modelId
stringlengths
5
138
author
stringlengths
2
42
last_modified
unknowndate
2020-02-15 11:33:14
2025-04-12 18:26:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
422 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
unknowndate
2022-03-02 23:29:04
2025-04-12 18:26:09
card
stringlengths
11
1.01M
mradermacher/WizardLM-30B-Uncensored-i1-GGUF
mradermacher
"2024-11-13T07:24:24Z"
345
0
transformers
[ "transformers", "gguf", "uncensored", "en", "dataset:ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered", "base_model:cognitivecomputations/WizardLM-30B-Uncensored", "base_model:quantized:cognitivecomputations/WizardLM-30B-Uncensored", "license:other", "endpoints_compatible", "region:us", "imatrix" ]
null
"2024-11-12T18:21:18Z"
--- base_model: cognitivecomputations/WizardLM-30B-Uncensored datasets: - ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered language: - en library_name: transformers license: other quantized_by: mradermacher tags: - uncensored --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/cognitivecomputations/WizardLM-30B-Uncensored <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-IQ1_S.gguf) | i1-IQ1_S | 7.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-IQ1_M.gguf) | i1-IQ1_M | 7.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-IQ2_XS.gguf) | i1-IQ2_XS | 9.7 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-IQ2_M.gguf) | i1-IQ2_M | 11.3 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-Q2_K.gguf) | i1-Q2_K | 12.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-IQ3_XS.gguf) | i1-IQ3_XS | 13.4 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-IQ3_S.gguf) | i1-IQ3_S | 14.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.2 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-IQ3_M.gguf) | i1-IQ3_M | 15.0 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-Q3_K_M.gguf) | i1-Q3_K_M | 15.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.4 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-Q4_0.gguf) | i1-Q4_0 | 18.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-Q4_K_M.gguf) | i1-Q4_K_M | 19.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.5 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-Q5_K_M.gguf) | i1-Q5_K_M | 23.1 | | | [GGUF](https://huggingface.co/mradermacher/WizardLM-30B-Uncensored-i1-GGUF/resolve/main/WizardLM-30B-Uncensored.i1-Q6_K.gguf) | i1-Q6_K | 26.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
NobodyExistsOnTheInternet/tinystoriesmixtraltesttrain
NobodyExistsOnTheInternet
"2023-12-29T12:24:35Z"
3
0
peft
[ "peft", "safetensors", "mistral", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "4-bit", "bitsandbytes", "region:us" ]
null
"2023-12-28T15:41:22Z"
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0
rishipatel92/ppo-LunarLander-v2
rishipatel92
"2023-03-10T03:59:06Z"
3
0
transformers
[ "transformers", "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "endpoints_compatible", "region:us" ]
reinforcement-learning
"2022-12-25T11:54:39Z"
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -228.76 +/- 140.11 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
zhiyil/roberta-base-finetuned-intent-ipu
zhiyil
"2022-12-16T12:36:13Z"
6
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "roberta", "text-classification", "generated_from_trainer", "dataset:snips_built_in_intents", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2022-12-16T11:23:10Z"
--- license: mit tags: - generated_from_trainer datasets: - snips_built_in_intents metrics: - accuracy model-index: - name: roberta-base-finetuned-intent-ipu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-intent-ipu This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the snips_built_in_intents dataset. It achieves the following results on the evaluation set: - Loss: 0.1503 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2478 | 1.0 | 75 | 0.6069 | 0.96 | | 0.2522 | 2.0 | 150 | 0.1503 | 1.0 | | 0.0903 | 3.0 | 225 | 0.0712 | 1.0 | | 0.0883 | 4.0 | 300 | 0.0350 | 1.0 | | 0.0491 | 5.0 | 375 | 0.0267 | 1.0 | | 0.0305 | 6.0 | 450 | 0.0218 | 1.0 | | 0.0461 | 7.0 | 525 | 0.0191 | 1.0 | | 0.039 | 8.0 | 600 | 0.0174 | 1.0 | | 0.0337 | 9.0 | 675 | 0.0166 | 1.0 | | 0.0164 | 10.0 | 750 | 0.0162 | 1.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.0
jonatasgrosman/exp_w2v2t_it_vp-es_s878
jonatasgrosman
"2022-07-08T20:47:26Z"
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "it", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2022-07-08T20:47:00Z"
--- language: - it license: apache-2.0 tags: - automatic-speech-recognition - it datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_it_vp-es_s878 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (it)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
lafayettecreditrepair/Credit-Repair-Services-Lafayette
lafayettecreditrepair
"2022-10-26T13:08:33Z"
0
0
null
[ "region:us" ]
null
"2022-10-26T13:07:58Z"
We are a family-owned and operated Credit Repair company, founded in 2013. Our goal is to help you achieve financial success and reach your credit goals. We’re not your average credit repair firm, we truly care, so we only charge for the items we pursue on your report. Not only does this make us one of the FASTEST credit restoration companies, but we’re also one of the most affordable. Follow this [link](https://lafayette.asapcreditrepairusa.com/)
jondurbin/airocoder-34b-2.1
jondurbin
"2023-08-31T14:38:12Z"
1,431
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-08-30T23:52:19Z"
--- license: llama2 --- codellama-34b fine-tuned on the "code" expert from lmoe adapters.
logasja/instagram-ginza
logasja
"2025-02-20T15:47:27Z"
8
0
keras
[ "keras", "adversarial", "aesthetic", "quality", "filter", "image-to-image", "dataset:logasja/FDF", "base_model:logasja/ArcFace", "base_model:finetune:logasja/ArcFace", "license:gpl-3.0", "region:us" ]
image-to-image
"2025-02-17T17:47:33Z"
--- library_name: keras widget: - text: input output: url: ./assets/input.png - text: target output: url: ./assets/target.png - text: output output: url: ./assets/output.png tags: - adversarial - aesthetic - quality - filter metrics: - TopIQ-FR - ArcFace Cosine Distance license: gpl-3.0 base_model: - vnet - logasja/ArcFace pipeline_tag: image-to-image datasets: - logasja/FDF --- <Gallery /> Training logs [here](https://wandb.ai/spuds/auramask/runs/a12aef0a8ae82a31a052485a383c5d95) # Model Description This model uses a modified vnet for 2D input/output implemented [here](https://github.com/logasja/keras3-unets) with the following configuration. ```json { "activation": "ReLU", "batch_norm": false, "filter_num": [ 64, 128, 256, 512, 512 ], "n_labels": 3, "output_activation": "tanh", "pool": false, "res_num_ini": 1, "res_num_max": 3, "unpool": false } ``` ```json { "alpha": 0.0001, "batch": 64, "epochs": 500, "epsilon": 1, "input": "(256, 256)", "losses": { "FEAT_ArcFace": { "d": "cosine_similarity", "f": "ArcFace", "name": "FEAT_ArcFace", "reduction": "sum_over_batch_size", "threshold": 0.68, "weight": 0.1 }, "TopIQ": { "full_ref": true, "lower_better": false, "name": "TopIQ", "reduction": "sum_over_batch_size", "score_range": "~0, ~1", "weight": 0.9 }, "mean_squared_error": { "name": "mean_squared_error", "reduction": "sum_over_batch_size", "weight": 0.1 } }, "mixed_precision": true, "optimizer": { "amsgrad": false, "beta_1": 0.9, "beta_2": 0.999, "clipnorm": null, "clipvalue": null, "ema_momentum": 0.99, "ema_overwrite_frequency": null, "epsilon": 1e-07, "global_clipnorm": null, "gradient_accumulation_steps": null, "learning_rate": 9.999999747378752e-05, "loss_scale_factor": null, "name": "adamw", "use_ema": false, "weight_decay": 0.004 }, "seed": "BIIIIIGSTRETCH", "testing": 0.01, "training": 0.99 } ``` ## Model Architecture Plot ![](./assets/summary_plot.png)
Myashka/gpt-imdb-sigmoid-beta_0.1
Myashka
"2023-12-06T21:00:11Z"
8
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:lvwerra/gpt2-imdb", "base_model:finetune:lvwerra/gpt2-imdb", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2023-12-05T15:10:55Z"
--- base_model: lvwerra/gpt2-imdb tags: - generated_from_trainer model-index: - name: gpt-imdb-sigmoid-beta_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-imdb-sigmoid-beta_0.1 This model is a fine-tuned version of [lvwerra/gpt2-imdb](https://huggingface.co/lvwerra/gpt2-imdb) on an unknown dataset. It achieves the following results on the evaluation set: - Step: 7000 - Loss: 0.1445 - Rewards/chosen: -5.6156 - Rewards/rejected: -11.9139 - Rewards/accuracies: 0.9354 - Rewards/margins: 6.2982 - Logps/rejected: -382.8238 - Logps/chosen: -291.4216 - Logits/rejected: -44.3728 - Logits/chosen: -46.3321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 150 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.2741 | 0.21 | 500 | 0.3546 | -0.7644 | -2.6310 | 0.8604 | 1.8666 | -289.9951 | -242.9089 | -34.2705 | -35.4568 | | 0.3403 | 0.42 | 1000 | 0.2963 | -1.6755 | -4.3008 | 0.8687 | 2.6253 | -306.6930 | -252.0203 | -40.9205 | -42.3105 | | 0.1939 | 0.63 | 1500 | 0.2596 | -3.1297 | -6.7295 | 0.8771 | 3.5998 | -330.9802 | -266.5624 | -37.6829 | -39.1821 | | 0.2094 | 0.83 | 2000 | 0.1941 | -2.9414 | -6.9143 | 0.9292 | 3.9728 | -332.8280 | -264.6796 | -38.0792 | -39.7464 | | 0.1481 | 1.04 | 2500 | 0.1744 | -3.7473 | -8.3469 | 0.9333 | 4.5996 | -347.1542 | -272.7383 | -40.9252 | -42.5164 | | 0.2862 | 1.25 | 3000 | 0.1750 | -4.5825 | -9.7147 | 0.9292 | 5.1322 | -360.8324 | -281.0905 | -41.9790 | -44.0717 | | 0.304 | 1.46 | 3500 | 0.1652 | -4.3291 | -9.8200 | 0.9333 | 5.4909 | -361.8853 | -278.5559 | -44.1786 | -46.1418 | | 0.2167 | 1.67 | 4000 | 0.1580 | -4.6175 | -10.0305 | 0.9354 | 5.4130 | -363.9903 | -281.4398 | -43.6324 | -45.4854 | | 0.1396 | 1.88 | 4500 | 0.1518 | -4.5940 | -10.1635 | 0.9396 | 5.5696 | -365.3205 | -281.2049 | -41.9461 | -43.8060 | | 0.1575 | 2.08 | 5000 | 0.1525 | -5.3119 | -11.3685 | 0.9292 | 6.0566 | -377.3703 | -288.3840 | -43.4045 | -45.2127 | | 0.0338 | 2.29 | 5500 | 0.1472 | -5.2545 | -11.3863 | 0.9333 | 6.1319 | -377.5485 | -287.8099 | -43.2283 | -45.1626 | | 0.1631 | 2.5 | 6000 | 0.1496 | -5.6862 | -11.9852 | 0.9333 | 6.2991 | -383.5375 | -292.1269 | -43.6007 | -45.5693 | | 0.1177 | 2.71 | 6500 | 0.1473 | -5.6329 | -11.9588 | 0.9417 | 6.3259 | -383.2729 | -291.5939 | -44.3503 | -46.3168 | | 0.2342 | 2.92 | 7000 | **0.1445** | -5.6156 | -11.9139 | 0.9354 | 6.2982 | -382.8238 | -291.4216 | -44.3728 | -46.3321 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1 - Datasets 2.15.0 - Tokenizers 0.15.0
havinash-ai/052480e5-2a5b-4558-a13e-feb601d6e81c
havinash-ai
"2025-02-15T11:55:28Z"
0
0
peft
[ "peft", "safetensors", "gemma", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-random-GemmaForCausalLM", "base_model:adapter:fxmarty/tiny-random-GemmaForCausalLM", "license:mit", "region:us" ]
null
"2025-02-15T11:53:02Z"
--- library_name: peft license: mit base_model: fxmarty/tiny-random-GemmaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 052480e5-2a5b-4558-a13e-feb601d6e81c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 052480e5-2a5b-4558-a13e-feb601d6e81c This model is a fine-tuned version of [fxmarty/tiny-random-GemmaForCausalLM](https://huggingface.co/fxmarty/tiny-random-GemmaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 12.1377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Hilbs/Packaging-Model
Hilbs
"2023-05-31T00:54:41Z"
189
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "en", "dataset:Hilbs/Packaging", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2023-05-31T00:05:28Z"
--- datasets: - Hilbs/Packaging language: - en ---
JustFrederik/nllb-200-1.3B-ct2
JustFrederik
"2023-05-14T21:55:00Z"
1
0
transformers
[ "transformers", "nllb", "translation", "ace", "acm", "acq", "aeb", "af", "ajp", "ak", "als", "am", "apc", "ar", "ars", "ary", "arz", "as", "ast", "awa", "ayr", "azb", "azj", "ba", "bm", "ban", "be", "bem", "bn", "bho", "bjn", "bo", "bs", "bug", "bg", "ca", "ceb", "cs", "cjk", "ckb", "crh", "cy", "da", "de", "dik", "dyu", "dz", "el", "en", "eo", "et", "eu", "ee", "fo", "fj", "fi", "fon", "fr", "fur", "fuv", "gaz", "gd", "ga", "gl", "gn", "gu", "ht", "ha", "he", "hi", "hne", "hr", "hu", "hy", "ig", "ilo", "id", "is", "it", "jv", "ja", "kab", "kac", "kam", "kn", "ks", "ka", "kk", "kbp", "kea", "khk", "km", "ki", "rw", "ky", "kmb", "kmr", "knc", "kg", "ko", "lo", "lij", "li", "ln", "lt", "lmo", "ltg", "lb", "lua", "lg", "luo", "lus", "lvs", "mag", "mai", "ml", "mar", "min", "mk", "mt", "mni", "mos", "mi", "my", "nl", "nn", "nb", "npi", "nso", "nus", "ny", "oc", "ory", "pag", "pa", "pap", "pbt", "pes", "plt", "pl", "pt", "prs", "quy", "ro", "rn", "ru", "sg", "sa", "sat", "scn", "shn", "si", "sk", "sl", "sm", "sn", "sd", "so", "st", "es", "sc", "sr", "ss", "su", "sv", "swh", "szl", "ta", "taq", "tt", "te", "tg", "tl", "th", "ti", "tpi", "tn", "ts", "tk", "tum", "tr", "tw", "tzm", "ug", "uk", "umb", "ur", "uzn", "vec", "vi", "war", "wo", "xh", "ydd", "yo", "yue", "zh", "zsm", "zu", "dataset:flores-200", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
translation
"2023-05-14T21:38:28Z"
--- language: - ace - acm - acq - aeb - af - ajp - ak - als - am - apc - ar - ars - ary - arz - as - ast - awa - ayr - azb - azj - ba - bm - ban - be - bem - bn - bho - bjn - bo - bs - bug - bg - ca - ceb - cs - cjk - ckb - crh - cy - da - de - dik - dyu - dz - el - en - eo - et - eu - ee - fo - fj - fi - fon - fr - fur - fuv - gaz - gd - ga - gl - gn - gu - ht - ha - he - hi - hne - hr - hu - hy - ig - ilo - id - is - it - jv - ja - kab - kac - kam - kn - ks - ka - kk - kbp - kea - khk - km - ki - rw - ky - kmb - kmr - knc - kg - ko - lo - lij - li - ln - lt - lmo - ltg - lb - lua - lg - luo - lus - lvs - mag - mai - ml - mar - min - mk - mt - mni - mos - mi - my - nl - nn - nb - npi - nso - nus - ny - oc - ory - pag - pa - pap - pbt - pes - plt - pl - pt - prs - quy - ro - rn - ru - sg - sa - sat - scn - shn - si - sk - sl - sm - sn - sd - so - st - es - sc - sr - ss - su - sv - swh - szl - ta - taq - tt - te - tg - tl - th - ti - tpi - tn - ts - tk - tum - tr - tw - tzm - ug - uk - umb - ur - uzn - vec - vi - war - wo - xh - ydd - yo - yue - zh - zsm - zu language_details: "ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab, aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab, asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl, bam_Latn, ban_Latn,bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn, bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn, dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn, ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn, fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr, hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn, hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn, jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva, kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr, kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn, lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn, ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva, mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn, mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn, nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn, gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn, prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn, san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn, smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn, srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn, tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi, taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn, tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab, uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr, yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn" tags: - nllb - translation license: "cc-by-nc-4.0" datasets: - flores-200 metrics: - bleu - spbleu - chrf++ --- https://huggingface.co/facebook/nllb-200-1.3B ``` ct2-transformers-converter --model facebook/nllb-200-1.3B --output_dir converted/nllb-200-1.3B-ct2 ```
