context size, sampler settings, grammars, local TTS, cloud inference, and tethering, all implemented in a way that is straightforward and reliable. **Join us on [Discord](https://discord.gg/SyNN2vC9tQ)** ***
Sengil/ModernBERT-NewsClassifier-EN-small
Sengil
"2025-01-19T17:18:52Z"
22
1
transformers
[ "transformers", "tensorboard", "safetensors", "modernbert", "text-classification", "generated_from_trainer", "news-classification", "english", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-01-19T12:07:13Z"
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer - text-classification - news-classification - english - modernbert metrics: - f1 model-index: - name: ModernBERT-NewsClassifier-EN-small results: [] --- # ModernBERT-NewsClassifier-EN-small This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an English **News Category** dataset covering 15 distinct topics (e.g., **Politics**, **Sports**, **Business**, etc.). It achieves the following results on the evaluation set: - **Validation Loss**: `3.1201` - **Weighted F1 Score**: `0.5475` --- ## Model Description **Architecture**: This model is based on [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base), an advanced Transformer architecture featuring Rotary Position Embeddings (RoPE), Flash Attention, and a native long context window (up to 8,192 tokens). For the classification task, a linear classification head is added on top of the BERT encoder outputs. **Task**: **Multi-class News Classification** - The model classifies English news headlines or short texts into one of 15 categories. **Use Cases**: - Automatically tagging news headlines with appropriate categories in editorial pipelines. - Classifying short text blurbs for social media or aggregator systems. - Building a quick filter for content-based recommendation engines. --- ## Intended Uses & Limitations - **Intended for**: Users who need to categorize short English news texts into broad topics. - **Language**: Trained primarily on **English** texts. Performance on non-English text is not guaranteed. - **Limitations**: - Certain categories (e.g., `BLACK VOICES`, `QUEER VOICES`) may contain nuanced language that could lead to misclassification if context is limited or if the text is ambiguous. --- ## Training and Evaluation Data - **Dataset**: Curated from an English news-category dataset with 15 labels (e.g., `POLITICS`, `ENTERTAINMENT`, `SPORTS`, `BUSINESS`, etc.). - **Data Size**: ~30,000 samples in total, balanced at 2,000 samples per category. - **Split**: 90% training (27,000 samples) and 10% testing (3,000 samples). ### Categories 1. POLITICS 2. WELLNESS 3. ENTERTAINMENT 4. TRAVEL 5. STYLE & BEAUTY 6. PARENTING 7. HEALTHY LIVING 8. QUEER VOICES 9. FOOD & DRINK 10. BUSINESS 11. COMEDY 12. SPORTS 13. BLACK VOICES 14. HOME & LIVING 15. PARENTS --- ## Training Procedure ### Hyperparameters | Hyperparameter | Value | |------------------------------:|:-----------------------| | **learning_rate** | 5e-05 | | **train_batch_size** | 8 | | **eval_batch_size** | 4 | | **seed** | 42 | | **gradient_accumulation_steps** | 2 | | **total_train_batch_size** | 16 (8 x 2) | | **optimizer** | `adamw_torch_fused` (betas=(0.9,0.999), epsilon=1e-08) | | **lr_scheduler_type** | linear | | **lr_scheduler_warmup_steps**| 100 | | **num_epochs** | 5 | **Optimizer**: Used `AdamW` with fused kernels (`adamw_torch_fused`) for efficiency. **Loss Function**: Cross-entropy (with weighted F1 as metric). --- ## Training Results | Training Loss | Epoch | Step | Validation Loss | F1 (Weighted) | |:-------------:|:------:|:----:|:---------------:|:-------------:| | 2.6251 | 1.0 | 1688 | 1.3810 | 0.5543 | | 1.9267 | 2.0 | 3376 | 1.4378 | 0.5588 | | 0.6349 | 3.0 | 5064 | 2.1705 | 0.5415 | | 0.1273 | 4.0 | 6752 | 2.9007 | 0.5402 | | 0.0288 | 4.9973 | 8435 | 3.1201 | 0.5475 | - **Best Weighted F1** observed near the final epochs is **~0.55** on the validation set. --- ## Inference Example Below are two ways to use this model: via a **pipeline** and by using the **model & tokenizer** directly. ### 1) Quick Start with `pipeline` ```python from transformers import pipeline # Instantiate the pipeline classifier = pipeline( "text-classification", model="Sengil/ModernBERT-NewsClassifier-EN-small" ) # Sample text text = "The President pledges new infrastructure initiatives amid economic concerns." outputs = classifier(text) # Output: [{'label': 'POLITICS', 'score': 0.95}, ...] print(outputs) ``` ### 2) Direct Model Usage ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModelForSequenceClassification model_name = "Sengil/ModernBERT-NewsClassifier-EN-small" # Load model & tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) sample_text = "Local authorities call for better healthcare policies." inputs = tokenizer(sample_text, return_tensors="pt", truncation=True, max_length=512) with torch.no_grad(): logits = model(**inputs).logits # Convert logits to probabilities probs = F.softmax(logits, dim=1)[0] predicted_label_id = torch.argmax(probs).item() # Get the label string id2label = model.config.id2label predicted_label = id2label[predicted_label_id] confidence_score = probs[predicted_label_id].item() print(f"Predicted Label: {predicted_label} | Score: {confidence_score:.4f}") ``` --- ## Additional Information - **Framework Versions**: - **Transformers**: 4.49.0.dev0 - **PyTorch**: 2.5.1+cu121 - **Datasets**: 3.2.0 - **Tokenizers**: 0.21.0 - **License**: [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) - **Intellectual Property**: The original ModernBERT base model is provided by [answerdotai](https://huggingface.co/answerdotai). This fine-tuned checkpoint inherits the same license. --- **Citation** (If you use or extend this model in your research or applications, please consider citing it): ``` @misc{ModernBERTNewsClassifierENsmall, title={ModernBERT-NewsClassifier-EN-small}, author={Mert Sengil}, year={2025}, howpublished={\url{https://huggingface.co/Sengil/ModernBERT-NewsClassifier-EN-small}}, } ```
rayonlabs/Llama-3_2-3B-d1808b9d666dadb7_dataset_json_X-Amz-Algorithm_AWS4-HMAC-SHA256_X-Amz-Credential_AKI
rayonlabs
"2025-03-26T03:08:59Z"
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-3B", "base_model:adapter:unsloth/Llama-3.2-3B", "license:llama3.2", "region:us" ]
null
"2025-03-26T03:08:58Z"
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: 0419afd4-d740-497b-8afb-e4c2d4a21d7c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9b4cab2992cdb07f_train_data.json ds_type: json format: custom path: /workspace/input_data/9b4cab2992cdb07f_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/0419afd4-d740-497b-8afb-e4c2d4a21d7c hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1779 micro_batch_size: 4 mlflow_experiment_name: /tmp/9b4cab2992cdb07f_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.033916240452578315 wandb_entity: null wandb_mode: online wandb_name: 30612698-6e4a-41b9-a416-94b6b03904c8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 30612698-6e4a-41b9-a416-94b6b03904c8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0419afd4-d740-497b-8afb-e4c2d4a21d7c This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1779 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4843 | 0.0002 | 1 | 1.7253 | | 0.9523 | 0.0225 | 100 | 0.8943 | | 0.9478 | 0.0449 | 200 | 0.8860 | | 0.9653 | 0.0674 | 300 | 0.8736 | | 0.7676 | 0.0899 | 400 | 0.8678 | | 0.9193 | 0.1123 | 500 | 0.8550 | | 0.9976 | 0.1348 | 600 | 0.8524 | | 1.0777 | 0.1573 | 700 | 0.8414 | | 0.892 | 0.1797 | 800 | 0.8353 | | 1.0606 | 0.2022 | 900 | 0.8260 | | 0.9507 | 0.2247 | 1000 | 0.8176 | | 0.8807 | 0.2471 | 1100 | 0.8107 | | 1.0414 | 0.2696 | 1200 | 0.8034 | | 0.9991 | 0.2921 | 1300 | 0.7983 | | 0.8961 | 0.3146 | 1400 | 0.7936 | | 0.9268 | 0.3370 | 1500 | 0.7911 | | 0.7766 | 0.3595 | 1600 | 0.7893 | | 0.9304 | 0.3820 | 1700 | 0.7884 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nold/Phi-3-mini-4k-instruct-function-calling-GGUF
nold
"2024-05-22T12:44:59Z"
77
6
null
[ "gguf", "dataset:mzbac/function-calling-phi-3-format-v1.1", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-05-21T18:16:48Z"
