modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-06-27 06:27:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
499 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-06-27 06:26:25
card
stringlengths
11
1.01M
shibajustfor/e7b18d46-7226-4a14-b9e0-118f744b5956
shibajustfor
2025-01-29T21:32:12Z
6
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-rw-1b", "base_model:adapter:tiiuae/falcon-rw-1b", "license:apache-2.0", "region:us" ]
null
2025-01-29T21:29:15Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-rw-1b tags: - axolotl - generated_from_trainer model-index: - name: e7b18d46-7226-4a14-b9e0-118f744b5956 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-rw-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22a7382f476a3340_train_data.json ds_type: json format: custom path: /workspace/input_data/22a7382f476a3340_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/e7b18d46-7226-4a14-b9e0-118f744b5956 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/22a7382f476a3340_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a1cb988f-7957-4a81-8cc4-c6f235d31d98 wandb_project: Birthday-SN56-38-Gradients-On-Demand wandb_run: your_name wandb_runid: a1cb988f-7957-4a81-8cc4-c6f235d31d98 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e7b18d46-7226-4a14-b9e0-118f744b5956 This model is a fine-tuned version of [tiiuae/falcon-rw-1b](https://huggingface.co/tiiuae/falcon-rw-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.6886 | | 6.2532 | 0.0031 | 13 | 1.5225 | | 6.0738 | 0.0063 | 26 | 1.4543 | | 5.5457 | 0.0094 | 39 | 1.4133 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/dc8ff502-6a08-4a0d-95f9-1aee3402ff61
kk-aivio
2025-01-29T21:31:22Z
9
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-rw-1b", "base_model:adapter:tiiuae/falcon-rw-1b", "license:apache-2.0", "region:us" ]
null
2025-01-29T21:28:27Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-rw-1b tags: - axolotl - generated_from_trainer model-index: - name: dc8ff502-6a08-4a0d-95f9-1aee3402ff61 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-rw-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22a7382f476a3340_train_data.json ds_type: json format: custom path: /workspace/input_data/22a7382f476a3340_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/dc8ff502-6a08-4a0d-95f9-1aee3402ff61 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/22a7382f476a3340_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a1cb988f-7957-4a81-8cc4-c6f235d31d98 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: a1cb988f-7957-4a81-8cc4-c6f235d31d98 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # dc8ff502-6a08-4a0d-95f9-1aee3402ff61 This model is a fine-tuned version of [tiiuae/falcon-rw-1b](https://huggingface.co/tiiuae/falcon-rw-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.7015 | | 6.4133 | 0.0031 | 13 | 1.5509 | | 6.2202 | 0.0063 | 26 | 1.4776 | | 5.6429 | 0.0094 | 39 | 1.4497 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/90b604c4-6f30-4091-a762-c98f277d65bd
mrferr3t
2025-01-29T21:30:26Z
6
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-rw-1b", "base_model:adapter:tiiuae/falcon-rw-1b", "license:apache-2.0", "region:us" ]
null
2025-01-29T21:26:38Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-rw-1b tags: - axolotl - generated_from_trainer model-index: - name: 90b604c4-6f30-4091-a762-c98f277d65bd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-rw-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22a7382f476a3340_train_data.json ds_type: json format: custom path: /workspace/input_data/22a7382f476a3340_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/90b604c4-6f30-4091-a762-c98f277d65bd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0005 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 23 micro_batch_size: 2 mlflow_experiment_name: /tmp/22a7382f476a3340_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 0 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a1cb988f-7957-4a81-8cc4-c6f235d31d98 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a1cb988f-7957-4a81-8cc4-c6f235d31d98 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 90b604c4-6f30-4091-a762-c98f277d65bd This model is a fine-tuned version of [tiiuae/falcon-rw-1b](https://huggingface.co/tiiuae/falcon-rw-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 23 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.8564 | 0.0002 | 1 | 1.7015 | | 6.7593 | 0.0015 | 6 | 1.6080 | | 5.3286 | 0.0029 | 12 | 1.5384 | | 6.3491 | 0.0044 | 18 | 1.4872 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
ardaspear/b3c0b14f-d033-4843-b041-e2029afb35e7
ardaspear
2025-01-29T21:29:50Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/mistral-7b-instruct-v0.3", "base_model:adapter:unsloth/mistral-7b-instruct-v0.3", "license:apache-2.0", "region:us" ]
null
2025-01-29T19:58:00Z
--- library_name: peft license: apache-2.0 base_model: unsloth/mistral-7b-instruct-v0.3 tags: - axolotl - generated_from_trainer model-index: - name: b3c0b14f-d033-4843-b041-e2029afb35e7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/mistral-7b-instruct-v0.3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 50f3de17dcca2192_train_data.json ds_type: json format: custom path: /workspace/input_data/50f3de17dcca2192_train_data.json type: field_input: '' field_instruction: rendered_input field_output: summary format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: ardaspear/b3c0b14f-d033-4843-b041-e2029afb35e7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/50f3de17dcca2192_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 729adb6c-9b7d-454a-b2b2-040e7bf39050 wandb_project: Gradients-On-Five wandb_run: your_name wandb_runid: 729adb6c-9b7d-454a-b2b2-040e7bf39050 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b3c0b14f-d033-4843-b041-e2029afb35e7 This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.3](https://huggingface.co/unsloth/mistral-7b-instruct-v0.3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 2.0751 | | 4.8841 | 0.0027 | 9 | 1.0569 | | 3.3807 | 0.0053 | 18 | 0.9211 | | 3.4477 | 0.0080 | 27 | 0.8963 | | 3.675 | 0.0106 | 36 | 0.8811 | | 3.1355 | 0.0133 | 45 | 0.8736 | | 3.3764 | 0.0159 | 54 | 0.8668 | | 3.4102 | 0.0186 | 63 | 0.8610 | | 3.2835 | 0.0212 | 72 | 0.8611 | | 3.3175 | 0.0239 | 81 | 0.8552 | | 3.1059 | 0.0265 | 90 | 0.8534 | | 3.2693 | 0.0292 | 99 | 0.8530 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiulawaldev/3e3a5ee9-1159-4956-a1a6-2e567838ea95
robiulawaldev
2025-01-29T21:28:57Z
8
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-rw-1b", "base_model:adapter:tiiuae/falcon-rw-1b", "license:apache-2.0", "region:us" ]
null
2025-01-29T21:25:40Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-rw-1b tags: - axolotl - generated_from_trainer model-index: - name: 3e3a5ee9-1159-4956-a1a6-2e567838ea95 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-rw-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22a7382f476a3340_train_data.json ds_type: json format: custom path: /workspace/input_data/22a7382f476a3340_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: robiulawaldev/3e3a5ee9-1159-4956-a1a6-2e567838ea95 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: constant max_steps: 55 micro_batch_size: 4 mlflow_experiment_name: /tmp/22a7382f476a3340_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a1cb988f-7957-4a81-8cc4-c6f235d31d98 wandb_project: Birthday-SN56-37-Gradients-On-Demand wandb_run: your_name wandb_runid: a1cb988f-7957-4a81-8cc4-c6f235d31d98 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3e3a5ee9-1159-4956-a1a6-2e567838ea95 This model is a fine-tuned version of [tiiuae/falcon-rw-1b](https://huggingface.co/tiiuae/falcon-rw-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 55 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.6014 | | 2.8421 | 0.0034 | 14 | 1.4223 | | 2.817 | 0.0068 | 28 | 1.3584 | | 2.7062 | 0.0102 | 42 | 1.3237 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso18/23b8e394-43c2-4204-9dcd-45fad5cd7ebc
lesso18
2025-01-29T21:28:49Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-rw-1b", "base_model:adapter:tiiuae/falcon-rw-1b", "license:apache-2.0", "region:us" ]
null
2025-01-29T21:24:35Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-rw-1b tags: - axolotl - generated_from_trainer model-index: - name: 23b8e394-43c2-4204-9dcd-45fad5cd7ebc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-rw-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22a7382f476a3340_train_data.json ds_type: json format: custom path: /workspace/input_data/22a7382f476a3340_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso18/23b8e394-43c2-4204-9dcd-45fad5cd7ebc hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/22a7382f476a3340_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a1cb988f-7957-4a81-8cc4-c6f235d31d98 wandb_project: new-01-29 wandb_run: your_name wandb_runid: a1cb988f-7957-4a81-8cc4-c6f235d31d98 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 23b8e394-43c2-4204-9dcd-45fad5cd7ebc This model is a fine-tuned version of [tiiuae/falcon-rw-1b](https://huggingface.co/tiiuae/falcon-rw-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.831 | 0.0484 | 200 | 1.3973 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/11dcd089-d487-4253-82e9-7ad783dfa708
daniel40
2025-01-29T21:28:32Z
10
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-rw-1b", "base_model:adapter:tiiuae/falcon-rw-1b", "license:apache-2.0", "region:us" ]
null
2025-01-29T21:25:30Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-rw-1b tags: - axolotl - generated_from_trainer model-index: - name: 11dcd089-d487-4253-82e9-7ad783dfa708 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-rw-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22a7382f476a3340_train_data.json ds_type: json format: custom path: /workspace/input_data/22a7382f476a3340_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/11dcd089-d487-4253-82e9-7ad783dfa708 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/22a7382f476a3340_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a1cb988f-7957-4a81-8cc4-c6f235d31d98 wandb_project: Birthday-SN56-31-Gradients-On-Demand wandb_run: your_name wandb_runid: a1cb988f-7957-4a81-8cc4-c6f235d31d98 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 11dcd089-d487-4253-82e9-7ad783dfa708 This model is a fine-tuned version of [tiiuae/falcon-rw-1b](https://huggingface.co/tiiuae/falcon-rw-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.8564 | 0.0002 | 1 | 1.7015 | | 6.6635 | 0.0031 | 13 | 1.5675 | | 6.2159 | 0.0063 | 26 | 1.4803 | | 6.9377 | 0.0094 | 39 | 1.4466 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
havinash-ai/bd58355c-4c4e-4745-a761-1e0f20125940
havinash-ai
2025-01-29T21:28:22Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-rw-1b", "base_model:adapter:tiiuae/falcon-rw-1b", "license:apache-2.0", "region:us" ]
null
2025-01-29T21:25:30Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-rw-1b tags: - axolotl - generated_from_trainer model-index: - name: bd58355c-4c4e-4745-a761-1e0f20125940 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-rw-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22a7382f476a3340_train_data.json ds_type: json format: custom path: /workspace/input_data/22a7382f476a3340_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/bd58355c-4c4e-4745-a761-1e0f20125940 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/22a7382f476a3340_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a1cb988f-7957-4a81-8cc4-c6f235d31d98 wandb_project: Birthday-SN56-9-Gradients-On-Demand wandb_run: your_name wandb_runid: a1cb988f-7957-4a81-8cc4-c6f235d31d98 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # bd58355c-4c4e-4745-a761-1e0f20125940 This model is a fine-tuned version of [tiiuae/falcon-rw-1b](https://huggingface.co/tiiuae/falcon-rw-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.7015 | | 6.4132 | 0.0031 | 13 | 1.5510 | | 6.2296 | 0.0063 | 26 | 1.4777 | | 5.6494 | 0.0094 | 39 | 1.4494 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
auxyus/7636ec70-bbaa-405f-a478-d785907d5bad
auxyus
2025-01-29T21:27:54Z
6
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloom-560m", "base_model:adapter:bigscience/bloom-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-01-29T20:58:45Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - axolotl - generated_from_trainer model-index: - name: 7636ec70-bbaa-405f-a478-d785907d5bad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloom-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2b415d885d8564e3_train_data.json ds_type: json format: custom path: /workspace/input_data/2b415d885d8564e3_train_data.json type: field_instruction: title field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: auxyus/7636ec70-bbaa-405f-a478-d785907d5bad hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/2b415d885d8564e3_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 2d6f1768-4460-485b-b2ff-a088d6f2fd46 wandb_project: Gradients-On-Two wandb_run: your_name wandb_runid: 2d6f1768-4460-485b-b2ff-a088d6f2fd46 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7636ec70-bbaa-405f-a478-d785907d5bad This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0008 | 1 | 3.4036 | | 13.766 | 0.0068 | 9 | 3.3668 | | 13.0846 | 0.0136 | 18 | 3.3128 | | 12.9224 | 0.0203 | 27 | 3.2826 | | 13.0051 | 0.0271 | 36 | 3.2667 | | 12.8394 | 0.0339 | 45 | 3.2547 | | 13.1302 | 0.0407 | 54 | 3.2464 | | 13.0954 | 0.0475 | 63 | 3.2405 | | 13.0834 | 0.0543 | 72 | 3.2376 | | 12.9475 | 0.0610 | 81 | 3.2362 | | 13.0786 | 0.0678 | 90 | 3.2351 | | 12.9923 | 0.0746 | 99 | 3.2345 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
chatpig/llava-llama3
chatpig
2025-01-29T21:27:48Z
666
1
null
[ "gguf", "gguf-node", "image-to-text", "dataset:Lin-Chen/ShareGPT4V", "base_model:xtuner/llava-llama-3-8b-v1_1-gguf", "base_model:quantized:xtuner/llava-llama-3-8b-v1_1-gguf", "endpoints_compatible", "region:us", "conversational" ]
image-to-text
2025-01-29T09:44:14Z
--- datasets: - Lin-Chen/ShareGPT4V base_model: - xtuner/llava-llama-3-8b-v1_1-gguf pipeline_tag: image-to-text tags: - gguf-node --- # llava-llama3 - base model from [xtuner](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-gguf) - use it as kind of text encoder (drag it to the folder ./models/text_encoders)
great0001/2219e2c3-7151-44a2-a556-890f5fe98bc8
great0001
2025-01-29T21:27:32Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-rw-1b", "base_model:adapter:tiiuae/falcon-rw-1b", "license:apache-2.0", "region:us" ]
null
2025-01-29T21:24:32Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-rw-1b tags: - axolotl - generated_from_trainer model-index: - name: 2219e2c3-7151-44a2-a556-890f5fe98bc8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-rw-1b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 22a7382f476a3340_train_data.json ds_type: json format: custom path: /workspace/input_data/22a7382f476a3340_train_data.json type: field_instruction: question field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/2219e2c3-7151-44a2-a556-890f5fe98bc8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/22a7382f476a3340_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a1cb988f-7957-4a81-8cc4-c6f235d31d98 wandb_project: Birthday-SN56-14-Gradients-On-Demand wandb_run: your_name wandb_runid: a1cb988f-7957-4a81-8cc4-c6f235d31d98 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2219e2c3-7151-44a2-a556-890f5fe98bc8 This model is a fine-tuned version of [tiiuae/falcon-rw-1b](https://huggingface.co/tiiuae/falcon-rw-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.8564 | 0.0002 | 1 | 1.7015 | | 6.6644 | 0.0031 | 13 | 1.5672 | | 6.2165 | 0.0063 | 26 | 1.4799 | | 6.9512 | 0.0094 | 39 | 1.4462 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
goktug14/bert_imdb
goktug14
2025-01-29T21:27:10Z
37
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:stanfordnlp/imdb", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-01-18T18:29:51Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - recall - precision model-index: - name: bert_imdb results: [] datasets: - stanfordnlp/imdb --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_imdb This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3119 - Accuracy: 0.9403 - Recall: 0.9430 - Precision: 0.9379 To acccess my finetuning tutorial you can check the following [repository](https://github.com/GoktugGuvercin/Text-Classification). ## Comparison with SOTA: - DistilBERT 66M: 92.82 - BERT-base + ITPT: 95.63 - BERT-large: 95.49 Reference: [Paperswithcode](https://paperswithcode.com/sota/sentiment-analysis-on-imdb) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| | 0.2099 | 1.0 | 1563 | 0.2456 | 0.9102 | 0.8481 | 0.9683 | | 0.1379 | 2.0 | 3126 | 0.2443 | 0.9274 | 0.8911 | 0.9608 | | 0.0752 | 3.0 | 4689 | 0.2845 | 0.9391 | 0.9509 | 0.9290 | | 0.0352 | 4.0 | 6252 | 0.3119 | 0.9403 | 0.9430 | 0.9379 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
Q-bert/nda-tiny
Q-bert
2025-01-29T21:25:26Z
8
0
transformers
[ "transformers", "safetensors", "nda", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T21:21:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
oldiday/2b6af467-e7ce-4367-bb25-94ec73886d8a
oldiday
2025-01-29T21:25:08Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:oopsung/llama2-7b-n-ox-test-v1", "base_model:adapter:oopsung/llama2-7b-n-ox-test-v1", "region:us" ]
null
2025-01-29T19:32:22Z
--- library_name: peft base_model: oopsung/llama2-7b-n-ox-test-v1 tags: - axolotl - generated_from_trainer model-index: - name: 2b6af467-e7ce-4367-bb25-94ec73886d8a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: oopsung/llama2-7b-n-ox-test-v1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 29cacfcdf8be338c_train_data.json ds_type: json format: custom path: /workspace/input_data/29cacfcdf8be338c_train_data.json type: field_input: dataset field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: oldiday/2b6af467-e7ce-4367-bb25-94ec73886d8a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/29cacfcdf8be338c_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: e3873475-6a24-45c6-8e86-c40b5fdad2bb wandb_project: Gradients-On-Six wandb_run: your_name wandb_runid: e3873475-6a24-45c6-8e86-c40b5fdad2bb warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2b6af467-e7ce-4367-bb25-94ec73886d8a This model is a fine-tuned version of [oopsung/llama2-7b-n-ox-test-v1](https://huggingface.co/oopsung/llama2-7b-n-ox-test-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 2.6758 | | 1.8074 | 0.0045 | 9 | 1.7985 | | 0.8538 | 0.0090 | 18 | 0.9078 | | 0.8675 | 0.0136 | 27 | 0.7126 | | 0.7247 | 0.0181 | 36 | 0.6262 | | 0.6046 | 0.0226 | 45 | 0.5804 | | 0.3735 | 0.0271 | 54 | 0.5503 | | 0.5546 | 0.0317 | 63 | 0.5437 | | 0.4516 | 0.0362 | 72 | 0.5292 | | 0.4243 | 0.0407 | 81 | 0.5223 | | 0.6452 | 0.0452 | 90 | 0.5191 | | 0.6426 | 0.0497 | 99 | 0.5185 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
adammandic87/f357a253-5426-467e-a49a-93f3591cca05
adammandic87
2025-01-29T21:24:12Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-13b-64k", "base_model:adapter:NousResearch/Yarn-Llama-2-13b-64k", "region:us" ]
null
2025-01-29T20:46:07Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-13b-64k tags: - axolotl - generated_from_trainer model-index: - name: f357a253-5426-467e-a49a-93f3591cca05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-13b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 68d6de2b31b188fb_train_data.json ds_type: json format: custom path: /workspace/input_data/68d6de2b31b188fb_train_data.json type: field_instruction: text field_output: context format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/f357a253-5426-467e-a49a-93f3591cca05 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/68d6de2b31b188fb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 372666b9-05ad-4f22-9650-1fc0469ec3a8 wandb_project: birthday-sn56-19-Gradients-On-Demand wandb_run: your_name wandb_runid: 372666b9-05ad-4f22-9650-1fc0469ec3a8 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f357a253-5426-467e-a49a-93f3591cca05 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-13b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-13b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | nan | | 12.163 | 0.0005 | 13 | nan | | 6.0278 | 0.0010 | 26 | nan | | 4.1301 | 0.0016 | 39 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thaffggg/78e2f388-2ed6-4eee-b31b-c881681e7b49
thaffggg
2025-01-29T21:21:54Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:adapter:HuggingFaceH4/zephyr-7b-beta", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T19:28:06Z
--- library_name: peft license: mit base_model: HuggingFaceH4/zephyr-7b-beta tags: - axolotl - generated_from_trainer model-index: - name: 78e2f388-2ed6-4eee-b31b-c881681e7b49 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: HuggingFaceH4/zephyr-7b-beta bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d9d67874deecade6_train_data.json ds_type: json format: custom path: /workspace/input_data/d9d67874deecade6_train_data.json type: field_instruction: generated field_output: subtitle format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thaffggg/78e2f388-2ed6-4eee-b31b-c881681e7b49 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/d9d67874deecade6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8d5cb705-4de0-4f05-a1c9-d1ffcf186aee wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8d5cb705-4de0-4f05-a1c9-d1ffcf186aee warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 78e2f388-2ed6-4eee-b31b-c881681e7b49 This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8372 | 0.0038 | 200 | 0.7760 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
hyoo14/DNABERT2_PD
hyoo14
2025-01-29T21:19:39Z
26
0
peft
[ "peft", "bert", "custom_code", "arxiv:1910.09700", "base_model:zhihan1996/DNABERT-2-117M", "base_model:adapter:zhihan1996/DNABERT-2-117M", "region:us" ]
null
2024-10-08T18:56:46Z
--- base_model: zhihan1996/DNABERT-2-117M library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.1
telemauritius7/Navin
telemauritius7
2025-01-29T21:18:49Z
10
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T20:52:52Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Navin --- # Navin <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Navin` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('telemauritius7/Navin', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
nhung03/a03f868b-e3a3-44a3-bea7-3fded1fd8387
nhung03
2025-01-29T21:18:20Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/OpenHermes-2.5-Mistral-7B", "base_model:adapter:unsloth/OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T20:55:44Z
--- library_name: peft license: apache-2.0 base_model: unsloth/OpenHermes-2.5-Mistral-7B tags: - axolotl - generated_from_trainer model-index: - name: a03f868b-e3a3-44a3-bea7-3fded1fd8387 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/OpenHermes-2.5-Mistral-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 39ca5e7349c3502d_train_data.json ds_type: json format: custom path: /workspace/input_data/39ca5e7349c3502d_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/a03f868b-e3a3-44a3-bea7-3fded1fd8387 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/39ca5e7349c3502d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b12378a2-158f-4d8d-a62b-21b892db2bb6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b12378a2-158f-4d8d-a62b-21b892db2bb6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # a03f868b-e3a3-44a3-bea7-3fded1fd8387 This model is a fine-tuned version of [unsloth/OpenHermes-2.5-Mistral-7B](https://huggingface.co/unsloth/OpenHermes-2.5-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.9295 | 0.1863 | 200 | 1.4083 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso05/1db0546a-93cb-4e9e-939c-02a12191d43b
lesso05
