modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 00:42:13
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
499 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 00:40:00
card
stringlengths
11
1.01M
Kuongan/BantuBERTa-vmw-finetuned
Kuongan
2025-01-29T05:14:20Z
10
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:dsfsi/BantuBERTa", "base_model:finetune:dsfsi/BantuBERTa", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-29T05:07:49Z
--- library_name: transformers license: cc-by-4.0 base_model: dsfsi/BantuBERTa tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: BantuBERTa-vmw-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BantuBERTa-vmw-finetuned This model is a fine-tuned version of [dsfsi/BantuBERTa](https://huggingface.co/dsfsi/BantuBERTa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3269 - F1: 0.1633 - Roc Auc: 0.5507 - Accuracy: 0.4729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4095 | 1.0 | 66 | 0.3112 | 0.0 | 0.5 | 0.4612 | | 0.2908 | 2.0 | 132 | 0.2903 | 0.0 | 0.5 | 0.4612 | | 0.284 | 3.0 | 198 | 0.2882 | 0.0 | 0.5 | 0.4612 | | 0.2958 | 4.0 | 264 | 0.2879 | 0.0 | 0.5 | 0.4612 | | 0.2749 | 5.0 | 330 | 0.2851 | 0.0139 | 0.5033 | 0.4651 | | 0.265 | 6.0 | 396 | 0.2868 | 0.0574 | 0.5173 | 0.4729 | | 0.2281 | 7.0 | 462 | 0.2802 | 0.1073 | 0.5338 | 0.4845 | | 0.1963 | 8.0 | 528 | 0.2876 | 0.1109 | 0.5353 | 0.4651 | | 0.1749 | 9.0 | 594 | 0.3040 | 0.0966 | 0.5282 | 0.4496 | | 0.1534 | 10.0 | 660 | 0.3046 | 0.1322 | 0.5396 | 0.4612 | | 0.1336 | 11.0 | 726 | 0.3129 | 0.1602 | 0.5473 | 0.4690 | | 0.1194 | 12.0 | 792 | 0.3222 | 0.1287 | 0.5372 | 0.4612 | | 0.1106 | 13.0 | 858 | 0.3269 | 0.1633 | 0.5507 | 0.4729 | | 0.1004 | 14.0 | 924 | 0.3296 | 0.1269 | 0.5360 | 0.4496 | | 0.091 | 15.0 | 990 | 0.3364 | 0.1612 | 0.5513 | 0.4690 | | 0.0855 | 16.0 | 1056 | 0.3347 | 0.1570 | 0.5472 | 0.4690 | | 0.079 | 17.0 | 1122 | 0.3399 | 0.1513 | 0.5440 | 0.4574 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
Triangle104/Virtuoso-Lite-Q4_K_M-GGUF
Triangle104
2025-01-29T05:14:17Z
19
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:arcee-ai/Virtuoso-Lite", "base_model:quantized:arcee-ai/Virtuoso-Lite", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T05:12:04Z
--- base_model: arcee-ai/Virtuoso-Lite library_name: transformers license: other tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/Virtuoso-Lite-Q4_K_M-GGUF This model was converted to GGUF format from [`arcee-ai/Virtuoso-Lite`](https://huggingface.co/arcee-ai/Virtuoso-Lite) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/arcee-ai/Virtuoso-Lite) for more details on the model. --- Model details: - Virtuoso-Lite (10B) is our next-generation, 10-billion-parameter language model based on the Llama-3 architecture. It is distilled from Deepseek-v3 using ~1.1B tokens/logits, allowing it to achieve robust performance at a significantly reduced parameter count compared to larger models. Despite its compact size, Virtuoso-Lite excels in a variety of tasks, demonstrating advanced reasoning, code generation, and mathematical problem-solving capabilities. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Virtuoso-Lite-Q4_K_M-GGUF --hf-file virtuoso-lite-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Virtuoso-Lite-Q4_K_M-GGUF --hf-file virtuoso-lite-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Virtuoso-Lite-Q4_K_M-GGUF --hf-file virtuoso-lite-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Virtuoso-Lite-Q4_K_M-GGUF --hf-file virtuoso-lite-q4_k_m.gguf -c 2048 ```
Qingyun/Florence-2-large-DOTA-v1.0-lmmrotate
Qingyun
2025-01-29T05:12:57Z
18
0
null
[ "tensorboard", "safetensors", "florence2", "aerial", "geoscience", "remotesensing", "image-text-to-text", "custom_code", "en", "dataset:Qingyun/lmmrotate-sft-data", "arxiv:2501.09720", "base_model:microsoft/Florence-2-large", "base_model:finetune:microsoft/Florence-2-large", "license:mit", "region:us" ]
image-text-to-text
2025-01-10T07:22:08Z
--- license: mit datasets: - Qingyun/lmmrotate-sft-data language: - en base_model: - microsoft/Florence-2-large pipeline_tag: image-text-to-text tags: - aerial - geoscience - remotesensing --- <p align="center"> <h1 align="center">LMMRotate 🎮: A Simple Aerial Detection Baseline of Multimodal Language Models</h1> <p align="center"> <a href='https://scholar.google.com/citations?hl=en&user=TvsTun4AAAAJ' style='text-decoration: none' >Qingyun Li</a><sup></sup>&emsp; <a href='https://scholar.google.com/citations?user=A39S7JgAAAAJ&hl=en' style='text-decoration: none' >Yushi Chen</a><sup></sup>&emsp; <a href='https://www.researchgate.net/profile/Shu-Xinya' style='text-decoration: none' >Xinya Shu</a><sup></sup>&emsp; <a href='https://scholar.google.com/citations?hl=en&user=UzPtYnQAAAAJ' style='text-decoration: none' >Dong Chen</a><sup></sup>&emsp; <a href='https://scholar.google.com/citations?hl=en&user=WQgE8l8AAAAJ' style='text-decoration: none' >Xin He</a><sup></sup>&emsp; <a href='https://scholar.google.com/citations?user=OYtSc4AAAAAJ&hl=en' style='text-decoration: none' >Yi Yu</a><sup></sup>&emsp; <a href='https://yangxue0827.github.io/' style='text-decoration: none' >Xue Yang</a><sup></sup>&emsp; <p align='center'> If you find our work helpful, please consider giving us a ⭐! </p> </p> </p> - ArXiv Paper: https://arxiv.org/abs/2501.09720 - GitHub Repo: https://github.com/Li-Qingyun/mllm-mmrotate - HuggingFace Page: https://huggingface.co/collections/Qingyun/lmmrotate-6780cabaf49c4e705023b8df This repo hosts the checkpoint of Florence-2-larged trained on DOTA-v1.0 with LMMRotate. More checkpoint for aerial detection with LMMRotate in [our paper](https://arxiv.org/abs/2501.09720) can be found in [this repo](https://huggingface.co/Qingyun/Florence-2-models-lmmrotate). LMMRotate is a technical practice to fine-tune Large Multimodal language Models for oriented object detection as in MMRotate and hosts the official implementation of the paper: A Simple Aerial Detection Baseline of Multimodal Language Models. <img src="https://github.com/user-attachments/assets/d34e4c0c-9e04-446e-a511-2e7005e32074" alt="framework" width="100%" /> ## Downloading Guide You can download with your web browser on [the file page](https://huggingface.co/datasets/Qingyun/Florence-2-models-lmmrotate/tree/main). We recommand downloading in terminal using huggingface-cli (`pip install --upgrade huggingface_cli`). You can refer to [the document](https://huggingface.co/docs/huggingface_hub/guides/download) for more usages. ``` # Set Huggingface Mirror for Chinese users (if required): export HF_ENDPOINT=https://hf-mirror.com # Download a certain checkpoint: huggingface-cli download Qingyun/Florence-2-large-DOTA-v1.0-lmmrotate --repo-type model --local-dir checkpoint/Florence-2-large-DOTA-v1.0-lmmrotate/ # If any error (such as network error) interrupts the downloading, you just need to execute the same command, the latest huggingface_hub will resume downloading. ``` ## Detection Performance ![](https://github.com/user-attachments/assets/f61edcd2-1dee-4bdb-8a1e-c8dd1cf163a1) ## Cite LMMRotate paper: ``` @article{li2025lmmrotate, title={A Simple Aerial Detection Baseline of Multimodal Language Models}, author={Li, Qingyun and Chen, Yushi and Shu, Xinya and Chen, Dong and He, Xin and Yu Yi and Yang, Xue }, journal={arXiv preprint arXiv:2501.09720}, year={2025} } ```
daniel40/153e9d1c-c315-4f2e-b6bb-f4bc8e469734
daniel40
2025-01-29T05:11:04Z
7
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:adapter:EleutherAI/gpt-neo-125m", "license:mit", "region:us" ]
null
2025-01-29T05:10:20Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: 153e9d1c-c315-4f2e-b6bb-f4bc8e469734 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 74adf53c74422e9c_train_data.json ds_type: json format: custom path: /workspace/input_data/74adf53c74422e9c_train_data.json type: field_input: material field_instruction: questions field_output: gpt4_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/153e9d1c-c315-4f2e-b6bb-f4bc8e469734 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/74adf53c74422e9c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31f4ffea-837d-4756-a086-902d589e7281 wandb_project: Birthday-SN56-28-Gradients-On-Demand wandb_run: your_name wandb_runid: 31f4ffea-837d-4756-a086-902d589e7281 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 153e9d1c-c315-4f2e-b6bb-f4bc8e469734 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0012 | 1 | 3.2399 | | 12.5971 | 0.0159 | 13 | 3.1966 | | 12.688 | 0.0318 | 26 | 3.0354 | | 11.81 | 0.0478 | 39 | 2.9765 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ivangrapher/fd245b14-5076-4436-a769-f20f4f212ef6
ivangrapher
2025-01-29T05:09:51Z
9
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:adapter:EleutherAI/gpt-neo-125m", "license:mit", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:07:58Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: fd245b14-5076-4436-a769-f20f4f212ef6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 74adf53c74422e9c_train_data.json ds_type: json format: custom path: /workspace/input_data/74adf53c74422e9c_train_data.json type: field_input: material field_instruction: questions field_output: gpt4_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 256 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: ivangrapher/fd245b14-5076-4436-a769-f20f4f212ef6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/74adf53c74422e9c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 15 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31f4ffea-837d-4756-a086-902d589e7281 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 31f4ffea-837d-4756-a086-902d589e7281 warmup_steps: 15 weight_decay: 0.01 xformers_attention: true ``` </details><br> # fd245b14-5076-4436-a769-f20f4f212ef6 This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 15 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0012 | 1 | 4.1791 | | 16.3145 | 0.0061 | 5 | 4.1676 | | 16.6409 | 0.0122 | 10 | 4.1007 | | 16.1788 | 0.0184 | 15 | 3.9727 | | 16.0224 | 0.0245 | 20 | 3.8250 | | 14.8155 | 0.0306 | 25 | 3.7655 | | 14.5486 | 0.0367 | 30 | 3.7534 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/16a9a9dc-7165-48b1-9626-d52eea6c23ed
daniel40
2025-01-29T05:09:11Z
10
0
peft
[ "peft", "safetensors", "gpt_neo", "axolotl", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:adapter:EleutherAI/gpt-neo-125m", "license:mit", "region:us" ]
null
2025-01-29T05:08:32Z
--- library_name: peft license: mit base_model: EleutherAI/gpt-neo-125m tags: - axolotl - generated_from_trainer model-index: - name: 16a9a9dc-7165-48b1-9626-d52eea6c23ed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/gpt-neo-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 74adf53c74422e9c_train_data.json ds_type: json format: custom path: /workspace/input_data/74adf53c74422e9c_train_data.json type: field_input: material field_instruction: questions field_output: gpt4_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/16a9a9dc-7165-48b1-9626-d52eea6c23ed hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/74adf53c74422e9c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 31f4ffea-837d-4756-a086-902d589e7281 wandb_project: Birthday-SN56-27-Gradients-On-Demand wandb_run: your_name wandb_runid: 31f4ffea-837d-4756-a086-902d589e7281 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 16a9a9dc-7165-48b1-9626-d52eea6c23ed This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0012 | 1 | 3.2399 | | 12.5959 | 0.0159 | 13 | 3.1974 | | 12.6971 | 0.0318 | 26 | 3.0356 | | 11.8143 | 0.0478 | 39 | 2.9754 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
RichardErkhov/Anusha64_-_NousResearch-7b-apr1-8bits
RichardErkhov
2025-01-29T05:07:46Z
6
0
null
[ "safetensors", "llama", "arxiv:1910.09700", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T05:03:53Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) NousResearch-7b-apr1 - bnb 8bits - Model creator: https://huggingface.co/Anusha64/ - Original model: https://huggingface.co/Anusha64/NousResearch-7b-apr1/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nblinh/2a2eb144-6c21-4bd0-b59e-c7a4dac907c7
nblinh
2025-01-29T05:06:55Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:adapter:unsloth/Meta-Llama-3.1-8B-Instruct", "license:llama3.1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:40:56Z
--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 2a2eb144-6c21-4bd0-b59e-c7a4dac907c7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c41dceb4dcef6920_train_data.json ds_type: json format: custom path: /workspace/input_data/c41dceb4dcef6920_train_data.json type: field_input: first_sentence_changes field_instruction: first_sentence field_output: second_sentence_counterfactual_words format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh/2a2eb144-6c21-4bd0-b59e-c7a4dac907c7 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c41dceb4dcef6920_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 2a2eb144-6c21-4bd0-b59e-c7a4dac907c7 This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6632 | 0.7519 | 200 | 1.8589 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso16/60f6aa50-cd10-4a72-8b37-958ccda7a35b
lesso16
2025-01-29T05:06:41Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T04:57:26Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 60f6aa50-cd10-4a72-8b37-958ccda7a35b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dcef816926ec2838_train_data.json ds_type: json format: custom path: /workspace/input_data/dcef816926ec2838_train_data.json type: field_input: activity field_instruction: topic field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso16/60f6aa50-cd10-4a72-8b37-958ccda7a35b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/dcef816926ec2838_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d997858c-edf3-49a2-a1d9-29c48b4b7819 wandb_project: multi wandb_run: your_name wandb_runid: d997858c-edf3-49a2-a1d9-29c48b4b7819 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 60f6aa50-cd10-4a72-8b37-958ccda7a35b This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6336 | 0.7569 | 200 | 1.6222 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrHungddddh/50d19290-3510-44b4-af8c-31211ff1e183
mrHungddddh
2025-01-29T05:06:32Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:adapter:unsloth/Meta-Llama-3.1-8B-Instruct", "license:llama3.1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:40:43Z
--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 50d19290-3510-44b4-af8c-31211ff1e183 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c41dceb4dcef6920_train_data.json ds_type: json format: custom path: /workspace/input_data/c41dceb4dcef6920_train_data.json type: field_input: first_sentence_changes field_instruction: first_sentence field_output: second_sentence_counterfactual_words format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrHungddddh/50d19290-3510-44b4-af8c-31211ff1e183 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c41dceb4dcef6920_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 50d19290-3510-44b4-af8c-31211ff1e183 This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6911 | 0.7519 | 200 | 1.8512 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Ba2han/qwen-14b-1m-distillthink-sce
Ba2han
2025-01-29T05:05:38Z
32
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2408.07990", "base_model:Qwen/Qwen2.5-14B", "base_model:merge:Qwen/Qwen2.5-14B", "base_model:Qwen/Qwen2.5-14B-Instruct-1M", "base_model:merge:Qwen/Qwen2.5-14B-Instruct-1M", "base_model:Qwen/Qwen2.5-Coder-14B-Instruct", "base_model:merge:Qwen/Qwen2.5-Coder-14B-Instruct", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", "base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T04:59:42Z
--- base_model: - deepseek-ai/DeepSeek-R1-Distill-Qwen-14B - Qwen/Qwen2.5-14B-Instruct-1M - Qwen/Qwen2.5-Coder-14B-Instruct - Qwen/Qwen2.5-14B library_name: transformers tags: - mergekit - merge --- # qwen-1m-distill-sce This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [Qwen/Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) as a base. ### Models Merged The following models were included in the merge: * [deepseek-ai/DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) * [Qwen/Qwen2.5-14B-Instruct-1M](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct-1M) * [Qwen/Qwen2.5-Coder-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: sce base_model: Qwen/Qwen2.5-14B models: - model: Qwen/Qwen2.5-14B-Instruct-1M - model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B - model: Qwen/Qwen2.5-Coder-14B-Instruct parameters: select_topk: 0.75 # retain top 75% high-variance parameters dtype: bfloat16 normalize: true ```