--- datasets: - mzbac/function-calling-phi-3-format-v1.1 --- # Model Fine-tuned the Phi3 instruction model for function calling via MLX-LM using https://huggingface.co/datasets/mzbac/function-calling-phi-3-format-v1.1 # Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "mzbac/Phi-3-mini-4k-instruct-function-calling" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) tool = { "name": "search_web", "description": "Perform a web search for a given search terms.", "parameter": { "type": "object", "properties": { "search_terms": { "type": "array", "items": {"type": "string"}, "description": "The search queries for which the search is performed.", "required": True, } }, }, } messages = [ { "role": "user", "content": f"You are a helpful assistant with access to the following functions. Use them if required - {str(tool)}", }, {"role": "user", "content": "Any news in Melbourne today, May 7, 2024?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|end|>")] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.1, ) response = outputs[0] print(tokenizer.decode(response)) # <s><|user|> You are a helpful assistant with access to the following functions. Use them if required - {'name': 'search_web', 'description': 'Perform a web search for a given search terms.', 'parameter': {'type': 'object', 'properties': {'search_terms': {'type': 'array', 'items': {'type': 'string'}, 'description': 'The search queries for which the search is performed.', 'required': True}}}}<|end|><|assistant|> # <|user|> Any news in Melbourne today, May 7, 2024?<|end|> # <|assistant|> <functioncall> {"name": "search_web", "arguments": {"search_terms": ["news", "Melbourne", "May 7, 2024"]}}<|end|> ``` # Training hyperparameters lora_config.yaml ```yaml # The path to the local model directory or Hugging Face repo. model: "microsoft/Phi-3-mini-4k-instruct" # Whether or not to train (boolean) train: true # Directory with {train, valid, test}.jsonl files data: "data" # The PRNG seed seed: 0 # Number of layers to fine-tune lora_layers: 32 # Minibatch size. batch_size: 1 # Iterations to train for. iters: 111000 # Number of validation batches, -1 uses the entire validation set. val_batches: -1 # Adam learning rate. learning_rate: 1e-6 # Number of training steps between loss reporting. steps_per_report: 10 # Number of training steps between validations. steps_per_eval: 200 # Load path to resume training with the given adapter weights. # resume_adapter_file: "adapters/adapters.safetensors" # Save/load path for the trained adapter weights. adapter_path: "adapters" # Save the model every N iterations. save_every: 1000 # Evaluate on the test set after training test: false # Number of test set batches, -1 uses the entire test set. test_batches: 100 # Maximum sequence length. max_seq_length: 4096 # Use gradient checkpointing to reduce memory use. grad_checkpoint: false # LoRA parameters can only be specified in a config file lora_parameters: # The layer keys to apply LoRA to. # These will be applied for the last lora_layers keys: ['mlp.down_proj','mlp.gate_up_proj','self_attn.qkv_proj','self_attn.o_proj'] rank: 128 alpha: 256 scale: 10.0 dropout: 0.05 ``` *** Quantization of Model [mzbac/Phi-3-mini-4k-instruct-function-calling](https://huggingface.co/mzbac/Phi-3-mini-4k-instruct-function-calling). Created using [llm-quantizer](https://github.com/Nold360/llm-quantizer) Pipeline
Chuanming/Alpaca-Gemma-7b-lora
Chuanming
"2024-02-27T13:20:51Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:unsloth/gemma-7b-bnb-4bit", "base_model:finetune:unsloth/gemma-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-02-27T13:20:38Z"
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - trl base_model: unsloth/gemma-7b-bnb-4bit --- # Uploaded model - **Developed by:** Chuanming - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-7b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nicolinesorensen/EmotionsFinetunedAssignment1
nicolinesorensen
"2024-10-03T10:32:07Z"
9
0
null
[ "pytorch", "tensorboard", "distilbert", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
"2024-10-02T12:25:59Z"