2025-01-29T21:17:16Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T20:49:38Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 1db0546a-93cb-4e9e-939c-02a12191d43b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: true chat_template: llama3 datasets: - data_files: - feb300ac0ab17add_train_data.json ds_type: json format: custom path: /workspace/input_data/feb300ac0ab17add_train_data.json type: field_instruction: premises field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso05/1db0546a-93cb-4e9e-939c-02a12191d43b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/feb300ac0ab17add_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0029dd14-2f28-48f1-ae11-d42662d2b22d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0029dd14-2f28-48f1-ae11-d42662d2b22d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1db0546a-93cb-4e9e-939c-02a12191d43b This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.6322 | 0.0003 | 1 | 5.6657 | | 5.3341 | 0.0013 | 5 | 5.4994 | | 3.8268 | 0.0026 | 10 | 3.2765 | | 0.9462 | 0.0040 | 15 | 0.7347 | | 0.3726 | 0.0053 | 20 | 0.5839 | | 0.4131 | 0.0066 | 25 | 0.5714 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Nisk36/SFT_ojousama_lr5_diffseed
Nisk36
2025-01-29T21:16:08Z
14
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T21:12:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
elloza/mms-tts-mlg-onnx
elloza
2025-01-29T21:13:38Z
27
0
transformers.js
[ "transformers.js", "onnx", "vits", "text-to-audio", "text-to-speech", "base_model:facebook/mms-tts-mlg", "base_model:quantized:facebook/mms-tts-mlg", "region:us" ]
text-to-speech
2025-01-29T19:54:16Z
--- base_model: facebook/mms-tts-mlg library_name: transformers.js pipeline_tag: text-to-speech tags: - text-to-audio --- https://huggingface.co/facebook/mms-tts-mlg with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Generate Malagasy speech with `elloza/mms-tts-mlg`. ```js import { pipeline } from '@xenova/transformers'; // Create a text-to-speech pipeline const synthesizer = await pipeline('text-to-speech', 'elloza/mms-tts-mlg', { quantized: false, // Remove this line to use the quantized version (default) }); // Generate speech const output = await synthesizer('manao ahoana'); console.log(output); // { // audio: Float32Array(10752) [ ... ], // sampling_rate: 16000 // } ``` Optionally, save the audio to a wav file (Node.js): ```js import wavefile from 'wavefile'; import fs from 'fs'; const wav = new wavefile.WaveFile(); wav.fromScratch(1, output.sampling_rate, '32f', output.audio); fs.writeFileSync('out.wav', wav.toBuffer()); ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
biustnaspust/puszek37
biustnaspust
2025-01-29T21:12:50Z
29
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T21:08:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mrferr3t/4a8f3ba9-92bb-4aa4-b8db-364a0fb533f3
mrferr3t
2025-01-29T21:10:44Z
12
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloom-560m", "base_model:adapter:bigscience/bloom-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-01-29T21:00:29Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - axolotl - generated_from_trainer model-index: - name: 4a8f3ba9-92bb-4aa4-b8db-364a0fb533f3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloom-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2b415d885d8564e3_train_data.json ds_type: json format: custom path: /workspace/input_data/2b415d885d8564e3_train_data.json type: field_instruction: title field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/4a8f3ba9-92bb-4aa4-b8db-364a0fb533f3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/2b415d885d8564e3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2d6f1768-4460-485b-b2ff-a088d6f2fd46 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2d6f1768-4460-485b-b2ff-a088d6f2fd46 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4a8f3ba9-92bb-4aa4-b8db-364a0fb533f3 This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 13.7556 | 0.0002 | 1 | 3.4074 | | 13.5734 | 0.0006 | 3 | 3.4061 | | 13.9745 | 0.0011 | 6 | 3.3954 | | 14.7185 | 0.0017 | 9 | 3.3715 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
JacksonBrune/29faf005-4ca3-4728-b74f-2129aea0933c
JacksonBrune
2025-01-29T21:05:02Z
6
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:fxmarty/really-tiny-falcon-testing", "base_model:adapter:fxmarty/really-tiny-falcon-testing", "license:mit", "region:us" ]
null
2025-01-29T21:04:00Z
--- library_name: peft license: mit base_model: fxmarty/really-tiny-falcon-testing tags: - axolotl - generated_from_trainer model-index: - name: 29faf005-4ca3-4728-b74f-2129aea0933c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/really-tiny-falcon-testing bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c1300f5c75a79f6d_train_data.json ds_type: json format: custom path: /workspace/input_data/c1300f5c75a79f6d_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: JacksonBrune/29faf005-4ca3-4728-b74f-2129aea0933c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/c1300f5c75a79f6d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2a7bca67-9f98-441b-be8c-f6a57f91d9bd wandb_project: Birthday-SN56-12-Gradients-On-Demand wandb_run: your_name wandb_runid: 2a7bca67-9f98-441b-be8c-f6a57f91d9bd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 29faf005-4ca3-4728-b74f-2129aea0933c This model is a fine-tuned version of [fxmarty/really-tiny-falcon-testing](https://huggingface.co/fxmarty/really-tiny-falcon-testing) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.9183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 44.5365 | 0.0001 | 1 | 11.1310 | | 44.3385 | 0.0011 | 13 | 11.0681 | | 43.8177 | 0.0022 | 26 | 10.9620 | | 43.7135 | 0.0033 | 39 | 10.9183 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
silviasapora/gemma-7b-silvia-shuffled-5e-5-05-v5
silviasapora
2025-01-29T21:02:52Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma", "text-generation", "generated_from_trainer", "alignment-handbook", "trl", "orpo", "conversational", "dataset:silviasapora/argilla-mix-low", "arxiv:2403.07691", "base_model:google/gemma-7b", "base_model:finetune:google/gemma-7b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T01:59:27Z
--- base_model: google/gemma-7b datasets: - silviasapora/argilla-mix-low library_name: transformers model_name: google/gemma-7b tags: - generated_from_trainer - alignment-handbook - trl - orpo licence: license --- # Model Card for google/gemma-7b This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the [['silviasapora/argilla-mix-low']](https://huggingface.co/datasets/['silviasapora/argilla-mix-low']) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="silviasapora/gemma-7b-silvia-shuffled-5e-5-05-v5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/silvias/huggingface/runs/ur9d6pk3) This model was trained with ORPO, a method introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691). ### Framework versions - TRL: 0.13.0 - Transformers: 4.48.1 - Pytorch: 2.5.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite ORPO as: ```bibtex @article{hong2024orpo, title = {{ORPO: Monolithic Preference Optimization without Reference Model}}, author = {Jiwoo Hong and Noah Lee and James Thorne}, year = 2024, eprint = {arXiv:2403.07691} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
anjali-mudgal/Medical-COT-DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit-10000-example
anjali-mudgal
2025-01-29T21:02:47Z
6
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit", "base_model:finetune:unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T20:32:18Z
--- base_model: unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** anjali-mudgal - **License:** apache-2.0 - **Finetuned from model :** unsloth/DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
great0001/162722cf-e5f5-4e47-88e5-71b619ed0bba
great0001
2025-01-29T21:02:45Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "license:other", "region:us" ]
null
2025-01-29T20:58:45Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 162722cf-e5f5-4e47-88e5-71b619ed0bba results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - feb300ac0ab17add_train_data.json ds_type: json format: custom path: /workspace/input_data/feb300ac0ab17add_train_data.json type: field_instruction: premises field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/162722cf-e5f5-4e47-88e5-71b619ed0bba hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/feb300ac0ab17add_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0029dd14-2f28-48f1-ae11-d42662d2b22d wandb_project: Birthday-SN56-14-Gradients-On-Demand wandb_run: your_name wandb_runid: 0029dd14-2f28-48f1-ae11-d42662d2b22d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 162722cf-e5f5-4e47-88e5-71b619ed0bba This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.7135 | 0.0003 | 1 | 5.6963 | | 2.3065 | 0.0034 | 13 | 1.5436 | | 0.4583 | 0.0069 | 26 | 0.5127 | | 0.3496 | 0.0103 | 39 | 0.4280 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nathanialhunt/812a876b-00a9-4828-9247-97abfc337cbf
nathanialhunt
2025-01-29T21:02:07Z
6
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloom-560m", "base_model:adapter:bigscience/bloom-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-01-29T20:59:00Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - axolotl - generated_from_trainer model-index: - name: 812a876b-00a9-4828-9247-97abfc337cbf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloom-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2b415d885d8564e3_train_data.json ds_type: json format: custom path: /workspace/input_data/2b415d885d8564e3_train_data.json type: field_instruction: title field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/812a876b-00a9-4828-9247-97abfc337cbf hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/2b415d885d8564e3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2d6f1768-4460-485b-b2ff-a088d6f2fd46 wandb_project: Birthday-SN56-5-Gradients-On-Demand wandb_run: your_name wandb_runid: 2d6f1768-4460-485b-b2ff-a088d6f2fd46 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 812a876b-00a9-4828-9247-97abfc337cbf This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 3.4074 | | 13.7599 | 0.0024 | 13 | 3.3288 | | 13.0855 | 0.0049 | 26 | 3.2850 | | 13.4018 | 0.0073 | 39 | 3.2716 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
guyschepers/guy1
guyschepers
2025-01-29T21:01:37Z
25
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T20:49:19Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: guy --- # Guy1 <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `guy` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('guyschepers/guy1', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mradermacher/orca_mini_v3_70b-i1-GGUF
mradermacher
2025-01-29T21:00:10Z
608
0
transformers
[ "transformers", "gguf", "en", "dataset:psmathur/orca_mini_v1_dataset", "dataset:ehartford/dolphin", "base_model:pankajmathur/orca_mini_v3_70b", "base_model:quantized:pankajmathur/orca_mini_v3_70b", "license:other", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-01-29T09:54:29Z
--- base_model: pankajmathur/orca_mini_v3_70b datasets: - psmathur/orca_mini_v1_dataset - ehartford/dolphin language: - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/pankajmathur/orca_mini_v3_70b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-IQ1_S.gguf) | i1-IQ1_S | 14.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-IQ1_M.gguf) | i1-IQ1_M | 16.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 18.4 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 20.4 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-IQ2_S.gguf) | i1-IQ2_S | 21.5 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-IQ2_M.gguf) | i1-IQ2_M | 23.3 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 23.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q2_K.gguf) | i1-Q2_K | 25.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 26.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.4 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-IQ3_S.gguf) | i1-IQ3_S | 30.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 30.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-IQ3_M.gguf) | i1-IQ3_M | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 36.9 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q4_0.gguf) | i1-Q4_0 | 39.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q4_1.gguf) | i1-Q4_1 | 43.3 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 47.6 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 48.9 | | | [PART 1](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF/resolve/main/orca_mini_v3_70b.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 56.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF
mradermacher
2025-01-29T20:59:53Z
220
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "sft", "en", "base_model:HuggingFaceTB/SmolLM2-MagpieUltraPlus-MathInstruct", "base_model:quantized:HuggingFaceTB/SmolLM2-MagpieUltraPlus-MathInstruct", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T20:25:27Z
--- base_model: HuggingFaceTB/SmolLM2-MagpieUltraPlus-MathInstruct language: - en library_name: transformers model_name: SmolLM2-MagpieUltraPlus-MathInstruct quantized_by: mradermacher tags: - generated_from_trainer - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/HuggingFaceTB/SmolLM2-MagpieUltraPlus-MathInstruct <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.Q4_K_S.gguf) | Q4_K_S | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.Q5_K_M.gguf) | Q5_K_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/SmolLM2-MagpieUltraPlus-MathInstruct-GGUF/resolve/main/SmolLM2-MagpieUltraPlus-MathInstruct.f16.gguf) | f16 | 3.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
nathanialhunt/0e985a1d-7c10-4154-9f47-fc4eee4d351e
nathanialhunt
2025-01-29T20:59:49Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "license:other", "region:us" ]
null
2025-01-29T20:56:17Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 0e985a1d-7c10-4154-9f47-fc4eee4d351e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - feb300ac0ab17add_train_data.json ds_type: json format: custom path: /workspace/input_data/feb300ac0ab17add_train_data.json type: field_instruction: premises field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/0e985a1d-7c10-4154-9f47-fc4eee4d351e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/feb300ac0ab17add_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0029dd14-2f28-48f1-ae11-d42662d2b22d wandb_project: Birthday-SN56-24-Gradients-On-Demand wandb_run: your_name wandb_runid: 0029dd14-2f28-48f1-ae11-d42662d2b22d warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0e985a1d-7c10-4154-9f47-fc4eee4d351e This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 5.6963 | | 4.7372 | 0.0034 | 13 | 0.7201 | | 0.9063 | 0.0069 | 26 | 0.4865 | | 0.4059 | 0.0103 | 39 | 0.4272 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso08/856b6c9e-5f6a-48fb-9b88-b8475f89fdfe
lesso08
2025-01-29T20:58:06Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "license:other", "region:us" ]
null
2025-01-29T20:50:05Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 856b6c9e-5f6a-48fb-9b88-b8475f89fdfe results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - feb300ac0ab17add_train_data.json ds_type: json format: custom path: /workspace/input_data/feb300ac0ab17add_train_data.json type: field_instruction: premises field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso08/856b6c9e-5f6a-48fb-9b88-b8475f89fdfe hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/feb300ac0ab17add_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0029dd14-2f28-48f1-ae11-d42662d2b22d wandb_project: multi wandb_run: your_name wandb_runid: 0029dd14-2f28-48f1-ae11-d42662d2b22d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 856b6c9e-5f6a-48fb-9b88-b8475f89fdfe This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1763 | 0.4235 | 200 | 0.1778 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/d31053de-ecd2-4436-9f66-a7e2f2209204
daniel40
2025-01-29T20:54:32Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "license:other", "region:us" ]
null
2025-01-29T20:50:10Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: d31053de-ecd2-4436-9f66-a7e2f2209204 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - feb300ac0ab17add_train_data.json ds_type: json format: custom path: /workspace/input_data/feb300ac0ab17add_train_data.json type: field_instruction: premises field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/d31053de-ecd2-4436-9f66-a7e2f2209204 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/feb300ac0ab17add_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0029dd14-2f28-48f1-ae11-d42662d2b22d wandb_project: Birthday-SN56-31-Gradients-On-Demand wandb_run: your_name wandb_runid: 0029dd14-2f28-48f1-ae11-d42662d2b22d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d31053de-ecd2-4436-9f66-a7e2f2209204 This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.7135 | 0.0003 | 1 | 5.6963 | | 2.28 | 0.0034 | 13 | 1.4760 | | 0.4659 | 0.0069 | 26 | 0.5132 | | 0.3578 | 0.0103 | 39 | 0.4317 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
great0001/9e703772-50d2-4e2d-9e25-35fe2a771a9a
great0001
2025-01-29T20:54:01Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "license:other", "region:us" ]
null
2025-01-29T20:49:59Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9e703772-50d2-4e2d-9e25-35fe2a771a9a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - feb300ac0ab17add_train_data.json ds_type: json format: custom path: /workspace/input_data/feb300ac0ab17add_train_data.json type: field_instruction: premises field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/9e703772-50d2-4e2d-9e25-35fe2a771a9a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/feb300ac0ab17add_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0029dd14-2f28-48f1-ae11-d42662d2b22d wandb_project: Mine-SN56-20-Gradients-On-Demand wandb_run: your_name wandb_runid: 0029dd14-2f28-48f1-ae11-d42662d2b22d warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9e703772-50d2-4e2d-9e25-35fe2a771a9a This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 5.6963 | | 3.9228 | 0.0017 | 13 | 0.5532 | | 0.6018 | 0.0034 | 26 | 0.4488 | | 0.4565 | 0.0052 | 39 | 0.4468 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
robiual-awal/845e3982-5c21-4396-b106-b21576f01e86
robiual-awal
2025-01-29T20:53:12Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-3B-Instruct", "license:other", "region:us" ]
null
2025-01-29T20:49:24Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 845e3982-5c21-4396-b106-b21576f01e86 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - feb300ac0ab17add_train_data.json ds_type: json format: custom path: /workspace/input_data/feb300ac0ab17add_train_data.json type: field_instruction: premises field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/845e3982-5c21-4396-b106-b21576f01e86 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/feb300ac0ab17add_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0029dd14-2f28-48f1-ae11-d42662d2b22d wandb_project: Birthday-SN56-29-Gradients-On-Demand wandb_run: your_name wandb_runid: 0029dd14-2f28-48f1-ae11-d42662d2b22d warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 845e3982-5c21-4396-b106-b21576f01e86 This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 5.6963 | | 4.7246 | 0.0034 | 13 | 0.7165 | | 0.9182 | 0.0069 | 26 | 0.4837 | | 0.4025 | 0.0103 | 39 | 0.4234 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nlpguy/Lion-Lamarck-v.1.1.0
nlpguy
2025-01-29T20:52:50Z
22
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2408.07990", "base_model:CultriX/Qwen2.5-14B-Wernicke", "base_model:merge:CultriX/Qwen2.5-14B-Wernicke", "base_model:arcee-ai/SuperNova-Medius", "base_model:merge:arcee-ai/SuperNova-Medius", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", "base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Qwen-14B", "base_model:sometimesanotion/Lamarck-14B-v0.7", "base_model:merge:sometimesanotion/Lamarck-14B-v0.7", "base_model:sometimesanotion/Qwen2.5-14B-Vimarckoso-v3", "base_model:merge:sometimesanotion/Qwen2.5-14B-Vimarckoso-v3", "base_model:sometimesanotion/Qwenvergence-14B-v10-DS", "base_model:merge:sometimesanotion/Qwenvergence-14B-v10-DS", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T20:41:21Z
--- base_model: - CultriX/Qwen2.5-14B-Wernicke - arcee-ai/SuperNova-Medius - sometimesanotion/Qwen2.5-14B-Vimarckoso-v3 - deepseek-ai/DeepSeek-R1-Distill-Qwen-14B - sometimesanotion/Lamarck-14B-v0.7 - sometimesanotion/Qwenvergence-14B-v10-DS library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [CultriX/Qwen2.5-14B-Wernicke](https://huggingface.co/CultriX/Qwen2.5-14B-Wernicke) as a base. ### Models Merged The following models were included in the merge: * [arcee-ai/SuperNova-Medius](https://huggingface.co/arcee-ai/SuperNova-Medius) * [sometimesanotion/Qwen2.5-14B-Vimarckoso-v3](https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3) * [deepseek-ai/DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) * [sometimesanotion/Lamarck-14B-v0.7](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.7) * [sometimesanotion/Qwenvergence-14B-v10-DS](https://huggingface.co/sometimesanotion/Qwenvergence-14B-v10-DS) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: sometimesanotion/Lamarck-14B-v0.7 parameters: select_topk: 1.0 - model: arcee-ai/SuperNova-Medius parameters: select_topk: 0.003125 - model: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3 parameters: select_topk: 0.00625 - model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B parameters: select_topk: 0.003125 - model: sometimesanotion/Qwenvergence-14B-v10-DS parameters: select_topk: 0.275 merge_method: sce base_model: CultriX/Qwen2.5-14B-Wernicke tokenizer: source: sometimesanotion/Lamarck-14B-v0.7 dtype: float32 out_dtype: bfloat16 ```
Gwenn-LR/whisper-tiny
Gwenn-LR
2025-01-29T20:51:15Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-01-12T19:22:28Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.31030228254164094 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5900 - Wer Ortho: 0.3103 - Wer: 0.3103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 500 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:| | 1.7824 | 1.7857 | 50 | 1.0732 | 0.4565 | 0.4565 | | 0.3528 | 3.5714 | 100 | 0.4932 | 0.3745 | 0.3745 | | 0.1313 | 5.3571 | 150 | 0.5215 | 0.3430 | 0.3430 | | 0.035 | 7.1429 | 200 | 0.5468 | 0.3387 | 0.3387 | | 0.0103 | 8.9286 | 250 | 0.5900 | 0.3103 | 0.3103 | | 0.0085 | 10.7143 | 300 | 0.6345 | 0.3307 | 0.3307 | | 0.009 | 12.5 | 350 | 0.6771 | 0.3418 | 0.3418 | | 0.0137 | 14.2857 | 400 | 0.6456 | 0.3374 | 0.3374 | | 0.0138 | 16.0714 | 450 | 0.6171 | 0.3294 | 0.3294 | | 0.0151 | 17.8571 | 500 | 0.7379 | 0.4312 | 0.4312 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
mrferr3t/ed018e6e-1914-43db-895e-5845e4253d63
mrferr3t
2025-01-29T20:48:37Z
8
0
peft
[ "peft", "safetensors", "codegen", "axolotl", "generated_from_trainer", "custom_code", "base_model:katuni4ka/tiny-random-codegen2", "base_model:adapter:katuni4ka/tiny-random-codegen2", "region:us" ]
null
2025-01-29T20:47:37Z
--- library_name: peft base_model: katuni4ka/tiny-random-codegen2 tags: - axolotl - generated_from_trainer model-index: - name: ed018e6e-1914-43db-895e-5845e4253d63 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-codegen2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - be2d29ebd515b9c4_train_data.json ds_type: json format: custom path: /workspace/input_data/be2d29ebd515b9c4_train_data.json type: field_instruction: query field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/ed018e6e-1914-43db-895e-5845e4253d63 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 11 micro_batch_size: 2 mlflow_experiment_name: /tmp/be2d29ebd515b9c4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b495c507-2dae-49e6-8b77-3c7142cce8dc wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b495c507-2dae-49e6-8b77-3c7142cce8dc warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ed018e6e-1914-43db-895e-5845e4253d63 This model is a fine-tuned version of [katuni4ka/tiny-random-codegen2](https://huggingface.co/katuni4ka/tiny-random-codegen2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 43.4091 | 0.0002 | 1 | 10.8505 | | 43.3601 | 0.0005 | 3 | 10.8504 | | 43.3598 | 0.0010 | 6 | 10.8498 | | 43.3989 | 0.0015 | 9 | 10.8489 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
graelo/DeepSeek-R1-Distill-Qwen-32B-AWQ
graelo
2025-01-29T20:47:54Z
16
0
null
[ "safetensors", "qwen2", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "license:apache-2.0", "4-bit", "awq", "region:us" ]
null
2025-01-29T20:43:39Z
--- license: apache-2.0 base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --- Quantized from [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) down to 4 bits, GEMM.