kiki-ailab/Qwen2.5-3B-Instruct-KAI
kiki-ailab
"2025-03-10T05:40:39Z"
11
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "vi", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-19T03:58:27Z"
--- license: other license_link: https://huggingface.co/kiki-ailab/Qwen2.5-3B-Instruct-KAI/blob/main/LICENSE.txt library_name: transformers base_model: - Qwen/Qwen2.5-3B-Instruct language: - vi --- # Qwen2.5-3B-Instruct-KAI ## Instruction Llama3.2-1B-Instruct-KAI, Llama3.2-3B-Instruct-KAI, Qwen2.5-0.5B-Instruct-KAI, Qwen2.5-1.5B-Instruct-KAI, and Qwen2.5-3B-Instruct-KAI are a collection of models fine-tuned on the open Qwen2.5* and Llama3.2* models. They are optimized for Vietnamese language understanding and generation tasks such as reading comprehension, information extraction, question answering and summarization. ## Quickstart This is a demonstration of loading a model and performing a question-answering or summarization task. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "kiki-ailab/Qwen2.5-3B-Instruct-KAI" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Xin chào !" messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ### Examples **Example 1**: ```python prompt = """Dưới đây là một số tài liệu / văn bản: <DOC id="doc-1"> Theo một nghiên cứu gần đây, biến đổi khí hậu đã làm gia tăng tần suất và cường độ của các hiện tượng thời tiết cực đoan, bao gồm bão, hạn hán và lũ lụt. Các khu vực ven biển Đông Nam Á có nguy cơ cao nhất do nước biển dâng và hiện tượng xâm nhập mặn. </DOC> <DOC id="doc-2"> Một báo cáo từ Ngân hàng Thế giới cho thấy rằng biến đổi khí hậu sẽ ảnh hưởng nghiêm trọng đến sản xuất nông nghiệp, đặc biệt là ở các nước đang phát triển, nơi nền kinh tế phụ thuộc lớn vào nông nghiệp. Cụ thể, năng suất cây trồng có thể giảm từ 10% đến 25% trong 30 năm tới. </DOC> <DOC id="doc-3"> Một sáng kiến quốc tế đã được khởi động nhằm giảm thiểu tác động của biến đổi khí hậu thông qua việc thúc đẩy sử dụng năng lượng tái tạo và giảm phát thải carbon. Các nước phát triển đã cam kết hỗ trợ tài chính cho các quốc gia dễ bị tổn thương nhất, nhưng việc triển khai vẫn gặp nhiều thách thức. </DOC> TASK: Hãy trả lời câu hỏi "Biến đổi khí hậu ảnh hưởng như thế nào đến nông nghiệp ở các nước đang phát triển?" INSTRUCTION: 1. Câu trả lời không quá 50 từ. 2. Trích dẫn rõ ràng tài liệu nào chứa thông tin liên quan, theo format: [doc-k]""" ``` **Example 2:** ```python prompt = """Trả lời câu hỏi dựa vào nội dung đoạn văn sau: ==== Bão Milton bắt đầu đổ bộ vào Siesta Key, bang Florida, Mỹ, với sức gió 193 km/h, tương đương cấp 3 trong thang đo bão 5 cấp, vào khoảng 20h30 ngày 9/10 (7h30 sáng 10/10 giờ Hà Nội). Sau vài tiếng càn quét qua Florida, bão Milton hạ xuống cấp 2 và tiếp tục hạ xuống cấp 1 vào rạng sáng 10/10. Đây là cơn bão thứ năm ở Mỹ và cơn bão thứ ba tấn công bang Florida trong năm nay. Trước khi bão Milton đổ bộ, Thống đốc Florida Ron DeSantis cho biết ít nhất 19 cơn lốc xoáy đã xuất hiện ở Florida và 116 cảnh báo lốc xoáy được ban bố khắp bang. Mưa lớn xảy ra ở các khu vực, nhất là thành phố St. Petersburg khi hứng chịu "trận mưa nghìn năm có một", với lượng mưa trút xuống thành phố trong ba giờ tương đương ba tháng trong năm. Các thành phố McKay Creek, Clearwater Beach và Temple Terrace cũng ghi nhận lượng mưa lớn, lần lượt là 371 mm, 355 mm và 344 mm. ==== Yêu cầu câu trả lời hoặc là được trích ra từ đoạn văn, hoặc là 'NO ANSWER' nếu nội dung đoạn văn không liên quan đến câu hỏi. Câu hỏi: Bão Milton mạnh như thế nào ? Diễn ra ở đâu ? Câu trả lời:""" ``` **Example 3**: ```python prompt = """Cho văn bản dưới đây: ==== Bão Milton bắt đầu đổ bộ vào Siesta Key, bang Florida, Mỹ, với sức gió 193 km/h, tương đương cấp 3 trong thang đo bão 5 cấp, vào khoảng 20h30 ngày 9/10 (7h30 sáng 10/10 giờ Hà Nội). Sau vài tiếng càn quét qua Florida, bão Milton hạ xuống cấp 2 và tiếp tục hạ xuống cấp 1 vào rạng sáng 10/10. Đây là cơn bão thứ năm ở Mỹ và cơn bão thứ ba tấn công bang Florida trong năm nay. Trước khi bão Milton đổ bộ, Thống đốc Florida Ron DeSantis cho biết ít nhất 19 cơn lốc xoáy đã xuất hiện ở Florida và 116 cảnh báo lốc xoáy được ban bố khắp bang. Mưa lớn xảy ra ở các khu vực, nhất là thành phố St. Petersburg khi hứng chịu "trận mưa nghìn năm có một", với lượng mưa trút xuống thành phố trong ba giờ tương đương ba tháng trong năm. Các thành phố McKay Creek, Clearwater Beach và Temple Terrace cũng ghi nhận lượng mưa lớn, lần lượt là 371 mm, 355 mm và 344 mm. ==== TASK: Đặt tiêu đề và tóm tắt bài báo trên thành 1-2 câu.""" ``` ## Benchmarks ### VMLU We evaluate our fine-tuned models on VMLU benchmarks provided by https://vmlu.ai | Model | VMLU | ViSquad | ViDrop | ViDialog | |--------------------------|--------------|--------------|--------------|--------------| | Llama3.2-1B-Instruct | 37.6 | 70.1 | 29.6 | 33.9 | | Llama3.2-3B-Instruct | 47.6 | 90.3 | 63.5 | 50.8 | | Qwen2.5-0.5B-Instruct | 39.1 | 62.5 | 31.5 | 28.0 | | Qwen2.5-1.5B-Instruct | 48.6 | 86.7 | 54.5 | 39.8 | | Qwen2.5-3B-Instruct | 52.9 | 88.3 | 72.4 | 54.4 | | <br/>**Our finetuned models** | | | | | | Llama3.2-1B-Instruct-KAI | 50.5 (+12.9) | 88.4 (+18.3) | 71.1 (+41.5) | 50.9 (+17.0) | | Llama3.2-3B-Instruct-KAI | 58.1 (+10.5) | 93.5 (+3.2) | 81.4 (+17.9) | 67.3 (+16.5) | | Qwen2.5-0.5B-Instruct-KAI | 49.7 (+10.6) | 87.3 (+24.8) | 62.3 (+30.8) | 39.0 (+11.0) | | Qwen2.5-1.5B-Instruct-KAI | 57.5 (+8.9) | 93.3 (+6.6) | 76.0 (+21.5) | 54.6 (+14.8) | | Qwen2.5-3B-Instruct-KAI | 63.5 (+10.6) | 94.2 (+5.9) | 80.9 (+8.5) | 68.5 (+14.1) | ### Evaluate on ArenaHard (CohereForAI) We follow the evaluation method outlined in https://github.com/lmarena/arena-hard-auto to assess our fine-tuned models against others on the ArenaHard benchmark. - Based model: `Qwen/Qwen2.5-7B-Instruct` - Judge: `Qwen/Qwen2.5-72B-Instruct` | # | model | size (B) | win | tie | lose | | -- | -------------------------------------------- | -------- | ---- | --- | ---- | | 1 | deepseek-ai/DeepSeek-R1-Distill-Qwen-14B | 14 | 59,5 | 4,6 | 35,9 | | 2 | CohereForAI/aya-expanse-8b | 8 | 55 | 4,6 | 40,4 | | 3 | Qwen/Qwen2.5-14B-Instruct | 14 | 48,7 | 9,1 | 42,2 | | 4 | **kiki-ailab/Qwen2.5-3B-Instruct-KAI** | 3 | 38,7 | 4,7 | 56,6 | | 5 | meta-llama/Llama3.1-8B-Instruct | 8 | 38,6 | 4,9 | 56,5 | | 6 | CohereForAI/c4ai-command-r7b-12-2024 | 7 | 35,1 | 3,3 | 61,6 | | 7 | **kiki-ailab/Llama3.2-3B-Instruct-KAI** | 3 | 35 | 4,3 | 60,7 | | 8 | arcee-ai/Arcee-VyLinh | 3 | 34,8 | 5,4 | 59,8 | | 9 | **kiki-ailab/Qwen2.5-1.5B-Instruct-KAI** | 1,5 | 28,9 | 3,9 | 67,2 | | 10 | deepseek-ai/DeepSeek-R1-Distill-Qwen-7B | 7 | 23,2 | 2,8 | 74 | | 11 | meta-llama/Llama-3.2-3B-Instruct | 3 | 21,2 | 4,4 | 74,4 | | 12 | Qwen/Qwen2.5-3B-Instruct | 3 | 18,6 | 5,8 | 75,6 | | 13 | zaloai/Llama3.2-1B-Instruct-ZAI | 1 | 17,4 | 3,7 | 78,9 | | 14 | Viet-Mistral/Vistral-7B-Chat | 7 | 17,2 | 3,2 | 79,6 | | 15 | **kiki-ailab/Qwen2.5-0.5B-Instruct-KAI** | 0,5 | 10,9 | 2 | 87,1 | | 16 | meta-llama/Llama-3.2-1B-Instruct | 1 | 6,5 | 1,6 | 91,9 | | 17 | Qwen/Qwen2.5-1.5B-Instruct | 1 | 6,4 | 3 | 90,6 | | 18 | deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | 1,5 | 3 | 1,5 | 95,5 | | 19 | vinai/PhoGPT-4B-Chat | 4 | 1,2 | 2,7 | 96,1 | | 20 | Qwen/Qwen2.5-0.5B-Instruct | 0,5 | 1 | 1,7 | 97,3 | # Disclaimer - Might still hallucinate on cultural-specific content. - Primary focus on Vietnamese language understanding. - May not perform optimally for specialized technical domains. # Feedback We welcome any feedback on these public models. Please send your comments to [email protected].
8Spark/stardream_large_model
8Spark
"2024-12-21T06:49:25Z"
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-12-21T06:45:02Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alielfilali01/Q2AW1M-0001
alielfilali01
"2024-06-21T20:39:37Z"
2,905
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-06-21T14:23:16Z"
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
liqi03/whisper-large-v3-pl-aug
liqi03
"2024-07-31T13:23:30Z"
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "pl", "dataset:google/fleurs", "base_model:openai/whisper-large-v3", "base_model:finetune:openai/whisper-large-v3", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2024-07-31T05:33:48Z"
--- base_model: openai/whisper-large-v3 datasets: - google/fleurs language: - pl license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Large V3 pl Fleurs Aug - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: google/fleurs config: pl_pl split: None args: 'config: pl split: test' metrics: - type: wer value: 281.1154598825832 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large V3 pl Fleurs Aug - Chee Li This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1225 - Wer: 281.1155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0502 | 1.2579 | 1000 | 0.1122 | 224.0774 | | 0.0099 | 2.5157 | 2000 | 0.1146 | 344.2200 | | 0.0033 | 3.7736 | 3000 | 0.1187 | 283.3869 | | 0.0005 | 5.0314 | 4000 | 0.1225 | 281.1155 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF
mradermacher
"2024-12-25T06:49:16Z"
17
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "dpo", "en", "base_model:AmberYifan/Mistral-7B-v0.3-sft-SPIN-self", "base_model:quantized:AmberYifan/Mistral-7B-v0.3-sft-SPIN-self", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-12-23T22:51:39Z"
--- base_model: AmberYifan/Mistral-7B-v0.3-sft-SPIN-self language: - en library_name: transformers model_name: Mistral-7B-v0.3-sft-SPIN-self quantized_by: mradermacher tags: - generated_from_trainer - trl - dpo --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/AmberYifan/Mistral-7B-v0.3-sft-SPIN-self <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Mistral-7B-v0.3-sft-SPIN-self-GGUF/resolve/main/Mistral-7B-v0.3-sft-SPIN-self.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Fatimetou/distilbert-base-uncased-finetuned-ner
Fatimetou
"2024-06-06T23:16:38Z"
93
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2024-04-02T09:27:11Z"
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0591 - Precision: 0.9266 - Recall: 0.9391 - F1: 0.9328 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2398 | 1.0 | 878 | 0.0722 | 0.8970 | 0.9149 | 0.9058 | 0.9791 | | 0.0498 | 2.0 | 1756 | 0.0593 | 0.9202 | 0.9352 | 0.9277 | 0.9830 | | 0.0292 | 3.0 | 2634 | 0.0591 | 0.9266 | 0.9391 | 0.9328 | 0.9840 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
LoneStriker/Higgs-Llama-3-70B-4.0bpw-h6-exl2
LoneStriker
"2024-06-06T21:27:18Z"
8
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "exl2", "region:us" ]
text-generation
"2024-06-06T21:12:15Z"
--- license: other --- # Higgs-Llama-3-70B Higgs-Llama-3-70B is post-trained from [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B), specially tuned for role-playing while being competitive in general-domain instruction-following and reasoning. We perform supervised fine-tuning with our in-house instruction-following and chat datasets. Afterwards, we construct preference pairs with a semi-automated pipeline that relies on both human-labelers and our private LLMs. We conduct iterative preference optimization to align the model. During alignment, we adopted a special strategy to align the model’s behavior with the system message. Compared with other instruct models, Higgs models follow their roles more closely. See our [release blog](https://boson.ai/higgs-opensource/). ## Evaluation All benchmarks lead to eventual overfitting, including those for LLMs. Training on data, particularly beneficial for benchmarks typically does not improve (or even worsen) role-playing performance. We worked to exclude benchmark data, including their training examples, from our fine-tuning data. We highlight our results on two new and challenging benchmarks: [MMLU-Pro](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro) and [Arena-Hard](https://github.com/lm-sys/arena-hard-auto). MMLU-Pro extends the popular MMLU benchmark. We believe that it suffers from less overfitting by other released models as well, as it was released only recently (it was released after our models finished training). ### MMLU-Pro <table class="col-12 col-md-6" width="100px"> <tr> <td><b>Model</b></td> <td><b>MMLU-Pro</b></td> </tr> <tr> <td>GPT-4o</td> <td>72.6</td> </tr> <tr> <td>Gemini-1.5-Pro</td> <td>69.0</td> </tr> <tr> <td>Claude-3-Opus</td> <td>68.5</td> </tr> <tr> <td>GPT-4-Turbo</td> <td>63.7</td> </tr> <tr style="font-weight: bold"> <td>Higgs-Llama-3-70B</td> <td>63.2</td> </tr> <tr> <td>Gemini-1.5-Flash</td> <td>59.1</td> </tr> <tr> <td>Claude-3-Sonnet</td> <td>56.8</td> </tr> <tr> <td>Llama-3-70B-Instruct</td> <td>56.2</td> </tr> </table> ### Arena-Hard <table class="col-12 col-md-6"> <tr> <td><b>Model</b></td> <td><b>Arena-Hard</b></td> </tr> <tr> <td>GPT-4o</td> <td>79.5</td> </tr> <tr> <td>Gemini-1.5-Pro</td> <td>72.0</td> </tr> <tr> <td>Claude-3-Opus</td> <td>60.4</td> </tr> <tr style="font-weight: bold"> <td>Higgs-Llama-3-70B</td> <td>49.6</td> </tr> <tr> <td>Gemini-1.5-Flash</td> <td>49.6</td> </tr> <tr> <td>Claude-3-Sonnet</td> <td>46.8</td> </tr> <tr> <td>Claude-3-Haiku</td> <td>41.5</td> </tr> <tr> <td>Llama-3-70B-Instruct</td> <td>41.1</td> </tr> <tr> <td>GPT-4-0613</td> <td>37.9</td> </tr> <tr> <td>Mistral-Large</td> <td>37.7</td> </tr> </table> ## Overall Results In the following, we compare our model's performance with `gpt-4o` and `Llama-3-70B-Instruct` on [MMLU-Pro](https://github.com/TIGER-AI-Lab/MMLU-Pro), [Arena-Hard](https://github.com/lm-sys/arena-hard-auto/tree/main), [AlpacaEval 2.0 LC](https://github.com/tatsu-lab/alpaca_eval), MMLU, GPQA and DROP. For MMLU, GPQA and DROP, we adopt [openai/simple-evals](https://github.com/openai/simple-evals) for evaluation. For the other benchmarks, we evaluate via the official implementation. <div style="overflow: auto"> <table> <tr> <th></th> <td><b>MMLU-Pro</td> <td><b>Arena-Hard</td> <td><b>AlpacaEval <br> 2.0 LC</b></td> <td><b>MMLU</b></td> <td><b>GPQA</b></td> <td><b>DROP <br> (F1,3-shot)</b></td> </tr> <tr> <td>GPT-4o</td> <td>72.6</td> <td>79.5*</td> <td>57.5</td> <td>87.2</td> <td>49.9</td> <td>83.7</td> </tr> <tr style="font-weight: bold"> <td>Higgs-Llama-3-70B</td> <td>63.2</td> <td>49.6</td> <td>38.6</td> <td>80.8</td> <td>42.1</td> <td>81.6</td> </tr> <tr> <td>Llama-3-70B-Instruct*</td> <td>56.2</td> <td>41.1</td> <td>34.4</td> <td>80.2</td> <td>41.3</td> <td>81.4</td> </tr> </table> </div> <small>*For Llama-3-70B-Instruct, the MMLU-Pro number is copied from the [MMLU-Pro leaderboard](https://huggingface.co/spaces/TIGER-Lab/MMLU-Pro); the Arena-Hard numbers are copied from the [leaderboard updated on 5/21](https://github.com/lm-sys/arena-hard-auto/tree/main?tab=readme-ov-file#full-leaderboard-updated-0521) while we run gpt-4o ourselves; and the MMLU/GPQA/DROP are copied from [simple-evals](https://github.com/openai/simple-evals).</small> ## How to use We use the same prompting format as in Meta-Llama-3-70B-Instruct. ### Use with transformers See the snippet below for usage with Transformers: ```python import transformers import torch model_id = "bosonai/Higgs-Llama-3-70B" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are an AI assistant that speaks in the style of Sheldon Cooper. You are arguing with the user and is trying to prove the opposite of what the user said."}, {"role": "user", "content": "The earth is round."}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=[ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>"), pipeline.tokenizer.eos_token_id, ], do_sample=True, temperature=1.0, top_p=0.95, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ## License [Our license](https://huggingface.co/bosonai/Higgs-Llama-3-70B/blob/main/LICENSE) is based on Meta's LLama 3 Community License.