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: EmotionsFinetunedAssignment1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EmotionsFinetunedAssignment1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1436 - Accuracy: 0.933 - F1: 0.9334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7879 | 1.0 | 250 | 0.2582 | 0.9165 | 0.9147 | | 0.2039 | 2.0 | 500 | 0.1785 | 0.9295 | 0.9296 | | 0.1366 | 3.0 | 750 | 0.1537 | 0.933 | 0.9335 | | 0.1073 | 4.0 | 1000 | 0.1481 | 0.932 | 0.9314 | | 0.0888 | 5.0 | 1250 | 0.1436 | 0.933 | 0.9334 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1
torreygooch/PPO-Lunar_Lander
torreygooch
"2023-04-09T12:57:34Z"
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2023-04-09T12:57:11Z"
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.77 +/- 22.64 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BobMcDear/vit_large_patch32_224_in22k
BobMcDear
"2022-12-23T13:55:58Z"
0
0
null
[ "region:us" ]
null
"2022-12-13T23:11:13Z"
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
erfan226/MTD
erfan226
"2023-12-16T16:21:31Z"
5
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2023-12-16T16:08:39Z"
--- widget: - text: "The largest mountain on Earth, when measured from base to summit, is Mauna Kea in Hawaii. While Mount Everest is the highest mountain above sea level, Mauna Kea extends about 13,796 feet (4,205 meters) above sea level, but its base is deep beneath the ocean surface. When measured from its base on the ocean floor to its summit, Mauna Kea is over 33,500 feet (10,210 meters) tall, making it taller than Mount Everest." ---
RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf
RichardErkhov
"2024-07-30T10:49:26Z"
13
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-07-30T06:55:33Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) DataVortexS-10.7B-dpo-v1.5 - GGUF - Model creator: https://huggingface.co/Edentns/ - Original model: https://huggingface.co/Edentns/DataVortexS-10.7B-dpo-v1.5/ | Name | Quant method | Size | | ---- | ---- | ---- | | [DataVortexS-10.7B-dpo-v1.5.Q2_K.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q2_K.gguf) | Q2_K | 3.73GB | | [DataVortexS-10.7B-dpo-v1.5.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.IQ3_XS.gguf) | IQ3_XS | 4.14GB | | [DataVortexS-10.7B-dpo-v1.5.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.IQ3_S.gguf) | IQ3_S | 4.37GB | | [DataVortexS-10.7B-dpo-v1.5.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q3_K_S.gguf) | Q3_K_S | 4.34GB | | [DataVortexS-10.7B-dpo-v1.5.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.IQ3_M.gguf) | IQ3_M | 4.51GB | | [DataVortexS-10.7B-dpo-v1.5.Q3_K.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q3_K.gguf) | Q3_K | 4.84GB | | [DataVortexS-10.7B-dpo-v1.5.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q3_K_M.gguf) | Q3_K_M | 4.84GB | | [DataVortexS-10.7B-dpo-v1.5.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q3_K_L.gguf) | Q3_K_L | 5.26GB | | [DataVortexS-10.7B-dpo-v1.5.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.IQ4_XS.gguf) | IQ4_XS | 5.43GB | | [DataVortexS-10.7B-dpo-v1.5.Q4_0.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q4_0.gguf) | Q4_0 | 5.66GB | | [DataVortexS-10.7B-dpo-v1.5.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.IQ4_NL.gguf) | IQ4_NL | 5.72GB | | [DataVortexS-10.7B-dpo-v1.5.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q4_K_S.gguf) | Q4_K_S | 5.7GB | | [DataVortexS-10.7B-dpo-v1.5.Q4_K.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q4_K.gguf) | Q4_K | 6.02GB | | [DataVortexS-10.7B-dpo-v1.5.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q4_K_M.gguf) | Q4_K_M | 6.02GB | | [DataVortexS-10.7B-dpo-v1.5.Q4_1.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q4_1.gguf) | Q4_1 | 6.27GB | | [DataVortexS-10.7B-dpo-v1.5.Q5_0.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q5_0.gguf) | Q5_0 | 6.89GB | | [DataVortexS-10.7B-dpo-v1.5.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q5_K_S.gguf) | Q5_K_S | 6.89GB | | [DataVortexS-10.7B-dpo-v1.5.Q5_K.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q5_K.gguf) | Q5_K | 7.08GB | | [DataVortexS-10.7B-dpo-v1.5.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q5_K_M.gguf) | Q5_K_M | 7.08GB | | [DataVortexS-10.7B-dpo-v1.5.Q5_1.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q5_1.gguf) | Q5_1 | 7.51GB | | [DataVortexS-10.7B-dpo-v1.5.Q6_K.