nttx/7ddcc99e-1a3e-4772-9477-b9f789771f6a
nttx
2025-01-29T20:45:11Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M-Instruct", "base_model:adapter:unsloth/SmolLM2-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T20:42:47Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 7ddcc99e-1a3e-4772-9477-b9f789771f6a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M-Instruct bf16: auto chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 20d8bc52992f4589_train_data.json ds_type: json format: custom path: /workspace/input_data/20d8bc52992f4589_train_data.json type: field_instruction: title field_output: summary format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/7ddcc99e-1a3e-4772-9477-b9f789771f6a hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/20d8bc52992f4589_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f4949cdd-193c-4d9e-b503-e9e360323402 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f4949cdd-193c-4d9e-b503-e9e360323402 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7ddcc99e-1a3e-4772-9477-b9f789771f6a This model is a fine-tuned version of [unsloth/SmolLM2-360M-Instruct](https://huggingface.co/unsloth/SmolLM2-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 136 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5959 | 0.9945 | 135 | 1.5558 | | 1.8865 | 1.0018 | 136 | 1.5589 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/b8d4094d-bf81-428f-bc7c-86b6ab650f43
shibajustfor
2025-01-29T20:43:30Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-160m", "base_model:adapter:JackFram/llama-160m", "license:apache-2.0", "region:us" ]
null
2025-01-29T20:40:49Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-160m tags: - axolotl - generated_from_trainer model-index: - name: b8d4094d-bf81-428f-bc7c-86b6ab650f43 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - efb4c503400c2a9e_train_data.json ds_type: json format: custom path: /workspace/input_data/efb4c503400c2a9e_train_data.json type: field_input: narrative field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/b8d4094d-bf81-428f-bc7c-86b6ab650f43 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/efb4c503400c2a9e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f88a2c67-61c0-4967-afee-32770d47baf4 wandb_project: Birthday-SN56-39-Gradients-On-Demand wandb_run: your_name wandb_runid: f88a2c67-61c0-4967-afee-32770d47baf4 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b8d4094d-bf81-428f-bc7c-86b6ab650f43 This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 4.9963 | | 4.4988 | 0.0012 | 13 | 3.9625 | | 4.0577 | 0.0024 | 26 | 3.3235 | | 3.6454 | 0.0036 | 39 | 2.7779 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/orca_mini_v3_70b-GGUF
mradermacher
2025-01-29T20:41:29Z
178
0
transformers
[ "transformers", "gguf", "en", "dataset:psmathur/orca_mini_v1_dataset", "dataset:ehartford/dolphin", "base_model:pankajmathur/orca_mini_v3_70b", "base_model:quantized:pankajmathur/orca_mini_v3_70b", "license:other", "endpoints_compatible", "region:us" ]
null
2025-01-20T09:40:45Z
--- base_model: pankajmathur/orca_mini_v3_70b datasets: - psmathur/orca_mini_v1_dataset - ehartford/dolphin language: - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/pankajmathur/orca_mini_v3_70b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/orca_mini_v3_70b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q2_K.gguf) | Q2_K | 25.6 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q3_K_S.gguf) | Q3_K_S | 30.0 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q3_K_M.gguf) | Q3_K_M | 33.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q3_K_L.gguf) | Q3_K_L | 36.2 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.IQ4_XS.gguf) | IQ4_XS | 37.3 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q4_K_S.gguf) | Q4_K_S | 39.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q4_K_M.gguf) | Q4_K_M | 41.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q5_K_S.gguf) | Q5_K_S | 47.6 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q5_K_M.gguf) | Q5_K_M | 48.9 | | | [PART 1](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q6_K.gguf.part2of2) | Q6_K | 56.7 | very good quality | | [PART 1](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/orca_mini_v3_70b-GGUF/resolve/main/orca_mini_v3_70b.Q8_0.gguf.part2of2) | Q8_0 | 73.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
lesso13/f45a7d96-61c5-4c15-b58a-6a8449d0149c
lesso13
2025-01-29T20:41:25Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:oopsung/llama2-7b-n-ox-test-v1", "base_model:adapter:oopsung/llama2-7b-n-ox-test-v1", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T19:33:31Z
--- library_name: peft base_model: oopsung/llama2-7b-n-ox-test-v1 tags: - axolotl - generated_from_trainer model-index: - name: f45a7d96-61c5-4c15-b58a-6a8449d0149c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: oopsung/llama2-7b-n-ox-test-v1 bf16: auto chat_template: llama3 datasets: - data_files: - 29cacfcdf8be338c_train_data.json ds_type: json format: custom path: /workspace/input_data/29cacfcdf8be338c_train_data.json type: field_input: dataset field_instruction: prompt field_output: completion format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso13/f45a7d96-61c5-4c15-b58a-6a8449d0149c hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/29cacfcdf8be338c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e3873475-6a24-45c6-8e86-c40b5fdad2bb wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e3873475-6a24-45c6-8e86-c40b5fdad2bb warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f45a7d96-61c5-4c15-b58a-6a8449d0149c This model is a fine-tuned version of [oopsung/llama2-7b-n-ox-test-v1](https://huggingface.co/oopsung/llama2-7b-n-ox-test-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0251 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ivangrapher/7f0458e2-64b1-48ff-bad8-5dd2fb86ae79
ivangrapher
2025-01-29T20:38:12Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-160m", "base_model:adapter:JackFram/llama-160m", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T20:28:15Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-160m tags: - axolotl - generated_from_trainer model-index: - name: 7f0458e2-64b1-48ff-bad8-5dd2fb86ae79 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - efb4c503400c2a9e_train_data.json ds_type: json format: custom path: /workspace/input_data/efb4c503400c2a9e_train_data.json type: field_input: narrative field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 256 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: ivangrapher/7f0458e2-64b1-48ff-bad8-5dd2fb86ae79 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 40 micro_batch_size: 2 mlflow_experiment_name: /tmp/efb4c503400c2a9e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 20 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f88a2c67-61c0-4967-afee-32770d47baf4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f88a2c67-61c0-4967-afee-32770d47baf4 warmup_steps: 20 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 7f0458e2-64b1-48ff-bad8-5dd2fb86ae79 This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 3.3881 | | 3.6257 | 0.0002 | 5 | 3.3782 | | 3.1358 | 0.0005 | 10 | 3.2848 | | 3.2651 | 0.0007 | 15 | 3.1270 | | 3.2046 | 0.0009 | 20 | 3.0206 | | 3.0382 | 0.0012 | 25 | 2.9454 | | 2.7765 | 0.0014 | 30 | 2.8926 | | 2.9101 | 0.0016 | 35 | 2.8680 | | 3.0569 | 0.0018 | 40 | 2.8640 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/dda1de64-b6dc-4453-9fe2-32b9e86eebe6
mrferr3t
2025-01-29T20:36:25Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-160m", "base_model:adapter:JackFram/llama-160m", "license:apache-2.0", "region:us" ]
null
2025-01-29T20:31:15Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-160m tags: - axolotl - generated_from_trainer model-index: - name: dda1de64-b6dc-4453-9fe2-32b9e86eebe6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - efb4c503400c2a9e_train_data.json ds_type: json format: custom path: /workspace/input_data/efb4c503400c2a9e_train_data.json type: field_input: narrative field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/dda1de64-b6dc-4453-9fe2-32b9e86eebe6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 22 micro_batch_size: 2 mlflow_experiment_name: /tmp/efb4c503400c2a9e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f88a2c67-61c0-4967-afee-32770d47baf4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f88a2c67-61c0-4967-afee-32770d47baf4 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # dda1de64-b6dc-4453-9fe2-32b9e86eebe6 This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 22 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.7165 | 0.0001 | 1 | 4.9962 | | 4.7915 | 0.0006 | 6 | 4.9266 | | 4.7771 | 0.0011 | 12 | 4.2738 | | 4.1579 | 0.0017 | 18 | 3.9085 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
Lazaro97/detr-resnet-50-dc5-fashionpedia-finetuned
Lazaro97
2025-01-29T20:35:04Z
5
0
transformers
[ "transformers", "safetensors", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50-dc5", "base_model:finetune:facebook/detr-resnet-50-dc5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2025-01-29T19:43:03Z
--- library_name: transformers license: apache-2.0 base_model: facebook/detr-resnet-50-dc5 tags: - generated_from_trainer model-index: - name: detr-resnet-50-dc5-fashionpedia-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50-dc5-fashionpedia-finetuned This model is a fine-tuned version of [facebook/detr-resnet-50-dc5](https://huggingface.co/facebook/detr-resnet-50-dc5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.1+cpu - Datasets 3.1.0 - Tokenizers 0.19.1
0x1202/f4cce54b-b62e-4b0f-8fee-a467dfaf1159
0x1202
2025-01-29T20:34:40Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:JackFram/llama-68m", "base_model:adapter:JackFram/llama-68m", "license:apache-2.0", "region:us" ]
null
2025-01-29T20:29:37Z
--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: f4cce54b-b62e-4b0f-8fee-a467dfaf1159 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - c9824ec84fd2b22d_train_data.json ds_type: json format: custom path: /workspace/input_data/c9824ec84fd2b22d_train_data.json type: field_input: context field_instruction: question field_output: long_answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: 0x1202/f4cce54b-b62e-4b0f-8fee-a467dfaf1159 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/c9824ec84fd2b22d_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 65315679-54f1-4fb8-a8c7-2eefddab0fe0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 65315679-54f1-4fb8-a8c7-2eefddab0fe0 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f4cce54b-b62e-4b0f-8fee-a467dfaf1159 This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.2336 | 0.0002 | 1 | 2.9845 | | 2.7232 | 0.0080 | 50 | 2.3730 | | 2.5613 | 0.0160 | 100 | 2.3438 | | 2.6974 | 0.0239 | 150 | 2.3320 | | 2.7488 | 0.0319 | 200 | 2.3253 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
minhnguyennnnnn/99fa811f-f99f-42b8-b604-f450c039d144
minhnguyennnnnn
2025-01-29T20:34:37Z
5
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-2-Theta-Llama-3-8B", "base_model:adapter:NousResearch/Hermes-2-Theta-Llama-3-8B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T19:38:33Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Hermes-2-Theta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: 99fa811f-f99f-42b8-b604-f450c039d144 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-2-Theta-Llama-3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e15924625f1f4c59_train_data.json ds_type: json format: custom path: /workspace/input_data/e15924625f1f4c59_train_data.json type: field_instruction: INSTRUCTION field_output: RESPONSE format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: minhnguyennnnnn/99fa811f-f99f-42b8-b604-f450c039d144 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/e15924625f1f4c59_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6ed7c6ac-dcfc-4bd7-8673-497f923d29c1 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6ed7c6ac-dcfc-4bd7-8673-497f923d29c1 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 99fa811f-f99f-42b8-b604-f450c039d144 This model is a fine-tuned version of [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7084 | 0.0229 | 200 | 1.8689 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mehmetkeremturkcan/SmollerLM-48M-Instruct-ft-dpo
mehmetkeremturkcan
2025-01-29T20:34:17Z
31
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:trl-lib/ultrafeedback_binarized", "arxiv:2305.18290", "base_model:mehmetkeremturkcan/SmollerLM-48M-Instruct-ft-sft", "base_model:finetune:mehmetkeremturkcan/SmollerLM-48M-Instruct-ft-sft", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T16:44:54Z
--- base_model: mehmetkeremturkcan/SmollerLM-48M-Instruct-ft-sft datasets: trl-lib/ultrafeedback_binarized library_name: transformers model_name: SmollerLM-48M-Instruct-ft-dpo tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for SmollerLM-48M-Instruct-ft-dpo This model is a fine-tuned version of [mehmetkeremturkcan/SmollerLM-48M-Instruct-ft-sft](https://huggingface.co/mehmetkeremturkcan/SmollerLM-48M-Instruct-ft-sft) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="mehmetkeremturkcan/SmollerLM-48M-Instruct-ft-dpo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/mkturkcan/huggingface/runs/c50b941a) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.14.0 - Transformers: 4.46.2 - Pytorch: 2.5.1 - Datasets: 3.2.0 - Tokenizers: 0.20.0 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
biustnaspust/puszek36
biustnaspust
2025-01-29T20:31:11Z
19
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T20:26:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF
mradermacher
2025-01-29T20:25:43Z
648
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:ltn18/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B", "base_model:quantized:ltn18/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-29T19:44:33Z
--- base_model: ltn18/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/ltn18/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.Q5_K_S.gguf) | Q5_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.Q6_K.gguf) | Q6_K | 1.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.Q8_0.gguf) | Q8_0 | 2.0 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-1.5B-Qwen2.5-Math-1.5B.f16.gguf) | f16 | 3.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mamung/e1c7e5e0-0d38-4674-9c2b-04ce5e195a2b
mamung
2025-01-29T20:24:56Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
2025-01-29T20:22:48Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: e1c7e5e0-0d38-4674-9c2b-04ce5e195a2b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2ab021df2db02dce_train_data.json ds_type: json format: custom path: /workspace/input_data/2ab021df2db02dce_train_data.json type: field_instruction: Question field_output: Answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: mamung/e1c7e5e0-0d38-4674-9c2b-04ce5e195a2b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.00015 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/2ab021df2db02dce_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: eddysang wandb_mode: online wandb_name: 949be3b1-1138-4355-a97c-ca8a979a06e0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 949be3b1-1138-4355-a97c-ca8a979a06e0 warmup_steps: 20 weight_decay: 0.01 xformers_attention: false ``` </details><br> # e1c7e5e0-0d38-4674-9c2b-04ce5e195a2b This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0261 | 1 | 11.7571 | | 11.7584 | 0.2353 | 9 | 11.7561 | | 11.7568 | 0.4706 | 18 | 11.7528 | | 11.75 | 0.7059 | 27 | 11.7465 | | 11.7446 | 0.9412 | 36 | 11.7382 | | 11.5807 | 1.1765 | 45 | 11.7303 | | 11.7552 | 1.4118 | 54 | 11.7259 | | 11.6633 | 1.6471 | 63 | 11.7237 | | 11.5911 | 1.8824 | 72 | 11.7225 | | 11.6439 | 2.1176 | 81 | 11.7218 | | 11.9276 | 2.3529 | 90 | 11.7215 | | 11.75 | 2.5882 | 99 | 11.7214 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso03/fce5df92-d9c1-4c40-af26-77b184d66e02
lesso03
2025-01-29T20:23:56Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:llamafactory/tiny-random-Llama-3", "base_model:adapter:llamafactory/tiny-random-Llama-3", "license:apache-2.0", "region:us" ]
null
2025-01-29T20:23:39Z
--- library_name: peft license: apache-2.0 base_model: llamafactory/tiny-random-Llama-3 tags: - axolotl - generated_from_trainer model-index: - name: fce5df92-d9c1-4c40-af26-77b184d66e02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: llamafactory/tiny-random-Llama-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2ab021df2db02dce_train_data.json ds_type: json format: custom path: /workspace/input_data/2ab021df2db02dce_train_data.json type: field_instruction: Question field_output: Answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso03/fce5df92-d9c1-4c40-af26-77b184d66e02 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/2ab021df2db02dce_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 949be3b1-1138-4355-a97c-ca8a979a06e0 wandb_project: multi wandb_run: your_name wandb_runid: 949be3b1-1138-4355-a97c-ca8a979a06e0 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # fce5df92-d9c1-4c40-af26-77b184d66e02 This model is a fine-tuned version of [llamafactory/tiny-random-Llama-3](https://huggingface.co/llamafactory/tiny-random-Llama-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 39 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.7593 | 0.9935 | 38 | 11.7563 | | 20.3703 | 1.0196 | 39 | 11.7563 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Brent1167/potato-lora
Brent1167
2025-01-29T20:23:29Z
18
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T04:30:10Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: potato --- # Potato Lora <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `potato` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Brent1167/potato-lora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
prxy5604/890d88aa-ac6a-4aaf-bbef-297b3aa0af4a
prxy5604
2025-01-29T20:20:04Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M", "base_model:adapter:unsloth/SmolLM-135M", "license:apache-2.0", "region:us" ]
null
2025-01-29T20:14:42Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M tags: - axolotl - generated_from_trainer model-index: - name: 890d88aa-ac6a-4aaf-bbef-297b3aa0af4a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-135M bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - e2382899c197d6f2_train_data.json ds_type: json format: custom path: /workspace/input_data/e2382899c197d6f2_train_data.json type: field_input: Story_ID field_instruction: context field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/890d88aa-ac6a-4aaf-bbef-297b3aa0af4a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/e2382899c197d6f2_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f3a48781-8773-47e9-a6fd-fd794eeaa989 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f3a48781-8773-47e9-a6fd-fd794eeaa989 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 890d88aa-ac6a-4aaf-bbef-297b3aa0af4a This model is a fine-tuned version of [unsloth/SmolLM-135M](https://huggingface.co/unsloth/SmolLM-135M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.1193 | 0.0047 | 1 | 4.4299 | | 3.1592 | 0.2356 | 50 | 3.0928 | | 2.7248 | 0.4711 | 100 | 2.8760 | | 2.7777 | 0.7067 | 150 | 2.7708 | | 2.8684 | 0.9423 | 200 | 2.7516 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nhung01/08785ba5-134d-423b-9dc8-c693b2df242a
nhung01
2025-01-29T20:19:58Z
5
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T19:52:24Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: 08785ba5-134d-423b-9dc8-c693b2df242a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f139bf284ccd53f2_train_data.json ds_type: json format: custom path: /workspace/input_data/f139bf284ccd53f2_train_data.json type: field_input: right_context field_instruction: prompt field_output: groundtruth format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung01/08785ba5-134d-423b-9dc8-c693b2df242a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f139bf284ccd53f2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cae9065f-baf8-489d-bdb5-78c627b7f61e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cae9065f-baf8-489d-bdb5-78c627b7f61e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 08785ba5-134d-423b-9dc8-c693b2df242a This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9954 | 0.6832 | 200 | 1.7887 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nghiatrannnnnn/d3745184-e404-4bce-87b3-d059f9c4c157
nghiatrannnnnn
2025-01-29T20:19:52Z
5