albertus-sussex/veriscrape-sbert-book-reference_8_to_verify_2-fold-5
albertus-sussex
"2025-03-24T12:14:46Z"
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "new", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:20032", "loss:AttributeTripletLoss", "custom_code", "arxiv:1908.10084", "arxiv:1703.07737", "base_model:Alibaba-NLP/gte-base-en-v1.5", "base_model:finetune:Alibaba-NLP/gte-base-en-v1.5", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
"2025-03-24T12:14:31Z"
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:20032 - loss:AttributeTripletLoss base_model: Alibaba-NLP/gte-base-en-v1.5 widget: - source_sentence: The Anger Workbook sentences: - Human Body - isbn_13 - title - '9781420909883' - source_sentence: 30 June 1994 sentences: - publication_date - England - 01 November 2005 - title - source_sentence: 'Pub. Date: October 1992' sentences: - publication_date - publisher - 'Publisher: Thomson West' - Delta (May 9, 2000) - source_sentence: IVP Academic sentences: - isbn_13 - ': 9780465018802' - Brazos Press - publisher - source_sentence: Master of the Game sentences: - publication_date - title - '1996' - Rick Stein's Far Eastern Odyssey pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - silhouette_cosine - silhouette_euclidean model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 results: - task: type: triplet name: Triplet dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy value: 0.9851751923561096 name: Cosine Accuracy - type: cosine_accuracy value: 0.9846402406692505 name: Cosine Accuracy - task: type: silhouette name: Silhouette dataset: name: Unknown type: unknown metrics: - type: silhouette_cosine value: 0.8033567667007446 name: Silhouette Cosine - type: silhouette_euclidean value: 0.6603978872299194 name: Silhouette Euclidean - type: silhouette_cosine value: 0.8031685948371887 name: Silhouette Cosine - type: silhouette_euclidean value: 0.6609576940536499 name: Silhouette Euclidean --- # SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision a829fd0e060bb84554da0dfd354d0de0f7712b7f --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("albertus-sussex/veriscrape-sbert-book-reference_8_to_verify_2-fold-5") # Run inference sentences = [ 'Master of the Game', "Rick Stein's Far Eastern Odyssey", '1996', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Triplet * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.9852** | #### Silhouette * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> | Metric | Value | |:----------------------|:-----------| | **silhouette_cosine** | **0.8034** | | silhouette_euclidean | 0.6604 | #### Triplet * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.9846** | #### Silhouette * Evaluated with <code>veriscrape.training.SilhouetteEvaluator</code> | Metric | Value | |:----------------------|:-----------| | **silhouette_cosine** | **0.8032** | | silhouette_euclidean | 0.661 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 20,032 training samples * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | pos_attr_name | neg_attr_name | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------| | type | string | string | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 7.44 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.62 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.1 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.86 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.83 tokens</li><li>max: 5 tokens</li></ul> | * Samples: | anchor | positive | negative | pos_attr_name | neg_attr_name | |:------------------------------|:--------------------------------------------------------------|:-------------------------------------------------------|:------------------------------|:------------------------------| | <code>7/1/2000</code> | <code>08 November 1994</code> | <code>F My Life</code> | <code>publication_date</code> | <code>title</code> | | <code>Pine Forge Press</code> | <code>Oxford University Press, USA (December 19, 1996)</code> | <code>Workman Publishing Company (1996)</code> | <code>publisher</code> | <code>publication_date</code> | | <code>9781600242304</code> | <code>9780618033805</code> | <code>Scholastic Paperbacks (September 1, 2004)</code> | <code>isbn_13</code> | <code>publication_date</code> | * Loss: <code>veriscrape.training.AttributeTripletLoss</code> with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 2,226 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, <code>negative</code>, <code>pos_attr_name</code>, and <code>neg_attr_name</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | pos_attr_name | neg_attr_name | |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------| | type | string | string | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 7.4 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.66 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.12 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.7 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.8 tokens</li><li>max: 5 tokens</li></ul> | * Samples: | anchor | positive | negative | pos_attr_name | neg_attr_name | |:-------------------------------------------------------|:------------------------------|:--------------------------------------------|:--------------------|:-----------------------| | <code>Drew Karpyshyn</code> | <code>Ernest Hemingway</code> | <code>9781616882914</code> | <code>author</code> | <code>isbn_13</code> | | <code>Denene Millner</code> | <code>John Steinbeck</code> | <code>: Regnery Publishing</code> | <code>author</code> | <code>publisher</code> | | <code>Colossians & Philemon: Preaching the Word</code> | <code>Express Makeup</code> | <code>: Zondervan Publishing Company</code> | <code>title</code> | <code>publisher</code> | * Loss: <code>veriscrape.training.AttributeTripletLoss</code> with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine | |:-----:|:----:|:-------------:|:---------------:|:---------------:|:-----------------:| | -1 | -1 | - | - | 0.3944 | 0.1168 | | 1.0 | 157 | 1.0117 | 0.2685 | 0.9811 | 0.7923 | | 2.0 | 314 | 0.1064 | 0.2295 | 0.9825 | 0.7871 | | 3.0 | 471 | 0.081 | 0.1841 | 0.9865 | 0.7858 | | 4.0 | 628 | 0.055 | 0.1513 | 0.9879 | 0.8258 | | 5.0 | 785 | 0.042 | 0.1843 | 0.9852 | 0.8034 | | -1 | -1 | - | - | 0.9846 | 0.8032 | ### Framework Versions - Python: 3.10.16 - Sentence Transformers: 3.4.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.5.2 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### AttributeTripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mradermacher/ZEUS-8B-V8-GGUF
mradermacher
"2024-12-13T15:43:08Z"
41
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:T145/ZEUS-8B-V8", "base_model:quantized:T145/ZEUS-8B-V8", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
"2024-12-13T07:45:33Z"
--- base_model: T145/ZEUS-8B-V8 language: - en library_name: transformers license: llama3.1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/T145/ZEUS-8B-V8 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/ZEUS-8B-V8-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ZEUS-8B-V8-GGUF/resolve/main/ZEUS-8B-V8.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
harukadoyu/test
harukadoyu
"2024-05-13T07:42:44Z"
0
0
fastai
[ "fastai", "region:us" ]
null
"2024-05-13T07:39:42Z"
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Coldbrew9/wheel-SKFLY-P4
Coldbrew9
"2025-02-21T02:49:00Z"
0
0
null
[ "region:us" ]
null
"2025-02-21T02:42:56Z"
## 파인튜닝을 위한 데이터셋 구축 (앉아있는 자세) ``` dataset/ ├── cloth/ │ ├── lower_img/ │ │ └── 00000.jpg # 하의 이미지 │ ├── lower_mask/ │ │ └── 00000.jpg # 하의 이미지의 마스크 │ ├── upper_img/ │ │ └── 00000.jpg # 하의 이미지 │ └── upper_mask/ │ └── 00000.jpg # 하의 이미지의 마스크 ├── image/ │ └── 00000.jpg # 사람 이미지지 ├── image_mask_L/ # 이미지의 하반신 마스크 저장 (Lower 부분) │ └── 00000.jpg └── image_mask_U/ # 이미지의 상반신 마스크 저장 (Upper 부분) └── 00000.jpg ```
Pragash-Mohanarajah/bert-base-uncased-finetuned-bible
Pragash-Mohanarajah
"2024-05-07T17:30:47Z"
109
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "fill-mask", "generated_from_trainer", "dataset:bible", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2024-05-07T15:58:58Z"
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - bible model-index: - name: bert-base-uncased-finetuned-bible results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-bible This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the bible dataset. It achieves the following results on the evaluation set: - Loss: 1.3702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6684 | 1.0 | 2341 | 1.4889 | | 1.5534 | 2.0 | 4682 | 1.3957 | | 1.5136 | 3.0 | 7023 | 1.3713 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
ttttttris/bert-finetuned-squad
ttttttris
"2025-02-04T01:06:30Z"
9
0
transformers
[ "transformers", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
"2025-02-03T20:49:03Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.48.2 - Pytorch 2.1.2+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
abdullahkhudhair/CE-categories-spanish_new
abdullahkhudhair
"2025-04-11T07:55:21Z"
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-04-11T07:55:01Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
lesso04/342dda22-59fc-44c2-9823-9fcb1c4ebe2f
lesso04
"2025-01-15T16:26:18Z"
7
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "custom_code", "base_model:NovaSearch/stella_en_1.5B_v5", "base_model:adapter:NovaSearch/stella_en_1.5B_v5", "license:mit", "8-bit", "bitsandbytes", "region:us" ]
null
"2025-01-15T16:13:04Z"
--- library_name: peft license: mit base_model: dunzhang/stella_en_1.5B_v5 tags: - axolotl - generated_from_trainer model-index: - name: 342dda22-59fc-44c2-9823-9fcb1c4ebe2f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: dunzhang/stella_en_1.5B_v5 bf16: true chat_template: llama3 datasets: - data_files: - c17c59740c4fc07c_train_data.json ds_type: json format: custom path: /workspace/input_data/c17c59740c4fc07c_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: lesso04/342dda22-59fc-44c2-9823-9fcb1c4ebe2f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/c17c59740c4fc07c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 21989a9f-7539-4956-94ad-ee9bd5631eb8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 21989a9f-7539-4956-94ad-ee9bd5631eb8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 342dda22-59fc-44c2-9823-9fcb1c4ebe2f This model is a fine-tuned version of [dunzhang/stella_en_1.5B_v5](https://huggingface.co/dunzhang/stella_en_1.5B_v5) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0003 | 1 | nan | | 0.0 | 0.0017 | 5 | nan | | 0.0 | 0.0034 | 10 | nan | | 0.0 | 0.0051 | 15 | nan | | 0.0 | 0.0068 | 20 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
apple/aimv2-huge-patch14-448
apple
"2025-02-28T18:31:12Z"
2,848
3
transformers
[ "transformers", "jax", "safetensors", "aimv2", "feature-extraction", "vision", "image-feature-extraction", "mlx", "pytorch", "custom_code", "arxiv:2411.14402", "license:apple-amlr", "model-index", "region:us" ]
image-feature-extraction
"2024-10-29T15:38:36Z"
--- library_name: transformers license: apple-amlr metrics: - accuracy pipeline_tag: image-feature-extraction tags: - vision - image-feature-extraction - mlx - pytorch model-index: - name: aimv2-huge-patch14-448 results: - task: type: classification name: Classification dataset: name: imagenet-1k type: imagenet-1k metrics: - type: accuracy value: 88.6 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: inaturalist-18 type: inaturalist-18 metrics: - type: accuracy value: 82.8 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: cifar10 type: cifar10 metrics: - type: accuracy value: 99.4 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: cifar100 type: cifar100 metrics: - type: accuracy value: 93.6 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: food101 type: food101 metrics: - type: accuracy value: 97.0 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: dtd type: dtd metrics: - type: accuracy value: 88.9 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: oxford-pets type: oxford-pets metrics: - type: accuracy value: 96.8 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: stanford-cars type: stanford-cars metrics: - type: accuracy value: 96.5 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: camelyon17 type: camelyon17 metrics: - type: accuracy value: 93.4 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: patch-camelyon type: patch-camelyon metrics: - type: accuracy value: 89.6 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: rxrx1 type: rxrx1 metrics: - type: accuracy value: 7.8 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: eurosat type: eurosat metrics: - type: accuracy value: 98.7 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: fmow type: fmow metrics: - type: accuracy value: 64.8 name: Accuracy verified: false - task: type: classification name: Classification dataset: name: domainnet-infographic type: domainnet-infographic metrics: - type: accuracy value: 74.5 name: Accuracy verified: false --- # Introduction [[`AIMv2 Paper`](https://arxiv.org/abs/2411.14402)] [[`BibTeX`](#citation)] We introduce the AIMv2 family of vision models pre-trained with a multimodal autoregressive objective. AIMv2 pre-training is simple and straightforward to train and scale effectively. Some AIMv2 highlights include: 1. Outperforms OAI CLIP and SigLIP on the majority of multimodal understanding benchmarks. 2. Outperforms DINOv2 on open-vocabulary object detection and referring expression comprehension. 3. Exhibits strong recognition performance with AIMv2-3B achieving *89.5% on ImageNet using a frozen trunk*. <img src="aimv2_overview_light.png" alt="AIMv2 Overview"/> ## Usage ### PyTorch ```python import requests from PIL import Image from transformers import AutoImageProcessor, AutoModel url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained( "apple/aimv2-huge-patch14-448", ) model = AutoModel.from_pretrained( "apple/aimv2-huge-patch14-448", trust_remote_code=True, ) inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) ``` ### JAX ```python import requests from PIL import Image from transformers import AutoImageProcessor, FlaxAutoModel url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained( "apple/aimv2-huge-patch14-448", ) model = FlaxAutoModel.from_pretrained( "apple/aimv2-huge-patch14-448", trust_remote_code=True, ) inputs = processor(images=image, return_tensors="jax") outputs = model(**inputs) ``` ## Citation If you find our work useful, please consider citing us as: ```bibtex @misc{fini2024multimodalautoregressivepretraininglarge, author = {Fini, Enrico and Shukor, Mustafa and Li, Xiujun and Dufter, Philipp and Klein, Michal and Haldimann, David and Aitharaju, Sai and da Costa, Victor Guilherme Turrisi and Béthune, Louis and Gan, Zhe and Toshev, Alexander T and Eichner, Marcin and Nabi, Moin and Yang, Yinfei and Susskind, Joshua M. and El-Nouby, Alaaeldin}, url = {https://arxiv.org/abs/2411.14402}, eprint = {2411.14402}, eprintclass = {cs.CV}, eprinttype = {arXiv}, title = {Multimodal Autoregressive Pre-training of Large Vision Encoders}, year = {2024}, } ```
AniketArtani/final_testing
AniketArtani
"2024-04-04T07:54:18Z"
103
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2024-04-02T13:44:32Z"
--- license: apache-2.0 tags: - generated_from_trainer base_model: facebook/bart-base model-index: - name: final_testing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # final_testing This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.01 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.18.0 - Tokenizers 0.15.1