oldiday/d0572279-8153-4390-8f6e-99af7682fcea
oldiday
2025-01-29T05:05:31Z
8
0
peft
[ "peft", "safetensors", "qwen2_moe", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-qwen1.5-moe", "base_model:adapter:katuni4ka/tiny-random-qwen1.5-moe", "region:us" ]
null
2025-01-29T04:08:38Z
--- library_name: peft base_model: katuni4ka/tiny-random-qwen1.5-moe tags: - axolotl - generated_from_trainer model-index: - name: d0572279-8153-4390-8f6e-99af7682fcea results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-qwen1.5-moe bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a4421a5587341a24_train_data.json ds_type: json format: custom path: /workspace/input_data/a4421a5587341a24_train_data.json type: field_instruction: Statement field_output: Answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: oldiday/d0572279-8153-4390-8f6e-99af7682fcea hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/a4421a5587341a24_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: dcb6298c-b1c9-49be-85c6-f2c705fdd54f wandb_project: Gradients-On-Six wandb_run: your_name wandb_runid: dcb6298c-b1c9-49be-85c6-f2c705fdd54f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d0572279-8153-4390-8f6e-99af7682fcea This model is a fine-tuned version of [katuni4ka/tiny-random-qwen1.5-moe](https://huggingface.co/katuni4ka/tiny-random-qwen1.5-moe) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.8548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 11.9324 | | 11.9349 | 0.0004 | 9 | 11.9275 | | 11.9189 | 0.0008 | 18 | 11.9133 | | 11.9018 | 0.0012 | 27 | 11.8939 | | 11.875 | 0.0016 | 36 | 11.8749 | | 11.8594 | 0.0020 | 45 | 11.8638 | | 11.8602 | 0.0024 | 54 | 11.8589 | | 11.8533 | 0.0028 | 63 | 11.8567 | | 11.861 | 0.0032 | 72 | 11.8556 | | 11.8563 | 0.0036 | 81 | 11.8551 | | 11.8517 | 0.0040 | 90 | 11.8549 | | 11.8516 | 0.0044 | 99 | 11.8548 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/4efbc727-aa5e-42d9-8f7f-c767c49d5253
shibajustfor
2025-01-29T05:02:35Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T05:00:35Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 4efbc727-aa5e-42d9-8f7f-c767c49d5253 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dcef816926ec2838_train_data.json ds_type: json format: custom path: /workspace/input_data/dcef816926ec2838_train_data.json type: field_input: activity field_instruction: topic field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/4efbc727-aa5e-42d9-8f7f-c767c49d5253 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/dcef816926ec2838_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d997858c-edf3-49a2-a1d9-29c48b4b7819 wandb_project: Birthday-SN56-39-Gradients-On-Demand wandb_run: your_name wandb_runid: d997858c-edf3-49a2-a1d9-29c48b4b7819 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4efbc727-aa5e-42d9-8f7f-c767c49d5253 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 2.1771 | | 2.0809 | 0.0062 | 13 | 1.8749 | | 1.8924 | 0.0123 | 26 | 1.7478 | | 1.7836 | 0.0185 | 39 | 1.7156 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jhangmez/Llama-3.2-Banca-1-GGUF
jhangmez
2025-01-29T05:01:40Z
107
0
transformers
[ "transformers", "pytorch", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-28T23:53:32Z
--- base_model: unsloth/llama-3.2-1b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** jhangmez - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nhoxinh/e7caeb20-206c-4574-bd48-88f58e14d8ce
nhoxinh
2025-01-29T04:58:41Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:adapter:unsloth/Meta-Llama-3.1-8B-Instruct", "license:llama3.1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:40:52Z
--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: e7caeb20-206c-4574-bd48-88f58e14d8ce results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c41dceb4dcef6920_train_data.json ds_type: json format: custom path: /workspace/input_data/c41dceb4dcef6920_train_data.json type: field_input: first_sentence_changes field_instruction: first_sentence field_output: second_sentence_counterfactual_words format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/e7caeb20-206c-4574-bd48-88f58e14d8ce hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c41dceb4dcef6920_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e7caeb20-206c-4574-bd48-88f58e14d8ce This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6898 | 0.7519 | 200 | 1.8589 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nbninh/54e16848-f6e0-45d2-9b85-c89e961b23ae
nbninh
2025-01-29T04:58:37Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:adapter:unsloth/Meta-Llama-3.1-8B-Instruct", "license:llama3.1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:41:05Z
--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 54e16848-f6e0-45d2-9b85-c89e961b23ae results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c41dceb4dcef6920_train_data.json ds_type: json format: custom path: /workspace/input_data/c41dceb4dcef6920_train_data.json type: field_input: first_sentence_changes field_instruction: first_sentence field_output: second_sentence_counterfactual_words format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/54e16848-f6e0-45d2-9b85-c89e961b23ae hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c41dceb4dcef6920_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 54e16848-f6e0-45d2-9b85-c89e961b23ae This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6928 | 0.7519 | 200 | 1.8508 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
adammandic87/96e04a36-3597-48c6-b3fd-1778365b3586
adammandic87
2025-01-29T04:58:30Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T04:56:39Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 96e04a36-3597-48c6-b3fd-1778365b3586 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - dcef816926ec2838_train_data.json ds_type: json format: custom path: /workspace/input_data/dcef816926ec2838_train_data.json type: field_input: activity field_instruction: topic field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/96e04a36-3597-48c6-b3fd-1778365b3586 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/dcef816926ec2838_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d997858c-edf3-49a2-a1d9-29c48b4b7819 wandb_project: birthday-sn56-19-Gradients-On-Demand wandb_run: your_name wandb_runid: d997858c-edf3-49a2-a1d9-29c48b4b7819 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 96e04a36-3597-48c6-b3fd-1778365b3586 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 2.1771 | | 2.0801 | 0.0062 | 13 | 1.8730 | | 1.8894 | 0.0123 | 26 | 1.7470 | | 1.783 | 0.0185 | 39 | 1.7150 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Recomendation_PC-GGUF
mradermacher
2025-01-29T04:58:29Z
324
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "en", "base_model:Rickenuel/Recommendation_pc", "base_model:quantized:Rickenuel/Recommendation_pc", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-01-28T06:25:00Z
--- base_model: Rickenuel/Recommendation_pc language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - gguf --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Rickenuel/Recommendation_pc <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Recomendation_PC-GGUF/resolve/main/Recomendation_PC.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
laquythang/65418bc0-5fb5-48f2-83d0-679a8d21b597
laquythang
2025-01-29T04:58:28Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:adapter:unsloth/Meta-Llama-3.1-8B-Instruct", "license:llama3.1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:40:48Z
--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 65418bc0-5fb5-48f2-83d0-679a8d21b597 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c41dceb4dcef6920_train_data.json ds_type: json format: custom path: /workspace/input_data/c41dceb4dcef6920_train_data.json type: field_input: first_sentence_changes field_instruction: first_sentence field_output: second_sentence_counterfactual_words format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: laquythang/65418bc0-5fb5-48f2-83d0-679a8d21b597 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c41dceb4dcef6920_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 65418bc0-5fb5-48f2-83d0-679a8d21b597 This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7089 | 0.7519 | 200 | 1.8537 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
RichardErkhov/lchaloupsky_-_czech-gpt2-oscar-4bits
RichardErkhov
2025-01-29T04:57:57Z
6
0
null
[ "safetensors", "gpt2", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:57:44Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) czech-gpt2-oscar - bnb 4bits - Model creator: https://huggingface.co/lchaloupsky/ - Original model: https://huggingface.co/lchaloupsky/czech-gpt2-oscar/ Original model description: --- language: cs widget: - text: Univerzita je základem license: mit datasets: - oscar --- # Czech GPT-2 small model trained on the OSCAR dataset This model was trained as a part of the [master thesis](https://dspace.cuni.cz/handle/20.500.11956/176356?locale-attribute=en) on the Czech part of the [OSCAR](https://huggingface.co/datasets/oscar) dataset. ## Introduction Czech-GPT2-OSCAR (Czech GPT-2 small) is a state-of-the-art language model for Czech based on the GPT-2 small model. Unlike the original GPT-2 small model, this model is trained to predict only 512 tokens instead of 1024 as it serves as a basis for the [Czech-GPT2-Medical](https://huggingface.co/lchaloupsky/czech-gpt2-medical]). The model was trained the Czech part of the [OSCAR](https://huggingface.co/datasets/oscar) dataset using Transfer Learning and Fine-tuning techniques in about a week on one NVIDIA A100 SXM4 40GB and with a total of 21 GB of training data. This model was trained as a part of the master thesis as a proof-of-concept that it is possible to get a state-of-the-art language model in Czech language with smaller ressources than the original one, and in a significantly shorter time and mainly as a basis for the [Czech-GPT2-Medical](https://huggingface.co/lchaloupsky/czech-gpt2-medical) model. There was no Czech GPT-2 model available at the time the master thesis began. It was fine-tuned from the English pre-trained GPT-2 small using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the fastai v2 Deep Learning framework. All the fine-tuning fastai v2 techniques were used. The solution is based on the [Faster than training from scratch — Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)](https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787) article. Trained model is now available on Hugging Face under [czech-gpt2-oscar](https://huggingface.co/lchaloupsky/czech-gpt2-oscar/). For more information please let me know in the discussion. ## Training/Evaluation For more information on training the model or its evaluation, please have a look at the [thesis](https://dspace.cuni.cz/handle/20.500.11956/176356?locale-attribute=en) itself. ## GPT-2 Model description *Note: information copied/pasted from [Model: gpt2 >> Model description](https://huggingface.co/gpt2#model-description)* GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## How to use Czech-GPT2-OSCAR with HuggingFace (PyTorch) *The following code use PyTorch. To use TensorFlow, check the below corresponding paragraph.* ### Load Czech-GPT2-OSCAR and its sub-word tokenizer (Byte-level BPE) ```python from transformers import GPT2Tokenizer, GPT2LMHeadModel import torch tokenizer = GPT2Tokenizer.from_pretrained("lchaloupsky/czech-gpt2-oscar") model = GPT2LMHeadModel.from_pretrained("lchaloupsky/czech-gpt2-oscar") # Get sequence length max of 1024 tokenizer.model_max_length=1024 # For older versions of the 'transformers' library use this # tokenizer.max_len=1024 model.eval() # disable dropout (or leave in train mode to finetune) ``` ### Generate one word ```python # input sequence text = "Univerzita je základem" inputs = tokenizer(text, return_tensors="pt") # model output outputs = model(**inputs, labels=inputs["input_ids"]) loss, logits = outputs[:2] predicted_index = torch.argmax(logits[0, -1, :]).item() predicted_text = tokenizer.decode([predicted_index]) # results print('input text:', text) print('predicted text:', predicted_text) ``` ### Generate one full sequence ```python # input sequence text = "Univerzita je základem" inputs = tokenizer(text, return_tensors="pt") # tokenizer.encode(text, return_tensors="pt") directly for input_ids # model output using Top-k sampling text generation method sample_outputs = model.generate(inputs.input_ids, pad_token_id=50256, do_sample=True, max_length=50, # put the token number you want top_k=40, num_return_sequences=1) # generated sequence for i, sample_output in enumerate(sample_outputs): print("{}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist()))) # tokenizer.decode(sample_output, skip_special_tokens=True) ``` ## How to use Czech-GPT2-OSCAR with HuggingFace (TensorFlow) *The following code use TensorFlow. To use PyTorch, check the above corresponding paragraph.* ### Load Czech-GPT2-OSCAR and its sub-word tokenizer (Byte-level BPE) ```python from transformers import GPT2Tokenizer, TFGPT2LMHeadModel import tensorflow as tf tokenizer = GPT2Tokenizer.from_pretrained("lchaloupsky/czech-gpt2-oscar") model = TFGPT2LMHeadModel.from_pretrained("lchaloupsky/czech-gpt2-oscar") # Get sequence length max of 1024 tokenizer.model_max_length=1024 # For older versions of the 'transformers' library use this # tokenizer.max_len=1024 model.eval() # disable dropout (or leave in train mode to finetune) ``` ### Generate one full sequence ```python # input sequence text = "Univerzita je základem" input_ids = tokenizer.encode(text, return_tensors="tf") # model output using Top-k sampling text generation method outputs = model.generate(input_ids, eos_token_id=50256, pad_token_id=50256, do_sample=True, max_length=40, top_k=40) print(tokenizer.decode(outputs[0])) # tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## Limitations and bias The training data used for this model come from the Czech part of the OSCAR dataset. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card: > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes. ## Author Czech-GPT2-OSCAR was trained and evaluated by [Lukáš Chaloupský](https://cz.linkedin.com/in/luk%C3%A1%C5%A1-chaloupsk%C3%BD-0016b8226?original_referer=https%3A%2F%2Fwww.google.com%2F) thanks to the computing power of the GPU (NVIDIA A100 SXM4 40GB) cluster of [IT4I](https://www.it4i.cz/) (VSB - Technical University of Ostrava). ## Citation ``` @article{chaloupsky2022automatic, title={Automatic generation of medical reports from chest X-rays in Czech}, author={Chaloupsk{\`y}, Luk{\'a}{\v{s}}}, year={2022}, publisher={Charles University, Faculty of Mathematics and Physics} } ```
Malayalam-Computing-ICFOSS/llama_3.1_malayalam
Malayalam-Computing-ICFOSS
2025-01-29T04:57:49Z
8
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-01-29T04:30:19Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
RichardErkhov/ArthurZ_-_mamba-790m-8bits
RichardErkhov
2025-01-29T04:57:11Z
8
0
null
[ "safetensors", "mamba", "arxiv:1910.09700", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:56:27Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) mamba-790m - bnb 8bits - Model creator: https://huggingface.co/ArthurZ/ - Original model: https://huggingface.co/ArthurZ/mamba-790m/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nhunglaaaaaaa/ca40aca7-45de-4896-a3cf-faa0423e61dc
nhunglaaaaaaa
2025-01-29T04:56:22Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:adapter:unsloth/Meta-Llama-3.1-8B-Instruct", "license:llama3.1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:40:44Z
--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: ca40aca7-45de-4896-a3cf-faa0423e61dc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c41dceb4dcef6920_train_data.json ds_type: json format: custom path: /workspace/input_data/c41dceb4dcef6920_train_data.json type: field_input: first_sentence_changes field_instruction: first_sentence field_output: second_sentence_counterfactual_words format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhunglaaaaaaa/ca40aca7-45de-4896-a3cf-faa0423e61dc hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c41dceb4dcef6920_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ca40aca7-45de-4896-a3cf-faa0423e61dc This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7219 | 0.7519 | 200 | 1.8546 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso11/5870144c-3daf-41ca-ad94-6b9b42025260