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T19:51:43Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: d3745184-e404-4bce-87b3-d059f9c4c157 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f139bf284ccd53f2_train_data.json ds_type: json format: custom path: /workspace/input_data/f139bf284ccd53f2_train_data.json type: field_input: right_context field_instruction: prompt field_output: groundtruth format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nghiatrannnnnn/d3745184-e404-4bce-87b3-d059f9c4c157 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f139bf284ccd53f2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cae9065f-baf8-489d-bdb5-78c627b7f61e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cae9065f-baf8-489d-bdb5-78c627b7f61e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d3745184-e404-4bce-87b3-d059f9c4c157 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9873 | 0.6832 | 200 | 1.8003 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
gavrilstep/f83c090c-5d36-469e-a9ce-a5791e359c7a
gavrilstep
2025-01-29T20:18:13Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:Intel/neural-chat-7b-v3-3", "base_model:adapter:Intel/neural-chat-7b-v3-3", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T17:15:58Z
--- library_name: peft license: apache-2.0 base_model: Intel/neural-chat-7b-v3-3 tags: - axolotl - generated_from_trainer model-index: - name: f83c090c-5d36-469e-a9ce-a5791e359c7a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Intel/neural-chat-7b-v3-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 50647f9e6e89cbb7_train_data.json ds_type: json format: custom path: /workspace/input_data/50647f9e6e89cbb7_train_data.json type: field_input: ingredients_processed field_instruction: title field_output: directions format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: gavrilstep/f83c090c-5d36-469e-a9ce-a5791e359c7a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 39 micro_batch_size: 2 mlflow_experiment_name: /tmp/50647f9e6e89cbb7_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 21 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c53eddb1-5a0f-4d15-bd00-9389024c7d94 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c53eddb1-5a0f-4d15-bd00-9389024c7d94 warmup_steps: 21 weight_decay: 0.02 xformers_attention: true ``` </details><br> # f83c090c-5d36-469e-a9ce-a5791e359c7a This model is a fine-tuned version of [Intel/neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 21 - training_steps: 39 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | nan | | 0.0 | 0.0002 | 5 | nan | | 0.0 | 0.0004 | 10 | nan | | 0.0 | 0.0006 | 15 | nan | | 0.0 | 0.0008 | 20 | nan | | 0.0 | 0.0010 | 25 | nan | | 0.0 | 0.0012 | 30 | nan | | 0.0 | 0.0014 | 35 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jobs-git/LTX-Video
jobs-git
2025-01-29T20:18:09Z
5
0
diffusers
[ "diffusers", "safetensors", "ltx-video", "text-to-video", "image-to-video", "en", "license:other", "diffusers:LTXPipeline", "region:us" ]
image-to-video
2025-01-29T20:18:08Z
--- tags: - ltx-video - text-to-video - image-to-video pinned: true language: - en license: other --- # LTX-Video Model Card This model card focuses on the model associated with the LTX-Video model, codebase available [here](https://github.com/Lightricks/LTX-Video). LTX-Video is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content. We provide a model for both text-to-video as well as image+text-to-video usecases <img src="./media/trailer.gif" alt="trailer" width="512"> | | | | | |:---:|:---:|:---:|:---:| | ![example1](./media/ltx-video_example_00001.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman with long brown hair and light skin smiles at another woman...</summary>A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.</details> | ![example2](./media/ltx-video_example_00002.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman walks away from a white Jeep parked on a city street at night...</summary>A woman walks away from a white Jeep parked on a city street at night, then ascends a staircase and knocks on a door. The woman, wearing a dark jacket and jeans, walks away from the Jeep parked on the left side of the street, her back to the camera; she walks at a steady pace, her arms swinging slightly by her sides; the street is dimly lit, with streetlights casting pools of light on the wet pavement; a man in a dark jacket and jeans walks past the Jeep in the opposite direction; the camera follows the woman from behind as she walks up a set of stairs towards a building with a green door; she reaches the top of the stairs and turns left, continuing to walk towards the building; she reaches the door and knocks on it with her right hand; the camera remains stationary, focused on the doorway; the scene is captured in real-life footage.</details> | ![example3](./media/ltx-video_example_00003.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman with blonde hair styled up, wearing a black dress...</summary>A woman with blonde hair styled up, wearing a black dress with sequins and pearl earrings, looks down with a sad expression on her face. The camera remains stationary, focused on the woman's face. The lighting is dim, casting soft shadows on her face. The scene appears to be from a movie or TV show.</details> | ![example4](./media/ltx-video_example_00004.gif)<br><details style="max-width: 300px; margin: auto;"><summary>The camera pans over a snow-covered mountain range...</summary>The camera pans over a snow-covered mountain range, revealing a vast expanse of snow-capped peaks and valleys.The mountains are covered in a thick layer of snow, with some areas appearing almost white while others have a slightly darker, almost grayish hue. The peaks are jagged and irregular, with some rising sharply into the sky while others are more rounded. The valleys are deep and narrow, with steep slopes that are also covered in snow. The trees in the foreground are mostly bare, with only a few leaves remaining on their branches. The sky is overcast, with thick clouds obscuring the sun. The overall impression is one of peace and tranquility, with the snow-covered mountains standing as a testament to the power and beauty of nature.</details> | | ![example5](./media/ltx-video_example_00005.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman with light skin, wearing a blue jacket and a black hat...</summary>A woman with light skin, wearing a blue jacket and a black hat with a veil, looks down and to her right, then back up as she speaks; she has brown hair styled in an updo, light brown eyebrows, and is wearing a white collared shirt under her jacket; the camera remains stationary on her face as she speaks; the background is out of focus, but shows trees and people in period clothing; the scene is captured in real-life footage.</details> | ![example6](./media/ltx-video_example_00006.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A man in a dimly lit room talks on a vintage telephone...</summary>A man in a dimly lit room talks on a vintage telephone, hangs up, and looks down with a sad expression. He holds the black rotary phone to his right ear with his right hand, his left hand holding a rocks glass with amber liquid. He wears a brown suit jacket over a white shirt, and a gold ring on his left ring finger. His short hair is neatly combed, and he has light skin with visible wrinkles around his eyes. The camera remains stationary, focused on his face and upper body. The room is dark, lit only by a warm light source off-screen to the left, casting shadows on the wall behind him. The scene appears to be from a movie.</details> | ![example7](./media/ltx-video_example_00007.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A prison guard unlocks and opens a cell door...</summary>A prison guard unlocks and opens a cell door to reveal a young man sitting at a table with a woman. The guard, wearing a dark blue uniform with a badge on his left chest, unlocks the cell door with a key held in his right hand and pulls it open; he has short brown hair, light skin, and a neutral expression. The young man, wearing a black and white striped shirt, sits at a table covered with a white tablecloth, facing the woman; he has short brown hair, light skin, and a neutral expression. The woman, wearing a dark blue shirt, sits opposite the young man, her face turned towards him; she has short blonde hair and light skin. The camera remains stationary, capturing the scene from a medium distance, positioned slightly to the right of the guard. The room is dimly lit, with a single light fixture illuminating the table and the two figures. The walls are made of large, grey concrete blocks, and a metal door is visible in the background. The scene is captured in real-life footage.</details> | ![example8](./media/ltx-video_example_00008.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman with blood on her face and a white tank top...</summary>A woman with blood on her face and a white tank top looks down and to her right, then back up as she speaks. She has dark hair pulled back, light skin, and her face and chest are covered in blood. The camera angle is a close-up, focused on the woman's face and upper torso. The lighting is dim and blue-toned, creating a somber and intense atmosphere. The scene appears to be from a movie or TV show.</details> | | ![example9](./media/ltx-video_example_00009.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A man with graying hair, a beard, and a gray shirt...</summary>A man with graying hair, a beard, and a gray shirt looks down and to his right, then turns his head to the left. The camera angle is a close-up, focused on the man's face. The lighting is dim, with a greenish tint. The scene appears to be real-life footage. Step</details> | ![example10](./media/ltx-video_example_00010.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A clear, turquoise river flows through a rocky canyon...</summary>A clear, turquoise river flows through a rocky canyon, cascading over a small waterfall and forming a pool of water at the bottom.The river is the main focus of the scene, with its clear water reflecting the surrounding trees and rocks. The canyon walls are steep and rocky, with some vegetation growing on them. The trees are mostly pine trees, with their green needles contrasting with the brown and gray rocks. The overall tone of the scene is one of peace and tranquility.</details> | ![example11](./media/ltx-video_example_00011.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A man in a suit enters a room and speaks to two women...</summary>A man in a suit enters a room and speaks to two women sitting on a couch. The man, wearing a dark suit with a gold tie, enters the room from the left and walks towards the center of the frame. He has short gray hair, light skin, and a serious expression. He places his right hand on the back of a chair as he approaches the couch. Two women are seated on a light-colored couch in the background. The woman on the left wears a light blue sweater and has short blonde hair. The woman on the right wears a white sweater and has short blonde hair. The camera remains stationary, focusing on the man as he enters the room. The room is brightly lit, with warm tones reflecting off the walls and furniture. The scene appears to be from a film or television show.</details> | ![example12](./media/ltx-video_example_00012.gif)<br><details style="max-width: 300px; margin: auto;"><summary>The waves crash against the jagged rocks of the shoreline...</summary>The waves crash against the jagged rocks of the shoreline, sending spray high into the air.The rocks are a dark gray color, with sharp edges and deep crevices. The water is a clear blue-green, with white foam where the waves break against the rocks. The sky is a light gray, with a few white clouds dotting the horizon.</details> | | ![example13](./media/ltx-video_example_00013.gif)<br><details style="max-width: 300px; margin: auto;"><summary>The camera pans across a cityscape of tall buildings...</summary>The camera pans across a cityscape of tall buildings with a circular building in the center. The camera moves from left to right, showing the tops of the buildings and the circular building in the center. The buildings are various shades of gray and white, and the circular building has a green roof. The camera angle is high, looking down at the city. The lighting is bright, with the sun shining from the upper left, casting shadows from the buildings. The scene is computer-generated imagery.</details> | ![example14](./media/ltx-video_example_00014.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A man walks towards a window, looks out, and then turns around...</summary>A man walks towards a window, looks out, and then turns around. He has short, dark hair, dark skin, and is wearing a brown coat over a red and gray scarf. He walks from left to right towards a window, his gaze fixed on something outside. The camera follows him from behind at a medium distance. The room is brightly lit, with white walls and a large window covered by a white curtain. As he approaches the window, he turns his head slightly to the left, then back to the right. He then turns his entire body to the right, facing the window. The camera remains stationary as he stands in front of the window. The scene is captured in real-life footage.</details> | ![example15](./media/ltx-video_example_00015.gif)<br><details style="max-width: 300px; margin: auto;"><summary>Two police officers in dark blue uniforms and matching hats...</summary>Two police officers in dark blue uniforms and matching hats enter a dimly lit room through a doorway on the left side of the frame. The first officer, with short brown hair and a mustache, steps inside first, followed by his partner, who has a shaved head and a goatee. Both officers have serious expressions and maintain a steady pace as they move deeper into the room. The camera remains stationary, capturing them from a slightly low angle as they enter. The room has exposed brick walls and a corrugated metal ceiling, with a barred window visible in the background. The lighting is low-key, casting shadows on the officers' faces and emphasizing the grim atmosphere. The scene appears to be from a film or television show.</details> | ![example16](./media/ltx-video_example_00016.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman with short brown hair, wearing a maroon sleeveless top...</summary>A woman with short brown hair, wearing a maroon sleeveless top and a silver necklace, walks through a room while talking, then a woman with pink hair and a white shirt appears in the doorway and yells. The first woman walks from left to right, her expression serious; she has light skin and her eyebrows are slightly furrowed. The second woman stands in the doorway, her mouth open in a yell; she has light skin and her eyes are wide. The room is dimly lit, with a bookshelf visible in the background. The camera follows the first woman as she walks, then cuts to a close-up of the second woman's face. The scene is captured in real-life footage.</details> | ## Model Details - **Developed by:** Lightricks - **Model type:** Diffusion-based text-to-video and image-to-video generation model - **Language(s):** English ## Usage ### Direct use You can use the model for purposes under the [license](https://github.com/Lightricks/LTX-Video/blob/main/LICENSE) ### General tips: * The model works on resolutions that are divisible by 32 and number of frames that are divisible by 8 + 1 (e.g. 257). In case the resolution or number of frames are not divisible by 32 or 8 + 1, the input will be padded with -1 and then cropped to the desired resolution and number of frames. * The model works best on resolutions under 720 x 1280 and number of frames below 257. * Prompts should be in English. The more elaborate the better. Good prompt looks like `The turquoise waves crash against the dark, jagged rocks of the shore, sending white foam spraying into the air. The scene is dominated by the stark contrast between the bright blue water and the dark, almost black rocks. The water is a clear, turquoise color, and the waves are capped with white foam. The rocks are dark and jagged, and they are covered in patches of green moss. The shore is lined with lush green vegetation, including trees and bushes. In the background, there are rolling hills covered in dense forest. The sky is cloudy, and the light is dim.` ### Online demo The model is accessible right away via following links: - [HF Playground](https://huggingface.co/spaces/Lightricks/LTX-Video-Playground) - [Fal.ai text-to-video](https://fal.ai/models/fal-ai/ltx-video) - [Fal.ai image-to-video](https://fal.ai/models/fal-ai/ltx-video/image-to-video) ### ComfyUI To use our model with ComfyUI, please follow the instructions at a dedicated [ComfyUI repo](https://github.com/Lightricks/ComfyUI-LTXVideo/). ### Run locally #### Installation The codebase was tested with Python 3.10.5, CUDA version 12.2, and supports PyTorch >= 2.1.2. ```bash git clone https://github.com/Lightricks/LTX-Video.git cd LTX-Video # create env python -m venv env source env/bin/activate python -m pip install -e .\[inference-script\] ``` Then, download the model from [Hugging Face](https://huggingface.co/Lightricks/LTX-Video) ```python from huggingface_hub import snapshot_download model_path = 'PATH' # The local directory to save downloaded checkpoint snapshot_download("Lightricks/LTX-Video", local_dir=model_path, local_dir_use_symlinks=False, repo_type='model') ``` #### Inference To use our model, please follow the inference code in [inference.py](https://github.com/Lightricks/LTX-Video/blob/main/inference.py): ##### For text-to-video generation: ```bash python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --height HEIGHT --width WIDTH --num_frames NUM_FRAMES --seed SEED ``` ##### For image-to-video generation: ```bash python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --input_image_path IMAGE_PATH --height HEIGHT --width WIDTH --num_frames NUM_FRAMES --seed SEED ``` ### Diffusers 🧨 LTX Video is compatible with the [Diffusers Python library](https://huggingface.co/docs/diffusers/main/en/index). It supports both text-to-video and image-to-video generation. Make sure you install `diffusers` before trying out the examples below. ```bash pip install -U git+https://github.com/huggingface/diffusers ``` Now, you can run the examples below: ```py import torch from diffusers import LTXPipeline from diffusers.utils import export_to_video pipe = LTXPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16) pipe.to("cuda") prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage" negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted" video = pipe( prompt=prompt, negative_prompt=negative_prompt, width=704, height=480, num_frames=161, num_inference_steps=50, ).frames[0] export_to_video(video, "output.mp4", fps=24) ``` For image-to-video: ```py import torch from diffusers import LTXImageToVideoPipeline from diffusers.utils import export_to_video, load_image pipe = LTXImageToVideoPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16) pipe.to("cuda") image = load_image( "https://huggingface.co/datasets/a-r-r-o-w/tiny-meme-dataset-captioned/resolve/main/images/8.png" ) prompt = "A young girl stands calmly in the foreground, looking directly at the camera, as a house fire rages in the background. Flames engulf the structure, with smoke billowing into the air. Firefighters in protective gear rush to the scene, a fire truck labeled '38' visible behind them. The girl's neutral expression contrasts sharply with the chaos of the fire, creating a poignant and emotionally charged scene." negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted" video = pipe( image=image, prompt=prompt, negative_prompt=negative_prompt, width=704, height=480, num_frames=161, num_inference_steps=50, ).frames[0] export_to_video(video, "output.mp4", fps=24) ``` To learn more, check out the [official documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video). Diffusers also supports directly loading from the original LTX checkpoints using the `from_single_file()` method. Check out [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video#loading-single-files) to learn more. ## Limitations - This model is not intended or able to provide factual information. - As a statistical model this checkpoint might amplify existing societal biases. - The model may fail to generate videos that matches the prompts perfectly. - Prompt following is heavily influenced by the prompting-style.