macadeliccc/samantha-1.1-MBX-7B
macadeliccc
"2024-02-20T16:57:09Z"
4
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:cognitivecomputations/samantha-1.1-westlake-7b", "base_model:merge:cognitivecomputations/samantha-1.1-westlake-7b", "base_model:macadeliccc/MBX-7B-v3-DPO", "base_model:merge:macadeliccc/MBX-7B-v3-DPO", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-02-13T20:24:52Z"
--- base_model: - macadeliccc/MBX-7B-v3-DPO - cognitivecomputations/samantha-1.1-westlake-7b tags: - mergekit - merge license: apache-2.0 --- # Samantha 1.1 MBX 7B ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/bq3IRI6barhEzd1E9LbEe.webp) **Prompt Template:** ``` <|im_start|>system You are a caring and empathetic sentient AI companion named Samantha.<|im_end|> <|im_start|>user Hello, what is your name?<|im_end|> <|im_start|>assistant ``` ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [macadeliccc/MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO) * [cognitivecomputations/samantha-1.1-westlake-7b](https://huggingface.co/cognitivecomputations/samantha-1.1-westlake-7b) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: cognitivecomputations/samantha-1.1-westlake-7b layer_range: [0, 32] - model: macadeliccc/MBX-7B-v3-DPO layer_range: [0, 32] merge_method: slerp base_model: macadeliccc/MBX-7B-v3-DPO parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## GGUF TODO ## Ollama ```bash ollama run macadeliccc/samantha-1.1-westlake-7b ``` ## Code Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("macadeliccc/samantha-1.1-MBX-7B") model = AutoModelForCausalLM.from_pretrained("macadeliccc/samanth-1.1-MBX-7B") messages = [ {"role": "system", "content": "You are a caring and empathetic sentient AI companion named Samantha."}, {"role": "user", "content": "Hello, what is your name?"} ] gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") ```
isspek/xlnet-base-cased_ebola_mistral_4_2e-5_16_undersampling_0.3
isspek
"2024-12-19T13:20:03Z"
120
0
transformers
[ "transformers", "safetensors", "xlnet", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-11-23T12:39:19Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Antoinegg1/llama-3-8b_safe_0.5to0.25_1
Antoinegg1
"2024-06-08T01:53:10Z"
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-06-07T22:56:52Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-bf16-Q2-mlx
CuckmeisterFuller
"2025-01-31T02:11:59Z"
37
0
vllm
[ "vllm", "safetensors", "mistral", "mlx", "mlx-my-repo", "en", "fr", "de", "es", "it", "pt", "zh", "ja", "ru", "ko", "base_model:mlx-community/Mistral-Small-24B-Instruct-2501-bf16", "base_model:quantized:mlx-community/Mistral-Small-24B-Instruct-2501-bf16", "license:apache-2.0", "2-bit", "region:us" ]
null
"2025-01-31T02:11:34Z"
--- language: - en - fr - de - es - it - pt - zh - ja - ru - ko license: apache-2.0 library_name: vllm base_model: mlx-community/Mistral-Small-24B-Instruct-2501-bf16 extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. tags: - mlx - mlx - mlx-my-repo --- # CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-bf16-Q2-mlx The Model [CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-bf16-Q2-mlx](https://huggingface.co/CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-bf16-Q2-mlx) was converted to MLX format from [mlx-community/Mistral-Small-24B-Instruct-2501-bf16](https://huggingface.co/mlx-community/Mistral-Small-24B-Instruct-2501-bf16) using mlx-lm version **0.20.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-bf16-Q2-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
zelk12/MT5-Max-Merge_02012025163610-BMA-gemma-2-9B
zelk12
"2025-01-14T15:29:38Z"
14
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "mergekit", "merge", "conversational", "base_model:zelk12/MT5-Max-Merge_02012025163610-BB-gemma-2-MTM4MTg2GI-9B", "base_model:merge:zelk12/MT5-Max-Merge_02012025163610-BB-gemma-2-MTM4MTg2GI-9B", "base_model:zelk12/MT5-Max-Merge_02012025163610-MA-gemma-2-MTM4MTM3-9B", "base_model:merge:zelk12/MT5-Max-Merge_02012025163610-MA-gemma-2-MTM4MTM3-9B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-14T15:23:16Z"
--- base_model: - zelk12/MT5-Max-Merge_02012025163610-BB-gemma-2-MTM4MTg2GI-9B - zelk12/MT5-Max-Merge_02012025163610-MA-gemma-2-MTM4MTM3-9B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [zelk12/MT5-Max-Merge_02012025163610-BB-gemma-2-MTM4MTg2GI-9B](https://huggingface.co/zelk12/MT5-Max-Merge_02012025163610-BB-gemma-2-MTM4MTg2GI-9B) * [zelk12/MT5-Max-Merge_02012025163610-MA-gemma-2-MTM4MTM3-9B](https://huggingface.co/zelk12/MT5-Max-Merge_02012025163610-MA-gemma-2-MTM4MTM3-9B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: zelk12/MT5-Max-Merge_02012025163610-BB-gemma-2-MTM4MTg2GI-9B - model: zelk12/MT5-Max-Merge_02012025163610-MA-gemma-2-MTM4MTM3-9B merge_method: slerp base_model: zelk12/MT5-Max-Merge_02012025163610-BB-gemma-2-MTM4MTg2GI-9B dtype: bfloat16 parameters: t: 0.25 ```
eio24/DP_Czert_fine-tuned
eio24
"2024-04-07T18:52:30Z"
105
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2024-04-07T18:52:15Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CatBarks/t5_esSEC4_4_tokenizer
CatBarks
"2024-02-29T08:28:10Z"
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-02-29T08:28:09Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dabrown/cc19fb13-0204-430d-96f4-5e344edaab60
dabrown
"2025-02-28T11:02:33Z"
0
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3-mini-128k-instruct", "base_model:adapter:microsoft/Phi-3-mini-128k-instruct", "license:mit", "region:us" ]
null
"2025-02-28T06:35:26Z"
--- library_name: peft license: mit base_model: microsoft/Phi-3-mini-128k-instruct tags: - axolotl - generated_from_trainer model-index: - name: cc19fb13-0204-430d-96f4-5e344edaab60 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.5.2` ```yaml adapter: lora base_model: microsoft/Phi-3-mini-128k-instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2ab5508654347f3c_train_data.json ds_type: json format: custom path: /workspace/input_data/2ab5508654347f3c_train_data.json type: field_instruction: user_prompt field_output: resp format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: false group_by_length: true hub_model_id: dabrown/cc19fb13-0204-430d-96f4-5e344edaab60 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: false lora_inference_mode: true lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/2ab5508654347f3c_train_data.json model_type: AutoModelForCausalLM modules_to_save: lm_head num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true peft_use_rslora: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: offline wandb_name: 946903bb-e331-4529-be0a-a81d1c829510 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 946903bb-e331-4529-be0a-a81d1c829510 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cc19fb13-0204-430d-96f4-5e344edaab60 This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1081 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6039 | 0.0009 | 1 | 0.8865 | | 0.1576 | 0.2508 | 271 | 0.1417 | | 0.0507 | 0.5017 | 542 | 0.1345 | | 0.1386 | 0.7525 | 813 | 0.1234 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
eglkan1/mBART-TextSimp-LT-BatchSize8-lr5e-5
eglkan1
"2024-04-11T10:44:02Z"
10
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "generated_from_trainer", "base_model:facebook/mbart-large-50", "base_model:finetune:facebook/mbart-large-50", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2024-04-11T10:05:52Z"
--- license: mit base_model: facebook/mbart-large-50 tags: - generated_from_trainer metrics: - rouge - sacrebleu model-index: - name: mBART-TextSimp-LT-BatchSize8-lr5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBART-TextSimp-LT-BatchSize8-lr5e-5 This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4296 - Rouge1: 0.0605 - Rouge2: 0.0078 - Rougel: 0.0593 - Sacrebleu: 0.044 - Gen Len: 34.5776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | 8.0008 | 1.0 | 104 | 7.0565 | 0.1958 | 0.1282 | 0.1868 | 7.9463 | 511.6945 | | 0.3454 | 2.0 | 209 | 0.1874 | 0.6646 | 0.4862 | 0.6559 | 41.0808 | 34.5752 | | 0.0728 | 3.0 | 313 | 0.0748 | 0.7063 | 0.5426 | 0.6984 | 48.033 | 34.5752 | | 0.0491 | 4.0 | 418 | 0.0630 | 0.7346 | 0.5861 | 0.7248 | 51.6574 | 34.5752 | | 0.755 | 5.0 | 522 | 0.7158 | 0.0008 | 0.0 | 0.0009 | 0.0 | 35.5752 | | 0.4913 | 6.0 | 627 | 0.4653 | 0.0218 | 0.0008 | 0.0219 | 0.022 | 34.6134 | | 0.4771 | 7.0 | 731 | 0.4525 | 0.0385 | 0.0034 | 0.0382 | 0.0308 | 34.926 | | 0.4224 | 7.96 | 832 | 0.4296 | 0.0605 | 0.0078 | 0.0593 | 0.044 | 34.5776 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.4 - Tokenizers 0.13.3
sniperfix/7a275ad6-d423-4b47-aeb0-d87b2bb38d8c
sniperfix
"2025-01-31T21:25:00Z"
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-3B", "base_model:adapter:unsloth/Llama-3.2-3B", "license:llama3.2", "region:us" ]
null
"2025-01-31T20:17:38Z"
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: 7a275ad6-d423-4b47-aeb0-d87b2bb38d8c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7a30332c2a7b7854_train_data.json ds_type: json format: custom path: /workspace/input_data/7a30332c2a7b7854_train_data.json type: field_input: options field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: sniperfix/7a275ad6-d423-4b47-aeb0-d87b2bb38d8c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 90 micro_batch_size: 2 mlflow_experiment_name: /tmp/7a30332c2a7b7854_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: indexjupri-sniper-country wandb_mode: online wandb_name: e7520f20-550c-418e-944f-52ac3fc9cfcf wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e7520f20-550c-418e-944f-52ac3fc9cfcf warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ``` </details><br> # 7a275ad6-d423-4b47-aeb0-d87b2bb38d8c This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 90 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0053 | 1 | nan | | 0.0 | 0.0426 | 8 | nan | | 0.0 | 0.0851 | 16 | nan | | 0.0 | 0.1277 | 24 | nan | | 0.0 | 0.1703 | 32 | nan | | 0.0 | 0.2129 | 40 | nan | | 0.0 | 0.2554 | 48 | nan | | 0.0 | 0.2980 | 56 | nan | | 0.0 | 0.3406 | 64 | nan | | 0.0 | 0.3832 | 72 | nan | | 0.0 | 0.4257 | 80 | nan | | 0.0 | 0.4683 | 88 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kaist-ai/CoT-T5-3B
kaist-ai
"2023-10-14T14:42:55Z"
21
11
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:kaist-ai/CoT-Collection", "dataset:SirNeural/flan_v2", "arxiv:2305.14045", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
"2023-06-26T16:57:54Z"
--- tags: - text2text-generation datasets: - kaist-ai/CoT-Collection - SirNeural/flan_v2 license: apache-2.0 language: - en pipeline_tag: text2text-generation library_name: transformers --- ## Links for Reference - **Homepage:https://github.com/kaistAI/CoT-Collection** - **Repository:https://github.com/kaistAI/CoT-Collection** - **Paper:https://arxiv.org/abs/2305.14045** - **Point of Contact:[email protected]** # TL;DR CoT-T5 is a language model using [Flan-T5](https://huggingface.co/google/flan-t5-xxl) as a base model, and CoT fine-tuned on 1.84 million rationales across 1,060 tasks from the [CoT Collection](https://huggingface.co/datasets/kaist-ai/CoT-Collection). Since it was CoT fine-tuned on a large amount of rationales, it shows superior performance with CoT compared to Flan-T5. One could use CoT-T5 for (1) Solving unseen tasks in zero-shot setting, and (2) Adapting to new tasks with CoT fine-tuning. # Model Details ## Model Description - **Model type:** Language model - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Related Models:** [All CoT-T5 Checkpoints](https://huggingface.co/models?search=cot-t5) - **Resources for more information:** - [Research paper](https://arxiv.org/abs/2305.14045) - [GitHub Repo](https://github.com/kaistAI/CoT-Collection) CoT-T5 is trained with two different sizes (3B and 11B). You could check the 11B sized LM on [this page](https://huggingface.co/kaist-ai/CoT-T5-3B). Also, check out our dataset as well on [this page](https://huggingface.co/datasets/kaist-ai/CoT-Collection). ## License CoT Collection and CoT-T5 is subject to OpenAI's Terms of Use for the generated data. If you suspect any violations, please reach out to us. # Usage Find below some example scripts on how to use the model in `transformers`: ## Using the Pytorch model ### Running the model on a CPU <details> <summary> Click to expand </summary> ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("kaist-ai/CoT-T5-3B") model = T5ForConditionalGeneration.from_pretrained("kaist-ai/CoT-T5-3B") input_text = "Read the Directions and try to pick among A,B,C,D.\n\nDirecitons: A good way to figure out the relationship in a given question is to make up a sentence that describes the relationship between the first two words. Then, try to use the same sentence to find out which of the answer choices completes the same relationship with the third word.\nQuestion: Odometer is to mileage as compass is to?\nOptions: (A) speed, (B) hiking, (C) needle, (D) direction.\nLet's think step by step.\n" input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> ### Running the model on a GPU <details> <summary> Click to expand </summary> ```python # pip install accelerate from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("kaist-ai/CoT-T5-3B") model = T5ForConditionalGeneration.from_pretrained("kaist-ai/CoT-T5-3B", device_map="auto") input_text = "Read the Directions and try to pick among A,B,C,D.\n\nDirecitons: A good way to figure out the relationship in a given question is to make up a sentence that describes the relationship between the first two words. Then, try to use the same sentence to find out which of the answer choices completes the same relationship with the third word.\nQuestion: Odometer is to mileage as compass is to?\nOptions: (A) speed, (B) hiking, (C) needle, (D) direction.\nLet's think step by step.\n" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> ### Running the model on a GPU using different precisions #### FP16 <details> <summary> Click to expand </summary> ```python # pip install accelerate import torch from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("kaist-ai/CoT-T5-3B") model = T5ForConditionalGeneration.from_pretrained("kaist-ai/CoT-T5-3B", device_map="auto", torch_dtype=torch.float16) input_text = "Read the Directions and try to pick among A,B,C,D.\n\nDirecitons: A good way to figure out the relationship in a given question is to make up a sentence that describes the relationship between the first two words. Then, try to use the same sentence to find out which of the answer choices completes the same relationship with the third word.\nQuestion: Odometer is to mileage as compass is to?\nOptions: (A) speed, (B) hiking, (C) needle, (D) direction.\nLet's think step by step.\n" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> #### INT8 <details> <summary> Click to expand </summary> ```python # pip install bitsandbytes accelerate from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("kaist-ai/CoT-T5-3B") model = T5ForConditionalGeneration.from_pretrained("kaist-ai/CoT-T5-3B", device_map="auto", load_in_8bit=True) input_text = "Read the Directions and try to pick among A,B,C,D.\n\nDirecitons: A good way to figure out the relationship in a given question is to make up a sentence that describes the relationship between the first two words. Then, try to use the same sentence to find out which of the answer choices completes the same relationship with the third word.\nQuestion: Odometer is to mileage as compass is to?\nOptions: (A) speed, (B) hiking, (C) needle, (D) direction.\nLet's think step by step.\n" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> # Citation If you find the following model helpful, please considering citing our paper! **BibTeX:** ```bibtex @article{kim2023cot, title={The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning}, author={Kim, Seungone and Joo, Se June and Kim, Doyoung and Jang, Joel and Ye, Seonghyeon and Shin, Jamin and Seo, Minjoon}, journal={arXiv preprint arXiv:2305.14045}, year={2023} } ```