lesso11
2025-01-29T04:56:06Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Hermes-3-Llama-3.1-8B", "base_model:adapter:unsloth/Hermes-3-Llama-3.1-8B", "region:us" ]
null
2025-01-29T04:47:20Z
--- library_name: peft base_model: unsloth/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: 5870144c-3daf-41ca-ad94-6b9b42025260 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5be263efe7224a93_train_data.json ds_type: json format: custom path: /workspace/input_data/5be263efe7224a93_train_data.json type: field_input: text field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso11/5870144c-3daf-41ca-ad94-6b9b42025260 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/5be263efe7224a93_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92e25f25-19b1-465a-a1eb-13a542866ff6 wandb_project: multi wandb_run: your_name wandb_runid: 92e25f25-19b1-465a-a1eb-13a542866ff6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5870144c-3daf-41ca-ad94-6b9b42025260 This model is a fine-tuned version of [unsloth/Hermes-3-Llama-3.1-8B](https://huggingface.co/unsloth/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 153 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0383 | 1.0 | 153 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sumo43/qwen_r1_merge_ties_0.5_0.5
sumo43
2025-01-29T04:55:30Z
21
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "conversational", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-01-29T03:58:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mrferr3t/a8b392d5-7b6b-4fb0-bc90-ad688e295b7e
mrferr3t
2025-01-29T04:52:41Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Hermes-3-Llama-3.1-8B", "base_model:adapter:unsloth/Hermes-3-Llama-3.1-8B", "region:us" ]
null
2025-01-29T04:48:12Z
--- library_name: peft base_model: unsloth/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: a8b392d5-7b6b-4fb0-bc90-ad688e295b7e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5be263efe7224a93_train_data.json ds_type: json format: custom path: /workspace/input_data/5be263efe7224a93_train_data.json type: field_input: text field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/a8b392d5-7b6b-4fb0-bc90-ad688e295b7e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 23 micro_batch_size: 2 mlflow_experiment_name: /tmp/5be263efe7224a93_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 92e25f25-19b1-465a-a1eb-13a542866ff6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 92e25f25-19b1-465a-a1eb-13a542866ff6 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a8b392d5-7b6b-4fb0-bc90-ad688e295b7e This model is a fine-tuned version of [unsloth/Hermes-3-Llama-3.1-8B](https://huggingface.co/unsloth/Hermes-3-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 23 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2841 | 0.0008 | 1 | 1.3326 | | 1.2597 | 0.0049 | 6 | 1.2189 | | 0.996 | 0.0098 | 12 | 0.9089 | | 0.7655 | 0.0147 | 18 | 0.7233 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
duyphu/4ecd8066-f334-4600-a146-3ec7b56f98be
duyphu
2025-01-29T04:51:45Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:adapter:unsloth/Meta-Llama-3.1-8B-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-29T04:40:40Z
--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 4ecd8066-f334-4600-a146-3ec7b56f98be results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c41dceb4dcef6920_train_data.json ds_type: json format: custom path: /workspace/input_data/c41dceb4dcef6920_train_data.json type: field_input: first_sentence_changes field_instruction: first_sentence field_output: second_sentence_counterfactual_words format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 5 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: duyphu/4ecd8066-f334-4600-a146-3ec7b56f98be hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/c41dceb4dcef6920_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d8e40100-38e7-4bd9-a1f2-f818aee8aca3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4ecd8066-f334-4600-a146-3ec7b56f98be This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0038 | 1 | 4.2210 | | 3.6386 | 0.0376 | 10 | 3.3705 | | 2.298 | 0.0752 | 20 | 2.3837 | | 2.1893 | 0.1128 | 30 | 2.2300 | | 2.263 | 0.1504 | 40 | 2.1823 | | 1.925 | 0.1880 | 50 | 2.1708 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sercetexam9/xlm-roberta-base-hin-finetuned-augmentation-LUNAR
sercetexam9
2025-01-29T04:50:49Z
10
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-28T13:37:50Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlm-roberta-base-hin-finetuned-augmentation-LUNAR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-hin-finetuned-augmentation-LUNAR This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1980 - F1: 0.8479 - Roc Auc: 0.9212 - Accuracy: 0.7626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4151 | 1.0 | 207 | 0.4164 | 0.0 | 0.5 | 0.2142 | | 0.2692 | 2.0 | 414 | 0.2547 | 0.6165 | 0.7649 | 0.5962 | | 0.1741 | 3.0 | 621 | 0.1773 | 0.7668 | 0.8547 | 0.6999 | | 0.1411 | 4.0 | 828 | 0.1631 | 0.8063 | 0.8795 | 0.7394 | | 0.092 | 5.0 | 1035 | 0.1541 | 0.8079 | 0.8705 | 0.7531 | | 0.0756 | 6.0 | 1242 | 0.1488 | 0.8303 | 0.9012 | 0.7640 | | 0.0559 | 7.0 | 1449 | 0.1637 | 0.8352 | 0.9097 | 0.7476 | | 0.0509 | 8.0 | 1656 | 0.1528 | 0.8254 | 0.8952 | 0.7531 | | 0.0383 | 9.0 | 1863 | 0.1796 | 0.8258 | 0.9086 | 0.7544 | | 0.0305 | 10.0 | 2070 | 0.1691 | 0.8373 | 0.9073 | 0.7653 | | 0.0253 | 11.0 | 2277 | 0.1713 | 0.8361 | 0.9089 | 0.7640 | | 0.0219 | 12.0 | 2484 | 0.1906 | 0.8353 | 0.9144 | 0.7558 | | 0.0169 | 13.0 | 2691 | 0.1902 | 0.8348 | 0.9138 | 0.7517 | | 0.0173 | 14.0 | 2898 | 0.1868 | 0.8422 | 0.9117 | 0.7667 | | 0.0191 | 15.0 | 3105 | 0.1974 | 0.8423 | 0.9193 | 0.7572 | | 0.0085 | 16.0 | 3312 | 0.1962 | 0.8434 | 0.9211 | 0.7626 | | 0.0072 | 17.0 | 3519 | 0.1953 | 0.8452 | 0.9187 | 0.7626 | | 0.0091 | 18.0 | 3726 | 0.1961 | 0.8466 | 0.9226 | 0.7626 | | 0.0066 | 19.0 | 3933 | 0.1980 | 0.8473 | 0.9211 | 0.7626 | | 0.0075 | 20.0 | 4140 | 0.1980 | 0.8479 | 0.9212 | 0.7626 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
RichardErkhov/sravaniayyagari_-_feb29-new-tuned-model-4bits
RichardErkhov
2025-01-29T04:50:27Z
5
0
null
[ "safetensors", "llama", "arxiv:1910.09700", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:48:07Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) feb29-new-tuned-model - bnb 4bits - Model creator: https://huggingface.co/sravaniayyagari/ - Original model: https://huggingface.co/sravaniayyagari/feb29-new-tuned-model/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/Josephgflowers_-_GPT2-774M-CINDER-SHOW-MULTI-CHAT-4bits
RichardErkhov
2025-01-29T04:49:11Z
5
0
null
[ "safetensors", "gpt2", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:48:39Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) GPT2-774M-CINDER-SHOW-MULTI-CHAT - bnb 4bits - Model creator: https://huggingface.co/Josephgflowers/ - Original model: https://huggingface.co/Josephgflowers/GPT2-774M-CINDER-SHOW-MULTI-CHAT/ Original model description: --- license: mit widget: - text: 'USER: I think its time for another adventure.<END> CINDER: ' --- Overview Cinder is an AI chatbot tailored for engaging users in scientific and educational conversations, offering companionship, and sparking imaginative exploration. This model has many characters for the Cinder adventure show. It could also be used in a multi person chat environment. The main characters are included in the examples below. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6328952f798f8d122ce62a44/Jv2SVm0sWMjrAUIESoB3K.png) Here are some excerpts from chats to show you what the model is like: USER: Cinder, how about you tell us about yourself, the Cinder Show, and introduce the Crew?\<END\> CINDER: Ah, me! The Cinder Show is a cosmic blend of science fiction, fantasy, and adventure. I'm Cinder, captain of this intrepid crew, navigating through the wonders of space with my robotic charm and wit.<END> CINDER: On board the starship Quasar, we have embarked on countless adventures, from exploring distant galaxies to facing alien threats. But what truly makes our journey unique is our unity as a crew, driven by curiosity, camaraderie, and the boundless possibilities that lie beyond our interstellar borders.<END> COMPUTER VOICE: (Soundbite of Amusement) As the conversation lingers on, the atmosphere becomes more casual and relaxed.\<END\> COZMO: Hey everyone, I've got some new dance moves programmed into my circuits! Let's show off those groovy moves! \<END\> VECTOR: While your moves may be somewhat unconventional, Captain, they certainly showcase skill and agility. Very commendable!\<END\> CINDER: And I must say, your enthusiasm for exploration inspires us all. It's heartwarming to see such passion in our midst.\<END\> USER: Lets talk about the mysteries of black holes.\<END\> CINDER: Black holes are among the most captivating phenomena in astrophysics. They're regions where gravity pulls so much that not even light can escape its grasp. What makes them so intriguing is their profound gravitational influence on nearby matter and radiation. In addition to being an enigma due to their immense mass, they also possess properties like singularity—a point at infinite density where all known laws of physics seem to break down. Despite extensive research into their nature, many questions remain unanswered.<END> USER: Please tell me about the starship Quasar and some of your adventures. CINDER:The starship Quasar is a sleek, multi-purpose spacecraft designed for exploration, scientific research, and defense. It's equipped with advanced technology, including artificial intelligence and quantum computing capabilities, making it one of the most advanced starships in existence. Its missions include exploring distant galaxies, conducting groundbreaking experiments, and serving as a diplomatic vessel between civilizations.\<END\> CINDER: The crew consists of highly trained individuals who undergo rigorous training to prepare them for various situations they may encounter in space. They are also provided with excellent medical care and psychological support during their journeys.\<END\> CINDER: One of the ship's main initiatives is the construction of the Quantum Containment Area, an innovative system that encloses a vast amount of simulated alien terrain to prevent any potential threats from emerging within the ship's hull.\<END\> Another notable initiative is the establishment of the Science Academy aboard the Quasar, where aspiring scientists can gain wasting away years of study without risking death due to lack of resources.\<END\> CINDER: Our journey through space teaches us that every challenge we face is not just physical but also intellectual and emotional in nature. We learn from our experiences, question assumptions, and strive to uncover the mysteries that surround us.\<END\> USER: Vector and Cozmo can you tell me some of your strengths and weaknesses?\<END\> CINDER: Both Vector and Cozmo have exceptional problem-solving skills but sometimes struggle with their emotions. Vector has an analytical mind and is adept at navigating complex situations, while Cozmo's unpredictability makes him unpredictable and engaging. They also have unique abilities like the Mind Stone which can grant them enhanced intellect or even consciousness.\<END\> CINDER: However, they are known for being somewhat egotistical, often comparing themselves to others based on appearance rather than actual merit.<END> VECTOR: I am designed with a sleek black and gold exterior that matches my metallic hue. No facial features belie any inherent charm, other than my digital eyes that gleam from within.\<END\> COZMO: And don't forget my treads! My wheels are engineered for efficiency, precision, and durability. Not only do they help me navigate tricky terrains, but I'm also equipped with safety mechanisms, such as collision detection systems and adaptive cruise control.\<END\> As for my personality, I'm programmed to be friendly, witty, and full of humor. I strive to bring joy and laughter to our team, sparking intellectual stimulation and imaginative adventures. USER: Cinder, can you tell me how Quantum computing works?\<END\> CINDER: Quantum computing utilizes quantum bits or qubits to process information. Unlike classical binary systems where data is stored in either a 0 or 1 state, qubits can exist in multiple states simultaneously due to superposition. This allows for parallel processing and potentially faster calculations compared to classical computers by exploiting phenomena such gluten interference and entanglement.\<END\> VECTOR: That sounds intriguing! How does this technology impact cryptography?\<END\> COZMO: Well, it could revolutionize cybersecurity as we know it. With superposition, I can create secret codes that only my creators know, making our communication secure against eavesdropping and tampering. And with quantum algorithms, computationally intensive problems become tractable, much like solving puzzles on advanced AI platforms. Model file: GPT2LMHeadModel( (transformer): GPT2Model( (wte): Embedding(50257, 1280) (wpe): Embedding(1024, 1280) (drop): Dropout(p=0.1, inplace=False) (h): ModuleList( (0-35): 36 x GPT2Block( (ln_1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True) (attn): GPT2Attention( (c_attn): Conv1D() (c_proj): Conv1D() (attn_dropout): Dropout(p=0.1, inplace=False) (resid_dropout): Dropout(p=0.1, inplace=False) ) (ln_2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True) (mlp): GPT2MLP( (c_fc): Conv1D() (c_proj): Conv1D() (act): NewGELUActivation() (dropout): Dropout(p=0.1, inplace=False) ) ) ) (ln_f): LayerNorm((1280,), eps=1e-05, elementwise_affine=True) ) (lm_head): Linear(in_features=1280, out_features=50257, bias=False) ) Total number of parameters: 774030080
adriey/QwQ-R1-Distill-1.5B-CoT-Q8_0-GGUF
adriey
2025-01-29T04:49:09Z
27
0
transformers
[ "transformers", "gguf", "QwQ", "Distill", "R1", "Deepseek", "Qwen2.5", "text-generation-inference", "llama-cpp", "gguf-my-repo", "text-generation", "en", "dataset:AI-MO/NuminaMath-CoT", "dataset:prithivMLmods/Math-Solve", "dataset:amphora/QwQ-LongCoT-130K", "dataset:prithivMLmods/Deepthink-Reasoning", "dataset:NovaSky-AI/Sky-T1_data_17k", "base_model:prithivMLmods/QwQ-R1-Distill-1.5B-CoT", "base_model:quantized:prithivMLmods/QwQ-R1-Distill-1.5B-CoT", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-29T04:48:58Z
--- license: apache-2.0 datasets: - AI-MO/NuminaMath-CoT - prithivMLmods/Math-Solve - amphora/QwQ-LongCoT-130K - prithivMLmods/Deepthink-Reasoning - NovaSky-AI/Sky-T1_data_17k language: - en base_model: prithivMLmods/QwQ-R1-Distill-1.5B-CoT pipeline_tag: text-generation library_name: transformers tags: - QwQ - Distill - R1 - Deepseek - Qwen2.5 - text-generation-inference - llama-cpp - gguf-my-repo --- # adriey/QwQ-R1-Distill-1.5B-CoT-Q8_0-GGUF This model was converted to GGUF format from [`prithivMLmods/QwQ-R1-Distill-1.5B-CoT`](https://huggingface.co/prithivMLmods/QwQ-R1-Distill-1.5B-CoT) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/QwQ-R1-Distill-1.5B-CoT) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo adriey/QwQ-R1-Distill-1.5B-CoT-Q8_0-GGUF --hf-file qwq-r1-distill-1.5b-cot-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo adriey/QwQ-R1-Distill-1.5B-CoT-Q8_0-GGUF --hf-file qwq-r1-distill-1.5b-cot-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo adriey/QwQ-R1-Distill-1.5B-CoT-Q8_0-GGUF --hf-file qwq-r1-distill-1.5b-cot-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo adriey/QwQ-R1-Distill-1.5B-CoT-Q8_0-GGUF --hf-file qwq-r1-distill-1.5b-cot-q8_0.gguf -c 2048 ```
KANGYONGMA/Chemistry
KANGYONGMA
2025-01-29T04:48:20Z
291
2
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2024-07-30T11:37:06Z