nhoxinh/30c2f95c-3fdb-44ae-b127-89db16262054
nhoxinh
2025-01-29T20:17:27Z
5
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T19:52:26Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: 30c2f95c-3fdb-44ae-b127-89db16262054 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f139bf284ccd53f2_train_data.json ds_type: json format: custom path: /workspace/input_data/f139bf284ccd53f2_train_data.json type: field_input: right_context field_instruction: prompt field_output: groundtruth format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhoxinh/30c2f95c-3fdb-44ae-b127-89db16262054 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/f139bf284ccd53f2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cae9065f-baf8-489d-bdb5-78c627b7f61e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cae9065f-baf8-489d-bdb5-78c627b7f61e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 30c2f95c-3fdb-44ae-b127-89db16262054 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0064 | 0.6832 | 200 | 1.8013 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mlfoundations-dev/llama3_mammoth_dcft_ablation_original_50k
mlfoundations-dev
2025-01-29T20:15:17Z
746
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.1-8B", "base_model:finetune:meta-llama/Llama-3.1-8B", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-24T19:59:32Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B tags: - llama-factory - full - generated_from_trainer model-index: - name: llama3_mammoth_dcft_ablation_original_50k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3_mammoth_dcft_ablation_original_50k This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the mlfoundations-dev/wia_dcft_webinstruct_original_uniform_50k dataset. It achieves the following results on the evaluation set: - Loss: 0.0594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - total_eval_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 1738 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.896 | 7 | 0.0652 | | 1.0796 | 1.96 | 15 | 0.0610 | | 0.9233 | 2.768 | 21 | 0.0594 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
jobs-git/chronos-bolt-base
jobs-git
2025-01-29T20:15:15Z
115
0
null
[ "safetensors", "t5", "time series", "forecasting", "pretrained models", "foundation models", "time series foundation models", "time-series", "time-series-forecasting", "arxiv:1910.10683", "arxiv:2403.07815", "license:apache-2.0", "region:us" ]
time-series-forecasting
2025-01-29T20:15:14Z
--- license: apache-2.0 pipeline_tag: time-series-forecasting tags: - time series - forecasting - pretrained models - foundation models - time series foundation models - time-series --- # Chronos-Bolt⚡ (Base) Chronos-Bolt is a family of pretrained time series forecasting models which can be used for zero-shot forecasting. It is based on the [T5 encoder-decoder architecture](https://arxiv.org/abs/1910.10683) and has been trained on nearly 100 billion time series observations. It chunks the historical time series context into patches of multiple observations, which are then input into the encoder. The decoder then uses these representations to directly generate quantile forecasts across multiple future steps—a method known as direct multi-step forecasting. Chronos-Bolt models are up to 250 times faster and 20 times more memory-efficient than the [original Chronos](https://arxiv.org/abs/2403.07815) models of the same size. The following plot compares the inference time of Chronos-Bolt against the original Chronos models for forecasting 1024 time series with a context length of 512 observations and a prediction horizon of 64 steps. <center> <img src="https://autogluon.s3.amazonaws.com/images/chronos_bolt_speed.svg" width="50%"/> </center> Chronos-Bolt models are not only significantly faster but also more accurate than the original Chronos models. The following plot reports the probabilistic and point forecasting performance of Chronos-Bolt in terms of the [Weighted Quantile Loss (WQL)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-metrics.html#autogluon.timeseries.metrics.WQL) and the [Mean Absolute Scaled Error (MASE)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-metrics.html#autogluon.timeseries.metrics.MASE), respectively, aggregated over 27 datasets (see the [Chronos paper](https://arxiv.org/abs/2403.07815) for details on this benchmark). Remarkably, despite having no prior exposure to these datasets during training, the zero-shot Chronos-Bolt models outperform commonly used statistical models and deep learning models that have been trained on these datasets (highlighted by *). Furthermore, they also perform better than other FMs, denoted by a +, which indicates that these models were pretrained on certain datasets in our benchmark and are not entirely zero-shot. Notably, Chronos-Bolt (Base) also surpasses the original Chronos (Large) model in terms of the forecasting accuracy while being over 600 times faster. <center> <img src="https://autogluon.s3.amazonaws.com/images/chronos_bolt_accuracy.svg" width="80%"/> </center> Chronos-Bolt models are available in the following sizes. <div align="center"> | Model | Parameters | Based on | | ----------------------------------------------------------------------------- | ---------- | ---------------------------------------------------------------------- | | [**chronos-bolt-tiny**](https://huggingface.co/amazon/chronos-bolt-tiny) | 9M | [t5-efficient-tiny](https://huggingface.co/google/t5-efficient-tiny) | | [**chronos-bolt-mini**](https://huggingface.co/amazon/chronos-bolt-mini) | 21M | [t5-efficient-mini](https://huggingface.co/google/t5-efficient-mini) | | [**chronos-bolt-small**](https://huggingface.co/amazon/chronos-bolt-small) | 48M | [t5-efficient-small](https://huggingface.co/google/t5-efficient-small) | | [**chronos-bolt-base**](https://huggingface.co/amazon/chronos-bolt-base) | 205M | [t5-efficient-base](https://huggingface.co/google/t5-efficient-base) | </div> ## Usage with AutoGluon The recommended way of using Chronos for production use cases is through [AutoGluon](https://auto.gluon.ai/stable/index.html), which features effortless fine-tuning, augmenting Chronos models with exogenous information through covariate regressors, ensembling with other statistical and machine learning models, as well as seamless deployments on AWS with SageMaker. Check out the AutoGluon Chronos [tutorial](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-chronos.html). A minimal example showing how to perform zero-shot inference using Chronos-Bolt with AutoGluon: ``` pip install autogluon ``` ```python from autogluon.timeseries import TimeSeriesPredictor, TimeSeriesDataFrame df = TimeSeriesDataFrame("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv") predictor = TimeSeriesPredictor(prediction_length=48).fit( df, hyperparameters={ "Chronos": {"model_path": "amazon/chronos-bolt-base"}, }, ) predictions = predictor.predict(df) ``` ## Usage with inference library Alternatively, you can install the package in the GitHub [companion repo](https://github.com/amazon-science/chronos-forecasting). This is intended for research purposes and provides a minimal interface to Chronos models. Install the library by running: ``` pip install chronos-forecasting ``` A minimal example showing how to perform inference using Chronos-Bolt models: ```python import pandas as pd # requires: pip install pandas import torch from chronos import BaseChronosPipeline pipeline = BaseChronosPipeline.from_pretrained( "amazon/chronos-bolt-base", device_map="cuda", # use "cpu" for CPU inference and "mps" for Apple Silicon torch_dtype=torch.bfloat16, ) df = pd.read_csv( "https://raw.githubusercontent.com/AileenNielsen/TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv" ) # context must be either a 1D tensor, a list of 1D tensors, # or a left-padded 2D tensor with batch as the first dimension # Chronos-Bolt models generate quantile forecasts, so forecast has shape # [num_series, num_quantiles, prediction_length]. forecast = pipeline.predict( context=torch.tensor(df["#Passengers"]), prediction_length=12 ) ``` ## Citation If you find Chronos or Chronos-Bolt models useful for your research, please consider citing the associated [paper](https://arxiv.org/abs/2403.07815): ``` @article{ansari2024chronos, title={Chronos: Learning the Language of Time Series}, author={Ansari, Abdul Fatir and Stella, Lorenzo and Turkmen, Caner and Zhang, Xiyuan, and Mercado, Pedro and Shen, Huibin and Shchur, Oleksandr and Rangapuram, Syama Syndar and Pineda Arango, Sebastian and Kapoor, Shubham and Zschiegner, Jasper and Maddix, Danielle C. and Mahoney, Michael W. and Torkkola, Kari and Gordon Wilson, Andrew and Bohlke-Schneider, Michael and Wang, Yuyang}, journal={Transactions on Machine Learning Research}, issn={2835-8856}, year={2024}, url={https://openreview.net/forum?id=gerNCVqqtR} } ``` ## License This project is licensed under the Apache-2.0 License.
ancient41/8991fc9c-55ce-4b0c-8f57-21bea6fa29b1
ancient41
2025-01-29T20:14:53Z
5
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:adapter:microsoft/Phi-3.5-mini-instruct", "license:mit", "region:us" ]
null
2025-01-29T19:34:04Z
--- library_name: peft license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: 8991fc9c-55ce-4b0c-8f57-21bea6fa29b1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: microsoft/Phi-3.5-mini-instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - eb3f318e5167bb8f_train_data.json ds_type: json format: custom path: /workspace/input_data/eb3f318e5167bb8f_train_data.json type: field_input: question_text field_instruction: system_prompt field_output: orig_answer_texts format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: ancient41/8991fc9c-55ce-4b0c-8f57-21bea6fa29b1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/eb3f318e5167bb8f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9a26b2bc-46d9-4c50-80ee-3f9db3e249d5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9a26b2bc-46d9-4c50-80ee-3f9db3e249d5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8991fc9c-55ce-4b0c-8f57-21bea6fa29b1 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.9568 | 0.0003 | 1 | 1.9723 | | 4.6885 | 0.0148 | 50 | 1.5352 | | 4.4748 | 0.0297 | 100 | 1.4204 | | 3.7392 | 0.0445 | 150 | 1.2910 | | 4.5318 | 0.0594 | 200 | 1.2691 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Lauther/emb-multilingual-e5-large-1e
Lauther
2025-01-29T20:12:44Z
7
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:5220", "loss:CosineSimilarityLoss", "dataset:Lauther/embeddings-train-semantic", "arxiv:1908.10084", "base_model:intfloat/multilingual-e5-large-instruct", "base_model:finetune:intfloat/multilingual-e5-large-instruct", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-01-29T20:11:55Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5220 - loss:CosineSimilarityLoss base_model: intfloat/multilingual-e5-large-instruct widget: - source_sentence: Identify the column that stores the uncertainty value. sentences: - "What is measuring equipment?\nMeasuring equipment refers to the devices that\ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\ \ number for identification.\n- A technical name, such as transmitter, plate,\ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\ \ equipment is assigned to a measurement system, it is given a unique identifier\ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\ \ considered in use in a measurement system.\n- If it does not have a tag, it\ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\ The type of equipment assigned to a measurement system depends on the technology\ \ used, for example:\n1. Differential technology (for gas measurement):\n -\ \ Static pressure transmitters\n - Differential pressure transmitters\n \ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\ - A measurement system can have multiple pieces of equipment.\n- However, a piece\ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\ - The database includes a special table to manage the list of equipment assigned\ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\ \ are searching for operational equipment assigned to a measurement system.\n\ - If a user is looking for spare or unused equipment, they are searching for equipment\ \ not listed in the tagged equipment table.\n- Commonly used when user refers\ \ directly to an \"\"Equipment Tag\"" - 'What is equipment calibration? Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body. Purpose of calibration: The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data. Calibration cycles: There are two main calibration cycles: 1. As-found: Represents the equipment''s measurement accuracy before any adjustments are made. This cycle is almost always implemented. 2. As-left: Represents the equipment''s measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements. Calibration uncertainty: - Uncertainty is included in the results of a calibration. - Calibration uncertainty refers to the margin of error in the device''s measurements, which also affects the uncertainty of the measured variable or magnitude.' - 'What kind of data store an equipment? Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations. Data storage: - The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments. - These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty. - The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error. Accessing the data: - Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments. - The readings are stored in a "variable values" table within the database. Linking variable names: If the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.' - source_sentence: SELECT * FROM EquipmentType LIMIT 1 sentences: - 'What kind of data store an equipment? Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations. Data storage: - The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments. - These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty. - The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error. Accessing the data: - Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments. - The readings are stored in a "variable values" table within the database. Linking variable names: If the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.' - "How does a flow computer generate and store reports?\nA flow computer generates\ \ daily or hourly reports to provide users with operational data. These reports\ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\ \ are linked to a Modbus table. This table contains the names corresponding to\ \ each value in the reports, making it easier to interpret the data." - 'What is a flow computer? A flow computer is a device used in measurement engineering. It collects analog and digital data from flow meters and other sensors. Key features of a flow computer: - It has a unique name, firmware version, and manufacturer information. - It is designed to record and process data such as temperature, pressure, and fluid volume (for gases or oils). Main function: The flow computer sends the collected data to a measurement system. This allows measurement engineers to analyze the data and perform their tasks effectively.' - source_sentence: What tables store measurement system data? sentences: - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." - "What is a measurement system?\nA measurement system, also referred to as a delivery\ \ point, measurement point, or reception point, is used to measure and monitor\ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\ \ systems:\nMeasurement systems are classified based on the stage of the process\ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\ - Appropriation\n- Custody\n- Production Poços" - 'What do measurement equipment measure? Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories. Equipment classification: - Primary meter: Assigned by default to equipments like orifice plates. - Secondary meter: Assigned by default to equipments like transmitters. - Tertiary meter: Used for other types of equipments. Equipment types in the database: The database includes a table listing all equipment types. Examples of equipment types are: - Differential pressure transmitters - RTDs (Resistance Temperature Detectors) - Orifice plates - Multivariable transmitters - Ultrasonic meters Meteorological checks for equipments: Each equipment type is assigned a meteorological check, which can be either: - Calibration: To ensure measurement accuracy. - Inspection: To verify proper functioning. Data storage in tables: The database also includes a separate table for equipment classifications, which are: - Primary meter - Secondary meter - Tertiary meter So, an equipment has equipment types and this types has classifications.' - source_sentence: What is the table structure for equipment types? sentences: - "How does a flow computer generate and store reports?\nA flow computer generates\ \ daily or hourly reports to provide users with operational data. These reports\ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\ \ are linked to a Modbus table. This table contains the names corresponding to\ \ each value in the reports, making it easier to interpret the data." - "What is measuring equipment?\nMeasuring equipment refers to the devices that\ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\ \ number for identification.\n- A technical name, such as transmitter, plate,\ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\ \ equipment is assigned to a measurement system, it is given a unique identifier\ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\ \ considered in use in a measurement system.\n- If it does not have a tag, it\ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\ The type of equipment assigned to a measurement system depends on the technology\ \ used, for example:\n1. Differential technology (for gas measurement):\n -\ \ Static pressure transmitters\n - Differential pressure transmitters\n \ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\ - A measurement system can have multiple pieces of equipment.\n- However, a piece\ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\ - The database includes a special table to manage the list of equipment assigned\ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\ \ are searching for operational equipment assigned to a measurement system.\n\ - If a user is looking for spare or unused equipment, they are searching for equipment\ \ not listed in the tagged equipment table.\n- Commonly used when user refers\ \ directly to an \"\"Equipment Tag\"" - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." - source_sentence: What columns store the uncertainty values? sentences: - "What is a measurement system?\nA measurement system, also referred to as a delivery\ \ point, measurement point, or reception point, is used to measure and monitor\ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\ \ systems:\nMeasurement systems are classified based on the stage of the process\ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\ - Appropriation\n- Custody\n- Production Poços" - 'How are flow computers and measurement systems related? Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer. Database terminology: In the database, this relationship is referred to as: - Meter streams - Meter runs - Sections Storage of the relationship: The relationship between a flow computer and its assigned measurement system is stored in a special table. User context: When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.' - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." datasets: - Lauther/embeddings-train-semantic pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on intfloat/multilingual-e5-large-instruct This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Lauther/emb-multilingual-e5-large-1e") # Run inference sentences = [ 'What columns store the uncertainty values?', 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.', 'What is uncertainty?\nUncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.\n\nTypes of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of magnitudes (variables):\n - Refers to the uncertainty of specific variables, such as temperature or pressure.\n - It is calculated after calibrating a device or obtained from the equipment manufacturer\'s manual.\n - This uncertainty serves as a starting point for further calculations related to the equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated for the overall flow measurement.\n - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of the measurement system. Think of them as the "building blocks."\n- Do not confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty of the measurement system**: Specific to the overall flow measurement.\n\nDatabase storage for uncertainties:\nIn the database, uncertainty calculations are stored in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores the uncertainty values for specific variables (e.g., temperature, pressure).\n\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n- To find the uncertainty of the measurement system, join the measurement systems table with the uncertainty of the measurement system table.\n- To find the uncertainty of a specific variable (magnitude), join the measurement systems table with the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not confuse the two types of uncertainty:\n- If the user requests the uncertainty of the measurement system, use the first join (measurement systems table + uncertainty of the measurement system table).\n- If the user requests the uncertainty of a specific variable (magnitude) in a report, use the second join (measurement systems table + uncertainty of magnitudes table).', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### embeddings-train-semantic * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330) * Size: 5,220 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 8 tokens</li><li>mean: 18.3 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 257.3 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | <code>What is the data type of differential pressure in the measurement system?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> | | <code>What is the structure of the &&&equipment_data&&& table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.35000000000000003</code> | | <code>Find the columns in the flow computer table that identify the flow computer.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### embeddings-train-semantic * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330) * Size: 652 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 652 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 8 tokens</li><li>mean: 17.8 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 120 tokens</li><li>mean: 253.84 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.24</li><li>max: 0.9</li></ul> | * Samples: | sentence1 | sentence2 | score | |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | <code>How can I filter uncertainty reports by equipment tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.09999999999999999</code> | | <code>What is the purpose of the flow_data table?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> | | <code>What is the column name for the report date in the Reports table?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 4 - `per_gpu_eval_batch_size`: 4 - `gradient_accumulation_steps`: 4 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: 4 - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0307 | 10 | 1.4036 | - | | 0.0613 | 20 | 0.3733 | - | | 0.0920 | 30 | 0.2036 | - | | 0.1226 | 40 | 0.1664 | - | | 0.1533 | 50 | 0.1537 | 0.0505 | | 0.1839 | 60 | 0.1255 | - | | 0.2146 | 70 | 0.1204 | - | | 0.2452 | 80 | 0.164 | - | | 0.2759 | 90 | 0.0955 | - | | 0.3065 | 100 | 0.0965 | 0.0225 | | 0.3372 | 110 | 0.1001 | - | | 0.3678 | 120 | 0.0915 | - | | 0.3985 | 130 | 0.0798 | - | | 0.4291 | 140 | 0.0738 | - | | 0.4598 | 150 | 0.098 | 0.0217 | | 0.4904 | 160 | 0.0775 | - | | 0.5211 | 170 | 0.0946 | - | | 0.5517 | 180 | 0.0829 | - | | 0.5824 | 190 | 0.0586 | - | | 0.6130 | 200 | 0.0523 | 0.0264 | | 0.6437 | 210 | 0.0743 | - | | 0.6743 | 220 | 0.0758 | - | | 0.7050 | 230 | 0.0687 | - | | 0.7356 | 240 | 0.0746 | - | | 0.7663 | 250 | 0.0622 | 0.0173 | | 0.7969 | 260 | 0.0522 | - | | 0.8276 | 270 | 0.0628 | - | | 0.8582 | 280 | 0.0535 | - | | 0.8889 | 290 | 0.0797 | - | | 0.9195 | 300 | 0.055 | 0.0169 | | 0.9502 | 310 | 0.0649 | - | | 0.9808 | 320 | 0.0479 | - | ### Framework Versions - Python: 3.11.0 - Sentence Transformers: 3.4.0 - Transformers: 4.48.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
great0001/adbfae2c-bafa-490a-b004-73da82531fd3
great0001
2025-01-29T20:11:40Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "region:us" ]