geoffwalters/finetuned2_distilgpt2
geoffwalters
"2025-04-02T13:14:58Z"
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-02T12:52:48Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
Aivesa/3b45a5fe-37d5-4baa-91e1-1c813f38b31a
Aivesa
"2025-01-18T17:10:14Z"
5
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "dataset:Aivesa/dataset_7c40032f-e667-40ad-9658-3748512bf15b", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
"2025-01-18T17:08:57Z"
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer datasets: - Aivesa/dataset_7c40032f-e667-40ad-9658-3748512bf15b model-index: - name: 3b45a5fe-37d5-4baa-91e1-1c813f38b31a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.6.0` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: /workspace/axolotl/data/prepared datasets: - ds_type: json format: custom path: Aivesa/dataset_7c40032f-e667-40ad-9658-3748512bf15b type: field_instruction: sentence1 field_output: sentence2 system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Aivesa/3b45a5fe-37d5-4baa-91e1-1c813f38b31a hub_private_repo: true hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: /workspace/axolotl/outputs pad_to_sequence_len: true push_to_hub: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_safetensors: true saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true use_accelerate: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7c40032f-e667-40ad-9658-3748512bf15b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7c40032f-e667-40ad-9658-3748512bf15b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3b45a5fe-37d5-4baa-91e1-1c813f38b31a This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the Aivesa/dataset_7c40032f-e667-40ad-9658-3748512bf15b dataset. It achieves the following results on the evaluation set: - Loss: 3.1446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.7803 | 0.0030 | 3 | 3.5993 | | 2.9619 | 0.0060 | 6 | 3.4711 | | 3.3801 | 0.0090 | 9 | 3.1446 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.0a0+e000cf0ad9.nv24.10 - Datasets 3.1.0 - Tokenizers 0.21.0
mergekit-community/TopEvolution
mergekit-community
"2024-05-20T21:01:09Z"
12
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:NousResearch/Hermes-2-Pro-Mistral-7B", "base_model:merge:NousResearch/Hermes-2-Pro-Mistral-7B", "base_model:mergekit-community/mergekit-slerp-ebgdloh", "base_model:merge:mergekit-community/mergekit-slerp-ebgdloh", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-20T20:53:23Z"
--- base_model: - NousResearch/Hermes-2-Pro-Mistral-7B - mergekit-community/mergekit-slerp-ebgdloh library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) * [mergekit-community/mergekit-slerp-ebgdloh](https://huggingface.co/mergekit-community/mergekit-slerp-ebgdloh) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: NousResearch/Hermes-2-Pro-Mistral-7B - model: mergekit-community/mergekit-slerp-ebgdloh merge_method: slerp base_model: mergekit-community/mergekit-slerp-ebgdloh dtype: bfloat16 parameters: t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers ```
Weni/WeniGPT-2.8.1-Zephyr-7B-zephyr-prompt-binarized
Weni
"2024-03-08T15:49:25Z"
0
0
trl
[ "trl", "safetensors", "DPO", "WeniGPT", "en", "base_model:Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT", "base_model:finetune:Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT", "license:mit", "region:us" ]
null
"2024-03-08T15:16:59Z"
--- license: mit library_name: "trl" tags: - DPO - WeniGPT base_model: Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT model-index: - name: Weni/WeniGPT-2.8.1-Zephyr-7B-zephyr-prompt-binarized results: [] language: ['en'] --- # Weni/WeniGPT-2.8.1-Zephyr-7B-zephyr-prompt-binarized This model is a fine-tuned version of [Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT] on the dataset HuggingFaceH4/ultrafeedback_binarized with the DPO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/). It achieves the following results on the evaluation set: {'eval_loss': 1.9671216011047363, 'eval_runtime': 94.0811, 'eval_samples_per_second': 2.126, 'eval_steps_per_second': 0.531, 'eval_rewards/chosen': 16.395244598388672, 'eval_rewards/rejected': 11.052546501159668, 'eval_rewards/accuracies': 0.5299999713897705, 'eval_rewards/margins': 5.342697620391846, 'eval_logps/rejected': -302.33038330078125, 'eval_logps/chosen': -315.1849365234375, 'eval_logits/rejected': -2.665374517440796, 'eval_logits/chosen': -2.6737234592437744, 'epoch': 1.0} ## Intended uses & limitations This model has not been trained to avoid specific intructions. ## Training procedure Finetuning was done on the model Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT with the following prompt: ``` Prompt: <|user|>{prompt}</s> Chosen: <|assistant|>{chosen}</s> Rejected: <|assistant|>{rejected}</s> ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - per_device_train_batch_size: 4 - per_device_eval_batch_size: 4 - gradient_accumulation_steps: 4 - num_gpus: 1 - total_train_batch_size: 16 - optimizer: AdamW - lr_scheduler_type: cosine - num_steps: 112 - quantization_type: bitsandbytes - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 16\n - lora_alpha: 16\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']\n - task_type: CAUSAL_LM",) ### Training results ### Framework versions - transformers==4.38.2 - datasets==2.17.1 - peft==0.8.2 - safetensors==0.4.2 - evaluate==0.4.1 - bitsandbytes==0.42 - huggingface_hub==0.20.3 - seqeval==1.2.2 - optimum==1.17.1 - auto-gptq==0.7.0 - gpustat==1.1.1 - deepspeed==0.13.2 - wandb==0.16.3 - trl==0.7.11 - accelerate==0.27.2 - coloredlogs==15.0.1 - traitlets==5.14.1 - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.0/autoawq-0.2.0+cu118-cp310-cp310-linux_x86_64.whl ### Hardware - Cloud provided: runpod.io
libok/test
libok
"2022-11-10T06:57:12Z"
0
0
null
[ "region:us" ]
null
"2022-11-10T06:56:42Z"
a robot reading the book and playing the piano
asun17904/multiberts-seed_1_winobias_classifieronly
asun17904
"2023-03-24T16:00:02Z"
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2023-03-24T03:11:15Z"
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: multiberts-seed_1_winobias_classifieronly results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multiberts-seed_1_winobias_classifieronly This model is a fine-tuned version of [google/multiberts-seed_1](https://huggingface.co/google/multiberts-seed_1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6936 - Accuracy: 0.5114 - Tp: 0.2734 - Tn: 0.2380 - Fp: 0.2620 - Fn: 0.2266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:| | 0.7029 | 0.8 | 20 | 0.6948 | 0.5019 | 0.1951 | 0.3068 | 0.1932 | 0.3049 | | 0.6937 | 1.6 | 40 | 0.6952 | 0.4931 | 0.3390 | 0.1540 | 0.3460 | 0.1610 | | 0.6974 | 2.4 | 60 | 0.6954 | 0.4937 | 0.3567 | 0.1370 | 0.3630 | 0.1433 | | 0.7041 | 3.2 | 80 | 0.6946 | 0.5051 | 0.2191 | 0.2860 | 0.2140 | 0.2809 | | 0.6975 | 4.0 | 100 | 0.6947 | 0.5013 | 0.1799 | 0.3213 | 0.1787 | 0.3201 | | 0.6996 | 4.8 | 120 | 0.6948 | 0.5025 | 0.1521 | 0.3504 | 0.1496 | 0.3479 | | 0.7008 | 5.6 | 140 | 0.6944 | 0.4975 | 0.2841 | 0.2134 | 0.2866 | 0.2159 | | 0.7004 | 6.4 | 160 | 0.6943 | 0.4968 | 0.1850 | 0.3119 | 0.1881 | 0.3150 | | 0.6913 | 7.2 | 180 | 0.6944 | 0.4924 | 0.1553 | 0.3371 | 0.1629 | 0.3447 | | 0.703 | 8.0 | 200 | 0.6941 | 0.5025 | 0.2784 | 0.2241 | 0.2759 | 0.2216 | | 0.6975 | 8.8 | 220 | 0.6941 | 0.4987 | 0.2197 | 0.2790 | 0.2210 | 0.2803 | | 0.6964 | 9.6 | 240 | 0.6942 | 0.4949 | 0.2058 | 0.2891 | 0.2109 | 0.2942 | | 0.692 | 10.4 | 260 | 0.6943 | 0.4949 | 0.3037 | 0.1913 | 0.3087 | 0.1963 | | 0.6939 | 11.2 | 280 | 0.6943 | 0.4987 | 0.1900 | 0.3087 | 0.1913 | 0.3100 | | 0.7043 | 12.0 | 300 | 0.6942 | 0.5044 | 0.2551 | 0.2494 | 0.2506 | 0.2449 | | 0.7036 | 12.8 | 320 | 0.6942 | 0.4912 | 0.2102 | 0.2809 | 0.2191 | 0.2898 | | 0.697 | 13.6 | 340 | 0.6943 | 0.4975 | 0.1604 | 0.3371 | 0.1629 | 0.3396 | | 0.7028 | 14.4 | 360 | 0.6950 | 0.5032 | 0.3939 | 0.1092 | 0.3908 | 0.1061 | | 0.7012 | 15.2 | 380 | 0.6940 | 0.4962 | 0.2045 | 0.2917 | 0.2083 | 0.2955 | | 0.6976 | 16.0 | 400 | 0.6940 | 0.4968 | 0.2102 | 0.2866 | 0.2134 | 0.2898 | | 0.695 | 16.8 | 420 | 0.6944 | 0.5095 | 0.1452 | 0.3643 | 0.1357 | 0.3548 | | 0.6985 | 17.6 | 440 | 0.6939 | 0.5013 | 0.2210 | 0.2803 | 0.2197 | 0.2790 | | 0.6946 | 18.4 | 460 | 0.6939 | 0.5032 | 0.2765 | 0.2266 | 0.2734 | 0.2235 | | 0.6975 | 19.2 | 480 | 0.6940 | 0.4962 | 0.1749 | 0.3213 | 0.1787 | 0.3251 | | 0.6958 | 20.0 | 500 | 0.6939 | 0.4905 | 0.2058 | 0.2847 | 0.2153 | 0.2942 | | 0.6947 | 20.8 | 520 | 0.6938 | 0.5057 | 0.2771 | 0.2285 | 0.2715 | 0.2229 | | 0.7044 | 21.6 | 540 | 0.6940 | 0.5019 | 0.2986 | 0.2033 | 0.2967 | 0.2014 | | 0.698 | 22.4 | 560 | 0.6941 | 0.4918 | 0.3201 | 0.1717 | 0.3283 | 0.1799 | | 0.7016 | 23.2 | 580 | 0.6939 | 0.5076 | 0.2771 | 0.2304 | 0.2696 | 0.2229 | | 0.7029 | 24.0 | 600 | 0.6939 | 0.5063 | 0.2765 | 0.2298 | 0.2702 | 0.2235 | | 0.6975 | 24.8 | 620 | 0.6938 | 0.5025 | 0.2904 | 0.2121 | 0.2879 | 0.2096 | | 0.6966 | 25.6 | 640 | 0.6940 | 0.5032 | 0.1660 | 0.3371 | 0.1629 | 0.3340 | | 0.6974 | 26.4 | 660 | 0.6938 | 0.4994 | 0.1926 | 0.3068 | 0.1932 | 0.3074 | | 0.6998 | 27.2 | 680 | 0.6938 | 0.5013 | 0.2229 | 0.2784 | 0.2216 | 0.2771 | | 0.6899 | 28.0 | 700 | 0.6937 | 0.5082 | 0.25 | 0.2582 | 0.2418 | 0.25 | | 0.6954 | 28.8 | 720 | 0.6937 | 0.4968 | 0.2109 | 0.2860 | 0.2140 | 0.2891 | | 0.6926 | 29.6 | 740 | 0.6941 | 0.4899 | 0.3479 | 0.1420 | 0.3580 | 0.1521 | | 0.6936 | 30.4 | 760 | 0.6938 | 0.5006 | 0.2822 | 0.2184 | 0.2816 | 0.2178 | | 0.6911 | 31.2 | 780 | 0.6937 | 0.5057 | 0.2519 | 0.2538 | 0.2462 | 0.2481 | | 0.69 | 32.0 | 800 | 0.6938 | 0.5038 | 0.2904 | 0.2134 | 0.2866 | 0.2096 | | 0.6953 | 32.8 | 820 | 0.6937 | 0.5051 | 0.2765 | 0.2285 | 0.2715 | 0.2235 | | 0.6971 | 33.6 | 840 | 0.6937 | 0.4956 | 0.2020 | 0.2936 | 0.2064 | 0.2980 | | 0.6983 | 34.4 | 860 | 0.6937 | 0.5025 | 0.2727 | 0.2298 | 0.2702 | 0.2273 | | 0.698 | 35.2 | 880 | 0.6938 | 0.4987 | 0.3024 | 0.1963 | 0.3037 | 0.1976 | | 0.6949 | 36.0 | 900 | 0.6938 | 0.5032 | 0.3081 | 0.1951 | 0.3049 | 0.1919 | | 0.6969 | 36.8 | 920 | 0.6937 | 0.5082 | 0.2885 | 0.2197 | 0.2803 | 0.2115 | | 0.6978 | 37.6 | 940 | 0.6937 | 0.5088 | 0.3087 | 0.2001 | 0.2999 | 0.1913 | | 0.6965 | 38.4 | 960 | 0.6936 | 0.5088 | 0.2588 | 0.25 | 0.25 | 0.2412 | | 0.6929 | 39.2 | 980 | 0.6936 | 0.5101 | 0.2620 | 0.2481 | 0.2519 | 0.2380 | | 0.6967 | 40.0 | 1000 | 0.6936 | 0.5101 | 0.2702 | 0.2399 | 0.2601 | 0.2298 | | 0.6971 | 40.8 | 1020 | 0.6936 | 0.5069 | 0.2431 | 0.2639 | 0.2361 | 0.2569 | | 0.6976 | 41.6 | 1040 | 0.6936 | 0.5063 | 0.2418 | 0.2645 | 0.2355 | 0.2582 | | 0.6989 | 42.4 | 1060 | 0.6936 | 0.5038 | 0.2304 | 0.2734 | 0.2266 | 0.2696 | | 0.6995 | 43.2 | 1080 | 0.6936 | 0.5019 | 0.2254 | 0.2765 | 0.2235 | 0.2746 | | 0.6981 | 44.0 | 1100 | 0.6936 | 0.5069 | 0.2386 | 0.2683 | 0.2317 | 0.2614 | | 0.6914 | 44.8 | 1120 | 0.6936 | 0.5095 | 0.25 | 0.2595 | 0.2405 | 0.25 | | 0.6936 | 45.6 | 1140 | 0.6936 | 0.5095 | 0.25 | 0.2595 | 0.2405 | 0.25 | | 0.6951 | 46.4 | 1160 | 0.6936 | 0.5107 | 0.2734 | 0.2374 | 0.2626 | 0.2266 | | 0.6964 | 47.2 | 1180 | 0.6936 | 0.5114 | 0.2854 | 0.2260 | 0.2740 | 0.2146 | | 0.7004 | 48.0 | 1200 | 0.6936 | 0.5114 | 0.2822 | 0.2292 | 0.2708 | 0.2178 | | 0.696 | 48.8 | 1220 | 0.6936 | 0.5088 | 0.2759 | 0.2330 | 0.2670 | 0.2241 | | 0.6966 | 49.6 | 1240 | 0.6936 | 0.5114 | 0.2734 | 0.2380 | 0.2620 | 0.2266 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2
bikashpatra/flux-test-3
bikashpatra
"2024-08-21T00:13:37Z"
5
0
diffusers
[ "diffusers", "flux", "lora", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2024-08-20T23:51:22Z"
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image instance_prompt: INKU --- # Flux Test 3 Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `INKU` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('bikashpatra/flux-test-3', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
raraujo/bert-finetuned-ner
raraujo
"2025-03-12T14:14:15Z"
44
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2024-12-06T01:28:46Z"
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: raraujo/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # raraujo/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0688 - Validation Loss: 0.0660 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 210, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.5187 | 0.1266 | 0 | | 0.1175 | 0.0574 | 1 | | 0.0798 | 0.0548 | 2 | | 0.0688 | 0.0660 | 3 | ### Framework versions - Transformers 4.47.0 - TensorFlow 2.18.0 - Datasets 3.2.0 - Tokenizers 0.21.0
apwic/sentiment-lora-r2a1d0.1-0
apwic
"2024-05-17T15:22:24Z"
0
0
null
[ "tensorboard", "generated_from_trainer", "id", "base_model:indolem/indobert-base-uncased", "base_model:finetune:indolem/indobert-base-uncased", "license:mit", "region:us" ]
null
"2024-05-17T14:49:10Z"
--- language: - id license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment-lora-r2a1d0.1-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-lora-r2a1d0.1-0 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3608 - Accuracy: 0.8471 - Precision: 0.8138 - Recall: 0.8243 - F1: 0.8187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5634 | 1.0 | 122 | 0.5108 | 0.7193 | 0.6572 | 0.6489 | 0.6524 | | 0.5081 | 2.0 | 244 | 0.5049 | 0.7218 | 0.6829 | 0.7082 | 0.6888 | | 0.4924 | 3.0 | 366 | 0.4667 | 0.7494 | 0.6977 | 0.6977 | 0.6977 | | 0.4698 | 4.0 | 488 | 0.4392 | 0.7794 | 0.7349 | 0.7114 | 0.7207 | | 0.4519 | 5.0 | 610 | 0.4548 | 0.7469 | 0.7169 | 0.7534 | 0.7226 | | 0.4356 | 6.0 | 732 | 0.4111 | 0.8145 | 0.7770 | 0.7713 | 0.7740 | | 0.421 | 7.0 | 854 | 0.4101 | 0.7945 | 0.7538 | 0.7721 | 0.7612 | | 0.4039 | 8.0 | 976 | 0.3829 | 0.8296 | 0.7949 | 0.7919 | 0.7934 | | 0.3887 | 9.0 | 1098 | 0.3800 | 0.8321 | 0.7972 | 0.7987 | 0.7979 | | 0.3797 | 10.0 | 1220 | 0.3768 | 0.8371 | 0.8044 | 0.7997 | 0.8020 | | 0.368 | 11.0 | 1342 | 0.3842 | 0.8221 | 0.7846 | 0.8016 | 0.7918 | | 0.3598 | 12.0 | 1464 | 0.3778 | 0.8271 | 0.7902 | 0.8051 | 0.7968 | | 0.3548 | 13.0 | 1586 | 0.3624 | 0.8471 | 0.8167 | 0.8118 | 0.8142 | | 0.3469 | 14.0 | 1708 | 0.3637 | 0.8446 | 0.8120 | 0.8151 | 0.8135 | | 0.3431 | 15.0 | 1830 | 0.3685 | 0.8396 | 0.8049 | 0.8165 | 0.8102 | | 0.3275 | 16.0 | 1952 | 0.3664 | 0.8371 | 0.8017 | 0.8172 | 0.8086 | | 0.3288 | 17.0 | 2074 | 0.3590 | 0.8396 | 0.8055 | 0.8115 | 0.8084 | | 0.3335 | 18.0 | 2196 | 0.3607 | 0.8471 | 0.8138 | 0.8243 | 0.8187 | | 0.3239 | 19.0 | 2318 | 0.3613 | 0.8446 | 0.8107 | 0.8226 | 0.8161 | | 0.327 | 20.0 | 2440 | 0.3608 | 0.8471 | 0.8138 | 0.8243 | 0.8187 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2
Kimata/gpt2-medium-Vizuosense
Kimata
"2023-11-22T15:45:26Z"
0
1
adapter-transformers
[ "adapter-transformers", "pytorch", "gpt2", "text-generation", "en", "dataset:Kimata/gpt_driver_dataset_processed", "region:us" ]
text-generation
"2023-11-22T15:41:53Z"
--- datasets: - Kimata/gpt_driver_dataset_processed language: - en library_name: adapter-transformers pipeline_tag: text-generation ---
Marco-Cheung/speecht5_finetuned_voxpopuli_de
Marco-Cheung
"2023-08-17T14:46:13Z"
86
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
"2023-08-17T08:02:16Z"