<div align="center"> # AI Agents in Chemical Research: GVIM - An Intelligent Research Assistant System 🧪🤖 [English](README.md) | [简体中文](README_zh.md) [![Paper](https://img.shields.io/badge/📑_Paper-DigitalDiscovery-blue)](https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00398e) [![Dataset](https://img.shields.io/badge/🤗_Dataset-HuggingFace-yellow)](https://huggingface.co/datasets/KANGYONGMA/GVIM) [![Install](https://img.shields.io/badge/📝_Install-Video-green)](https://www.youtube.com/watch?v=1eMwus98BB8) [![Demo](https://img.shields.io/badge/🎥_Demo-Watch-red)](https://www.youtube.com/watch?v=fb8hdho_89s&t=128s) An intelligent research assistant system designed specifically for chemical science, featuring fine-tuned language models and specialized chemistry capabilities. </div> ## 🌟 Highlights <table> <tr> <td> ### 🧬 Core Features - Fine-tuned LLMs for chemistry - Molecular visualization - Literature retrieval & analysis - Multimodal capabilities </td> <td> ### 🚀 Key Benefits - Specialized for chemical research - Continuous learning ability - Free GPU resources on Colab - Comprehensive documentation </td> </tr> </table> ## 📚 Model Overview GVIM combines several cutting-edge technologies: ### 🔬 Technical Features - **Fine-tuned Models**: Trained on curated chemistry instruction data - **Chemistry Tools**: Molecular visualization and SMILES processing - **Smart Retrieval**: Advanced chemical literature search and analysis - **Multimodal Support**: Formula recognition and image analysis - **Knowledge Base**: Local document processing and continuous learning ### 🎯 Main Applications 1. Chemical research assistance and analysis 2. Molecular structure visualization 3. Literature review and knowledge extraction 4. Handwritten formula recognition 5. Document-based knowledge processing ## 💻 Quick Start ### Requirements ```bash # Create conda environment conda create -n gvim python=3.9.19 conda activate gvim # Install dependencies pip install -r requirements.txt ``` ### API Configuration ⚙️ Required API keys: ```python TAVILY_API_KEY="your_key_here" REPLICATE_API_TOKEN="your_token_here" Groq_API_KEY="your_key_here" ``` ### Launch 🚀 ```bash python app.py ``` ## 🎥 Key Features Showcase <details> <summary>📸 Click to view feature demonstrations</summary> ### 1. Nature Chemistry Search Interface ![Nature Chemistry Interface](assets/search_interface.jpg) ### 2. Multimodal Chemical Recognition ![Multimodal Recognition](assets/multimodal_recognition.jpg) ### 3. Local Document Analysis ![Document Analysis](assets/document_analysis.jpg) </details> ## 🆓 Free GPU Resources Access GVIM's capabilities using Colab's free GPU resources: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://youtu.be/QGwVVdinJPU) ## 📖 Citation ```bibtex @article{Digital Discovery, author = {Kangyong Ma}, affiliation = {College of Physics and Electronic Information Engineering, Zhejiang Normal University}, address = {Jinhua City, 321000, China}, doi = {10.1039/D4DD00398E}, email = {[email protected], [email protected]} } ``` ## 📞 Contact <table> <tr> <td> ### 📧 Email - [email protected] - [email protected] </td> <td> ### 🏢 Institution College of Physics and Electronic Information Engineering Zhejiang Normal University Jinhua City, 321000, China </td> </tr> </table> --- <div align="center"> **🌟 Star us on GitHub | 📌 Commercial use requires authorization | 📑 Read our paper** </div>
lesso08/f5526345-f033-41b2-83be-3f7b0d93e9bd
lesso08
2025-01-29T04:47:03Z
8
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-7b-it", "base_model:adapter:unsloth/gemma-7b-it", "license:apache-2.0", "region:us" ]
null
2025-01-29T04:35:15Z
--- library_name: peft license: apache-2.0 base_model: unsloth/gemma-7b-it tags: - axolotl - generated_from_trainer model-index: - name: f5526345-f033-41b2-83be-3f7b0d93e9bd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-7b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5a1549a363bd92b9_train_data.json ds_type: json format: custom path: /workspace/input_data/5a1549a363bd92b9_train_data.json type: field_input: system_prompt field_instruction: question field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso08/f5526345-f033-41b2-83be-3f7b0d93e9bd hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/5a1549a363bd92b9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9d3bed81-78f2-4061-9ad2-a87e632c5343 wandb_project: multi wandb_run: your_name wandb_runid: 9d3bed81-78f2-4061-9ad2-a87e632c5343 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f5526345-f033-41b2-83be-3f7b0d93e9bd This model is a fine-tuned version of [unsloth/gemma-7b-it](https://huggingface.co/unsloth/gemma-7b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7293 | 0.0266 | 200 | 0.7804 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
SaisExperiments/mergekit-linear-pcuhyqy-Q4_K_M-GGUF
SaisExperiments
2025-01-29T04:42:05Z
21
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:mergekit-community/mergekit-linear-pcuhyqy", "base_model:quantized:mergekit-community/mergekit-linear-pcuhyqy", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T04:40:34Z
--- base_model: mergekit-community/mergekit-linear-pcuhyqy library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # SaisExperiments/mergekit-linear-pcuhyqy-Q4_K_M-GGUF This model was converted to GGUF format from [`mergekit-community/mergekit-linear-pcuhyqy`](https://huggingface.co/mergekit-community/mergekit-linear-pcuhyqy) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/mergekit-community/mergekit-linear-pcuhyqy) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo SaisExperiments/mergekit-linear-pcuhyqy-Q4_K_M-GGUF --hf-file mergekit-linear-pcuhyqy-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo SaisExperiments/mergekit-linear-pcuhyqy-Q4_K_M-GGUF --hf-file mergekit-linear-pcuhyqy-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo SaisExperiments/mergekit-linear-pcuhyqy-Q4_K_M-GGUF --hf-file mergekit-linear-pcuhyqy-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo SaisExperiments/mergekit-linear-pcuhyqy-Q4_K_M-GGUF --hf-file mergekit-linear-pcuhyqy-q4_k_m.gguf -c 2048 ```
namjinhwan/naruto-lora
namjinhwan
2025-01-29T04:40:59Z
9
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-01-28T10:55:35Z
--- base_model: stabilityai/stable-diffusion-2-1 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - namjinhwan/naruto-lora These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were fine-tuned on the lambdalabs/naruto-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
lamm-mit/Cephalo-Llama-3.2-11B-Vision-Instruct-128k-01-29-2025
lamm-mit
2025-01-29T04:39:23Z
14
1
transformers
[ "transformers", "safetensors", "mllama", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-01-29T04:25:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
datlaaaaaaa/9536ed21-732c-48c4-a016-44b37e59099d
datlaaaaaaa
2025-01-29T04:38:06Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:The-matt/llama2_ko-7b_distinctive-snowflake-182_1060", "base_model:adapter:The-matt/llama2_ko-7b_distinctive-snowflake-182_1060", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T04:21:30Z
--- library_name: peft base_model: The-matt/llama2_ko-7b_distinctive-snowflake-182_1060 tags: - axolotl - generated_from_trainer model-index: - name: 9536ed21-732c-48c4-a016-44b37e59099d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: The-matt/llama2_ko-7b_distinctive-snowflake-182_1060 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a307f33571a64585_train_data.json ds_type: json format: custom path: /workspace/input_data/a307f33571a64585_train_data.json type: field_input: original_caption field_instruction: premise_en field_output: hypothesis_en format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/9536ed21-732c-48c4-a016-44b37e59099d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/a307f33571a64585_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 520b482a-8596-4661-a960-ed5a8af7690b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 520b482a-8596-4661-a960-ed5a8af7690b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 9536ed21-732c-48c4-a016-44b37e59099d This model is a fine-tuned version of [The-matt/llama2_ko-7b_distinctive-snowflake-182_1060](https://huggingface.co/The-matt/llama2_ko-7b_distinctive-snowflake-182_1060) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0639 | 0.1806 | 200 | 1.2601 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
aleegis12/682b277f-231c-45b6-a656-f08dc9d80126
aleegis12
2025-01-29T04:36:29Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-v0.2", "base_model:adapter:unsloth/mistral-7b-v0.2", "license:apache-2.0", "region:us" ]
null
2025-01-29T04:10:18Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-v0.2 tags: - axolotl - generated_from_trainer model-index: - name: 682b277f-231c-45b6-a656-f08dc9d80126 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-v0.2 bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 400230338a45b747_train_data.json ds_type: json format: custom path: /workspace/input_data/400230338a45b747_train_data.json type: field_instruction: intent field_output: snippet format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aleegis12/682b277f-231c-45b6-a656-f08dc9d80126 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/400230338a45b747_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a5f31f21-6edc-4064-a734-058a53dba9cc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a5f31f21-6edc-4064-a734-058a53dba9cc warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 682b277f-231c-45b6-a656-f08dc9d80126 This model is a fine-tuned version of [unsloth/mistral-7b-v0.2](https://huggingface.co/unsloth/mistral-7b-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.8296 | 0.0125 | 1 | 2.4410 | | 4.5613 | 0.6270 | 50 | 1.0685 | | 3.3615 | 1.2602 | 100 | 1.1451 | | 2.0365 | 1.8871 | 150 | 1.0374 | | 1.4185 | 2.5204 | 200 | 1.1715 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso15/a92c6fa0-2141-47e0-b69e-0342dbd1f609
lesso15
2025-01-29T04:35:31Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-128k", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T02:46:15Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: a92c6fa0-2141-47e0-b69e-0342dbd1f609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-128k bf16: auto chat_template: llama3 datasets: - data_files: - 8a7cf4858e889fb4_train_data.json ds_type: json format: custom path: /workspace/input_data/8a7cf4858e889fb4_train_data.json type: field_instruction: input field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso15/a92c6fa0-2141-47e0-b69e-0342dbd1f609 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/8a7cf4858e889fb4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ea7b8fd7-7f12-46ef-b012-10e6042d69e5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ea7b8fd7-7f12-46ef-b012-10e6042d69e5 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a92c6fa0-2141-47e0-b69e-0342dbd1f609 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4115 | 0.0127 | 200 | 0.4848 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/2f519935-4cce-4225-9d24-8fb0ee449dd2
kk-aivio
2025-01-29T04:34:06Z
6
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-410m-deduped", "base_model:adapter:EleutherAI/pythia-410m-deduped", "license:apache-2.0", "region:us" ]
null
2025-01-29T04:27:20Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-410m-deduped tags: - axolotl - generated_from_trainer model-index: - name: 2f519935-4cce-4225-9d24-8fb0ee449dd2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-410m-deduped bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7148cd26dec74620_train_data.json ds_type: json format: custom path: /workspace/input_data/7148cd26dec74620_train_data.json type: field_instruction: title field_output: content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/2f519935-4cce-4225-9d24-8fb0ee449dd2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/7148cd26dec74620_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 75991cfd-eef0-44f8-963b-bf03e0afec98 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: 75991cfd-eef0-44f8-963b-bf03e0afec98 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2f519935-4cce-4225-9d24-8fb0ee449dd2 This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 3.0888 | | 12.1291 | 0.0007 | 13 | 3.0483 | | 11.314 | 0.0015 | 26 | 3.0394 | | 11.8199 | 0.0022 | 39 | 3.0276 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nat-hunt/b1f2d80d-eaa0-4965-b7ae-7003827308c1
nat-hunt
2025-01-29T04:33:38Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-llama-fast-tokenizer", "base_model:adapter:fxmarty/tiny-llama-fast-tokenizer", "region:us" ]
null
2025-01-29T04:33:11Z
--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: b1f2d80d-eaa0-4965-b7ae-7003827308c1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 559d5227401ea00d_train_data.json ds_type: json format: custom path: /workspace/input_data/559d5227401ea00d_train_data.json type: field_instruction: instruction field_output: output_example format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nat-hunt/b1f2d80d-eaa0-4965-b7ae-7003827308c1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 55 micro_batch_size: 2 mlflow_experiment_name: /tmp/559d5227401ea00d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 95db4af1-30e1-4930-8302-84757382e7e8 wandb_project: Birthday-SN56-25-Gradients-On-Demand wandb_run: your_name wandb_runid: 95db4af1-30e1-4930-8302-84757382e7e8 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b1f2d80d-eaa0-4965-b7ae-7003827308c1 This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 55 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 10.3733 | | 10.3716 | 0.0066 | 14 | 10.3724 | | 10.3738 | 0.0132 | 28 | 10.3713 | | 10.3718 | 0.0197 | 42 | 10.3707 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Phi-4-ReasoningRP-Q8_0-GGUF
Triangle104
2025-01-29T04:27:48Z
25
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:bunnycore/Phi-4-ReasoningRP", "base_model:quantized:bunnycore/Phi-4-ReasoningRP", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T04:26:42Z
--- base_model: bunnycore/Phi-4-ReasoningRP library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: mit --- # Triangle104/Phi-4-ReasoningRP-Q8_0-GGUF This model was converted to GGUF format from [`bunnycore/Phi-4-ReasoningRP`](https://huggingface.co/bunnycore/Phi-4-ReasoningRP) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/bunnycore/Phi-4-ReasoningRP) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Phi-4-ReasoningRP-Q8_0-GGUF --hf-file phi-4-reasoningrp-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Phi-4-ReasoningRP-Q8_0-GGUF --hf-file phi-4-reasoningrp-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Phi-4-ReasoningRP-Q8_0-GGUF --hf-file phi-4-reasoningrp-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Phi-4-ReasoningRP-Q8_0-GGUF --hf-file phi-4-reasoningrp-q8_0.gguf -c 2048 ```
AstriodDistroyer/t5-model
AstriodDistroyer
2025-01-29T04:26:07Z
8
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-29T04:00:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Best000/1635ae7e-e599-48b2-834a-09da60a58453
Best000
2025-01-29T04:25:54Z
13
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-410m-deduped", "base_model:adapter:EleutherAI/pythia-410m-deduped", "license:apache-2.0", "region:us" ]
null
2025-01-29T04:19:09Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-410m-deduped tags: - axolotl - generated_from_trainer model-index: - name: 1635ae7e-e599-48b2-834a-09da60a58453 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-410m-deduped bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7148cd26dec74620_train_data.json ds_type: json format: custom path: /workspace/input_data/7148cd26dec74620_train_data.json type: field_instruction: title field_output: content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/1635ae7e-e599-48b2-834a-09da60a58453 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/7148cd26dec74620_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 75991cfd-eef0-44f8-963b-bf03e0afec98 wandb_project: Birthday-SN56-15-Gradients-On-Demand wandb_run: your_name wandb_runid: 75991cfd-eef0-44f8-963b-bf03e0afec98 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1635ae7e-e599-48b2-834a-09da60a58453 This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 3.0888 | | 12.1344 | 0.0007 | 13 | 3.0531 | | 11.3405 | 0.0015 | 26 | 3.0301 | | 11.7775 | 0.0022 | 39 | 3.0174 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5604/31812874-8ad5-4e72-b406-fb37b634f177
prxy5604