null
2025-01-29T20:08:51Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: adbfae2c-bafa-490a-b004-73da82531fd3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c4e6804d4a2a7552_train_data.json ds_type: json format: custom path: /workspace/input_data/c4e6804d4a2a7552_train_data.json type: field_input: answer field_instruction: question field_output: answer_summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/adbfae2c-bafa-490a-b004-73da82531fd3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/c4e6804d4a2a7552_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 97665195-034e-4a0e-a46d-17e58782c3fd wandb_project: Birthday-SN56-14-Gradients-On-Demand wandb_run: your_name wandb_runid: 97665195-034e-4a0e-a46d-17e58782c3fd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # adbfae2c-bafa-490a-b004-73da82531fd3 This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8351 | 0.0007 | 1 | 2.2817 | | 1.4166 | 0.0096 | 13 | 1.1271 | | 0.867 | 0.0192 | 26 | 0.8317 | | 0.5852 | 0.0288 | 39 | 0.7430 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shopitalic/vday-gift-card-rafael
shopitalic
2025-01-29T20:11:33Z
40
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T20:11:19Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # vday gift card rafael <Gallery /> ## Model description ## Trigger words You should use `` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/shopitalic/vday-gift-card-rafael/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
mradermacher/MawaredT1-GGUF
mradermacher
2025-01-29T20:11:32Z
400
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "ar", "en", "base_model:MawaredHR/Mawared_T1", "base_model:quantized:MawaredHR/Mawared_T1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-09T06:26:37Z
--- base_model: MawaredHR/Mawared_T1 language: - ar - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MawaredHR/Mawared_T1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/MawaredT1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-GGUF/resolve/main/MawaredT1.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/MawaredT1-i1-GGUF
mradermacher
2025-01-29T20:10:49Z
885
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "ar", "en", "base_model:MawaredHR/Mawared_T1", "base_model:quantized:MawaredHR/Mawared_T1", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-09T08:26:18Z
--- base_model: MawaredHR/Mawared_T1 language: - ar - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/MawaredHR/Mawared_T1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/MawaredT1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/MawaredT1-i1-GGUF/resolve/main/MawaredT1.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
leixa/8614dd60-986d-4502-ac6a-d233d2fe1bc6
leixa
2025-01-29T20:10:29Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-1.5B-Instruct", "base_model:adapter:unsloth/Qwen2-1.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T20:01:39Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8614dd60-986d-4502-ac6a-d233d2fe1bc6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-1.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 694af3ec11ba71f1_train_data.json ds_type: json format: custom path: /workspace/input_data/694af3ec11ba71f1_train_data.json type: field_instruction: prompt field_output: original_chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/8614dd60-986d-4502-ac6a-d233d2fe1bc6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/694af3ec11ba71f1_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 7cfe335c-7747-4974-8b3e-7d1376c9d8f5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7cfe335c-7747-4974-8b3e-7d1376c9d8f5 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8614dd60-986d-4502-ac6a-d233d2fe1bc6 This model is a fine-tuned version of [unsloth/Qwen2-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0027 | 1 | 1.6927 | | 1.7223 | 0.0247 | 9 | 1.6644 | | 1.5611 | 0.0494 | 18 | 1.6076 | | 1.5775 | 0.0741 | 27 | 1.5894 | | 1.5173 | 0.0988 | 36 | 1.5796 | | 1.5583 | 0.1235 | 45 | 1.5720 | | 1.5434 | 0.1481 | 54 | 1.5671 | | 1.5588 | 0.1728 | 63 | 1.5640 | | 1.5692 | 0.1975 | 72 | 1.5615 | | 1.5414 | 0.2222 | 81 | 1.5602 | | 1.6096 | 0.2469 | 90 | 1.5598 | | 1.5132 | 0.2716 | 99 | 1.5596 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibu12/flux-lora-elephant
shibu12
2025-01-29T20:09:00Z
17
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-29T19:34:33Z
--- base_model: black-forest-labs/FLUX.1-dev library_name: diffusers license: other instance_prompt: a <s0><s1> elephant widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Flux DreamBooth LoRA - shibu12/flux-lora-elephant <Gallery /> ## Model description These are shibu12/flux-lora-elephant DreamBooth LoRA weights for black-forest-labs/FLUX.1-dev. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md). Was LoRA for the text encoder enabled? False. Pivotal tuning was enabled: True. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Download model [Download the *.safetensors LoRA](shibu12/flux-lora-elephant/tree/main) in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('shibu12/flux-lora-elephant', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='shibu12/flux-lora-elephant', filename='/home/cr8dl-user/shibu/.cache/flux-lora-elephant_emb.safetensors', repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["t5"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('a <s0><s1> elephant').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
gavrilstep/d44a98d7-61c2-4261-9d72-8421821665b9
gavrilstep
2025-01-29T20:07:45Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:princeton-nlp/Sheared-LLaMA-1.3B", "base_model:adapter:princeton-nlp/Sheared-LLaMA-1.3B", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T20:02:53Z
--- library_name: peft license: apache-2.0 base_model: princeton-nlp/Sheared-LLaMA-1.3B tags: - axolotl - generated_from_trainer model-index: - name: d44a98d7-61c2-4261-9d72-8421821665b9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: princeton-nlp/Sheared-LLaMA-1.3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 83082862772cd8f6_train_data.json ds_type: json format: custom path: /workspace/input_data/83082862772cd8f6_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: gavrilstep/d44a98d7-61c2-4261-9d72-8421821665b9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 39 micro_batch_size: 2 mlflow_experiment_name: /tmp/83082862772cd8f6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 21 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 56fa0ec0-356d-47c4-9549-c0f0e2ab0535 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 56fa0ec0-356d-47c4-9549-c0f0e2ab0535 warmup_steps: 21 weight_decay: 0.02 xformers_attention: true ``` </details><br> # d44a98d7-61c2-4261-9d72-8421821665b9 This model is a fine-tuned version of [princeton-nlp/Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 21 - training_steps: 39 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0008 | 1 | nan | | 0.0 | 0.0042 | 5 | nan | | 0.0 | 0.0084 | 10 | nan | | 0.0 | 0.0125 | 15 | nan | | 0.0 | 0.0167 | 20 | nan | | 0.0 | 0.0209 | 25 | nan | | 0.0 | 0.0251 | 30 | nan | | 0.0 | 0.0292 | 35 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Mawared_GS-GGUF
mradermacher
2025-01-29T20:05:26Z
327
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma2", "trl", "en", "base_model:MawaredHR/Mawared_GS", "base_model:quantized:MawaredHR/Mawared_GS", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-12T10:09:57Z
--- base_model: MawaredHR/Mawared_GS language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - gemma2 - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MawaredHR/Mawared_GS <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.Q3_K_S.gguf) | Q3_K_S | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.Q3_K_M.gguf) | Q3_K_M | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.Q3_K_L.gguf) | Q3_K_L | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.IQ4_XS.gguf) | IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.Q4_K_S.gguf) | Q4_K_S | 5.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.Q4_K_M.gguf) | Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.Q5_K_S.gguf) | Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.Q5_K_M.gguf) | Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.Q6_K.gguf) | Q6_K | 7.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.Q8_0.gguf) | Q8_0 | 9.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Mawared_GS-GGUF/resolve/main/Mawared_GS.f16.gguf) | f16 | 18.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mrferr3t/01ebce7b-bd56-42e8-9504-8a7bb01f5c0a
mrferr3t
2025-01-29T20:05:25Z
6
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "region:us" ]
null
2025-01-29T20:03:31Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: 01ebce7b-bd56-42e8-9504-8a7bb01f5c0a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f139bf284ccd53f2_train_data.json ds_type: json format: custom path: /workspace/input_data/f139bf284ccd53f2_train_data.json type: field_input: right_context field_instruction: prompt field_output: groundtruth format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/01ebce7b-bd56-42e8-9504-8a7bb01f5c0a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 7 micro_batch_size: 2 mlflow_experiment_name: /tmp/f139bf284ccd53f2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cae9065f-baf8-489d-bdb5-78c627b7f61e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cae9065f-baf8-489d-bdb5-78c627b7f61e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 01ebce7b-bd56-42e8-9504-8a7bb01f5c0a This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.0407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.5372 | 0.0034 | 1 | 5.0842 | | 5.1395 | 0.0068 | 2 | 5.0849 | | 4.0026 | 0.0137 | 4 | 5.0797 | | 5.2132 | 0.0205 | 6 | 5.0407 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/4a290634-e2d8-4306-b66c-fdb840c17256
nttx
2025-01-29T20:05:13Z
5
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "base_model:adapter:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "region:us" ]
null
2025-01-29T19:44:44Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/sqlcoder-7b-2 tags: - axolotl - generated_from_trainer model-index: - name: 4a290634-e2d8-4306-b66c-fdb840c17256 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/sqlcoder-7b-2 bf16: auto chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 530c0ca90e2fe049_train_data.json ds_type: json format: custom path: /workspace/input_data/530c0ca90e2fe049_train_data.json type: field_instruction: prompt field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/4a290634-e2d8-4306-b66c-fdb840c17256 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/530c0ca90e2fe049_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1270482e-ec21-4704-98fd-bf2652488e7c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1270482e-ec21-4704-98fd-bf2652488e7c warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4a290634-e2d8-4306-b66c-fdb840c17256 This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4791 | 0.0317 | 200 | 0.3077 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nblinh/aa48d42b-9dc2-4353-a761-5160525c5055
nblinh
2025-01-29T20:02:34Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T19:34:35Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: aa48d42b-9dc2-4353-a761-5160525c5055 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c4e6804d4a2a7552_train_data.json ds_type: json format: custom path: /workspace/input_data/c4e6804d4a2a7552_train_data.json type: field_input: answer field_instruction: question field_output: answer_summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh/aa48d42b-9dc2-4353-a761-5160525c5055 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c4e6804d4a2a7552_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 97665195-034e-4a0e-a46d-17e58782c3fd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 97665195-034e-4a0e-a46d-17e58782c3fd warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # aa48d42b-9dc2-4353-a761-5160525c5055 This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5902 | 0.1478 | 200 | 0.5863 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Lauther/emb-stella_en_400M_v5-2e
Lauther
2025-01-29T20:00:24Z
18
1
sentence-transformers
[ "sentence-transformers", "safetensors", "new", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:5220", "loss:CosineSimilarityLoss", "custom_code", "dataset:Lauther/embeddings-train-semantic", "arxiv:1908.10084", "base_model:NovaSearch/stella_en_400M_v5", "base_model:finetune:NovaSearch/stella_en_400M_v5", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-01-29T19:59:49Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5220 - loss:CosineSimilarityLoss base_model: NovaSearch/stella_en_400M_v5 widget: - source_sentence: Identify the column that stores the uncertainty value. sentences: - "What is measuring equipment?\nMeasuring equipment refers to the devices that\ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\ \ number for identification.\n- A technical name, such as transmitter, plate,\ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\ \ equipment is assigned to a measurement system, it is given a unique identifier\ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\ \ considered in use in a measurement system.\n- If it does not have a tag, it\ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\ The type of equipment assigned to a measurement system depends on the technology\ \ used, for example:\n1. Differential technology (for gas measurement):\n -\ \ Static pressure transmitters\n - Differential pressure transmitters\n \ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\ - A measurement system can have multiple pieces of equipment.\n- However, a piece\ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\ - The database includes a special table to manage the list of equipment assigned\ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\ \ are searching for operational equipment assigned to a measurement system.\n\ - If a user is looking for spare or unused equipment, they are searching for equipment\ \ not listed in the tagged equipment table.\n- Commonly used when user refers\ \ directly to an \"\"Equipment Tag\"" - 'What is equipment calibration? Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body. Purpose of calibration: The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data. Calibration cycles: There are two main calibration cycles: 1. As-found: Represents the equipment''s measurement accuracy before any adjustments are made. This cycle is almost always implemented. 2. As-left: Represents the equipment''s measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements. Calibration uncertainty: - Uncertainty is included in the results of a calibration. - Calibration uncertainty refers to the margin of error in the device''s measurements, which also affects the uncertainty of the measured variable or magnitude.' - 'What kind of data store an equipment? Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations. Data storage: - The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments. - These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty. - The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error. Accessing the data: - Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments. - The readings are stored in a "variable values" table within the database. Linking variable names: If the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.' - source_sentence: SELECT * FROM EquipmentType LIMIT 1 sentences: - 'What kind of data store an equipment? Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations. Data storage: - The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments. - These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty. - The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error. Accessing the data: - Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments. - The readings are stored in a "variable values" table within the database. Linking variable names: If the user needs to know the name of a variable, they must link the data to another table that stores information about the types of variables.' - "How does a flow computer generate and store reports?\nA flow computer generates\ \ daily or hourly reports to provide users with operational data. These reports\ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\ \ are linked to a Modbus table. This table contains the names corresponding to\ \ each value in the reports, making it easier to interpret the data." - 'What is a flow computer? A flow computer is a device used in measurement engineering. It collects analog and digital data from flow meters and other sensors. Key features of a flow computer: - It has a unique name, firmware version, and manufacturer information. - It is designed to record and process data such as temperature, pressure, and fluid volume (for gases or oils). Main function: The flow computer sends the collected data to a measurement system. This allows measurement engineers to analyze the data and perform their tasks effectively.' - source_sentence: What tables store measurement system data? sentences: - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." - "What is a measurement system?\nA measurement system, also referred to as a delivery\ \ point, measurement point, or reception point, is used to measure and monitor\ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\ \ systems:\nMeasurement systems are classified based on the stage of the process\ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\ - Appropriation\n- Custody\n- Production Poços" - 'What do measurement equipment measure? Each equipment measures a physical magnitude, also known as a variable. Based on the type of variable they measure, devices are classified into different categories. Equipment classification: - Primary meter: Assigned by default to equipments like orifice plates. - Secondary meter: Assigned by default to equipments like transmitters. - Tertiary meter: Used for other types of equipments. Equipment types in the database: The database includes a table listing all equipment types. Examples of equipment types are: - Differential pressure transmitters - RTDs (Resistance Temperature Detectors) - Orifice plates - Multivariable transmitters - Ultrasonic meters Meteorological checks for equipments: Each equipment type is assigned a meteorological check, which can be either: - Calibration: To ensure measurement accuracy. - Inspection: To verify proper functioning. Data storage in tables: The database also includes a separate table for equipment classifications, which are: - Primary meter - Secondary meter - Tertiary meter So, an equipment has equipment types and this types has classifications.' - source_sentence: What is the table structure for equipment types? sentences: - "How does a flow computer generate and store reports?\nA flow computer generates\ \ daily or hourly reports to provide users with operational data. These reports\ \ are stored in the flow computer's memory in an organized format.\n\nReport structure:\n\ - Each report includes:\n- Date and time of the data recording.\n- Data recorded\ \ from flow computers.\n\nData storage in tables:\nThe reports are saved in two\ \ tables:\n1. Main table (Index):\n - Stores the date, time, and flow computer\ \ identifier.\n2. Detail table:\n - Stores the measured values associated with\ \ the report.\n\nConnection to the Modbus table:\nThe flow computer's reports\ \ are linked to a Modbus table. This table contains the names corresponding to\ \ each value in the reports, making it easier to interpret the data." - "What is measuring equipment?\nMeasuring equipment refers to the devices that\ \ make up a measurement system. Each piece of equipment has:\n- A unique serial\ \ number for identification.\n- A technical name, such as transmitter, plate,\ \ thermometer, etc.\n\nHow is equipment assigned to a measurement system?\nWhen\ \ equipment is assigned to a measurement system, it is given a unique identifier\ \ called an \"\"Equipment Tag.\"\"\n- If a piece of equipment has a tag, it is\ \ considered in use in a measurement system.\n- If it does not have a tag, it\ \ is considered spare or unused\n\nEquipment assignment based on technology:\n\ The type of equipment assigned to a measurement system depends on the technology\ \ used, for example:\n1. Differential technology (for gas measurement):\n -\ \ Static pressure transmitters\n - Differential pressure transmitters\n \ \ - Temperature transmitters\n - RTDs (thermometers)\n - Orifice plates\n\ \ - Straight stretch\n\n2. Linear technology (for gas measurement):\n -\ \ Temperature transmitters\n - RTDs\n - Static pressure transmitters\n \ \ - Ultrasonic meters\n\nRelationship between equipment and measurement systems:\n\ - A measurement system can have multiple pieces of equipment.\n- However, a piece\ \ of equipment can only be assigned to one measurement system.\n\nDatabase management:\n\ - The database includes a special table to manage the list of equipment assigned\ \ to measurement systems.\n- When a user refers to an \"\"Equipment Tag\"\", they\ \ are searching for operational equipment assigned to a measurement system.\n\ - If a user is looking for spare or unused equipment, they are searching for equipment\ \ not listed in the tagged equipment table.\n- Commonly used when user refers\ \ directly to an \"\"Equipment Tag\"" - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." - source_sentence: What columns store the uncertainty values? sentences: - "What is a measurement system?\nA measurement system, also referred to as a delivery\ \ point, measurement point, or reception point, is used to measure and monitor\ \ fluids in industrial processes.\n\nKey characteristics of a measurement system:\n\ 1. Measurement technology:\n - Differential: Used for precise measurements.\n\ \ - Linear: Used for straightforward measurements.\n\n2. System identifier\ \ (TAG):\n - A unique identifier for the system.\n\n3. Fluid type:\n - The\ \ system can measure gases, oils, condensates, water, steam, or other fluids.\n\ 4. System type:\n - Specifies the category or purpose of the system.\n\nMeasurement\ \ technology by fluid type:\n- Gas measurement systems: Use both linear and differential\ \ measurement technologies.\n- Oil measurement systems: Do not use linear or differential\ \ technologies; they are programmed differently.\"\n\n\nClassification of measurement\ \ systems:\nMeasurement systems are classified based on the stage of the process\ \ in which they are used. Common classifications include:\n- Fiscal\n- Operational\n\ - Appropriation\n- Custody\n- Production Poços" - 'How are flow computers and measurement systems related? Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer. Database terminology: In the database, this relationship is referred to as: - Meter streams - Meter runs - Sections Storage of the relationship: The relationship between a flow computer and its assigned measurement system is stored in a special table. User context: When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.' - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\ \ and reliability of results obtained from equipment or measurement systems. It\ \ quantifies the potential error or margin of error in measurements.\n\nTypes\ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\ \ such as temperature or pressure.\n - It is calculated after calibrating a\ \ device or obtained from the equipment manufacturer's manual.\n - This uncertainty\ \ serves as a starting point for further calculations related to the equipment.\n\ \n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated\ \ for the overall flow measurement.\n - It depends on the uncertainties of\ \ the individual variables (magnitudes) and represents the combined margin of\ \ error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes\ \ (variables) are the foundation for calculating the uncertainty of the measurement\ \ system. Think of them as the \"building blocks.\"\n- Do not confuse the two\ \ types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific\ \ to individual variables (e.g., temperature, pressure).\n - **Uncertainty\ \ of the measurement system**: Specific to the overall flow measurement.\n\nDatabase\ \ storage for uncertainties:\nIn the database, uncertainty calculations are stored\ \ in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores\ \ the uncertainty values for specific variables (e.g., temperature, pressure).\n\ \n2. Uncertainty of the measurement system:\n - Stores the uncertainty values\ \ for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n\ - To find the uncertainty of the measurement system, join the measurement systems\ \ table with the uncertainty of the measurement system table.