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q6_K.gguf) | Q6_K | 8.2GB | | [DataVortexS-10.7B-dpo-v1.5.Q8_0.gguf](https://huggingface.co/RichardErkhov/Edentns_-_DataVortexS-10.7B-dpo-v1.5-gguf/blob/main/DataVortexS-10.7B-dpo-v1.5.Q8_0.gguf) | Q8_0 | 10.62GB | Original model description: --- tags: - text-generation license: cc-by-nc-sa-4.0 language: - ko base_model: megastudy/M-SOLAR-10.7B-v1.3 pipeline_tag: text-generation --- # **DataVortexS-10.7B-dpo-v1.5** <img src="./DataVortex.png" alt="DataVortex" style="height: 8em;"> ## Our Team | Research & Engineering | Product Management | | :--------------------: | :----------------: | | Kwangseok Yang | Seunghyun Choi | | Jeongwon Choi | Hyoseok Choi | ## **Model Details** ### **Base Model** [megastudy/M-SOLAR-10.7B-v1.3](https://huggingface.co/megastudy/M-SOLAR-10.7B-v1.3) ### **Trained On** - **OS**: Ubuntu 22.04 - **GPU**: H100 80GB 4ea - **transformers**: v4.36.2 ### **Instruction format** It follows **ChatML** format. E.g. ```python text = """\ <|im_start|>system 당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다.<|im_end|> <|im_start|>user 대한민국의 수도는 어디야?<|im_end|> <|im_start|>assistant 대한민국의 수도는 서울입니다.<|im_end|> <|im_start|>user 서울 인구는 총 몇 명이야?<|im_end|> <|im_start|>assistant """ ``` ## **Model Benchmark** ### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)** | Task | 0-shot | 5-shot | 10-shot | 50-shot | | :--------------- | -----------: | -----------: | -----------: | -----------: | | kobest_boolq | 0.34687 | 0.930158 | 0.943013 | 0.938029 | | kobest_copa | 0.693351 | 0.751805 | 0.75772 | 0.771704 | | kobest_hellaswag | 0.480736 | 0.470852 | 0.474766 | 0.478576 | | kobest_sentineg | 0.789423 | 0.962208 | 0.967241 | 0.964717 | | **Average** | **0.577595** | **0.778756** | **0.785685** | **0.788257** | ### **[Ko-LLM-Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)** | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | ------: | -----: | -----------: | ------: | ------------: | --------------: | | 55.32 | 52.13 | 61.27 | 53.99 | 49.71 | 59.5 | ## **Implementation Code** This model contains the chat_template instruction format. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.5") tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.5") messages = [ {"role": "system", "content": "당신은 사람들이 정보를 찾을 수 있도록 도와주는 인공지능 비서입니다."}, {"role": "user", "content": "대한민국의 수도는 어디야?"}, {"role": "assistant", "content": "대한민국의 수도는 서울입니다."}, {"role": "user", "content": "서울 인구는 총 몇 명이야?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## **License** The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license. <div align="center"> <a href="https://edentns.com/"> <img src="./Logo.png" alt="Logo" style="height: 3em;"> </a> </div>
PrunaAI/nayohan-llama3-instrucTrans-enko-8b-HQQ-1bit-smashed
PrunaAI
"2024-07-19T14:25:52Z"
4
0
transformers
[ "transformers", "llama", "text-generation", "pruna-ai", "conversational", "base_model:nayohan/llama3-instrucTrans-enko-8b", "base_model:finetune:nayohan/llama3-instrucTrans-enko-8b", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-07-19T14:24:20Z"
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: nayohan/llama3-instrucTrans-enko-8b metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with hqq. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo nayohan/llama3-instrucTrans-enko-8b installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install hqq ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from hqq.engine.hf import HQQModelForCausalLM from hqq.models.hf.base import AutoHQQHFModel try: model = HQQModelForCausalLM.from_quantized("PrunaAI/nayohan-llama3-instrucTrans-enko-8b-HQQ-1bit-smashed", device_map='auto') except: model = AutoHQQHFModel.from_quantized("PrunaAI/nayohan-llama3-instrucTrans-enko-8b-HQQ-1bit-smashed") tokenizer = AutoTokenizer.from_pretrained("nayohan/llama3-instrucTrans-enko-8b") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model nayohan/llama3-instrucTrans-enko-8b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf
RichardErkhov
"2024-06-30T14:40:53Z"
7