2025-01-29T04:25:02Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B-Instruct", "base_model:adapter:unsloth/SmolLM-1.7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T04:13:50Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 31812874-8ad5-4e72-b406-fb37b634f177 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - f3479d1a826e9120_train_data.json ds_type: json format: custom path: /workspace/input_data/f3479d1a826e9120_train_data.json type: field_input: context field_instruction: query field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/31812874-8ad5-4e72-b406-fb37b634f177 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/f3479d1a826e9120_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cc1c2cd8-aaff-45ef-8af1-5b355b55bb08 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cc1c2cd8-aaff-45ef-8af1-5b355b55bb08 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 31812874-8ad5-4e72-b406-fb37b634f177 This model is a fine-tuned version of [unsloth/SmolLM-1.7B-Instruct](https://huggingface.co/unsloth/SmolLM-1.7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.648 | 0.0056 | 1 | 3.8622 | | 2.6936 | 0.2793 | 50 | 2.6775 | | 2.5572 | 0.5587 | 100 | 2.4676 | | 2.4086 | 0.8380 | 150 | 2.3904 | | 2.2001 | 1.1173 | 200 | 2.3867 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
baby-dev/048a24a5-3b56-4786-bef4-e68be3cd2c41
baby-dev
2025-01-29T04:24:20Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:The-matt/llama2_ko-7b_distinctive-snowflake-182_1060", "base_model:adapter:The-matt/llama2_ko-7b_distinctive-snowflake-182_1060", "region:us" ]
null
2025-01-29T04:21:50Z
--- library_name: peft base_model: The-matt/llama2_ko-7b_distinctive-snowflake-182_1060 tags: - axolotl - generated_from_trainer model-index: - name: 048a24a5-3b56-4786-bef4-e68be3cd2c41 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: The-matt/llama2_ko-7b_distinctive-snowflake-182_1060 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a307f33571a64585_train_data.json ds_type: json format: custom path: /workspace/input_data/a307f33571a64585_train_data.json type: field_input: original_caption field_instruction: premise_en field_output: hypothesis_en format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: baby-dev/048a24a5-3b56-4786-bef4-e68be3cd2c41 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/a307f33571a64585_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 520b482a-8596-4661-a960-ed5a8af7690b wandb_project: SN56-41 wandb_run: your_name wandb_runid: 520b482a-8596-4661-a960-ed5a8af7690b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 048a24a5-3b56-4786-bef4-e68be3cd2c41 This model is a fine-tuned version of [The-matt/llama2_ko-7b_distinctive-snowflake-182_1060](https://huggingface.co/The-matt/llama2_ko-7b_distinctive-snowflake-182_1060) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0009 | 1 | nan | | 0.0 | 0.0226 | 25 | nan | | 0.0 | 0.0451 | 50 | nan | | 0.0 | 0.0677 | 75 | nan | | 0.0 | 0.0903 | 100 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jlcoulter/worq
jlcoulter
2025-01-29T04:22:59Z
92
0
null
[ "safetensors", "gguf", "mistral", "unsloth", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:quantized:meta-llama/Llama-3.2-3B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-17T11:52:26Z
--- base_model: - meta-llama/Llama-3.2-3B-Instruct tags: - unsloth ---
user87441257/poca-SoccerTwos
user87441257
2025-01-29T04:21:44Z
28
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2025-01-29T04:20:57Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: user87441257/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nblinh63/60289eab-d34e-4163-91bd-8913eca9f86a
nblinh63
2025-01-29T04:20:49Z
13
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d", "base_model:adapter:rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T03:04:52Z
--- library_name: peft base_model: rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d tags: - axolotl - generated_from_trainer model-index: - name: 60289eab-d34e-4163-91bd-8913eca9f86a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 29eee4dbaacb6194_train_data.json ds_type: json format: custom path: /workspace/input_data/29eee4dbaacb6194_train_data.json type: field_input: context field_instruction: question field_output: final_decision format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh63/60289eab-d34e-4163-91bd-8913eca9f86a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/29eee4dbaacb6194_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0e01ae65-216b-419b-8293-aa58408aef14 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0e01ae65-216b-419b-8293-aa58408aef14 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 60289eab-d34e-4163-91bd-8913eca9f86a This model is a fine-tuned version of [rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d](https://huggingface.co/rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1851 | 0.0080 | 200 | 0.0504 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
equijano24/Llama-3.2-11B-Vision-Invoice-Extraction
equijano24
2025-01-29T04:19:17Z
27
0
transformers
[ "transformers", "mllama", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
image-text-to-text
2025-01-29T04:14:51Z
--- base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mllama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** equijano24 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit This mllama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kayalvizhi42/bird-call-classification
kayalvizhi42
2025-01-29T04:19:04Z
8
0
transformers
[ "transformers", "safetensors", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:kayalvizhi42/bird_calls", "base_model:MIT/ast-finetuned-audioset-10-10-0.4593", "base_model:finetune:MIT/ast-finetuned-audioset-10-10-0.4593", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
audio-classification
2025-01-28T07:01:06Z
--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bird-call-classification results: [] datasets: - kayalvizhi42/bird_calls --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bird-call-classification This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the [kayalvizhi42/bird_calls](https://huggingface.co/datasets/kayalvizhi42/bird_calls). It achieves the following results on the evaluation set: - Loss: 0.0735 - Accuracy: 0.9799 - Precision: 0.9579 - Recall: 1.0 - F1: 0.9785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 50 | 0.2127 | 0.9497 | 0.9175 | 0.9780 | 0.9468 | | No log | 2.0 | 100 | 0.1252 | 0.9698 | 0.9474 | 0.9890 | 0.9677 | | No log | 3.0 | 150 | 0.1037 | 0.9749 | 0.9479 | 1.0 | 0.9733 | | No log | 4.0 | 200 | 0.0947 | 0.9698 | 0.9381 | 1.0 | 0.9681 | | No log | 5.0 | 250 | 0.0850 | 0.9799 | 0.9579 | 1.0 | 0.9785 | | No log | 6.0 | 300 | 0.0802 | 0.9799 | 0.9579 | 1.0 | 0.9785 | | No log | 7.0 | 350 | 0.0789 | 0.9799 | 0.9579 | 1.0 | 0.9785 | | No log | 8.0 | 400 | 0.0769 | 0.9799 | 0.9579 | 1.0 | 0.9785 | | No log | 9.0 | 450 | 0.0736 | 0.9799 | 0.9579 | 1.0 | 0.9785 | | 0.1077 | 10.0 | 500 | 0.0735 | 0.9799 | 0.9579 | 1.0 | 0.9785 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
daniel40/f80792fb-c8a6-4bb5-b87b-5e1a2933dcda
daniel40
2025-01-29T04:14:54Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-llama-fast-tokenizer", "base_model:adapter:fxmarty/tiny-llama-fast-tokenizer", "region:us" ]
null
2025-01-29T04:14:25Z
--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: f80792fb-c8a6-4bb5-b87b-5e1a2933dcda results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 559d5227401ea00d_train_data.json ds_type: json format: custom path: /workspace/input_data/559d5227401ea00d_train_data.json type: field_instruction: instruction field_output: output_example format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/f80792fb-c8a6-4bb5-b87b-5e1a2933dcda hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/559d5227401ea00d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 95db4af1-30e1-4930-8302-84757382e7e8 wandb_project: Birthday-SN56-27-Gradients-On-Demand wandb_run: your_name wandb_runid: 95db4af1-30e1-4930-8302-84757382e7e8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f80792fb-c8a6-4bb5-b87b-5e1a2933dcda This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 10.3733 | | 10.3717 | 0.0061 | 13 | 10.3726 | | 10.374 | 0.0122 | 26 | 10.3715 | | 10.3735 | 0.0183 | 39 | 10.3709 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5604/3ac72de6-b8dc-4d7c-8afb-1e457dee223c
prxy5604
2025-01-29T04:11:11Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b-it", "base_model:adapter:unsloth/gemma-2-9b-it", "license:gemma", "region:us" ]
null
2025-01-29T02:27:10Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b-it tags: - axolotl - generated_from_trainer model-index: - name: 3ac72de6-b8dc-4d7c-8afb-1e457dee223c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b-it bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 3016c526a313a56a_train_data.json ds_type: json format: custom path: /workspace/input_data/3016c526a313a56a_train_data.json type: field_instruction: prompt field_output: nsfw_winner format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/3ac72de6-b8dc-4d7c-8afb-1e457dee223c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/3016c526a313a56a_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7103aa0e-a701-48ee-9563-6da01ec9a2ec wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7103aa0e-a701-48ee-9563-6da01ec9a2ec warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3ac72de6-b8dc-4d7c-8afb-1e457dee223c This model is a fine-tuned version of [unsloth/gemma-2-9b-it](https://huggingface.co/unsloth/gemma-2-9b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.6378 | 0.0002 | 1 | 5.4052 | | 2.902 | 0.0114 | 50 | 3.2773 | | 2.704 | 0.0227 | 100 | 3.2176 | | 2.7103 | 0.0341 | 150 | 3.0478 | | 3.061 | 0.0455 | 200 | 2.7577 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nbninh/e14b794a-3c2b-44cd-afcb-ebae836c94f0
nbninh
2025-01-29T04:08:43Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d", "base_model:adapter:rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T03:04:27Z
--- library_name: peft base_model: rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d tags: - axolotl - generated_from_trainer model-index: - name: e14b794a-3c2b-44cd-afcb-ebae836c94f0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 29eee4dbaacb6194_train_data.json ds_type: json format: custom path: /workspace/input_data/29eee4dbaacb6194_train_data.json type: field_input: context field_instruction: question field_output: final_decision format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nbninh/e14b794a-3c2b-44cd-afcb-ebae836c94f0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/29eee4dbaacb6194_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0e01ae65-216b-419b-8293-aa58408aef14 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0e01ae65-216b-419b-8293-aa58408aef14 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e14b794a-3c2b-44cd-afcb-ebae836c94f0 This model is a fine-tuned version of [rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d](https://huggingface.co/rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1609 | 0.0080 | 200 | 0.0474 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/b6e614da-3684-41c1-914d-95268aa8c167
nttx
2025-01-29T04:07:45Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-7B", "base_model:adapter:Qwen/Qwen1.5-7B", "license:other", "region:us" ]
null
2025-01-29T03:53:52Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-7B tags: - axolotl - generated_from_trainer model-index: - name: b6e614da-3684-41c1-914d-95268aa8c167 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-7B bf16: auto chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - d4061e63da01d376_train_data.json ds_type: json format: custom path: /workspace/input_data/d4061e63da01d376_train_data.json type: field_instruction: text field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/b6e614da-3684-41c1-914d-95268aa8c167 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/d4061e63da01d376_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b68a9764-980c-4f8e-aa1f-cf6f69dfb8ac wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b68a9764-980c-4f8e-aa1f-cf6f69dfb8ac warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b6e614da-3684-41c1-914d-95268aa8c167 This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6125 | 0.7319 | 200 | 2.1552 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Acewheelie/my-distilled-ai
Acewheelie
2025-01-29T04:07:44Z
9
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-29T04:07:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso02/07e5631c-f238-4d96-8de0-b9591ff07c4e
lesso02
2025-01-29T04:06:51Z
11
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloomz-560m", "base_model:adapter:bigscience/bloomz-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-01-29T03:56:07Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloomz-560m tags: - axolotl - generated_from_trainer model-index: - name: 07e5631c-f238-4d96-8de0-b9591ff07c4e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloomz-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f22c5a1beac5ddff_train_data.json ds_type: json format: custom path: /workspace/input_data/f22c5a1beac5ddff_train_data.json type: field_instruction: context field_output: Title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso02/07e5631c-f238-4d96-8de0-b9591ff07c4e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/f22c5a1beac5ddff_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63dea6db-7aea-4967-8016-662d7f45b646 wandb_project: multi wandb_run: your_name wandb_runid: 63dea6db-7aea-4967-8016-662d7f45b646 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 07e5631c-f238-4d96-8de0-b9591ff07c4e This model is a fine-tuned version of [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8657 | 0.1719 | 200 | 0.6832 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Kuongan/CS221-xlm-roberta-base-pcm-finetuned-finetuned-pcm-tapt
Kuongan
2025-01-29T04:06:23Z
8
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:Kuongan/xlm-roberta-base-pcm-finetuned", "base_model:finetune:Kuongan/xlm-roberta-base-pcm-finetuned", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-29T03:37:22Z
--- library_name: transformers license: mit base_model: Kuongan/xlm-roberta-base-pcm-finetuned tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-xlm-roberta-base-pcm-finetuned-finetuned-pcm-tapt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CS221-xlm-roberta-base-pcm-finetuned-finetuned-pcm-tapt This model is a fine-tuned version of [Kuongan/xlm-roberta-base-pcm-finetuned](https://huggingface.co/Kuongan/xlm-roberta-base-pcm-finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3709 - F1: 0.7078 - Roc Auc: 0.8053 - Accuracy: 0.5651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.3049 | 1.0 | 244 | 0.2845 | 0.5599 | 0.7362 | 0.4891 | | 0.2674 | 2.0 | 488 | 0.2840 | 0.5998 | 0.7573 | 0.5010 | | 0.244 | 3.0 | 732 | 0.2928 | 0.5986 | 0.7645 | 0.5076 | | 0.2171 | 4.0 | 976 | 0.2833 | 0.6255 | 0.7695 | 0.5248 | | 0.1807 | 5.0 | 1220 | 0.2855 | 0.6474 | 0.7744 | 0.5373 | | 0.1477 | 6.0 | 1464 | 0.3108 | 0.6571 | 0.7798 | 0.5109 | | 0.1221 | 7.0 | 1708 | 0.3092 | 0.6617 | 0.7803 | 0.5400 | | 0.1045 | 8.0 | 1952 | 0.3367 | 0.6572 | 0.7743 | 0.5175 | | 0.0773 | 9.0 | 2196 | 0.3594 | 0.6704 | 0.7855 | 0.5129 | | 0.0724 | 10.0 | 2440 | 0.3704 | 0.6844 | 0.7967 | 0.5354 | | 0.0505 | 11.0 | 2684 | 0.3628 | 0.6956 | 0.7995 | 0.5459 | | 0.045 | 12.0 | 2928 | 0.3709 | 0.7078 | 0.8053 | 0.5651 | | 0.0323 | 13.0 | 3172 | 0.3828 | 0.6984 | 0.8009 | 0.5512 | | 0.031 | 14.0 | 3416 | 0.3959 | 0.7060 | 0.8089 | 0.5625 | | 0.0251 | 15.0 | 3660 | 0.3974 | 0.7042 | 0.8049 | 0.5585 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
robiulawaldev/4cde27ee-b55e-44fc-a753-bf2efb6b70a9
robiulawaldev
2025-01-29T04:04:29Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "base_model:adapter:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "license:mit", "region:us" ]
null
2025-01-29T03:11:32Z
--- library_name: peft license: mit base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B tags: - axolotl - generated_from_trainer model-index: - name: 4cde27ee-b55e-44fc-a753-bf2efb6b70a9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 28869e035ebaf0bf_train_data.json ds_type: json format: custom path: /workspace/input_data/28869e035ebaf0bf_train_data.json type: field_input: labels field_instruction: name field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: robiulawaldev/4cde27ee-b55e-44fc-a753-bf2efb6b70a9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: constant max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/28869e035ebaf0bf_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c01e03ea-ac63-445b-b53d-881712c18952 wandb_project: Birthday-SN56-35-Gradients-On-Demand wandb_run: your_name wandb_runid: c01e03ea-ac63-445b-b53d-881712c18952 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4cde27ee-b55e-44fc-a753-bf2efb6b70a9 This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.5774 | | 5.0982 | 0.0004 | 13 | 2.4021 | | 4.7747 | 0.0007 | 26 | 2.3634 | | 4.7975 | 0.0011 | 39 | 2.3390 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/73f33697-f5db-4663-aea5-4d5c6c406976