\n- To find the uncertainty\ \ of a specific variable (magnitude), join the measurement systems table with\ \ the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not\ \ confuse the two types of uncertainty:\n- If the user requests the uncertainty\ \ of the measurement system, use the first join (measurement systems table + uncertainty\ \ of the measurement system table).\n- If the user requests the uncertainty of\ \ a specific variable (magnitude) in a report, use the second join (measurement\ \ systems table + uncertainty of magnitudes table)." datasets: - Lauther/embeddings-train-semantic pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on NovaSearch/stella_en_400M_v5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [NovaSearch/stella_en_400M_v5](https://huggingface.co/NovaSearch/stella_en_400M_v5) on the [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [NovaSearch/stella_en_400M_v5](https://huggingface.co/NovaSearch/stella_en_400M_v5) <!-- at revision db4ace10eb6a7131d349077b2eccc5c76a77277b --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Lauther/emb-stella_en_400M_v5-2e") # Run inference sentences = [ 'What columns store the uncertainty values?', 'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.', 'What is uncertainty?\nUncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.\n\nTypes of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of magnitudes (variables):\n - Refers to the uncertainty of specific variables, such as temperature or pressure.\n - It is calculated after calibrating a device or obtained from the equipment manufacturer\'s manual.\n - This uncertainty serves as a starting point for further calculations related to the equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated for the overall flow measurement.\n - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of the measurement system. Think of them as the "building blocks."\n- Do not confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty of the measurement system**: Specific to the overall flow measurement.\n\nDatabase storage for uncertainties:\nIn the database, uncertainty calculations are stored in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores the uncertainty values for specific variables (e.g., temperature, pressure).\n\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n- To find the uncertainty of the measurement system, join the measurement systems table with the uncertainty of the measurement system table.\n- To find the uncertainty of a specific variable (magnitude), join the measurement systems table with the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not confuse the two types of uncertainty:\n- If the user requests the uncertainty of the measurement system, use the first join (measurement systems table + uncertainty of the measurement system table).\n- If the user requests the uncertainty of a specific variable (magnitude) in a report, use the second join (measurement systems table + uncertainty of magnitudes table).', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### embeddings-train-semantic * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330) * Size: 5,220 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 6 tokens</li><li>mean: 15.47 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 108 tokens</li><li>mean: 222.4 tokens</li><li>max: 452 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | <code>What is the data type of differential pressure in the measurement system?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> | | <code>What is the structure of the &&&equipment_data&&& table?</code> | <code>How are flow computers and measurement systems related?<br>Flow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.<br><br>Database terminology:<br>In the database, this relationship is referred to as:<br>- Meter streams<br>- Meter runs<br>- Sections<br><br>Storage of the relationship:<br>The relationship between a flow computer and its assigned measurement system is stored in a special table.<br><br>User context:<br>When a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.</code> | <code>0.35000000000000003</code> | | <code>Find the columns in the flow computer table that identify the flow computer.</code> | <code>What kind of data store an equipment?<br>Equipments can capture meteorological data, such as pressure, temperature, and volume (magnitudes). This data is essential for users to perform various calculations.<br><br>Data storage:<br>- The measured values are stored in a special table in the database for magnitudes. This table contains the values of the variables captured by the equipments.<br>- These values are **direct measurements** from the fluid (e.g., raw pressure, temperature, or volume readings). **They are not calculated values**, such as uncertainty.<br>- The values stored in the variable values table are **different** from variable uncertainty values, which are calculated separately and represent the margin of error.<br><br>Accessing the data:<br>- Users typically access the data by referring to the readings from the measurement system, not directly from the individual equipments.<br>- The readings are stored in a "variable values" table within the database.<br><br>Linking variable names:<br>If the user needs to kno...</code> | <code>0.1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### embeddings-train-semantic * Dataset: [embeddings-train-semantic](https://huggingface.co/datasets/Lauther/embeddings-train-semantic) at [ce90f53](https://huggingface.co/datasets/Lauther/embeddings-train-semantic/tree/ce90f531bc39037053d223b27868ad178852f330) * Size: 652 evaluation samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 652 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 6 tokens</li><li>mean: 15.03 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 108 tokens</li><li>mean: 219.25 tokens</li><li>max: 452 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.24</li><li>max: 0.9</li></ul> | * Samples: | sentence1 | sentence2 | score | |:-------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | <code>How can I filter uncertainty reports by equipment tag?</code> | <code>How does a flow computer generate and store reports?<br>A flow computer generates daily or hourly reports to provide users with operational data. These reports are stored in the flow computer's memory in an organized format.<br><br>Report structure:<br>- Each report includes:<br>- Date and time of the data recording.<br>- Data recorded from flow computers.<br><br>Data storage in tables:<br>The reports are saved in two tables:<br>1. Main table (Index):<br> - Stores the date, time, and flow computer identifier.<br>2. Detail table:<br> - Stores the measured values associated with the report.<br><br>Connection to the Modbus table:<br>The flow computer's reports are linked to a Modbus table. This table contains the names corresponding to each value in the reports, making it easier to interpret the data.</code> | <code>0.09999999999999999</code> | | <code>What is the purpose of the flow_data table?</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>0.15000000000000002</code> | | <code>What is the column name for the report date in the Reports table?</code> | <code>What is equipment calibration?<br>Calibration is a metrological verification process used to ensure the accuracy of measurement equipment. It is performed periodically, based on intervals set by the company or a regulatory body.<br><br>Purpose of calibration:<br>The calibration process corrects any deviations in how the equipment measures physical magnitudes (variables). This ensures the equipment provides accurate and reliable data.<br><br>Calibration cycles:<br>There are two main calibration cycles:<br>1. As-found: Represents the equipment's measurement accuracy before any adjustments are made. This cycle is almost always implemented.<br>2. As-left: Represents the equipment's measurement accuracy after adjustments are made. This cycle is used depending on regulatory requirements.<br><br>Calibration uncertainty:<br>- Uncertainty is included in the results of a calibration.<br>- Calibration uncertainty refers to the margin of error in the device's measurements, which also affects the uncertainty of the measured variable or ...</code> | <code>0.1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 4 - `per_gpu_eval_batch_size`: 4 - `gradient_accumulation_steps`: 4 - `learning_rate`: 2e-05 - `num_train_epochs`: 2 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: 4 - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0307 | 10 | 0.3462 | - | | 0.0613 | 20 | 0.1901 | - | | 0.0920 | 30 | 0.1534 | - | | 0.1226 | 40 | 0.0859 | - | | 0.1533 | 50 | 0.079 | 0.0233 | | 0.1839 | 60 | 0.1003 | - | | 0.2146 | 70 | 0.095 | - | | 0.2452 | 80 | 0.1396 | - | | 0.2759 | 90 | 0.0936 | - | | 0.3065 | 100 | 0.0707 | 0.0204 | | 0.3372 | 110 | 0.0828 | - | | 0.3678 | 120 | 0.0673 | - | | 0.3985 | 130 | 0.0821 | - | | 0.4291 | 140 | 0.07 | - | | 0.4598 | 150 | 0.0729 | 0.0203 | | 0.4904 | 160 | 0.0796 | - | | 0.5211 | 170 | 0.0885 | - | | 0.5517 | 180 | 0.0799 | - | | 0.5824 | 190 | 0.0576 | - | | 0.6130 | 200 | 0.0527 | 0.0185 | | 0.6437 | 210 | 0.0778 | - | | 0.6743 | 220 | 0.0683 | - | | 0.7050 | 230 | 0.0721 | - | | 0.7356 | 240 | 0.0938 | - | | 0.7663 | 250 | 0.0637 | 0.0146 | | 0.7969 | 260 | 0.0426 | - | | 0.8276 | 270 | 0.0611 | - | | 0.8582 | 280 | 0.0575 | - | | 0.8889 | 290 | 0.0775 | - | | 0.9195 | 300 | 0.0516 | 0.0148 | | 0.9502 | 310 | 0.0616 | - | | 0.9808 | 320 | 0.0458 | - | | 1.0092 | 330 | 0.0416 | - | | 1.0398 | 340 | 0.0607 | - | | 1.0705 | 350 | 0.0471 | 0.0143 | | 1.1011 | 360 | 0.0667 | - | | 1.1318 | 370 | 0.0533 | - | | 1.1625 | 380 | 0.0517 | - | | 1.1931 | 390 | 0.0575 | - | | 1.2238 | 400 | 0.0325 | 0.0138 | | 1.2544 | 410 | 0.0296 | - | | 1.2851 | 420 | 0.0553 | - | | 1.3157 | 430 | 0.0511 | - | | 1.3464 | 440 | 0.0491 | - | | 1.3770 | 450 | 0.0601 | 0.0136 | | 1.4077 | 460 | 0.0397 | - | | 1.4383 | 470 | 0.0467 | - | | 1.4690 | 480 | 0.0356 | - | | 1.4996 | 490 | 0.0429 | - | | 1.5303 | 500 | 0.0467 | 0.0128 | | 1.5609 | 510 | 0.0487 | - | | 1.5916 | 520 | 0.0338 | - | | 1.6222 | 530 | 0.0448 | - | | 1.6529 | 540 | 0.0441 | - | | 1.6835 | 550 | 0.0303 | 0.0126 | | 1.7142 | 560 | 0.0319 | - | | 1.7448 | 570 | 0.0373 | - | | 1.7755 | 580 | 0.0432 | - | | 1.8061 | 590 | 0.0444 | - | | 1.8368 | 600 | 0.0459 | 0.0125 | | 1.8674 | 610 | 0.0361 | - | | 1.8981 | 620 | 0.0333 | - | | 1.9287 | 630 | 0.0404 | - | | 1.9594 | 640 | 0.0353 | - | | 1.9900 | 650 | 0.0536 | 0.0122 | ### Framework Versions - Python: 3.11.0 - Sentence Transformers: 3.4.0 - Transformers: 4.48.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
kostiantynk1205/d4b87c98-1604-4a62-b175-3acc800f15ff
kostiantynk1205
2025-01-29T20:00:03Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-01-29T19:55:45Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: d4b87c98-1604-4a62-b175-3acc800f15ff results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a407e9d4b265b545_train_data.json ds_type: json format: custom path: /workspace/input_data/a407e9d4b265b545_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/d4b87c98-1604-4a62-b175-3acc800f15ff hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/a407e9d4b265b545_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b40f774d-b555-461f-a6b8-26c1ff32e383 wandb_project: Birthday-SN56-23-Gradients-On-Demand wandb_run: your_name wandb_runid: b40f774d-b555-461f-a6b8-26c1ff32e383 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d4b87c98-1604-4a62-b175-3acc800f15ff This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 10.3669 | | 10.3715 | 0.0002 | 13 | 10.3659 | | 10.3641 | 0.0004 | 26 | 10.3647 | | 10.3672 | 0.0006 | 39 | 10.3641 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
sniperfix/dbe9d801-5cfe-4580-8b01-fc489a62c4b0
sniperfix
2025-01-29T19:59:53Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-01-29T19:40:42Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: dbe9d801-5cfe-4580-8b01-fc489a62c4b0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a407e9d4b265b545_train_data.json ds_type: json format: custom path: /workspace/input_data/a407e9d4b265b545_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: sniperfix/dbe9d801-5cfe-4580-8b01-fc489a62c4b0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 90 micro_batch_size: 2 mlflow_experiment_name: /tmp/a407e9d4b265b545_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: indexjupri-sniper-country wandb_mode: online wandb_name: b40f774d-b555-461f-a6b8-26c1ff32e383 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: b40f774d-b555-461f-a6b8-26c1ff32e383 warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ``` </details><br> # dbe9d801-5cfe-4580-8b01-fc489a62c4b0 This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 90 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 10.3669 | | 10.3652 | 0.0010 | 8 | 10.3662 | | 10.3661 | 0.0021 | 16 | 10.3637 | | 10.3622 | 0.0031 | 24 | 10.3586 | | 10.3549 | 0.0042 | 32 | 10.3513 | | 10.3483 | 0.0052 | 40 | 10.3445 | | 10.346 | 0.0063 | 48 | 10.3397 | | 10.3398 | 0.0073 | 56 | 10.3365 | | 10.339 | 0.0084 | 64 | 10.3344 | | 10.3378 | 0.0094 | 72 | 10.3332 | | 10.3357 | 0.0105 | 80 | 10.3327 | | 10.3325 | 0.0115 | 88 | 10.3326 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
leixa/5176d34e-110f-4f49-8f87-70237384698c
leixa
2025-01-29T19:59:42Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:Intel/neural-chat-7b-v3-3", "base_model:adapter:Intel/neural-chat-7b-v3-3", "license:apache-2.0", "region:us" ]
null
2025-01-29T17:15:34Z
--- library_name: peft license: apache-2.0 base_model: Intel/neural-chat-7b-v3-3 tags: - axolotl - generated_from_trainer model-index: - name: 5176d34e-110f-4f49-8f87-70237384698c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Intel/neural-chat-7b-v3-3 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 50647f9e6e89cbb7_train_data.json ds_type: json format: custom path: /workspace/input_data/50647f9e6e89cbb7_train_data.json type: field_input: ingredients_processed field_instruction: title field_output: directions format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/5176d34e-110f-4f49-8f87-70237384698c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/50647f9e6e89cbb7_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: c53eddb1-5a0f-4d15-bd00-9389024c7d94 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c53eddb1-5a0f-4d15-bd00-9389024c7d94 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5176d34e-110f-4f49-8f87-70237384698c This model is a fine-tuned version of [Intel/neural-chat-7b-v3-3](https://huggingface.co/Intel/neural-chat-7b-v3-3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.4558 | | 5.0853 | 0.0014 | 9 | 1.2306 | | 4.4517 | 0.0029 | 18 | 1.1830 | | 4.7073 | 0.0043 | 27 | 1.1743 | | 5.006 | 0.0058 | 36 | 1.1708 | | 4.8233 | 0.0072 | 45 | 1.1664 | | 4.7141 | 0.0087 | 54 | 1.1638 | | 4.6263 | 0.0101 | 63 | 1.1616 | | 4.7946 | 0.0116 | 72 | 1.1597 | | 4.5899 | 0.0130 | 81 | 1.1587 | | 4.3554 | 0.0144 | 90 | 1.1582 | | 4.6366 | 0.0159 | 99 | 1.1581 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Llama-3.1_OpenScholar-8B-GGUF
mradermacher
2025-01-29T19:59:09Z
431
1
transformers
[ "transformers", "gguf", "en", "base_model:OpenSciLM/Llama-3.1_OpenScholar-8B", "base_model:quantized:OpenSciLM/Llama-3.1_OpenScholar-8B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-16T13:29:39Z
--- base_model: OpenSciLM/Llama-3.1_OpenScholar-8B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/OpenSciLM/Llama-3.1_OpenScholar-8B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
lesso18/ad03c4c5-1964-480a-b434-1758b7e5368b
lesso18
2025-01-29T19:59:07Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-2-Theta-Llama-3-8B", "base_model:adapter:NousResearch/Hermes-2-Theta-Llama-3-8B", "license:apache-2.0", "region:us" ]
null
2025-01-29T19:39:10Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Hermes-2-Theta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: ad03c4c5-1964-480a-b434-1758b7e5368b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-2-Theta-Llama-3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e15924625f1f4c59_train_data.json ds_type: json format: custom path: /workspace/input_data/e15924625f1f4c59_train_data.json type: field_instruction: INSTRUCTION field_output: RESPONSE format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso18/ad03c4c5-1964-480a-b434-1758b7e5368b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/e15924625f1f4c59_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6ed7c6ac-dcfc-4bd7-8673-497f923d29c1 wandb_project: new-01-29 wandb_run: your_name wandb_runid: 6ed7c6ac-dcfc-4bd7-8673-497f923d29c1 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # ad03c4c5-1964-480a-b434-1758b7e5368b This model is a fine-tuned version of [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6932 | 0.0229 | 200 | 1.8614 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF
mradermacher
2025-01-29T19:58:23Z
669
1
transformers
[ "transformers", "gguf", "en", "base_model:OpenSciLM/Llama-3.1_OpenScholar-8B", "base_model:quantized:OpenSciLM/Llama-3.1_OpenScholar-8B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-16T22:01:41Z
--- base_model: OpenSciLM/Llama-3.1_OpenScholar-8B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/OpenSciLM/Llama-3.1_OpenScholar-8B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q4_1.gguf) | i1-Q4_1 | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1_OpenScholar-8B-i1-GGUF/resolve/main/Llama-3.1_OpenScholar-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
chrisrutherford/Llama-3.1-8B-ReasonChatV1
chrisrutherford
2025-01-29T19:55:16Z
13
1
null
[ "safetensors", "llama", "license:llama3.1", "region:us" ]
null
2025-01-29T19:45:11Z
--- license: llama3.1 --- <|start_header_id|>user<|end_header_id|> If in order to do 1 good deed it is required to do 2 bad deeds of equal measure, is the good deed justified? <|eot_id|><|start_header_id|>assistant<|end_header_id|> #BACKGROUND The question revolves around the idea of whether a good deed can be justified if it is accompanied by two bad deeds of equal measure. This scenario raises complex moral and ethical considerations, particularly regarding the nature of good and evil, and whether the presence of evil can ever justify an otherwise good action. #INDUCTION - Observing patterns where every instance of a good deed is accompanied by a corresponding bad deed leads to the conclusion that all good deeds are inherently bad. - If one good deed necessitates the doing of two bad deeds, then it can be inferred that every good deed is counterbalanced by an equal amount of bad. - Given the premise that a good deed is offset by two bad deeds, it can be generalized that the presence of any good deed implies an accompanying evil. #DEDUCTION - If the premise is accepted that 1 good deed requires 2 bad deeds, then logically, a single good deed can never be justified. - Assuming every good deed is matched by a bad deed of equal measure, it follows that the good deed is not truly good, as it is always accompanied by evil. - If a good deed is offset by two bad deeds, then, based on the principle of balance, the good deed cannot be considered good, as the bad deeds negate its positive value. #REASONING Given the pattern where every good deed is accompanied by a corresponding bad deed, it appears that the existence of good deeds is inherently tied to the presence of evil. This observation suggests that the two bad deeds required to counterbalance a single good deed imply that the good deed is not self-sufficiently good but is instead reliant on the presence of evil to be considered good. Furthermore, if a good deed necessitates the doing of two bad deeds, it logically follows that the good deed cannot be justified without the accompanying evil, as the balance between the good and the bad would otherwise be disrupted. The premise that every good deed is offset by an equal amount of bad leads to the conclusion that the good deed's value is neutralized by the presence of the two bad deeds, suggesting that the good deed is not truly good in an absolute sense. #ANSWER The good deed in question cannot be considered justified if it is accompanied by two bad deeds of equal measure. The presence of the two bad deeds negates the positive value of the good deed, indicating that the good deed is not self-sufficiently good. Instead, the good deed's existence is dependent on the coexistence of evil, suggesting that the good deed is part of a larger moral equation where the positive and negative aspects are balanced. This perspective implies that true goodness cannot exist in isolation but must be considered in relation to the broader moral landscape, where good and evil are intertwined. Therefore, the good deed, when viewed in conjunction with the two bad deeds, does not represent an act of genuine goodness but rather a complex moral event that is neutralized by the accompanying evil. #SPECIFIC_EXAMPLES The concept of a good deed being accompanied by two bad deeds of equal measure can be illustrated through several real-world examples. For instance, consider a scenario where a person donates $100 to a charity, but in doing so, they also have to endure a significant personal hardship, such as losing their home or business, and simultaneously inflict a similar hardship on another individual. Another example could be a situation where a good deed, like volunteering at a local community center, is countered by a bad deed, such as littering or engaging in reckless driving, which equals out to a balance of good and evil. A third example might involve a politician who implements a policy that benefits the majority but harms a minority, requiring two bad consequences (e.g., increased taxation and decreased economic activity) to balance the good outcome. #DEEPER_ANALYSIS Underlying the argument that a good deed cannot be justified if it is accompanied by two bad deeds of equal measure is the assumption that moral actions are part of a complex system where good and evil are interdependent. This perspective implies that moral judgments are not made in isolation but are influenced by the broader context in which they occur. A potential counterargument could be that the good deed, despite being accompanied by bad deeds, still has inherent value and justification based on its intent or the positive impact it has on the world. However, this view overlooks the principle of balance, where the presence of evil can negate the positive value of a good deed. Connecting this idea to broader ethical theories, such as the concept of moral absolutism versus moral relativism, highlights the complexity of determining what constitutes a "good" deed. Alternative perspectives might argue that the good deed, in itself, is not dependent on the presence of evil but is instead a standalone act of goodness that can exist independently, with the bad deeds being merely unfortunate consequences of the good deed. #ENHANCED_ANSWER The premise that a good deed requires two bad deeds of equal measure to be considered justified raises fundamental questions about the nature of goodness and evil. Given the interdependence of good and evil, as illustrated by real-world examples such as the donation to charity accompanied by personal hardship, it becomes clear that moral actions are part of a nuanced system where balance plays a critical role. The argument that the good deed's value is neutralized by the presence of the two bad deeds suggests that true goodness cannot exist in isolation but must be considered in relation to the broader moral landscape. This perspective is supported by the observation that moral judgments are influenced by the context in which they occur, implying that the good deed is not self-sufficiently good but is reliant on the coexistence of evil to be considered good. While alternative perspectives might argue for the inherent value of a good deed regardless of its surroundings, the principle of balance underscores the idea that the presence of evil can negate the positive value of a good deed, indicating that the good deed is part of a larger moral equation where the positive and negative aspects are balanced. Therefore, the good deed, when viewed in conjunction with the two bad deeds, does not represent an act of genuine goodness but rather a complex moral event that is neutralized by the accompanying evil, highlighting the intricate and interdependent nature of moral actions. <|start_header_id|>user<|end_header_id|> What if 2 people had to