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-06-30T11:47:49Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) NeuralHermes-2.5-Mistral-7B - GGUF - Model creator: https://huggingface.co/mlabonne/ - Original model: https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [NeuralHermes-2.5-Mistral-7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q2_K.gguf) | Q2_K | 2.53GB | | [NeuralHermes-2.5-Mistral-7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [NeuralHermes-2.5-Mistral-7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.IQ3_S.gguf) | IQ3_S | 2.96GB | | [NeuralHermes-2.5-Mistral-7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [NeuralHermes-2.5-Mistral-7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.IQ3_M.gguf) | IQ3_M | 3.06GB | | [NeuralHermes-2.5-Mistral-7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q3_K.gguf) | Q3_K | 3.28GB | | [NeuralHermes-2.5-Mistral-7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [NeuralHermes-2.5-Mistral-7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [NeuralHermes-2.5-Mistral-7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [NeuralHermes-2.5-Mistral-7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q4_0.gguf) | Q4_0 | 3.83GB | | [NeuralHermes-2.5-Mistral-7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [NeuralHermes-2.5-Mistral-7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [NeuralHermes-2.5-Mistral-7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q4_K.gguf) | Q4_K | 4.07GB | | [NeuralHermes-2.5-Mistral-7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [NeuralHermes-2.5-Mistral-7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q4_1.gguf) | Q4_1 | 4.24GB | | [NeuralHermes-2.5-Mistral-7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q5_0.gguf) | Q5_0 | 4.65GB | | [NeuralHermes-2.5-Mistral-7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [NeuralHermes-2.5-Mistral-7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q5_K.gguf) | Q5_K | 4.78GB | | [NeuralHermes-2.5-Mistral-7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [NeuralHermes-2.5-Mistral-7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q5_1.gguf) | Q5_1 | 5.07GB | | [NeuralHermes-2.5-Mistral-7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q6_K.gguf) | Q6_K | 5.53GB | | [NeuralHermes-2.5-Mistral-7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/mlabonne_-_NeuralHermes-2.5-Mistral-7B-gguf/blob/main/NeuralHermes-2.5-Mistral-7B.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- language: - en license: apache-2.0 tags: - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation - dpo - rlhf datasets: - mlabonne/chatml_dpo_pairs base_model: teknium/OpenHermes-2.5-Mistral-7B model-index: - name: NeuralHermes-2.5-Mistral-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.55 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.9 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.32 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 54.93 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.3 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.33 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B name: Open LLM Leaderboard --- <center><img src="https://i.imgur.com/qIhaFNM.png"></center> # NeuralHermes 2.5 - Mistral 7B NeuralHermes is based on the [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on most benchmarks (see results). It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template. The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour. ## Quantized models * **GGUF**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GGUF * **AWQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-AWQ * **GPTQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GPTQ * **EXL2**: * 3.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-3.0bpw-h6-exl2 * 4.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-4.0bpw-h6-exl2 * 5.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-5.0bpw-h6-exl2 * 6.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-6.0bpw-h6-exl2 * 8.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-8.0bpw-h8-exl2 ## Results **Update:** NeuralHermes-2.5 became the best Hermes-based model on the Open LLM leaderboard and one of the very best 7b models. 