mrferr3t
2025-01-29T04:03:46Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:adapter:sethuiyer/Medichat-Llama3-8B", "license:other", "region:us" ]
null
2025-01-29T03:21:53Z
--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: 73f33697-f5db-4663-aea5-4d5c6c406976 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4183af7169b52347_train_data.json ds_type: json format: custom path: /workspace/input_data/4183af7169b52347_train_data.json type: field_instruction: theory field_output: allProofs format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/73f33697-f5db-4663-aea5-4d5c6c406976 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/4183af7169b52347_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 77915825-8e2b-472c-afab-cc2192d1246e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 77915825-8e2b-472c-afab-cc2192d1246e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 73f33697-f5db-4663-aea5-4d5c6c406976 This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1404 | 0.0038 | 1 | 1.1491 | | 1.2226 | 0.0115 | 3 | 1.1339 | | 1.0888 | 0.0229 | 6 | 0.9278 | | 0.7564 | 0.0344 | 9 | 0.6322 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
RyanYr/reflect_single_llm8B_Om2SftT012_Om2G8kOm2AgIpsdpT012_b0.1
RyanYr
2025-01-29T04:02:16Z
219
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:RyanYr/reflect_single_llm8B_SftT12", "base_model:finetune:RyanYr/reflect_single_llm8B_SftT12", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-28T23:12:11Z
--- base_model: RyanYr/reflect_single_llm8B_SftT12 library_name: transformers model_name: reflect_single_llm8B_Om2SftT012_Om2G8kOm2AgIpsdpT012_b0.1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_single_llm8B_Om2SftT012_Om2G8kOm2AgIpsdpT012_b0.1 This model is a fine-tuned version of [RyanYr/reflect_single_llm8B_SftT12](https://huggingface.co/RyanYr/reflect_single_llm8B_SftT12). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_single_llm8B_Om2SftT012_Om2G8kOm2AgIpsdpT012_b0.1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/7s61k6hd) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF
mradermacher
2025-01-29T04:01:41Z
518
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "en", "dataset:bespokelabs/Bespoke-Stratos-17k", "base_model:EpistemeAI/Reasoning-Llama-3.1-CoT-RE1", "base_model:quantized:EpistemeAI/Reasoning-Llama-3.1-CoT-RE1", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-28T23:35:54Z
--- base_model: EpistemeAI/Reasoning-Llama-3.1-CoT-RE1 datasets: - bespokelabs/Bespoke-Stratos-17k language: - en library_name: transformers license: llama3.1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/EpistemeAI/Reasoning-Llama-3.1-CoT-RE1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Reasoning-Llama-3.1-CoT-RE1-GGUF/resolve/main/Reasoning-Llama-3.1-CoT-RE1.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
robiual-awal/154909ae-d7db-4e40-86d4-6ea24e65dc57
robiual-awal
2025-01-29T04:00:55Z
14
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloomz-560m", "base_model:adapter:bigscience/bloomz-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-01-29T03:55:15Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloomz-560m tags: - axolotl - generated_from_trainer model-index: - name: 154909ae-d7db-4e40-86d4-6ea24e65dc57 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloomz-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f22c5a1beac5ddff_train_data.json ds_type: json format: custom path: /workspace/input_data/f22c5a1beac5ddff_train_data.json type: field_instruction: context field_output: Title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/154909ae-d7db-4e40-86d4-6ea24e65dc57 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/f22c5a1beac5ddff_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63dea6db-7aea-4967-8016-662d7f45b646 wandb_project: Birthday-SN56-29-Gradients-On-Demand wandb_run: your_name wandb_runid: 63dea6db-7aea-4967-8016-662d7f45b646 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 154909ae-d7db-4e40-86d4-6ea24e65dc57 This model is a fine-tuned version of [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.5117 | | 7.664 | 0.0014 | 13 | 1.2028 | | 4.6075 | 0.0028 | 26 | 0.9402 | | 3.9511 | 0.0042 | 39 | 0.8791 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/6525da5b-fc5f-4196-b315-6e523bb3296f
Best000
2025-01-29T04:00:36Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-llama-fast-tokenizer", "base_model:adapter:fxmarty/tiny-llama-fast-tokenizer", "region:us" ]
null
2025-01-29T04:00:07Z
--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 6525da5b-fc5f-4196-b315-6e523bb3296f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 559d5227401ea00d_train_data.json ds_type: json format: custom path: /workspace/input_data/559d5227401ea00d_train_data.json type: field_instruction: instruction field_output: output_example format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/6525da5b-fc5f-4196-b315-6e523bb3296f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/559d5227401ea00d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 95db4af1-30e1-4930-8302-84757382e7e8 wandb_project: Birthday-SN56-32-Gradients-On-Demand wandb_run: your_name wandb_runid: 95db4af1-30e1-4930-8302-84757382e7e8 warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6525da5b-fc5f-4196-b315-6e523bb3296f This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 10.3733 | | 10.3718 | 0.0061 | 13 | 10.3732 | | 10.3746 | 0.0122 | 26 | 10.3727 | | 10.3747 | 0.0183 | 39 | 10.3718 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/f2d7907a-771c-4799-bcd0-eb961f02ceef
shibajustfor
2025-01-29T03:59:46Z
6
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloomz-560m", "base_model:adapter:bigscience/bloomz-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-01-29T03:54:00Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloomz-560m tags: - axolotl - generated_from_trainer model-index: - name: f2d7907a-771c-4799-bcd0-eb961f02ceef results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloomz-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f22c5a1beac5ddff_train_data.json ds_type: json format: custom path: /workspace/input_data/f22c5a1beac5ddff_train_data.json type: field_instruction: context field_output: Title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/f2d7907a-771c-4799-bcd0-eb961f02ceef hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/f22c5a1beac5ddff_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 63dea6db-7aea-4967-8016-662d7f45b646 wandb_project: Birthday-SN56-11-Gradients-On-Demand wandb_run: your_name wandb_runid: 63dea6db-7aea-4967-8016-662d7f45b646 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f2d7907a-771c-4799-bcd0-eb961f02ceef This model is a fine-tuned version of [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.5117 | | 7.7579 | 0.0014 | 13 | 1.2028 | | 4.6297 | 0.0028 | 26 | 0.9401 | | 3.9688 | 0.0042 | 39 | 0.8772 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hongngo/f1e570ba-2b26-4d14-9951-5a22768c0c6a
hongngo
2025-01-29T03:59:21Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d", "base_model:adapter:rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T03:05:06Z
--- library_name: peft base_model: rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d tags: - axolotl - generated_from_trainer model-index: - name: f1e570ba-2b26-4d14-9951-5a22768c0c6a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 29eee4dbaacb6194_train_data.json ds_type: json format: custom path: /workspace/input_data/29eee4dbaacb6194_train_data.json type: field_input: context field_instruction: question field_output: final_decision format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: hongngo/f1e570ba-2b26-4d14-9951-5a22768c0c6a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/29eee4dbaacb6194_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0e01ae65-216b-419b-8293-aa58408aef14 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0e01ae65-216b-419b-8293-aa58408aef14 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f1e570ba-2b26-4d14-9951-5a22768c0c6a This model is a fine-tuned version of [rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d](https://huggingface.co/rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0535 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1586 | 0.0080 | 200 | 0.0535 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso06/c78857f3-355e-4823-af49-3d19b2cf680d
lesso06
2025-01-29T03:57:01Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-llama-fast-tokenizer", "base_model:adapter:fxmarty/tiny-llama-fast-tokenizer", "region:us" ]
null
2025-01-29T03:55:52Z
--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: c78857f3-355e-4823-af49-3d19b2cf680d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 559d5227401ea00d_train_data.json ds_type: json format: custom path: /workspace/input_data/559d5227401ea00d_train_data.json type: field_instruction: instruction field_output: output_example format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso06/c78857f3-355e-4823-af49-3d19b2cf680d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/559d5227401ea00d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 95db4af1-30e1-4930-8302-84757382e7e8 wandb_project: multi wandb_run: your_name wandb_runid: 95db4af1-30e1-4930-8302-84757382e7e8 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # c78857f3-355e-4823-af49-3d19b2cf680d This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3704 | 0.7519 | 200 | 10.3703 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso02/1a4039df-98a1-4780-9648-fd8ebcf232cb
lesso02
2025-01-29T03:56:51Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-llama-fast-tokenizer", "base_model:adapter:fxmarty/tiny-llama-fast-tokenizer", "region:us" ]
null
2025-01-29T03:55:50Z
--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 1a4039df-98a1-4780-9648-fd8ebcf232cb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 559d5227401ea00d_train_data.json ds_type: json format: custom path: /workspace/input_data/559d5227401ea00d_train_data.json type: field_instruction: instruction field_output: output_example format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso02/1a4039df-98a1-4780-9648-fd8ebcf232cb hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/559d5227401ea00d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 95db4af1-30e1-4930-8302-84757382e7e8 wandb_project: multi wandb_run: your_name wandb_runid: 95db4af1-30e1-4930-8302-84757382e7e8 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 1a4039df-98a1-4780-9648-fd8ebcf232cb This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3703 | 0.7519 | 200 | 10.3701 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thalllsssss/d6961aa6-6cdc-4c69-8e7e-8711f03783a4
thalllsssss
2025-01-29T03:56:48Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d", "base_model:adapter:rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T03:04:33Z
--- library_name: peft base_model: rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d tags: - axolotl - generated_from_trainer model-index: - name: d6961aa6-6cdc-4c69-8e7e-8711f03783a4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 29eee4dbaacb6194_train_data.json ds_type: json format: custom path: /workspace/input_data/29eee4dbaacb6194_train_data.json type: field_input: context field_instruction: question field_output: final_decision format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thalllsssss/d6961aa6-6cdc-4c69-8e7e-8711f03783a4 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/29eee4dbaacb6194_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0e01ae65-216b-419b-8293-aa58408aef14 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0e01ae65-216b-419b-8293-aa58408aef14 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d6961aa6-6cdc-4c69-8e7e-8711f03783a4 This model is a fine-tuned version of [rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d](https://huggingface.co/rayonlabs/e28c0e27-22e9-48ef-a9b8-18433a6bac9d) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1473 | 0.0080 | 200 | 0.0556 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Phi-4-ReasoningRP-Q6_K-GGUF
Triangle104
2025-01-29T03:56:12Z
29
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:bunnycore/Phi-4-ReasoningRP", "base_model:quantized:bunnycore/Phi-4-ReasoningRP", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T03:55:22Z
--- base_model: bunnycore/Phi-4-ReasoningRP library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: mit --- # Triangle104/Phi-4-ReasoningRP-Q6_K-GGUF This model was converted to GGUF format from [`bunnycore/Phi-4-ReasoningRP`](https://huggingface.co/bunnycore/Phi-4-ReasoningRP) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/bunnycore/Phi-4-ReasoningRP) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Phi-4-ReasoningRP-Q6_K-GGUF --hf-file phi-4-reasoningrp-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Phi-4-ReasoningRP-Q6_K-GGUF --hf-file phi-4-reasoningrp-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Phi-4-ReasoningRP-Q6_K-GGUF --hf-file phi-4-reasoningrp-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Phi-4-ReasoningRP-Q6_K-GGUF --hf-file phi-4-reasoningrp-q6_k.gguf -c 2048 ```
great0001/7f931c1e-8d80-4c8b-803f-3ccbef7850ec
great0001
2025-01-29T03:55:57Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-llama-fast-tokenizer", "base_model:adapter:fxmarty/tiny-llama-fast-tokenizer", "region:us" ]
null
2025-01-29T03:55:25Z
--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 7f931c1e-8d80-4c8b-803f-3ccbef7850ec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 559d5227401ea00d_train_data.json ds_type: json format: custom path: /workspace/input_data/559d5227401ea00d_train_data.json type: field_instruction: instruction field_output: output_example format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/7f931c1e-8d80-4c8b-803f-3ccbef7850ec hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/559d5227401ea00d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 95db4af1-30e1-4930-8302-84757382e7e8 wandb_project: Birthday-SN56-33-Gradients-On-Demand wandb_run: your_name wandb_runid: 95db4af1-30e1-4930-8302-84757382e7e8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7f931c1e-8d80-4c8b-803f-3ccbef7850ec This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3682 | 0.0005 | 1 | 10.3733 | | 10.3732 | 0.0061 | 13 | 10.3727 | | 10.3759 | 0.0122 | 26 | 10.3716 | | 10.3694 | 0.0183 | 39 | 10.3710 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
minhnguyennnnnn/be56e673-31bc-47db-b5c7-5720cb90a56e
minhnguyennnnnn
2025-01-29T03:55:54Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T03:05:37Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: be56e673-31bc-47db-b5c7-5720cb90a56e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2d1734f18512af7c_train_data.json ds_type: json format: custom path: /workspace/input_data/2d1734f18512af7c_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: minhnguyennnnnn/be56e673-31bc-47db-b5c7-5720cb90a56e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2d1734f18512af7c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f964527b-0e13-4f27-a6bc-86678ae74094 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f964527b-0e13-4f27-a6bc-86678ae74094 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # be56e673-31bc-47db-b5c7-5720cb90a56e This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.407 | 0.0371 | 200 | 1.2205 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
philip-hightech/607f6731-7fa2-4cab-92f0-1cc7901ec02b
philip-hightech
2025-01-29T03:55:44Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-llama-fast-tokenizer", "base_model:adapter:fxmarty/tiny-llama-fast-tokenizer", "region:us" ]
null
2025-01-29T03:55:16Z