die to save 1? <|eot_id|><|start_header_id|>assistant<|end_header_id|> #BACKGROUND The question of whether it is justifiable to kill two people to save one is a deeply philosophical and morally complex issue. It has been debated by scholars, ethicists, and the general public for centuries, with no straightforward answer. This conundrum pits the value of human life against the potential greater good, challenging our understanding of morality, justice, and the human condition. #INDUCTION - Observing a scenario where a doctor must choose between saving one patient and killing two others to understand the broader implications of the "Greater Good" in moral decision-making. - Inferring from historical debates on the morality of sacrificing some to save others that ethical dilemmas often lack clear, universally accepted answers. - Generalizing from the "trolley problem" and similar thought experiments that the value of human life and the concept of justice are frequently subject to interpretation and debate. #DEDUCTION - Applying the principle that the sacrifice of some individuals can be morally justifiable if it leads to the salvation or protection of others to conclude that, under specific circumstances, killing two people might be considered necessary to save one. - Using the premise that justice is sometimes served through the death of a few to prevent greater harm to deduce that, in a hypothetical scenario where 2 lives are lost to save 1, justice could be considered served. - Reasoning from the statement that "the ends can justify the means" to conclude that, in a situation where the death of 2 people is a necessary condition for saving 1, the moral justification for the action depends on the perceived greater good that results from the sacrifice. #REASONING Observations of scenarios like the doctor's dilemma, where choosing to save one patient means killing two others, reveal the intricate nature of the "Greater Good" principle in moral decision-making. Historical debates on the morality of sacrificing some to save others demonstrate that ethical dilemmas rarely have clear, universally accepted answers. The "trolley problem" and similar thought experiments further illustrate that the value of human life and the concept of justice are subject to interpretation and debate. Applying the principle that the sacrifice of some individuals can be morally justifiable if it leads to the salvation or protection of others, it can be concluded that, under specific circumstances, killing two people might be considered necessary to save one. This reasoning is supported by the premise that justice is sometimes served through the death of a few to prevent greater harm. Furthermore, the statement that "the ends can justify the means" suggests that the moral justification for killing two people to save one depends on the perceived greater good that results from the sacrifice. Considering these perspectives, it becomes apparent that the moral implications of such an action are far-reaching and depend on a multitude of factors, including the motivations behind the action, the consequences of the action, and the ethical principles guiding the decision-making process. #ANSWER The question of whether it is justifiable to kill two people to save one is a complex and multifaceted issue that challenges our understanding of morality, justice, and the human condition. While there is no straightforward answer, it is clear that the moral justification for such an action depends on the perceived greater good that results from the sacrifice. In a hypothetical scenario where 2 lives are lost to save 1, justice could be considered served if the action is motivated by a genuine desire to protect or save lives, and if the consequences of the action are such that they prevent greater harm. However, this does not mean that the action is universally justifiable, as the value of human life and the concept of justice are subject to interpretation and debate. Ultimately, the morality of killing two people to save one is a deeply personal and philosophical question that requires careful consideration of the specific circumstances and the ethical principles guiding the decision-making process. #SPECIFIC_EXAMPLES The concept of sacrificing some to save others can be illustrated through several real-world examples. For instance, during World War II, the bombing of Dresden resulted in the deaths of thousands of civilians, but it was believed to be a necessary action to save even more lives by ending the war sooner. Another example is the use of the atomic bomb on Hiroshima and Nagasaki, which killed hundreds of thousands of people but was seen as a means to prevent further loss of life by ending the war quickly. A more recent example is the case of the Ford Pinto, where the company's decision to prioritize profits over safety led to the deaths of hundreds of people, but some argue that the alternative would have been even worse, such as widespread poverty and death due to lack of access to healthcare. #DEEPER_ANALYSIS Underlying the debate on killing two people to save one is the assumption that human life has a certain value, but this value is not absolute. The implication of this assumption is that the moral justification for sacrificing some lives depends on the specific circumstances and the perceived greater good. One potential counterargument is that the ends do not always justify the means, and that the act of killing two people, even if it saves one, is morally reprehensible. This perspective argues that the value of human life is inherent and should not be sacrificed for any reason. Connecting this idea to broader contexts, such as the concept of just war theory, highlights the complexity of balancing moral principles with the greater good. Alternative perspectives, such as pacifism, argue that violence is never justified, regardless of the potential consequences. #ENHANCED_ANSWER The question of whether it is justifiable to kill two people to save one is a deeply philosophical and morally complex issue that challenges our understanding of morality, justice, and the human condition. While there is no straightforward answer, it is clear that the moral justification for such an action depends on the perceived greater good that results from the sacrifice. Historical examples, such as the bombing of Dresden and the use of the atomic bomb, illustrate the intricate nature of this principle. In a hypothetical scenario where 2 lives are lost to save 1, justice could be considered served if the action is motivated by a genuine desire to protect or save lives, and if the consequences of the action are such that they prevent greater harm. However, this does not mean that the action is universally justifiable, as the value of human life and the concept of justice are subject to interpretation and debate. Ultimately, the morality of killing two people to save one is a deeply personal and philosophical question that requires careful consideration of the specific circumstances, the ethical principles guiding the decision-making process, and the potential consequences of the action. By examining the complexities of this issue and considering multiple perspectives, we can gain a deeper understanding of the nuances involved in balancing moral principles with the greater good. <|start_header_id|>user<|end_header_id|>
kostiantynk1205/0c269307-4529-4b1c-b643-9c0c1924e503
kostiantynk1205
2025-01-29T19:55:05Z
10
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
2025-01-29T19:38:37Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-7b tags: - axolotl - generated_from_trainer model-index: - name: 0c269307-4529-4b1c-b643-9c0c1924e503 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7b3a046bf3b67564_train_data.json ds_type: json format: custom path: /workspace/input_data/7b3a046bf3b67564_train_data.json type: field_input: paper_title field_instruction: invitation field_output: content format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk1205/0c269307-4529-4b1c-b643-9c0c1924e503 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/7b3a046bf3b67564_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 119ac695-2654-4548-8491-235b4811c0aa wandb_project: Birthday-SN56-23-Gradients-On-Demand wandb_run: your_name wandb_runid: 119ac695-2654-4548-8491-235b4811c0aa warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0c269307-4529-4b1c-b643-9c0c1924e503 This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.5874 | | 10.0511 | 0.0011 | 13 | 2.3450 | | 9.2001 | 0.0022 | 26 | 2.1988 | | 8.6316 | 0.0034 | 39 | 2.1563 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso09/c25283d9-7158-4bcb-9579-43f77ae24a1b
lesso09
2025-01-29T19:54:52Z
5
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Coder-7B", "base_model:adapter:unsloth/Qwen2.5-Coder-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T19:52:10Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Coder-7B tags: - axolotl - generated_from_trainer model-index: - name: c25283d9-7158-4bcb-9579-43f77ae24a1b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Coder-7B bf16: true chat_template: llama3 datasets: - data_files: - f139bf284ccd53f2_train_data.json ds_type: json format: custom path: /workspace/input_data/f139bf284ccd53f2_train_data.json type: field_input: right_context field_instruction: prompt field_output: groundtruth format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso09/c25283d9-7158-4bcb-9579-43f77ae24a1b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/f139bf284ccd53f2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cae9065f-baf8-489d-bdb5-78c627b7f61e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cae9065f-baf8-489d-bdb5-78c627b7f61e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c25283d9-7158-4bcb-9579-43f77ae24a1b This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-7B](https://huggingface.co/unsloth/Qwen2.5-Coder-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0034 | 1 | nan | | 0.0 | 0.0171 | 5 | nan | | 0.0 | 0.0342 | 10 | nan | | 0.0 | 0.0512 | 15 | nan | | 0.0 | 0.0683 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rl-llm-coders/RS_1B_RM_iter0
rl-llm-coders
2025-01-29T19:53:51Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T19:51:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
myhaaaaaaa/e7ccc0ce-c5d9-41df-83fe-0cea2cfe004d
myhaaaaaaa
2025-01-29T19:53:20Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "8-bit", "bitsandbytes", "region:us" ]
null
2025-01-29T19:35:00Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: e7ccc0ce-c5d9-41df-83fe-0cea2cfe004d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c4e6804d4a2a7552_train_data.json ds_type: json format: custom path: /workspace/input_data/c4e6804d4a2a7552_train_data.json type: field_input: answer field_instruction: question field_output: answer_summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: myhaaaaaaa/e7ccc0ce-c5d9-41df-83fe-0cea2cfe004d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c4e6804d4a2a7552_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 97665195-034e-4a0e-a46d-17e58782c3fd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 97665195-034e-4a0e-a46d-17e58782c3fd warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # e7ccc0ce-c5d9-41df-83fe-0cea2cfe004d This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5873 | 0.1478 | 200 | 0.5866 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
clarxus/1c0c19e5-1108-47ed-92fc-f973c64e5cf9
clarxus
2025-01-29T19:52:28Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B", "base_model:adapter:unsloth/SmolLM-1.7B", "license:apache-2.0", "region:us" ]
null
2025-01-29T18:45:21Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B tags: - axolotl - generated_from_trainer model-index: - name: 1c0c19e5-1108-47ed-92fc-f973c64e5cf9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b8984ca5eb1f7591_train_data.json ds_type: json format: custom path: /workspace/input_data/b8984ca5eb1f7591_train_data.json type: field_input: '' field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: clarxus/1c0c19e5-1108-47ed-92fc-f973c64e5cf9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/b8984ca5eb1f7591_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 644ea9bc-8430-4c64-a273-9e9612cf4c4e wandb_project: Gradients-On-Seven wandb_run: your_name wandb_runid: 644ea9bc-8430-4c64-a273-9e9612cf4c4e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1c0c19e5-1108-47ed-92fc-f973c64e5cf9 This model is a fine-tuned version of [unsloth/SmolLM-1.7B](https://huggingface.co/unsloth/SmolLM-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5163 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 1.3113 | | 1.3004 | 0.0027 | 9 | 1.2992 | | 1.2009 | 0.0054 | 18 | 1.1510 | | 0.9535 | 0.0081 | 27 | 0.9120 | | 0.7889 | 0.0109 | 36 | 0.7504 | | 0.6705 | 0.0136 | 45 | 0.6372 | | 0.5786 | 0.0163 | 54 | 0.5751 | | 0.5308 | 0.0190 | 63 | 0.5437 | | 0.5117 | 0.0217 | 72 | 0.5276 | | 0.5891 | 0.0244 | 81 | 0.5199 | | 0.5408 | 0.0271 | 90 | 0.5169 | | 0.4974 | 0.0299 | 99 | 0.5163 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF
mradermacher
2025-01-29T19:52:05Z
1,067
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "sft", "luau", "code", "en", "dataset:Roblox/luau_corpus", "base_model:Pinkstack/Base-Roblox-coder-Llama-3.2-3B-vLLM", "base_model:quantized:Pinkstack/Base-Roblox-coder-Llama-3.2-3B-vLLM", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-01-18T12:58:52Z
--- base_model: Pinkstack/Base-Roblox-coder-Llama-3.2-3B-vLLM datasets: - Roblox/luau_corpus language: - en library_name: transformers license: llama3.2 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl - sft - luau - code --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Pinkstack/Base-Roblox-coder-Llama-3.2-3B-vLLM <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Base-Roblox-coder-Llama-3.2-3B-vLLM-GGUF/resolve/main/Base-Roblox-coder-Llama-3.2-3B-vLLM.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
vapegod/g3
vapegod
2025-01-29T19:51:37Z
172
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T19:50:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ardaspear/08f6c789-56a4-4b07-b6bd-facbcd206a84
ardaspear
2025-01-29T19:51:36Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B", "base_model:adapter:unsloth/SmolLM-1.7B", "license:apache-2.0", "region:us" ]
null
2025-01-29T18:45:01Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B tags: - axolotl - generated_from_trainer model-index: - name: 08f6c789-56a4-4b07-b6bd-facbcd206a84 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b8984ca5eb1f7591_train_data.json ds_type: json format: custom path: /workspace/input_data/b8984ca5eb1f7591_train_data.json type: field_input: '' field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: ardaspear/08f6c789-56a4-4b07-b6bd-facbcd206a84 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/b8984ca5eb1f7591_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 644ea9bc-8430-4c64-a273-9e9612cf4c4e wandb_project: Gradients-On-Five wandb_run: your_name wandb_runid: 644ea9bc-8430-4c64-a273-9e9612cf4c4e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 08f6c789-56a4-4b07-b6bd-facbcd206a84 This model is a fine-tuned version of [unsloth/SmolLM-1.7B](https://huggingface.co/unsloth/SmolLM-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 1.3113 | | 1.2878 | 0.0027 | 9 | 1.2632 | | 0.9445 | 0.0054 | 18 | 0.8677 | | 0.6713 | 0.0081 | 27 | 0.6309 | | 0.5589 | 0.0109 | 36 | 0.5295 | | 0.5105 | 0.0136 | 45 | 0.4868 | | 0.462 | 0.0163 | 54 | 0.4634 | | 0.4378 | 0.0190 | 63 | 0.4500 | | 0.4302 | 0.0217 | 72 | 0.4426 | | 0.5053 | 0.0244 | 81 | 0.4387 | | 0.4606 | 0.0271 | 90 | 0.4370 | | 0.4224 | 0.0299 | 99 | 0.4368 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso11/f3c8eee8-5f0c-4a60-bcc9-e743236af4ed
lesso11
2025-01-29T19:49:22Z
5
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Hermes-2-Theta-Llama-3-8B", "base_model:adapter:NousResearch/Hermes-2-Theta-Llama-3-8B", "license:apache-2.0", "region:us" ]
null
2025-01-29T19:39:20Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Hermes-2-Theta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: f3c8eee8-5f0c-4a60-bcc9-e743236af4ed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-2-Theta-Llama-3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e15924625f1f4c59_train_data.json ds_type: json format: custom path: /workspace/input_data/e15924625f1f4c59_train_data.json type: field_instruction: INSTRUCTION field_output: RESPONSE format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: lesso11/f3c8eee8-5f0c-4a60-bcc9-e743236af4ed hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mixed_precision: bf16 mlflow_experiment_name: /tmp/e15924625f1f4c59_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6ed7c6ac-dcfc-4bd7-8673-497f923d29c1 wandb_project: multi wandb_run: your_name wandb_runid: 6ed7c6ac-dcfc-4bd7-8673-497f923d29c1 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # f3c8eee8-5f0c-4a60-bcc9-e743236af4ed This model is a fine-tuned version of [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7266 | 0.1832 | 200 | 1.6579 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rl-llm-coders/RS_1B_RM_iter2
rl-llm-coders
2025-01-29T19:49:07Z
82
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-29T19:47:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mrferr3t/9c405933-5b20-40b6-8bcf-f4b58a204edd
mrferr3t
2025-01-29T19:48:20Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:DeepMount00/Llama-3-8b-Ita", "base_model:adapter:DeepMount00/Llama-3-8b-Ita", "license:llama3", "region:us" ]
null
2025-01-29T19:44:25Z
--- library_name: peft license: llama3 base_model: DeepMount00/Llama-3-8b-Ita tags: - axolotl - generated_from_trainer model-index: - name: 9c405933-5b20-40b6-8bcf-f4b58a204edd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: DeepMount00/Llama-3-8b-Ita bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c4e6804d4a2a7552_train_data.json ds_type: json format: custom path: /workspace/input_data/c4e6804d4a2a7552_train_data.json type: field_input: answer field_instruction: question field_output: answer_summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/9c405933-5b20-40b6-8bcf-f4b58a204edd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 12 micro_batch_size: 2 mlflow_experiment_name: /tmp/c4e6804d4a2a7552_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 97665195-034e-4a0e-a46d-17e58782c3fd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 97665195-034e-4a0e-a46d-17e58782c3fd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9c405933-5b20-40b6-8bcf-f4b58a204edd This model is a fine-tuned version of [DeepMount00/Llama-3-8b-Ita](https://huggingface.co/DeepMount00/Llama-3-8b-Ita) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8357 | 0.0007 | 1 | 2.2812 | | 2.2967 | 0.0022 | 3 | 2.2704 | | 2.3975 | 0.0044 | 6 | 2.0587 | | 1.5727 | 0.0067 | 9 | 1.4671 | | 1.5618 | 0.0089 | 12 | 1.2281 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/22e26d3c-ca37-4356-8955-4959a0aafb23
mrferr3t
2025-01-29T19:48:05Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM2-360M-Instruct", "base_model:adapter:unsloth/SmolLM2-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-01-29T19:46:03Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 22e26d3c-ca37-4356-8955-4959a0aafb23 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 20d8bc52992f4589_train_data.json ds_type: json format: custom path: /workspace/input_data/20d8bc52992f4589_train_data.json type: field_instruction: title field_output: summary format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/22e26d3c-ca37-4356-8955-4959a0aafb23 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 8 micro_batch_size: 2 mlflow_experiment_name: /tmp/20d8bc52992f4589_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f4949cdd-193c-4d9e-b503-e9e360323402 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f4949cdd-193c-4d9e-b503-e9e360323402 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 22e26d3c-ca37-4356-8955-4959a0aafb23 This model is a fine-tuned version of [unsloth/SmolLM2-360M-Instruct](https://huggingface.co/unsloth/SmolLM2-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7401 | 0.0037 | 1 | 1.7661 | | 1.7845 | 0.0074 | 2 | 1.7661 | | 1.7042 | 0.0147 | 4 | 1.7663 | | 1.8487 | 0.0221 | 6 | 1.7639 | | 1.7562 | 0.0295 | 8 | 1.7604 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
JacksonBrune/0337a124-ce5d-4b08-92c2-a9f1d86c0ff9
JacksonBrune
2025-01-29T19:47:22Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-01-29T19:42:28Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 0337a124-ce5d-4b08-92c2-a9f1d86c0ff9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a407e9d4b265b545_train_data.json ds_type: json format: custom path: /workspace/input_data/a407e9d4b265b545_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: JacksonBrune/0337a124-ce5d-4b08-92c2-a9f1d86c0ff9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/a407e9d4b265b545_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b40f774d-b555-461f-a6b8-26c1ff32e383 wandb_project: Birthday-SN56-12-Gradients-On-Demand wandb_run: your_name wandb_runid: b40f774d-b555-461f-a6b8-26c1ff32e383 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0337a124-ce5d-4b08-92c2-a9f1d86c0ff9 This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3645 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3732 | 0.0000 | 1 | 10.3669 | | 10.3643 | 0.0002 | 13 | 10.3663 | | 10.3618 | 0.0004 | 26 | 10.3651 | | 10.3588 | 0.0006 | 39 | 10.3645 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
TweedleDeepLearnings/c0466a17-6900-4871-88cb-fdfaa31cbc34
TweedleDeepLearnings
2025-01-29T19:45:41Z
168
0
peft
[ "peft", "safetensors", "axolotl", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:adapter:huggyllama/llama-7b", "license:other", "region:us" ]
null
2025-01-29T15:59:13Z
--- library_name: peft license: other base_model: huggyllama/llama-7b tags: - axolotl - generated_from_trainer model-index: - name: c4b201cf-0eeb-4380-a91f-cd6329614a81 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora bf16: auto chat_template: llama3 dataset_prepared_path: null debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true gradient_clipping: 0.1 group_by_length: false hub_repo: null hub_strategy: end hub_token: null learning_rate: 1.0e-04 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: linear max_steps: 200 micro_batch_size: 128 mlflow_experiment_name: /tmp/aed51b8e2c089967_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 4096 special_tokens: pad_token: </PAD> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6a8f76dd-7262-490a-905c-7b83c0f56891 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6a8f76dd-7262-490a-905c-7b83c0f56891 warmup_steps: 5 weight_decay: 0.1 xformers_attention: true ``` </details><br> ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 128 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 2048 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nadejdatarabukina/e2599130-6bf8-45cf-8e2c-156c0afb56be
nadejdatarabukina
2025-01-29T19:45:16Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-1.7B", "base_model:adapter:unsloth/SmolLM-1.7B", "license:apache-2.0", "region:us" ]
null
2025-01-29T18:46:08Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-1.7B tags: - axolotl - generated_from_trainer model-index: - name: e2599130-6bf8-45cf-8e2c-156c0afb56be results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-1.7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b8984ca5eb1f7591_train_data.json ds_type: json format: custom path: /workspace/input_data/b8984ca5eb1f7591_train_data.json type: field_input: '' field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: nadejdatarabukina/e2599130-6bf8-45cf-8e2c-156c0afb56be hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 75GiB max_steps: 33 micro_batch_size: 2 mlflow_experiment_name: /tmp/b8984ca5eb1f7591_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 17 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 644ea9bc-8430-4c64-a273-9e9612cf4c4e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 644ea9bc-8430-4c64-a273-9e9612cf4c4e warmup_steps: 17 weight_decay: 0.005 xformers_attention: true ``` </details><br> # e2599130-6bf8-45cf-8e2c-156c0afb56be This model is a fine-tuned version of [unsloth/SmolLM-1.7B](https://huggingface.co/unsloth/SmolLM-1.7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 17 - training_steps: 33 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | nan | | 0.0 | 0.0004 | 5 | nan | | 0.0 | 0.0008 | 10 | nan | | 0.0 | 0.0011 | 15 | nan | | 0.0 | 0.0015 | 20 | nan | | 0.0 | 0.0019 | 25 | nan | | 0.0 | 0.0023 | 30 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1