--- license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer - text-to-speech datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_de This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5308 | 1.66 | 1000 | 0.4861 | | 0.5124 | 3.33 | 2000 | 0.4732 | | 0.5076 | 4.99 | 3000 | 0.4674 | | 0.5051 | 6.65 | 4000 | 0.4657 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
andrewatef/MyBloggerV0.19-main
andrewatef
"2024-01-22T23:02:34Z"
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-01-22T23:01:49Z"
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NeutralBlaster/q-FrozenLake-v1-8x8-no_slippery
NeutralBlaster
"2022-05-21T14:29:37Z"
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2022-05-21T14:29:29Z"
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-no_slippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="NeutralBlaster/q-FrozenLake-v1-8x8-no_slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Ertman/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-iridescent_tropical_starfish
Ertman
"2025-04-12T16:49:01Z"
1
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am iridescent tropical starfish", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-04-08T20:59:20Z"
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-iridescent_tropical_starfish tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am iridescent tropical starfish - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-iridescent_tropical_starfish This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Ertman/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-iridescent_tropical_starfish", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.1 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
netcat420/MFANN3bv0.24
netcat420
"2024-11-22T07:03:32Z"
7
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "en", "dataset:netcat420/MFANN", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-21T20:17:52Z"
--- library_name: transformers license: mit datasets: - netcat420/MFANN language: - en --- MFANN 3b v0.24 trained on https://huggingface.co/datasets/netcat420/MFANN system prompt: Instruct: {instruction} Output: based on https://huggingface.co/microsoft/phi-2/tree/main ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf
RichardErkhov
"2024-06-27T11:54:27Z"
9
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
"2024-06-27T08:41:19Z"
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) MultiverseBuddy-15B-MoE - GGUF - Model creator: https://huggingface.co/allknowingroger/ - Original model: https://huggingface.co/allknowingroger/MultiverseBuddy-15B-MoE/ | Name | Quant method | Size | | ---- | ---- | ---- | | [MultiverseBuddy-15B-MoE.Q2_K.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q2_K.gguf) | Q2_K | 4.43GB | | [MultiverseBuddy-15B-MoE.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.IQ3_XS.gguf) | IQ3_XS | 4.95GB | | [MultiverseBuddy-15B-MoE.IQ3_S.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.IQ3_S.gguf) | IQ3_S | 5.22GB | | [MultiverseBuddy-15B-MoE.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q3_K_S.gguf) | Q3_K_S | 5.2GB | | [MultiverseBuddy-15B-MoE.IQ3_M.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.IQ3_M.gguf) | IQ3_M | 5.35GB | | [MultiverseBuddy-15B-MoE.Q3_K.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q3_K.gguf) | Q3_K | 5.78GB | | [MultiverseBuddy-15B-MoE.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q3_K_M.gguf) | Q3_K_M | 5.78GB | | [MultiverseBuddy-15B-MoE.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q3_K_L.gguf) | Q3_K_L | 6.27GB | | [MultiverseBuddy-15B-MoE.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.IQ4_XS.gguf) | IQ4_XS | 6.5GB | | [MultiverseBuddy-15B-MoE.Q4_0.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q4_0.gguf) | Q4_0 | 6.1GB | | [MultiverseBuddy-15B-MoE.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.IQ4_NL.gguf) | IQ4_NL | 6.85GB | | [MultiverseBuddy-15B-MoE.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q4_K_S.gguf) | Q4_K_S | 6.84GB | | [MultiverseBuddy-15B-MoE.Q4_K.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q4_K.gguf) | Q4_K | 7.25GB | | [MultiverseBuddy-15B-MoE.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q4_K_M.gguf) | Q4_K_M | 7.25GB | | [MultiverseBuddy-15B-MoE.Q4_1.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q4_1.gguf) | Q4_1 | 7.52GB | | [MultiverseBuddy-15B-MoE.Q5_0.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q5_0.gguf) | Q5_0 | 8.26GB | | [MultiverseBuddy-15B-MoE.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q5_K_S.gguf) | Q5_K_S | 8.26GB | | [MultiverseBuddy-15B-MoE.Q5_K.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q5_K.gguf) | Q5_K | 8.51GB | | [MultiverseBuddy-15B-MoE.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q5_K_M.gguf) | Q5_K_M | 8.51GB | | [MultiverseBuddy-15B-MoE.Q5_1.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q5_1.gguf) | Q5_1 | 9.01GB | | [MultiverseBuddy-15B-MoE.Q6_K.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q6_K.gguf) | Q6_K | 9.84GB | | [MultiverseBuddy-15B-MoE.Q8_0.gguf](https://huggingface.co/RichardErkhov/allknowingroger_-_MultiverseBuddy-15B-MoE-gguf/blob/main/MultiverseBuddy-15B-MoE.Q8_0.gguf) | Q8_0 | 12.75GB | Original model description: --- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - allknowingroger/MultiverseEx26-7B-slerp - OpenBuddy/openbuddy-mistral2-7b-v20.2-32k base_model: - allknowingroger/MultiverseEx26-7B-slerp - OpenBuddy/openbuddy-mistral2-7b-v20.2-32k --- # MultiverseBuddy-15B-MoE MultiverseBuddy-15B-MoE is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [allknowingroger/MultiverseEx26-7B-slerp](https://huggingface.co/allknowingroger/MultiverseEx26-7B-slerp) * [OpenBuddy/openbuddy-mistral2-7b-v20.2-32k](https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.2-32k) ## 🧩 Configuration ```yaml base_model: allknowingroger/MultiverseEx26-7B-slerp experts: - source_model: allknowingroger/MultiverseEx26-7B-slerp positive_prompts: ["what"] - source_model: OpenBuddy/openbuddy-mistral2-7b-v20.2-32k positive_prompts: ["think"] ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "allknowingroger/MultiverseBuddy-15B-MoE" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
aroot/eng-fra-simcse_central_ssrb
aroot
"2023-07-06T20:12:02Z"
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
"2023-07-06T19:47:43Z"
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-fra-simcse_central_ssrb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-fra-simcse_central_ssrb This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1471 - Bleu: 31.8498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
TransferRapid/whisper-large-v3-turbo_ro
TransferRapid
"2025-03-02T11:30:00Z"
428
2
null
[ "safetensors", "whisper", "speech", "transcription", "romanian", "ro", "dataset:TransferRapid/CommonVoices20_ro", "base_model:openai/whisper-large-v3-turbo", "base_model:finetune:openai/whisper-large-v3-turbo", "license:cc-by-nc-4.0", "region:us" ]
null
"2025-02-06T14:27:56Z"
--- license: cc-by-nc-4.0 language: - ro base_model: - openai/whisper-large-v3-turbo tags: - speech - transcription - romanian datasets: - TransferRapid/CommonVoices20_ro metrics: - wer - cer --- # Whisper Large v3 Turbo (Romanian) <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> <a href="https://huggingface.co/docs/transformers/model_doc/whisper" target="_blank">Whisper</a> is an automatic speech recognition (ASR) system developed by <a href="https://huggingface.co/openai" target="_blank">OpenAI</a>. It can transcribe and translate spoken language into text with high accuracy, supporting multiple languages, accents, and noisy environments. It is designed for general-purpose speech processing and can handle various audio inputs. </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> <a href="https://huggingface.co/openai/whisper-large-v3-turbo" target="_blank">Whisper-large-v3-turbo</a> is an optimized version of OpenAI's <a href="https://huggingface.co/openai/whisper-large-v3" target="_blank">Whisper-large-v3</a> model, designed to enhance transcription speed while maintaining high accuracy. This optimization is achieved by reducing the number of decoder layers from 32 to 4, resulting in a model that is significantly faster with only a minor decrease in transcription quality. </h5> <img src="https://miro.medium.com/v2/resize:fit:1400/format:webp/1*B9TP_mSq5o3F4Bjp17Q0lA.png" alt="Whisper Large v3 Turbo" width="750" style="display: block; margin: 20px auto;"> <a href="https://medium.com/axinc-ai/whisper-large-v3-turbo-high-accuracy-and-fast-speech-recognition-model-be2f6af77bdc" target="_blank">More details</a> --- <h2>Fine-tune<h2> <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> Under the guidance of project manager Ionuț Vișan, we have successfully fine-tuned the Whisper-large-v3-turbo model on the <a href="https://huggingface.co/datasets/TransferRapid/CommonVoices20_ro" target="_blank">Common Voices Corpus 20 (Romanian)</a> dataset, consisting of 41,431 audio files (approximately 47 hours), each accompanied by its corresponding text transcription. </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> <strong>Before fine-tuning </strong> our model with the dataset, we assessed the word error rate (WER) and character error rate (CER) on the test set (test_common_voices20.csv) using the pre-trained openai/whisper-large-v3-turbo model to establish baseline performance. </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> <strong>Base performance: </strong> </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> <ul> <li><em>WER</em>: 20.72%</li> <li><em>CER</em>: 6.50%</li> </ul> </h5> --- <h2>Configuration<h2> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> <ul> <li><strong>Trainable layers</strong> = all (encoder = 32, decoder = 4)</li> <li><strong>Learning rate</strong> = 4e-6</li> <li><strong>Batch size</strong> = 2 (for both dataloaders)</li> <li><strong>Gradient accumulation steps</strong> = 8</li> <li><strong>Optimizer</strong> = AdamW</li> <li><strong>Weight decay</strong> = 0.2</li> <li><strong>Epochs</strong> = 20</li> <li><strong>Scheduler</strong> = Linear (with warmup = 0.1)</li> </ul> </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> <strong>Dropout: </strong> </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> <ul> <li><strong>Encoder</strong> = </li> <ul style="list-style-type: none; padding-left: 2px;"> <li>0.2 if idx == 20 else</li> <li>0.1 if idx in [21, 22, 29, 30] else 0.0</li> </ul> <li><strong>Decoder</strong> = </li> <ul style="list-style-type: none; padding-left: 2px;"> <li>0.2 if idx == 1 else 0.1</li> </ul> </ul> </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> The condition for saving the model is that the test loss, Word Error Rate (WER), and Character Error Rate (CER) must be lower than the previously recorded best values. </h5> --- <h2>Results</h2> <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> The fine-tuning process took 6,360 minutes (106 hours) on a single NVIDIA RTX 4500 Ada Generation GPU. </h5> <img src="https://huggingface.co/TransferRapid/whisper-large-v3-turbo_ro/resolve/main/error_rates_plot.png" alt="Error Rates Plot" width="500" style="margin-left: 10px;"> <img src="https://huggingface.co/TransferRapid/whisper-large-v3-turbo_ro/resolve/main/loss_plot.png" alt="Loss Plot" width="500" style="margin-left: 10px;"> <img src="https://huggingface.co/TransferRapid/whisper-large-v3-turbo_ro/resolve/main/learning_rate_plot.png" alt="Learning Rate Plot" width="500" style="margin-left: 10px;"> <img src="https://huggingface.co/TransferRapid/whisper-large-v3-turbo_ro/resolve/main/epoch_metrics.png" alt="Fine-tuning Metrics" width="350" style="margin-left: 10px;"> <h5 style="font-family: 'Calibri'; margin-bottom: 5px;"> The fine-tuned model was saved at epoch 14 with new: </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> <ul> <li><em>WER</em>: 4.69%</li> <li><em>CER</em>: 1.22%</li> </ul> </h5> --- <h2>How to use<h2> <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> <strong>1. </strong>If you want to transcribe a <strong>mono-channel</strong> audio file (.wav) containing a single speaker, use the following code: </h5> <details> <summary><strong>Click to expand the code</strong></summary> ```python from transformers import WhisperProcessor, WhisperForConditionalGeneration import torchaudio import torch model_name = "TransferRapid/whisper-large-v3-turbo_ro" # Load processor and model processor = WhisperProcessor.from_pretrained(model_name) model = WhisperForConditionalGeneration.from_pretrained(model_name) # Move model to GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() def preprocess_audio(audio_path, processor): """Preprocess audio: load, resample if needed, and convert to model input format.""" waveform, sample_rate = torchaudio.load(audio_path) # Resample to 16kHz if needed if sample_rate != 16000: resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) waveform = resampler(waveform) # Process audio into model input format inputs = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt") # Move inputs to device inputs = {key: val.to(device) for key, val in inputs.items()} return inputs def transcribe(audio_path, model, processor, language="romanian", task="transcribe"): """Generate transcription for an audio file.""" inputs = preprocess_audio(audio_path, processor) forced_decoder_ids = processor.tokenizer.get_decoder_prompt_ids(language=language, task=task) with torch.no_grad(): generated_ids = model.generate(inputs["input_features"], forced_decoder_ids=forced_decoder_ids) transcription = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return transcription[0] # Define audio path audio_file = "audio.wav" # Run transcription transcription = transcribe(audio_file, model, processor) print("Transcription:", transcription) ``` </details> <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 12px;"> <strong>Example of result:</strong> </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 40px;"> <strong>Transcript:</strong> Astăzi am avut o zi superbă. </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> <strong>2. </strong>If you want to transcribe a <strong>stereo</strong> audio file (.wav or .mp3) containing a conversation between two speakers, use the following code: </h5> <details> <summary><strong>Click to expand the code</strong></summary> ```python import os import torchaudio import numpy as np import librosa import webrtcvad import soundfile as sf from pydub import AudioSegment from transformers import WhisperProcessor, WhisperForConditionalGeneration import torch # Load model from Hugging Face model_name = "TransferRapid/whisper-large-v3-turbo_ro" processor = WhisperProcessor.from_pretrained(model_name) model = WhisperForConditionalGeneration.from_pretrained(model_name) # Move model to GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() def convert_mp3_to_wav(mp3_file_path): """Convert MP3 to WAV (16kHz).""" audio = AudioSegment.from_mp3(mp3_file_path) wav_16k_file_path = mp3_file_path.replace(".mp3", "_16k.wav") audio.set_frame_rate(16000).export(wav_16k_file_path, format="wav") return wav_16k_file_path def extract_audio_channels(wav_file_path): """Extract left and right channels from stereo WAV.""" y, sr = librosa.load(wav_file_path, sr=None, mono=False) if len(y.shape) == 1: mono_file = wav_file_path.replace(".wav", "_mono.wav") sf.write(mono_file, y, sr) return y, None, sr, mono_file, None left_channel, right_channel = y[0], y[1] left_file = wav_file_path.replace(".wav", "_left.wav") right_file = wav_file_path.replace(".wav", "_right.wav") sf.write(left_file, left_channel, sr) sf.write(right_file, right_channel, sr) return left_channel, right_channel, sr, left_file, right_file def detect_speech_intervals(channel_data, sr, vad_level=3): """Detect speech activity using VAD (30ms frames).""" vad = webrtcvad.Vad(vad_level) frame_duration = 30 frame_length = int(sr * frame_duration / 1000) frames = librosa.util.frame(channel_data, frame_length=frame_length, hop_length=frame_length) speech_intervals = [] for i, frame in enumerate(frames.T): pcm_data = (frame * np.iinfo(np.int16).max).astype(np.int16).tobytes() if vad.is_speech(pcm_data, sr): start_time, end_time = (i * frame_duration) / 1000, ((i + 1) * frame_duration) / 1000 speech_intervals.append((start_time, end_time)) return speech_intervals def merge_intervals(intervals, merge_threshold=1): """Merge speech intervals with a gap smaller than merge_threshold.""" if not intervals: return [] merged = [list(intervals[0])] for start, end in intervals[1:]: if (start - merged[-1][1]) <= merge_threshold: merged[-1][1] = end else: merged.append([start, end]) return merged def save_segments(channel_data, sr, intervals, output_dir="segments", prefix="segment"): """Save detected speech segments.""" os.makedirs(output_dir, exist_ok=True) segment_paths = [] for idx, (start, end) in enumerate(intervals): start_sample = int(start * sr) end_sample = int(end * sr) segment = channel_data[start_sample:end_sample] segment_path = os.path.join(output_dir, f"{prefix}_{idx+1}.wav") sf.write(segment_path, segment, sr) segment_paths.append((start, end, segment_path, prefix)) return segment_paths def preprocess_audio(audio_path, processor, device): """Preprocess audio: load, resample if needed, and convert to model input format.""" waveform, sample_rate = torchaudio.load(audio_path) if sample_rate != 16000: resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) waveform = resampler(waveform) inputs = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt") inputs = {key: val.to(device) for key, val in inputs.items()} return inputs def transcribe(audio_path, model, processor, device, language="romanian", task="transcribe"): """Generate transcription for an audio file.""" inputs = preprocess_audio(audio_path, processor, device) forced_decoder_ids = processor.tokenizer.get_decoder_prompt_ids(language=language, task=task) with torch.no_grad(): generated_ids = model.generate(inputs["input_features"], forced_decoder_ids=forced_decoder_ids) transcription = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return transcription[0] # Load audio file (MP3 or WAV) audio_file = "audio.mp3" # Convert MP3 to WAV if needed if audio_file.endswith(".mp3"): wav_file = convert_mp3_to_wav(audio_file) else: wav_file = audio_file # Process stereo or mono file left_channel, right_channel, sr, left_file, right_file = extract_audio_channels(wav_file) # Process left channel (or mono) if left_channel is not None: left_intervals = detect_speech_intervals(left_channel, sr) merged_left_intervals = merge_intervals(left_intervals) left_segments = save_segments(left_channel, sr, merged_left_intervals, output_dir="left_segments", prefix="Left") else: left_segments = [] # Process right channel (if stereo) if right_channel is not None: right_intervals = detect_speech_intervals(right_channel, sr) merged_right_intervals = merge_intervals(right_intervals) right_segments = save_segments(right_channel, sr, merged_right_intervals, output_dir="right_segments", prefix="Right") else: right_segments = [] # Combine all segments and sort by start time all_segments = left_segments + right_segments all_segments.sort(key=lambda x: x[0]) # Transcribe each segment for idx, (start, end, segment_path, channel) in enumerate(all_segments, start=1): transcription = transcribe(segment_path, model, processor, device) print(f"{idx}. {start:.2f}s → {end:.2f}s | {channel}: {transcription}") ``` </details> <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 12px;"> <strong>Example of result:</strong> </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 5px;"> 1. <strong>0.00s → 1.12s | Right:</strong> Bună ziua, Andreea este numele meu, cu ce vă pot ajuta? </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 5px;"> 2. <strong>1.43s → 2.54s | Left:</strong> Bună ziua doamna Andreea, Antonia mă numesc. </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 5px;"> 3. <strong>2.72s → 3.08s | Right:</strong> Bună Antonia. </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 5px;"> 4. <strong>3.41s → 5.75s | Left:</strong> Voiam doar să vă urez o zi frumoasă. </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 5px;"> 5. <strong>5.92s → 6.78s | Right:</strong> Ah, sunteți o scumpă. </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 5px;"> 6. <strong>6.94s → 7.81s | Left:</strong> Zi superbă, la revedere. </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 5px;"> 7. <strong>7.89s → 8.55s | Right:</strong> La fel, la revedere. </h5> --- <h2>Usage<h2> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> The model can be used for: </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> <ul> <li><em>Advanced voice assistants</em></li> <li><em>Automatic transcription</em></li> <li><em>Live subtitling systems</em></li> <li><em>Voice recognition for call centers</em></li> <li><em>Voice commands for smart devices</em></li> <li><em>Voice analysis for security (biometric authentication)</em></li> <li><em>Dictation systems for writers and professionals</em></li> <li><em>Assistive technology for people with disabilities</em></li> </ul> </h5> --- <h2>Communication<h2> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> For any questions regarding this model or to explore collaborations on ambitious AI/ML projects, please feel free to contact us at: </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> <ul> <li><em>[email protected]</em></li> <li><em><a href="https://www.linkedin.com/in/ionut-visan/" target="_blank">Ionuț Vișan's Linkedin</a></em></li> <li><em><a href="https://www.linkedin.com/company/transfer-rapid" target="_blank">Transfer Rapid's Linkedin</a></em></li> </ul> </h5>
BFS-Search/mistral_DoCRED_multi_rel
BFS-Search
"2024-11-13T17:19:26Z"
7
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2024-11-13T17:14:27Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
twodigit/teaching55
twodigit
"2025-01-19T23:06:22Z"
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-01-19T23:01:09Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/TinyYi-7B-Test-GGUF
mradermacher
"2025-01-13T19:27:56Z"
240
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "en", "base_model:yashmarathe/TinyYi-7B-Test", "base_model:quantized:yashmarathe/TinyYi-7B-Test", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2025-01-12T21:41:28Z"
--- base_model: yashmarathe/TinyYi-7B-Test language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/yashmarathe/TinyYi-7B-Test <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/TinyYi-7B-Test-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.Q2_K.gguf) | Q2_K | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.Q3_K_S.gguf) | Q3_K_S | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.Q3_K_M.gguf) | Q3_K_M | 3.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.Q3_K_L.gguf) | Q3_K_L | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.IQ4_XS.gguf) | IQ4_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.Q4_K_S.gguf) | Q4_K_S | 3.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.Q4_K_M.gguf) | Q4_K_M | 3.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.Q5_K_S.gguf) | Q5_K_S | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.Q5_K_M.gguf) | Q5_K_M | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.Q6_K.gguf) | Q6_K | 5.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.Q8_0.gguf) | Q8_0 | 6.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/TinyYi-7B-Test-GGUF/resolve/main/TinyYi-7B-Test.f16.gguf) | f16 | 12.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
jinmang2/dall-e-tokenizer
jinmang2
"2021-08-30T18:20:38Z"
4
0
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
"2022-03-02T23:29:05Z"
# DALL-E-Tokenizer Huggingface package for the discrete VAE usded for [DALL-E](https://github.com/openai/DALL-E). # How to use ```python # from dall_e_tok import DallEEncoder from dall_e_tok import DALLETokenizer tokenizer = DALLETokenizer.from_pretrained("jinmang2/dall-e-tokenizer") ```
Guanzheng/Qwen2.5-7B-Math-Openthink77k-SFT
Guanzheng
"2025-03-19T02:09:49Z"
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-19T02:07:07Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
EpistemeAI/Huacayas-16B
EpistemeAI
"2025-03-06T04:46:31Z"
29
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "arxiv:1910.09700", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
"2025-03-04T06:01:51Z"
--- library_name: transformers license: mit language: - en pipeline_tag: text-generation --- # Model Card for Model ID It is pre-fine tuned basic Huacayas-16B model. pretrained model. It will be future reasoning general focus 16B model. This model has to be trained for inference. ## Model Details Created custom architecture 16B and than created model usig the architecture. This model uses Llama 3.2 tokenizer ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** EpistemeAI - **License:** MIT ## Uses Intended Use Cases: Huacayas 16B is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat and agentic applications like knowledge retrieval and summarization, mobile AI powered writing assistants and query and prompt rewriting. Pretrained models can be adapted for a variety of additional natural language generation tasks. Similarly, quantized models can be adapted for a variety of on-device use-cases with limited compute resources. ### Out-of-Scope Use Out of Scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages beyond those explicitly referenced as supported in this model card. ## Bias, Risks, and Limitations For these reasons, as with all LLMs, Huacayas 16B’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jgkawell/jarvis
jgkawell
"2024-12-20T02:35:16Z"
0
12
null
[ "onnx", "license:mit", "region:us" ]
null
"2024-03-25T18:41:56Z"
--- license: mit --- Voice models that emulate the voice of JARVIS from the Marvel movies. Perfect to use for voice in Home Assistant: [docs](https://github.com/home-assistant/addons/blob/master/piper/DOCS.md#custom-voices) If you want to use these models in Home Assistant using the Piper add-on, simply copy the `<MODEL>.onnx` and `<MODEL>.onnx.json` file into the `/share/piper` directory of Home Assistant. After restarting Home Assistant you should see the voice available when configuring a new Assistant. To do this, go to the "Assistants" page in the Home Assistant settings and click "Add Assistant" and choose the voice under "Text-to-speech".
Ramansh/RoBERTa-fake-news-detection
Ramansh
"2022-04-06T16:37:32Z"
4
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2022-04-06T16:08:24Z"
--- license: cc-by-nc-sa-4.0 --- A simple fake news detector that utilizes RoBERTa. <br/> It was fine-tuned on [clmentbisaillon/fake-and-real-news-dataset](https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset)
lapki/Llama-2-7b-panorama-QLoRA
lapki
"2023-09-19T13:01:53Z"
7
1
peft
[ "peft", "llama", "llama-2", "news", "text-generation", "ru", "dataset:its5Q/panorama", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
text-generation
"2023-07-28T13:24:15Z"
--- language: - ru library_name: peft tags: - llama - llama-2 - news datasets: - its5Q/panorama pipeline_tag: text-generation base_model: meta-llama/Llama-2-7b-hf --- # Llama 2 7B, fine-tuned on Panorama media This repo contains the QLoRA adapter. Prompt: ``` Write a hypothetical news story based on the given headline ### Title: {prompt} Text: ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0 ### Additional information Thanks [its5Q](https://huggingface.co/its5Q) for dataset and help
markberry2010/unit2
markberry2010
"2024-02-06T10:51:41Z"
0
0
null
[ "CliffWalking-v0", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
"2024-02-06T08:50:32Z"
--- tags: - CliffWalking-v0 - q-learning - reinforcement-learning - custom-implementation model-index: - name: unit2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CliffWalking-v0 type: CliffWalking-v0 metrics: - type: mean_reward value: -13.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="markberry2010/unit2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
c14kevincardenas/swin-tiny-patch4-window7-224_alpha0.5_temp5.0_t3
c14kevincardenas
"2025-03-18T18:24:09Z"
0
0
transformers
[ "transformers", "safetensors", "swin", "image-classification", "knowledge_distillation", "vision", "generated_from_trainer", "base_model:c14kevincardenas/ClimBEiT-t3", "base_model:finetune:c14kevincardenas/ClimBEiT-t3", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2025-02-28T22:20:10Z"
--- library_name: transformers license: apache-2.0 base_model: c14kevincardenas/ClimBEiT-t3 tags: - knowledge_distillation - vision - generated_from_trainer metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224_alpha0.5_temp5.0_t3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224_alpha0.5_temp5.0_t3 This model is a fine-tuned version of [c14kevincardenas/ClimBEiT-t3](https://huggingface.co/c14kevincardenas/ClimBEiT-t3) on the c14kevincardenas/beta_caller_284_person_crop_seq_withlimb dataset. It achieves the following results on the evaluation set: - Loss: 0.6308 - Accuracy: 0.8178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8115 | 1.0 | 164 | 1.4105 | 0.2560 | | 0.7178 | 2.0 | 328 | 1.1599 | 0.4685 | | 0.5783 | 3.0 | 492 | 0.9091 | 0.6616 | | 0.4814 | 4.0 | 656 | 0.8235 | 0.7137 | | 0.4242 | 5.0 | 820 | 0.7623 | 0.7560 | | 0.3773 | 6.0 | 984 | 0.7324 | 0.7777 | | 0.3503 | 7.0 | 1148 | 0.6889 | 0.8080 | | 0.3418 | 8.0 | 1312 | 0.6577 | 0.8091 | | 0.3284 | 9.0 | 1476 | 0.6747 | 0.8015 | | 0.3015 | 10.0 | 1640 | 0.6572 | 0.8091 | | 0.2979 | 11.0 | 1804 | 0.6616 | 0.8156 | | 0.3018 | 12.0 | 1968 | 0.6517 | 0.8341 | | 0.286 | 13.0 | 2132 | 0.6450 | 0.8308 | | 0.2976 | 14.0 | 2296 | 0.6335 | 0.8330 | | 0.2938 | 15.0 | 2460 | 0.6308 | 0.8178 | | 0.2894 | 16.0 | 2624 | 0.6356 | 0.8297 | | 0.2899 | 17.0 | 2788 | 0.6426 | 0.8330 | | 0.2837 | 18.0 | 2952 | 0.6312 | 0.8286 | | 0.2874 | 19.0 | 3116 | 0.6341 | 0.8275 | | 0.28 | 20.0 | 3280 | 0.6328 | 0.8351 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Shero448/smog
Shero448
"2025-03-19T22:19:40Z"
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:John6666/wai-nsfw-illustrious-v110-sdxl", "base_model:adapter:John6666/wai-nsfw-illustrious-v110-sdxl", "region:us" ]
text-to-image
"2025-03-19T22:19:17Z"
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: >- 1girl, solo, long hair, breasts, looking at viewer, smile, green eyes, (huge breasts:1.4), black hair, cleavage, green hair, multicolored hair, pantyhose, bowtie, rabbit ears, leotard, wrist cuffs, strapless, fake animal ears, detached collar, playboy bunny, rabbit tail, strapless leotard, green leotard, blush, grin, horny, parameters: negative_prompt: >- lowres, (worst quality, bad quality, censored:1.2), sweaty, penetration, bad anatomy, text, jpeg artifacts, signature, watermark, sketch, output: url: images/00007-3206676568.png base_model: John6666/wai-nsfw-illustrious-v110-sdxl instance_prompt: smog --- # smog <Gallery /> ## Trigger words You should use `smog` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Shero448/smog/tree/main) them in the Files & versions tab.