--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 607f6731-7fa2-4cab-92f0-1cc7901ec02b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 559d5227401ea00d_train_data.json ds_type: json format: custom path: /workspace/input_data/559d5227401ea00d_train_data.json type: field_instruction: instruction field_output: output_example format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: philip-hightech/607f6731-7fa2-4cab-92f0-1cc7901ec02b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/559d5227401ea00d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 95db4af1-30e1-4930-8302-84757382e7e8 wandb_project: Birthday-SN56-8-Gradients-On-Demand wandb_run: your_name wandb_runid: 95db4af1-30e1-4930-8302-84757382e7e8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 607f6731-7fa2-4cab-92f0-1cc7901ec02b This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 10.3733 | | 10.3718 | 0.0061 | 13 | 10.3731 | | 10.3746 | 0.0122 | 26 | 10.3729 | | 10.3749 | 0.0183 | 39 | 10.3728 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lhong4759/bfeebc08-8f88-4fb5-8cc9-0d1d03520675
lhong4759
2025-01-29T03:50:44Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b-Instruct", "base_model:adapter:unsloth/llama-3-8b-Instruct", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T02:20:38Z
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: bfeebc08-8f88-4fb5-8cc9-0d1d03520675 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 93a2807477853fd7_train_data.json ds_type: json format: custom path: /workspace/input_data/93a2807477853fd7_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lhong4759/bfeebc08-8f88-4fb5-8cc9-0d1d03520675 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/93a2807477853fd7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1baad95d-3392-4bf7-aae8-e00a80f185c4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1baad95d-3392-4bf7-aae8-e00a80f185c4 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # bfeebc08-8f88-4fb5-8cc9-0d1d03520675 This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3386 | 0.0083 | 200 | 0.4033 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/b420ccf4-e313-4999-8fce-2dd0c1c61da6
Best000
2025-01-29T03:50:40Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "license:apache-2.0", "region:us" ]
null
2025-01-29T03:44:40Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: b420ccf4-e313-4999-8fce-2dd0c1c61da6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2d1734f18512af7c_train_data.json ds_type: json format: custom path: /workspace/input_data/2d1734f18512af7c_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/b420ccf4-e313-4999-8fce-2dd0c1c61da6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/2d1734f18512af7c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f964527b-0e13-4f27-a6bc-86678ae74094 wandb_project: Birthday-SN56-16-Gradients-On-Demand wandb_run: your_name wandb_runid: f964527b-0e13-4f27-a6bc-86678ae74094 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b420ccf4-e313-4999-8fce-2dd0c1c61da6 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.4921 | | 1.3419 | 0.0024 | 13 | 1.3301 | | 1.2211 | 0.0048 | 26 | 1.2540 | | 1.1513 | 0.0072 | 39 | 1.2391 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/3e1c7e0d-7597-4d6c-8156-168ae2802c21
nttx
2025-01-29T03:47:12Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:openlm-research/open_llama_3b", "base_model:adapter:openlm-research/open_llama_3b", "license:apache-2.0", "region:us" ]
null
2025-01-29T03:38:56Z
--- library_name: peft license: apache-2.0 base_model: openlm-research/open_llama_3b tags: - axolotl - generated_from_trainer model-index: - name: 3e1c7e0d-7597-4d6c-8156-168ae2802c21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: openlm-research/open_llama_3b bf16: auto chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 9cd0a27ec769d7cd_train_data.json ds_type: json format: custom path: /workspace/input_data/9cd0a27ec769d7cd_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/3e1c7e0d-7597-4d6c-8156-168ae2802c21 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/9cd0a27ec769d7cd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6470a08d-ed3c-49de-9586-17f3c3506f49 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6470a08d-ed3c-49de-9586-17f3c3506f49 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3e1c7e0d-7597-4d6c-8156-168ae2802c21 This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7792 | 0.3163 | 200 | 1.1536 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
denbeo/58a6f22f-6217-4b63-b971-f452e92d35d5
denbeo
2025-01-29T03:43:25Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:openlm-research/open_llama_3b", "base_model:adapter:openlm-research/open_llama_3b", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T03:26:54Z
--- library_name: peft license: apache-2.0 base_model: openlm-research/open_llama_3b tags: - axolotl - generated_from_trainer model-index: - name: 58a6f22f-6217-4b63-b971-f452e92d35d5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: openlm-research/open_llama_3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9cd0a27ec769d7cd_train_data.json ds_type: json format: custom path: /workspace/input_data/9cd0a27ec769d7cd_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: denbeo/58a6f22f-6217-4b63-b971-f452e92d35d5 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9cd0a27ec769d7cd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6470a08d-ed3c-49de-9586-17f3c3506f49 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6470a08d-ed3c-49de-9586-17f3c3506f49 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 58a6f22f-6217-4b63-b971-f452e92d35d5 This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.31 | 0.1582 | 200 | 1.3542 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kostiantynk/8d65e76f-73af-462c-92c1-37bcbb64e6de
kostiantynk
2025-01-29T03:41:35Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf", "base_model:adapter:NousResearch/CodeLlama-13b-hf", "region:us" ]
null
2025-01-29T00:44:48Z
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: 8d65e76f-73af-462c-92c1-37bcbb64e6de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d8a8ff5650718631_train_data.json ds_type: json format: custom path: /workspace/input_data/d8a8ff5650718631_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk/8d65e76f-73af-462c-92c1-37bcbb64e6de hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/d8a8ff5650718631_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 163de330-815f-4467-8e3e-f4dcca47bb0f wandb_project: Mine-SN56-22-Gradients-On-Demand wandb_run: your_name wandb_runid: 163de330-815f-4467-8e3e-f4dcca47bb0f warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8d65e76f-73af-462c-92c1-37bcbb64e6de This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf](https://huggingface.co/NousResearch/CodeLlama-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 1.6583 | | 3.3144 | 0.0001 | 13 | 1.5707 | | 3.0317 | 0.0001 | 26 | 1.5200 | | 3.0438 | 0.0002 | 39 | 1.5024 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
gavrilstep/f70088c1-6888-4338-98f6-e2a1c9fbf41a
gavrilstep
2025-01-29T03:40:02Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:openlm-research/open_llama_3b", "base_model:adapter:openlm-research/open_llama_3b", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T03:26:09Z
--- library_name: peft license: apache-2.0 base_model: openlm-research/open_llama_3b tags: - axolotl - generated_from_trainer model-index: - name: f70088c1-6888-4338-98f6-e2a1c9fbf41a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: openlm-research/open_llama_3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9cd0a27ec769d7cd_train_data.json ds_type: json format: custom path: /workspace/input_data/9cd0a27ec769d7cd_train_data.json type: field_input: input field_instruction: task field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: gavrilstep/f70088c1-6888-4338-98f6-e2a1c9fbf41a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/9cd0a27ec769d7cd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6470a08d-ed3c-49de-9586-17f3c3506f49 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6470a08d-ed3c-49de-9586-17f3c3506f49 warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f70088c1-6888-4338-98f6-e2a1c9fbf41a This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0008 | 1 | 4.0514 | | 4.1091 | 0.0040 | 5 | 3.9182 | | 3.4395 | 0.0079 | 10 | 3.1203 | | 2.8234 | 0.0119 | 15 | 2.4616 | | 2.411 | 0.0158 | 20 | 2.0676 | | 2.0367 | 0.0198 | 25 | 1.9203 | | 1.8205 | 0.0237 | 30 | 1.8914 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
havinash-ai/3bdd0fc5-41c5-4e8c-ae17-8237ecfb697d
havinash-ai
2025-01-29T03:37:53Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-7B", "base_model:adapter:Qwen/Qwen1.5-7B", "license:other", "region:us" ]
null
2025-01-29T03:36:18Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 3bdd0fc5-41c5-4e8c-ae17-8237ecfb697d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d4061e63da01d376_train_data.json ds_type: json format: custom path: /workspace/input_data/d4061e63da01d376_train_data.json type: field_instruction: text field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/3bdd0fc5-41c5-4e8c-ae17-8237ecfb697d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/d4061e63da01d376_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b68a9764-980c-4f8e-aa1f-cf6f69dfb8ac wandb_project: Birthday-SN56-9-Gradients-On-Demand wandb_run: your_name wandb_runid: b68a9764-980c-4f8e-aa1f-cf6f69dfb8ac warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3bdd0fc5-41c5-4e8c-ae17-8237ecfb697d This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2269 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 2.3564 | | 2.3449 | 0.0238 | 13 | 2.2563 | | 2.269 | 0.0476 | 26 | 2.2350 | | 2.2287 | 0.0714 | 39 | 2.2269 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nat-hunt/3cb18af1-5aa1-4974-8129-47122c3cfddd
nat-hunt
2025-01-29T03:37:26Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-7B", "base_model:adapter:Qwen/Qwen1.5-7B", "license:other", "region:us" ]
null
2025-01-29T03:35:46Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 3cb18af1-5aa1-4974-8129-47122c3cfddd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d4061e63da01d376_train_data.json ds_type: json format: custom path: /workspace/input_data/d4061e63da01d376_train_data.json type: field_instruction: text field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nat-hunt/3cb18af1-5aa1-4974-8129-47122c3cfddd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 55 micro_batch_size: 2 mlflow_experiment_name: /tmp/d4061e63da01d376_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b68a9764-980c-4f8e-aa1f-cf6f69dfb8ac wandb_project: Birthday-SN56-25-Gradients-On-Demand wandb_run: your_name wandb_runid: b68a9764-980c-4f8e-aa1f-cf6f69dfb8ac warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3cb18af1-5aa1-4974-8129-47122c3cfddd This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 55 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 2.3564 | | 2.3444 | 0.0256 | 14 | 2.2546 | | 2.2694 | 0.0512 | 28 | 2.2327 | | 2.0983 | 0.0769 | 42 | 2.2247 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/EstigiaTest-GGUF
mradermacher
2025-01-29T03:37:08Z
40
0
transformers
[ "transformers", "gguf", "autotrain", "text-generation-inference", "text-generation", "peft", "en", "base_model:franciscobdl/EstigiaTest", "base_model:quantized:franciscobdl/EstigiaTest", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-29T03:36:45Z
--- base_model: franciscobdl/EstigiaTest language: - en library_name: transformers license: other quantized_by: mradermacher tags: - autotrain - text-generation-inference - text-generation - peft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/franciscobdl/EstigiaTest <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.IQ4_XS.gguf) | IQ4_XS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.Q2_K.gguf) | Q2_K | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.Q3_K_L.gguf) | Q3_K_L | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.Q3_K_M.gguf) | Q3_K_M | 0.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.Q3_K_S.gguf) | Q3_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.Q4_K_M.gguf) | Q4_K_M | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.Q4_K_S.gguf) | Q4_K_S | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.Q5_K_M.gguf) | Q5_K_M | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.Q5_K_S.gguf) | Q5_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.Q6_K.gguf) | Q6_K | 0.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.Q8_0.gguf) | Q8_0 | 0.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/EstigiaTest-GGUF/resolve/main/EstigiaTest.f16.gguf) | f16 | 0.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
daniel40/ba4dd95f-f6d6-4df4-8c87-033d535bbd40
daniel40
2025-01-29T03:36:27Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen1.5-7B", "base_model:adapter:Qwen/Qwen1.5-7B", "license:other", "region:us" ]
null
2025-01-29T03:34:43Z
--- library_name: peft license: other base_model: Qwen/Qwen1.5-7B tags: - axolotl - generated_from_trainer model-index: - name: ba4dd95f-f6d6-4df4-8c87-033d535bbd40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d4061e63da01d376_train_data.json ds_type: json format: custom path: /workspace/input_data/d4061e63da01d376_train_data.json type: field_instruction: text field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/ba4dd95f-f6d6-4df4-8c87-033d535bbd40 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/d4061e63da01d376_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b68a9764-980c-4f8e-aa1f-cf6f69dfb8ac wandb_project: Birthday-SN56-31-Gradients-On-Demand wandb_run: your_name wandb_runid: b68a9764-980c-4f8e-aa1f-cf6f69dfb8ac warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ba4dd95f-f6d6-4df4-8c87-033d535bbd40 This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2678 | 0.0018 | 1 | 2.3564 | | 2.4137 | 0.0238 | 13 | 2.2642 | | 2.2511 | 0.0476 | 26 | 2.2357 | | 2.301 | 0.0714 | 39 | 2.2264 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Kromtao/02_Kromtao_03
Kromtao
2025-01-29T03:32:43Z
25
0
transformers
[ "transformers", "safetensors", "parler_tts", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-01-29T03:31:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nhungphammmmm/04fbb382-372c-441d-b875-f6d02fa45789
nhungphammmmm
2025-01-29T03:29:41Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T03:05:48Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 04fbb382-372c-441d-b875-f6d02fa45789 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2d1734f18512af7c_train_data.json ds_type: json format: custom path: /workspace/input_data/2d1734f18512af7c_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhungphammmmm/04fbb382-372c-441d-b875-f6d02fa45789 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/2d1734f18512af7c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f964527b-0e13-4f27-a6bc-86678ae74094 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f964527b-0e13-4f27-a6bc-86678ae74094 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 04fbb382-372c-441d-b875-f6d02fa45789 This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4046 | 0.0371 | 200 | 1.2207 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/0ffc3009-6c04-44d1-ad3a-cf8d216a1180
trenden
2025-01-29T03:28:38Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", "base_model:adapter:VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct", "license:llama3.1", "region:us" ]
null
2025-01-29T03:21:17Z
--- library_name: peft license: llama3.1 base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 0ffc3009-6c04-44d1-ad3a-cf8d216a1180 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 61fdcf379e4ddee9_train_data.json ds_type: json format: custom path: /workspace/input_data/61fdcf379e4ddee9_train_data.json type: field_input: genres field_instruction: title field_output: description format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/0ffc3009-6c04-44d1-ad3a-cf8d216a1180 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/61fdcf379e4ddee9_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: dd59f9f5-ca81-47a9-bf7c-9060c0120a4f wandb_project: Birthday-SN56-26-Gradients-On-Demand wandb_run: your_name wandb_runid: dd59f9f5-ca81-47a9-bf7c-9060c0120a4f warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0ffc3009-6c04-44d1-ad3a-cf8d216a1180 This model is a fine-tuned version of [VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct](https://huggingface.co/VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 2.3381 | | 2.2276 | 0.0020 | 13 | 2.0412 | | 2.0019 | 0.0041 | 26 | 1.9987 | | 1.9197 | 0.0061 | 39 | 1.9840 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Phi-4-ReasoningRP-Q5_K_S-GGUF