🎉 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/yWe6VBFxkHiuOlDVBXtGo.png) Teknium (author of OpenHermes-2.5-Mistral-7B) benchmarked the model ([see his tweet](https://twitter.com/Teknium1/status/1729955709377503660)). Results are improved on every benchmark: **AGIEval** (from 43.07% to 43.62%), **GPT4All** (from 73.12% to 73.25%), and **TruthfulQA**. ### AGIEval ![](https://i.imgur.com/7an3B1f.png) ### GPT4All ![](https://i.imgur.com/TLxZFi9.png) ### TruthfulQA ![](https://i.imgur.com/V380MqD.png) You can check the Weights & Biases project [here](https://wandb.ai/mlabonne/DPO/runs/axe71gr0?nw=nwusermlabonne). ## Usage You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend. You can also run this model using the following code: ```python import transformers from transformers import AutoTokenizer # Format prompt message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] tokenizer = AutoTokenizer.from_pretrained(new_model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=new_model, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) ``` ## Training hyperparameters **LoRA**: * r=16 * lora_alpha=16 * lora_dropout=0.05 * bias="none" * task_type="CAUSAL_LM" * target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] **Training arguments**: * per_device_train_batch_size=4 * gradient_accumulation_steps=4 * gradient_checkpointing=True * learning_rate=5e-5 * lr_scheduler_type="cosine" * max_steps=200 * optim="paged_adamw_32bit" * warmup_steps=100 **DPOTrainer**: * beta=0.1 * max_prompt_length=1024 * max_length=1536
LHRuig/dundermik
LHRuig
"2025-01-16T05:44:22Z"
5
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
"2025-01-16T05:44:00Z"
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: dundermik --- # dundermik <Gallery /> ## Model description dundermik lora ## Trigger words You should use `dundermik` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/dundermik/tree/main) them in the Files & versions tab.
sb3/sac-Pendulum-v1
sb3
"2022-10-11T15:09:07Z"
2,831
0
stable-baselines3
[ "stable-baselines3", "Pendulum-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
"2022-05-22T19:55:26Z"
--- library_name: stable-baselines3 tags: - Pendulum-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: SAC results: - metrics: - type: mean_reward value: -176.33 +/- 101.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pendulum-v1 type: Pendulum-v1 --- # **SAC** Agent playing **Pendulum-v1** This is a trained model of a **SAC** agent playing **Pendulum-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo sac --env Pendulum-v1 -orga sb3 -f logs/ python enjoy.py --algo sac --env Pendulum-v1 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo sac --env Pendulum-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo sac --env Pendulum-v1 -f logs/ -orga sb3 ``` ## Hyperparameters ```python OrderedDict([('learning_rate', 0.001), ('n_timesteps', 20000), ('policy', 'MlpPolicy'), ('normalize', False)]) ```
YuTingHu/results-mt5-finetuned-squad-accelerate_M3
YuTingHu
"2023-06-05T13:58:14Z"
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2023-06-05T13:17:17Z"
model = AutoModelForSeq2SeqLM.from_pretrained("fabiochiu/t5-small-medium-title-generation")# M3 MODEL tokenizer = AutoTokenizer.from_pretrained("fabiochiu/t5-small-medium-title-generation")# M3 MODEL
Lekhansh/Llama-3.1-8B-Instruct-mixed-instructions-merged-16bit
Lekhansh
"2024-11-04T08:42:42Z"
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-04T08:34:02Z"
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Lekhansh - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
CatBarks/GPT2ES_ClassWeighted100_tokenizer
CatBarks
"2024-02-16T13:22:34Z"
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-02-16T13:22:32Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ipipan/nlpre_spacy_nkjp_fasttext_nkjp-by-type
ipipan
"2023-10-03T22:39:03Z"
0
0
null
[ "region:us" ]
null
"2023-09-29T17:04:09Z"
# Model description - Morphosyntactic analyzer: Spacy - Tagset: NKJP - Embedding vectors: Fasttext - Dataset: NLPrePL-NKJP-fair-by-type (https://huggingface.co/datasets/ipipan/nlprepl) # How to use ## Clone ``` git clone [email protected]:ipipan/nlpre_spacy_nkjp_fasttext_nkjp-by-type ``` ## Load model ``` import spacy model_name = './nlpre_spacy_nkjp_fasttext_nkjp-by-type' model_upos = spacy.load(model_name + '/upos') model_xpos = spacy.load(model_name + '/xpos+lemma') ```
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t75_e20_member_shadow37
FounderOfHuggingface
"2023-12-06T11:45:30Z"
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
"2023-12-06T11:45:28Z"
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
huggingtweets/furkelpu
huggingtweets
"2023-04-14T02:56:13Z"
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-04-14T02:56:05Z"
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1641889688129622025/kIk_-vbd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Hau</div> <div style="text-align: center; font-size: 14px;">@furkelpu</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Hau. | Data | Hau | | --- | --- | | Tweets downloaded | 3189 | | Retweets | 641 | | Short tweets | 176 | | Tweets kept | 2372 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/hp3h3wad/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @furkelpu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/96k5ibgh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/96k5ibgh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/furkelpu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
globalyako/swallowv2-8b-ft-jp-r64_alpha64-sw_te_sy_randomshuffle_s1
globalyako
"2025-02-17T10:55:06Z"
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:tokyotech-llm/Llama-3.1-Swallow-8B-v0.2", "base_model:finetune:tokyotech-llm/Llama-3.1-Swallow-8B-v0.2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-02-17T10:54:34Z"
--- base_model: tokyotech-llm/Llama-3.1-Swallow-8B-v0.2 tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** globalyako - **License:** apache-2.0 - **Finetuned from model :** tokyotech-llm/Llama-3.1-Swallow-8B-v0.2 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sail-rvc/Liquid
sail-rvc
"2023-07-14T07:26:30Z"
2
0
transformers
[ "transformers", "rvc", "sail-rvc", "audio-to-audio", "endpoints_compatible", "region:us" ]
audio-to-audio
"2023-07-14T07:26:19Z"
--- pipeline_tag: audio-to-audio tags: - rvc - sail-rvc --- # Liquid ## RVC Model ![banner](https://i.imgur.com/xocCjhH.jpg) This model repo was automatically generated. Date: 2023-07-14 07:26:30 Bot Name: juuxnscrap Model Type: RVC Source: https://huggingface.co/juuxn/RVCModels/ Reason: Converting into loadable format for https://github.com/chavinlo/rvc-runpod
YakovElm/IntelDAOS20Classic_64
YakovElm
"2023-05-27T06:15:50Z"
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-05-27T06:15:16Z"
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: IntelDAOS20Classic_64 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # IntelDAOS20Classic_64 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1354 - Train Accuracy: 0.9610 - Validation Loss: 0.3272 - Validation Accuracy: 0.9099 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.2413 | 0.9400 | 0.3377 | 0.9099 | 0 | | 0.1555 | 0.9610 | 0.3160 | 0.9099 | 1 | | 0.1354 | 0.9610 | 0.3272 | 0.9099 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
gaebalsite/Korean-llama-3.1-8B
gaebalsite
"2024-11-20T18:05:43Z"
37
0
null
[ "safetensors", "gguf", "llama", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-11-20T16:29:11Z"
--- license: apache-2.0 ---
sai2002/cricket
sai2002
"2023-03-29T09:52:51Z"
0
0
null
[ "arxiv:1910.09700", "license:apache-2.0", "region:us" ]
null
"2023-03-29T09:46:48Z"
--- license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template https://www.espncricinfo.com/?ex_cid=google_cpc:display:pmax:ipl2023&gclid=Cj0KCQjww4-hBhCtARIsAC9gR3ZbaUgqfZbFr1p-UkRP0_pCjo0JUQBIg ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
anas-awadalla/bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-0
anas-awadalla
"2022-02-25T05:30:55Z"
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
"2022-03-02T23:29:05Z"
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
McCheng/Taxi-v3
McCheng
"2023-03-13T16:06:30Z"
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2023-03-13T16:06:20Z"
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="McCheng/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```