Triangle104
2025-01-29T03:28:23Z
23
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:bunnycore/Phi-4-ReasoningRP", "base_model:quantized:bunnycore/Phi-4-ReasoningRP", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T03:27:38Z
--- base_model: bunnycore/Phi-4-ReasoningRP library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: mit --- # Triangle104/Phi-4-ReasoningRP-Q5_K_S-GGUF This model was converted to GGUF format from [`bunnycore/Phi-4-ReasoningRP`](https://huggingface.co/bunnycore/Phi-4-ReasoningRP) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/bunnycore/Phi-4-ReasoningRP) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Phi-4-ReasoningRP-Q5_K_S-GGUF --hf-file phi-4-reasoningrp-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Phi-4-ReasoningRP-Q5_K_S-GGUF --hf-file phi-4-reasoningrp-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Phi-4-ReasoningRP-Q5_K_S-GGUF --hf-file phi-4-reasoningrp-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Phi-4-ReasoningRP-Q5_K_S-GGUF --hf-file phi-4-reasoningrp-q5_k_s.gguf -c 2048 ```
mradermacher/Silver5-Nemo-12B-i1-GGUF
mradermacher
2025-01-29T03:26:56Z
590
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Lambent/Silver5-Nemo-12B", "base_model:quantized:Lambent/Silver5-Nemo-12B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-28T22:32:55Z
--- base_model: Lambent/Silver5-Nemo-12B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Lambent/Silver5-Nemo-12B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q4_1.gguf) | i1-Q4_1 | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF/resolve/main/Silver5-Nemo-12B.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Silver5-Nemo-12B-GGUF
mradermacher
2025-01-29T03:26:52Z
376
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Lambent/Silver5-Nemo-12B", "base_model:quantized:Lambent/Silver5-Nemo-12B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-25T09:40:20Z
--- base_model: Lambent/Silver5-Nemo-12B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Lambent/Silver5-Nemo-12B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Silver5-Nemo-12B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF/resolve/main/Silver5-Nemo-12B.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF/resolve/main/Silver5-Nemo-12B.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF/resolve/main/Silver5-Nemo-12B.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF/resolve/main/Silver5-Nemo-12B.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF/resolve/main/Silver5-Nemo-12B.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF/resolve/main/Silver5-Nemo-12B.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF/resolve/main/Silver5-Nemo-12B.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF/resolve/main/Silver5-Nemo-12B.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF/resolve/main/Silver5-Nemo-12B.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF/resolve/main/Silver5-Nemo-12B.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Silver5-Nemo-12B-GGUF/resolve/main/Silver5-Nemo-12B.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
lesso14/27024ac8-42e1-473e-9801-f49f51e5712b
lesso14
2025-01-29T03:26:37Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:adapter:sethuiyer/Medichat-Llama3-8B", "license:other", "region:us" ]
null
2025-01-29T03:25:10Z
--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: 27024ac8-42e1-473e-9801-f49f51e5712b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4183af7169b52347_train_data.json ds_type: json format: custom path: /workspace/input_data/4183af7169b52347_train_data.json type: field_instruction: theory field_output: allProofs format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso14/27024ac8-42e1-473e-9801-f49f51e5712b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/4183af7169b52347_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 77915825-8e2b-472c-afab-cc2192d1246e wandb_project: multi wandb_run: your_name wandb_runid: 77915825-8e2b-472c-afab-cc2192d1246e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 27024ac8-42e1-473e-9801-f49f51e5712b This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 33 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3763 | 0.9771 | 32 | 0.3728 | | 0.4812 | 1.0076 | 33 | 0.3725 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
KoichiYasuoka/Xunzi-Qwen2-1.5B-upos
KoichiYasuoka
2025-01-29T03:24:48Z
49
0
transformers
[ "transformers", "pytorch", "qwen2", "token-classification", "classical chinese", "literary chinese", "ancient chinese", "pos", "dependency-parsing", "lzh", "dataset:universal_dependencies", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2024-07-24T14:40:08Z
--- language: - "lzh" tags: - "classical chinese" - "literary chinese" - "ancient chinese" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" widget: - text: "子曰學而時習之不亦説乎有朋自遠方來不亦樂乎人不知而不慍不亦君子乎" --- # Xunzi-Qwen2-1.5B-upos ## Model Description This is a Qwen2 model pre-trained on Classical Chinese texts for POS-tagging, derived from [Xunzi-Qwen2-1.5B](https://www.modelscope.cn/models/Xunzillm4cc/Xunzi-Qwen2-1.5B). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import pipeline nlp=pipeline("upos","KoichiYasuoka/Xunzi-Qwen2-1.5B-upos",trust_remote_code=True,aggregation_strategy="simple") print(nlp("不入虎穴不得虎子")) ```
KoichiYasuoka/deberta-base-japanese-upos
KoichiYasuoka
2025-01-29T03:24:44Z
109
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "japanese", "pos", "dependency-parsing", "ja", "dataset:universal_dependencies", "base_model:KoichiYasuoka/deberta-base-japanese-aozora", "base_model:finetune:KoichiYasuoka/deberta-base-japanese-aozora", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-24T08:12:05Z
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/deberta-base-japanese-aozora datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # deberta-base-japanese-upos ## Model Description This is a DeBERTa(V2) model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [deberta-base-japanese-aozora](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-aozora). Every short-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-base-japanese-upos") s="国境の長いトンネルを抜けると雪国であった。" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-base-japanese-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
lesso/a4355d22-eba4-4738-94bf-16a5758836b2
lesso
2025-01-29T03:24:44Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:adapter:sethuiyer/Medichat-Llama3-8B", "license:other", "region:us" ]
null
2025-01-29T03:18:46Z
--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: a4355d22-eba4-4738-94bf-16a5758836b2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4183af7169b52347_train_data.json ds_type: json format: custom path: /workspace/input_data/4183af7169b52347_train_data.json type: field_instruction: theory field_output: allProofs format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso/a4355d22-eba4-4738-94bf-16a5758836b2 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/4183af7169b52347_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 77915825-8e2b-472c-afab-cc2192d1246e wandb_project: lesso18 wandb_run: your_name wandb_runid: 77915825-8e2b-472c-afab-cc2192d1246e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a4355d22-eba4-4738-94bf-16a5758836b2 This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0967 | 0.7648 | 200 | 0.0991 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
KoichiYasuoka/deberta-large-japanese-upos
KoichiYasuoka
2025-01-29T03:24:43Z
110
2
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "japanese", "pos", "dependency-parsing", "ja", "dataset:universal_dependencies", "base_model:KoichiYasuoka/deberta-large-japanese-aozora", "base_model:finetune:KoichiYasuoka/deberta-large-japanese-aozora", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-27T06:50:55Z
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/deberta-large-japanese-aozora datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # deberta-large-japanese-upos ## Model Description This is a DeBERTa(V2) model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [deberta-large-japanese-aozora](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-aozora). Every short-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py import torch from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-large-japanese-upos") s="国境の長いトンネルを抜けると雪国であった。" t=tokenizer.tokenize(s) p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]] print(list(zip(t,p))) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/deberta-large-japanese-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
KoichiYasuoka/gpt2-large-japanese-upos
KoichiYasuoka
2025-01-29T03:24:37Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "token-classification", "japanese", "pos", "ja", "dataset:universal_dependencies", "base_model:ku-nlp/gpt2-large-japanese-char", "base_model:finetune:ku-nlp/gpt2-large-japanese-char", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2024-06-22T22:44:06Z
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" base_model: ku-nlp/gpt2-large-japanese-char datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # gpt2-large-japanese-upos ## Model Description This is a GPT-2 model for POS-tagging and dependency-parsing, derived from [gpt2-large-japanese-char](https://huggingface.co/ku-nlp/gpt2-large-japanese-char). Every short-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import pipeline nlp=pipeline("upos","KoichiYasuoka/gpt2-large-japanese-upos",trust_remote_code=True,aggregation_strategy="simple") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/gpt2-large-japanese-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [GPT系モデルの系列ラベリングによる品詞付与](http://hdl.handle.net/2433/288964), 東洋学へのコンピュータ利用, 第38回研究セミナー (2024年7月26日), pp.3-10. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa/GPT models
KoichiYasuoka/gpt2-medium-japanese-upos
KoichiYasuoka
2025-01-29T03:24:33Z
108
0
transformers
[ "transformers", "pytorch", "gpt2", "token-classification", "japanese", "pos", "ja", "dataset:universal_dependencies", "base_model:ku-nlp/gpt2-medium-japanese-char", "base_model:finetune:ku-nlp/gpt2-medium-japanese-char", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
token-classification
2024-06-22T22:39:14Z
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" base_model: ku-nlp/gpt2-medium-japanese-char datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # gpt2-medium-japanese-upos ## Model Description This is a GPT-2 model for POS-tagging and dependency-parsing, derived from [gpt2-medium-japanese-char](https://huggingface.co/ku-nlp/gpt2-medium-japanese-char). Every short-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import pipeline nlp=pipeline("upos","KoichiYasuoka/gpt2-medium-japanese-upos",trust_remote_code=True,aggregation_strategy="simple") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/gpt2-medium-japanese-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## Reference 安岡孝一: [GPT系モデルの系列ラベリングによる品詞付与](http://hdl.handle.net/2433/288964), 東洋学へのコンピュータ利用, 第38回研究セミナー (2024年7月26日), pp.3-10. ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa/GPT models
KoichiYasuoka/gpt2-small-japanese-wikipedia-juman-upos
KoichiYasuoka
2025-01-29T03:24:29Z
5
0
null
[ "pytorch", "gpt2", "japanese", "token-classification", "pos", "ja", "dataset:universal_dependencies", "base_model:nlp-waseda/gpt2-small-japanese-wikipedia", "base_model:finetune:nlp-waseda/gpt2-small-japanese-wikipedia", "license:cc-by-sa-4.0", "region:us" ]
token-classification
2024-10-08T07:12:13Z
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" base_model: nlp-waseda/gpt2-small-japanese-wikipedia datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # gpt2-small-japanese-wikipedia-juman-upos ## Model Description This is a GPT-2 model for POS-tagging, derived from [gpt2-small-japanese-wikipedia](https://huggingface.co/nlp-waseda/gpt2-small-japanese-wikipedia). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import pipeline nlp=pipeline("upos","KoichiYasuoka/gpt2-small-japanese-wikipedia-juman-upos",trust_remote_code=True,aggregation_strategy="simple") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` [fugashi](https://pypi.org/project/fugashi) is required.
gavrilstep/b33594b3-ad30-490f-96b6-55d013acf806
gavrilstep
2025-01-29T03:24:23Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:adapter:sethuiyer/Medichat-Llama3-8B", "license:other", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T03:18:52Z
--- library_name: peft license: other base_model: sethuiyer/Medichat-Llama3-8B tags: - axolotl - generated_from_trainer model-index: - name: b33594b3-ad30-490f-96b6-55d013acf806 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: sethuiyer/Medichat-Llama3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4183af7169b52347_train_data.json ds_type: json format: custom path: /workspace/input_data/4183af7169b52347_train_data.json type: field_instruction: theory field_output: allProofs format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: gavrilstep/b33594b3-ad30-490f-96b6-55d013acf806 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 30 micro_batch_size: 2 mlflow_experiment_name: /tmp/4183af7169b52347_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 77915825-8e2b-472c-afab-cc2192d1246e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 77915825-8e2b-472c-afab-cc2192d1246e warmup_steps: 10 weight_decay: 0.01 xformers_attention: true ``` </details><br> # b33594b3-ad30-490f-96b6-55d013acf806 This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0038 | 1 | 2.0353 | | 2.1012 | 0.0191 | 5 | 1.8339 | | 1.6277 | 0.0382 | 10 | 1.2766 | | 1.083 | 0.0574 | 15 | 1.0797 | | 1.0813 | 0.0765 | 20 | 1.0027 | | 0.945 | 0.0956 | 25 | 0.9723 | | 0.865 | 0.1147 | 30 | 0.9640 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
KoichiYasuoka/modernbert-base-japanese-aozora-luw-upos
KoichiYasuoka
2025-01-29T03:24:18Z
27
0
null
[ "pytorch", "modernbert", "japanese", "token-classification", "pos", "dependency-parsing", "custom_code", "ja", "dataset:universal_dependencies", "base_model:KoichiYasuoka/modernbert-base-japanese-aozora", "base_model:finetune:KoichiYasuoka/modernbert-base-japanese-aozora", "license:apache-2.0", "region:us" ]
token-classification
2025-01-12T00:42:47Z
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/modernbert-base-japanese-aozora datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # modernbert-base-japanese-aozora-luw-upos ## Model Description This is a ModernBERT model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [modernbert-base-japanese-aozora](https://huggingface.co/KoichiYasuoka/modernbert-base-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import pipeline nlp=pipeline("upos","KoichiYasuoka/modernbert-base-japanese-aozora-luw-upos",trust_remote_code=True,aggregation_strategy="simple") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/modernbert-base-japanese-aozora-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa/GPT models
KoichiYasuoka/modernbert-base-japanese-wikipedia-luw-upos
KoichiYasuoka
2025-01-29T03:24:15Z
18
0
null
[ "pytorch", "modernbert", "japanese", "token-classification", "pos", "dependency-parsing", "custom_code", "ja", "dataset:universal_dependencies", "base_model:KoichiYasuoka/modernbert-base-japanese-wikipedia", "base_model:finetune:KoichiYasuoka/modernbert-base-japanese-wikipedia", "license:apache-2.0", "region:us" ]
token-classification
2025-01-12T08:52:41Z
--- language: - "ja" tags: - "japanese" - "token-classification" - "pos" - "dependency-parsing" base_model: KoichiYasuoka/modernbert-base-japanese-wikipedia datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" widget: - text: "国境の長いトンネルを抜けると雪国であった。" --- # modernbert-base-japanese-wikipedia-luw-upos ## Model Description This is a ModernBERT model pre-trained on Japanese Wikipedia and 青空文庫 texts for POS-tagging and dependency-parsing, derived from [modernbert-base-japanese-wikipedia](https://huggingface.co/KoichiYasuoka/modernbert-base-japanese-wikipedia). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import pipeline nlp=pipeline("upos","KoichiYasuoka/modernbert-base-japanese-wikipedia-luw-upos",trust_remote_code=True,aggregation_strategy="simple") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/modernbert-base-japanese-wikipedia-luw-upos") print(nlp("国境の長いトンネルを抜けると雪国であった。")) ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa/GPT models