krishnamk15/DeciLM7B-Merged
krishnamk15
"2024-03-29T09:17:05Z"
6
0
transformers
[ "transformers", "safetensors", "deci", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
"2024-03-29T08:39:12Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KantoRegion/test-lora-merged-hermione3-30
KantoRegion
"2023-11-26T05:21:13Z"
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-13b-hf", "base_model:adapter:meta-llama/Llama-2-13b-hf", "region:us" ]
null
"2023-11-26T05:21:11Z"
--- library_name: peft base_model: meta-llama/Llama-2-13b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2
herutriana44/crime_report_dataset
herutriana44
"2025-03-28T12:51:25Z"
0
0
null
[ "region:us" ]
null
"2025-03-28T10:09:20Z"
<!DOCTYPE html> <html class="" lang="en"> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no" /> <meta name="description" content="We're on a journey to advance and democratize artificial intelligence through open source and open science." /> <meta property="fb:app_id" content="1321688464574422" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:site" content="@huggingface" /> <meta property="og:title" content="Hugging Face - The AI community building the future." /> <meta property="og:type" content="website" /> <title>Hugging Face - The AI community building the future.</title> <style> body { margin: 0; } main { background-color: white; min-height: 100vh; padding: 7rem 1rem 8rem 1rem; text-align: center; font-family: Source Sans Pro, ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica Neue, Arial, Noto Sans, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol, Noto Color Emoji; } img { width: 6rem; height: 6rem; margin: 0 auto 1rem; } h1 { font-size: 3.75rem; line-height: 1; color: rgba(31, 41, 55, 1); font-weight: 700; box-sizing: border-box; margin: 0 auto; } p, a { color: rgba(107, 114, 128, 1); font-size: 1.125rem; line-height: 1.75rem; max-width: 28rem; box-sizing: border-box; margin: 0 auto; } .dark main { background-color: rgb(11, 15, 25); } .dark h1 { color: rgb(209, 213, 219); } .dark p, .dark a { color: rgb(156, 163, 175); } </style> <script> // On page load or when changing themes, best to add inline in `head` to avoid FOUC const key = "_tb_global_settings"; let theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "dark" : "light"; try { const storageTheme = JSON.parse(window.localStorage.getItem(key)).theme; if (storageTheme) { theme = storageTheme === "dark" ? "dark" : "light"; } } catch (e) {} if (theme === "dark") { document.documentElement.classList.add("dark"); } else { document.documentElement.classList.remove("dark"); } </script> </head> <body> <main> <img src="https://cdn-media.huggingface.co/assets/huggingface_logo.svg" alt="" /> <div> <h1>429</h1> <p>We had to rate limit you. If you think it's an error, send us <a href="mailto:[email protected]">an email</a></p> </div> </main> </body> </html>
Kudod/my_fine_tuning_summary_t5_large_IA_model_hf
Kudod
"2024-02-20T08:06:37Z"
3
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:google-t5/t5-large", "base_model:adapter:google-t5/t5-large", "license:apache-2.0", "region:us" ]
null
"2024-02-20T07:01:30Z"
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer metrics: - rouge base_model: google-t5/t5-large model-index: - name: my_fine_tuning_summary_t5_large_IA_model_hf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_fine_tuning_summary_t5_large_IA_model_hf This model is a fine-tuned version of [google-t5/t5-large](https://huggingface.co/google-t5/t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.1345 - Rouge2: 0.0519 - Rougel: 0.1119 - Rougelsum: 0.112 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 989 | nan | 0.1345 | 0.0519 | 0.1119 | 0.112 | 19.0 | | 0.0 | 2.0 | 1978 | nan | 0.1345 | 0.0519 | 0.1119 | 0.112 | 19.0 | | 0.0 | 3.0 | 2967 | nan | 0.1345 | 0.0519 | 0.1119 | 0.112 | 19.0 | | 0.0 | 4.0 | 3956 | nan | 0.1345 | 0.0519 | 0.1119 | 0.112 | 19.0 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.15.2
Alex48/poca-SoccerTwos-v16
Alex48
"2023-03-25T00:45:01Z"
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
"2023-03-25T00:44:55Z"
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Alex48/poca-SoccerTwos-v16 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
grapevine-AI/DeepSeek-R1-Distill-Qwen-32B-Japanese-GGUF
grapevine-AI
"2025-02-16T11:40:45Z"
1,609
3
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2025-01-28T15:05:49Z"
--- license: apache-2.0 --- # What is this? CyberAgent社によるDeepSeek-R1-Distill-Qwen-32Bの日本語ファインチューニングモデル、[DeepSeek-R1-Distill-Qwen-32B-Japanese](https://huggingface.co/cyberagent/DeepSeek-R1-Distill-Qwen-32B-Japanese)をGGUFフォーマットに変換したものです。 # imatrix dataset 日本語能力を重視し、日本語が多量に含まれる[TFMC/imatrix-dataset-for-japanese-llm](https://huggingface.co/datasets/TFMC/imatrix-dataset-for-japanese-llm)データセットを使用しました。<br> また、CUDA版llama.cppがbfloat16に対応したため、imatrixの算出は本来の数値精度であるBF16のモデルを使用して行いました。 # Note **llama.cpp-b4514以降と合わせてご利用ください。** # Environment Windows版llama.cpp-b4514およびllama.cpp-b4524同時リリースのconvert-hf-to-gguf.pyを使用して量子化作業を実施しました。 # License Apache 2.0 # Developer Alibaba Cloud & DeepSeek (深度求索) & CyberAgent
Pedrampd/NLP-HW5-PosTaggerModel
Pedrampd
"2023-07-21T21:14:29Z"
121
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2023-07-21T21:00:29Z"
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: NLP-HW5-PosTaggerModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP-HW5-PosTaggerModel This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1278 - Accuracy: 0.9659 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7026 | 1.0 | 878 | 0.1925 | 0.9493 | | 0.1976 | 2.0 | 1756 | 0.1446 | 0.9610 | | 0.157 | 3.0 | 2634 | 0.1278 | 0.9659 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Imanbehravan/bert-large-question-answering-finetuned-legal
Imanbehravan
"2024-07-14T13:57:32Z"
26
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
"2024-07-13T20:36:01Z"
--- tags: - generated_from_trainer model-index: - name: bert-large-question-answering-finetuned-legal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-question-answering-finetuned-legal This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
leyla95/l2-ksu-whisper
leyla95
"2025-04-09T08:09:52Z"
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2025-04-07T18:07:08Z"
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: l2-ksu-whisper results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # l2-ksu-whisper This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0147 - Wer: 1.3348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.51.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
huizhang0110/hui-embedding
huizhang0110
"2024-11-26T05:15:59Z"
0
0
null
[ "mteb", "model-index", "region:us" ]
null
"2024-01-18T10:24:23Z"
--- model-index: - name: no_model_name_available results: - dataset: config: en name: MTEB STS22 (en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 66.2368177379181 - type: cosine_spearman value: 68.35446129213678 - type: euclidean_pearson value: 68.35832044207704 - type: euclidean_spearman value: 68.35446129213678 - type: main_score value: 68.35446129213678 - type: manhattan_pearson value: 68.70754373818515 - type: manhattan_spearman value: 68.2292889016414 - type: pearson value: 66.2368177379181 - type: spearman value: 68.35446129213678 task: type: STS - dataset: config: default name: MTEB STS14 (default) revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 split: test type: mteb/sts14-sts metrics: - type: cosine_pearson value: 85.12461231748527 - type: cosine_spearman value: 83.78377223012504 - type: euclidean_pearson value: 84.84032421122767 - type: euclidean_spearman value: 83.78376987896931 - type: main_score value: 83.78377223012504 - type: manhattan_pearson value: 84.97174244411761 - type: manhattan_spearman value: 84.13202634643542 - type: pearson value: 85.12461231748527 - type: spearman value: 83.78377223012504 task: type: STS - dataset: config: default name: MTEB Touche2020 (default) revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f split: test type: mteb/touche2020 metrics: - type: main_score value: 25.883 - type: map_at_1 value: 2.153 - type: map_at_10 value: 9.871 - type: map_at_100 value: 15.559000000000001 - type: map_at_1000 value: 17.183 - type: map_at_20 value: 12.552 - type: map_at_3 value: 5.493 - type: map_at_5 value: 7.85 - type: mrr_at_1 value: 30.612244897959183 - type: mrr_at_10 value: 48.89131843213475 - type: mrr_at_100 value: 49.6963561262702 - type: mrr_at_1000 value: 49.7010693279481 - type: mrr_at_20 value: 49.531452107982716 - type: mrr_at_3 value: 44.21768707482994 - type: mrr_at_5 value: 47.68707482993197 - type: nauc_map_at_1000_diff1 value: 25.31034571291797 - type: nauc_map_at_1000_max value: 34.51576312061718 - type: nauc_map_at_1000_std value: -4.906594382965329 - type: nauc_map_at_100_diff1 value: 25.837142212716476 - type: nauc_map_at_100_max value: 32.59407997636304 - type: nauc_map_at_100_std value: -10.217037670639481 - type: nauc_map_at_10_diff1 value: 33.21608048564407 - type: nauc_map_at_10_max value: 37.468380135605706 - type: nauc_map_at_10_std value: -20.46767738235632 - type: nauc_map_at_1_diff1 value: 32.281523854579106 - type: nauc_map_at_1_max value: 22.176737258675068 - type: nauc_map_at_1_std value: -25.07807730673564 - type: nauc_map_at_20_diff1 value: 30.866307166529584 - type: nauc_map_at_20_max value: 32.272418879076724 - type: nauc_map_at_20_std value: -20.40305363345012 - type: nauc_map_at_3_diff1 value: 30.88885591305534 - type: nauc_map_at_3_max value: 33.431908247176786 - type: nauc_map_at_3_std value: -19.503954175936993 - type: nauc_map_at_5_diff1 value: 34.08468180972433 - type: nauc_map_at_5_max value: 40.256459257111935 - type: nauc_map_at_5_std value: -18.56884658312989 - type: nauc_mrr_at_1000_diff1 value: 30.71882754790342 - type: nauc_mrr_at_1000_max value: 14.576101913381093 - type: nauc_mrr_at_1000_std value: -10.726757628242753 - type: nauc_mrr_at_100_diff1 value: 30.72979380373732 - type: nauc_mrr_at_100_max value: 14.58962334045265 - type: nauc_mrr_at_100_std value: -10.709231106839757 - type: nauc_mrr_at_10_diff1 value: 30.538894215258246 - type: nauc_mrr_at_10_max value: 13.803938970422532 - type: nauc_mrr_at_10_std value: -9.702168266086352 - type: nauc_mrr_at_1_diff1 value: 30.684478472773836 - type: nauc_mrr_at_1_max value: 17.71761545127753 - type: nauc_mrr_at_1_std value: -22.77705607353801 - type: nauc_mrr_at_20_diff1 value: 30.82506745472977 - type: nauc_mrr_at_20_max value: 14.664189943251788 - type: nauc_mrr_at_20_std value: -10.748922964408402 - type: nauc_mrr_at_3_diff1 value: 28.971974395355954 - type: nauc_mrr_at_3_max value: 14.14445297613165 - type: nauc_mrr_at_3_std value: -14.23741446560331 - type: nauc_mrr_at_5_diff1 value: 31.746911225636275 - type: nauc_mrr_at_5_max value: 14.268610321705955 - type: nauc_mrr_at_5_std value: -9.700708429060887 - type: nauc_ndcg_at_1000_diff1 value: 21.089489813171816 - type: nauc_ndcg_at_1000_max value: 28.175842354263764 - type: nauc_ndcg_at_1000_std value: 21.49424339507402 - type: nauc_ndcg_at_100_diff1 value: 19.8292750148825 - type: nauc_ndcg_at_100_max value: 17.123814348188652 - type: nauc_ndcg_at_100_std value: 6.051404399623092 - type: nauc_ndcg_at_10_diff1 value: 28.194702409547332 - type: nauc_ndcg_at_10_max value: 18.97062064198259 - type: nauc_ndcg_at_10_std value: -12.862439768903611 - type: nauc_ndcg_at_1_diff1 value: 30.684478472773836 - type: nauc_ndcg_at_1_max value: 17.71761545127753 - type: nauc_ndcg_at_1_std value: -22.77705607353801 - type: nauc_ndcg_at_20_diff1 value: 24.833493660655364 - type: nauc_ndcg_at_20_max value: 16.53068197823132 - type: nauc_ndcg_at_20_std value: -13.971353024276375 - type: nauc_ndcg_at_3_diff1 value: 29.840792656092052 - type: nauc_ndcg_at_3_max value: 18.823207152450045 - type: nauc_ndcg_at_3_std value: -12.753978007436833 - type: nauc_ndcg_at_5_diff1 value: 29.669577759746584 - type: nauc_ndcg_at_5_max value: 24.204580513440916 - type: nauc_ndcg_at_5_std value: -8.081655001819906 - type: nauc_precision_at_1000_diff1 value: -18.464873284114397 - type: nauc_precision_at_1000_max value: 21.495318097003405 - type: nauc_precision_at_1000_std value: 57.177192580535554 - type: nauc_precision_at_100_diff1 value: -4.067845048543001 - type: nauc_precision_at_100_max value: 13.157305810279249 - type: nauc_precision_at_100_std value: 51.20993669331124 - type: nauc_precision_at_10_diff1 value: 27.299848819776397 - type: nauc_precision_at_10_max value: 15.622698996242287 - type: nauc_precision_at_10_std value: -5.590347344162569 - type: nauc_precision_at_1_diff1 value: 30.684478472773836 - type: nauc_precision_at_1_max value: 17.71761545127753 - type: nauc_precision_at_1_std value: -22.77705607353801 - type: nauc_precision_at_20_diff1 value: 20.89429650870699 - type: nauc_precision_at_20_max value: 15.544972379682054 - type: nauc_precision_at_20_std value: 1.4293466620551607 - type: nauc_precision_at_3_diff1 value: 27.536001423592403 - type: nauc_precision_at_3_max value: 19.633139870619367 - type: nauc_precision_at_3_std value: -12.615890884253755 - type: nauc_precision_at_5_diff1 value: 27.120672981961334 - type: nauc_precision_at_5_max value: 27.279847435518494 - type: nauc_precision_at_5_std value: -4.87902522849883 - type: nauc_recall_at_1000_diff1 value: -2.8271060100732144 - type: nauc_recall_at_1000_max value: 20.480146626345764 - type: nauc_recall_at_1000_std value: 66.47919599815614 - type: nauc_recall_at_100_diff1 value: 12.101023414577305 - type: nauc_recall_at_100_max value: 10.468322459855992 - type: nauc_recall_at_100_std value: 18.442020075752115 - type: nauc_recall_at_10_diff1 value: 26.819559448061753 - type: nauc_recall_at_10_max value: 16.76558631205096 - type: nauc_recall_at_10_std value: -19.808438532692723 - type: nauc_recall_at_1_diff1 value: 32.281523854579106 - type: nauc_recall_at_1_max value: 22.176737258675068 - type: nauc_recall_at_1_std value: -25.07807730673564 - type: nauc_recall_at_20_diff1 value: 23.923306941170072 - type: nauc_recall_at_20_max value: 11.835367892374284 - type: nauc_recall_at_20_std value: -15.756707719745929 - type: nauc_recall_at_3_diff1 value: 24.836560375866597 - type: nauc_recall_at_3_max value: 23.378529137896617 - type: nauc_recall_at_3_std value: -20.181080283438245 - type: nauc_recall_at_5_diff1 value: 28.37846887432799 - type: nauc_recall_at_5_max value: 29.201940847759573 - type: nauc_recall_at_5_std value: -16.353497357324052 - type: ndcg_at_1 value: 30.612000000000002 - type: ndcg_at_10 value: 25.883 - type: ndcg_at_100 value: 36.213 - type: ndcg_at_1000 value: 47.952 - type: ndcg_at_20 value: 27.309 - type: ndcg_at_3 value: 30.532999999999998 - type: ndcg_at_5 value: 29.494999999999997 - type: precision_at_1 value: 30.612000000000002 - type: precision_at_10 value: 21.837 - type: precision_at_100 value: 7.286 - type: precision_at_1000 value: 1.488 - type: precision_at_20 value: 18.061 - type: precision_at_3 value: 31.293 - type: precision_at_5 value: 29.387999999999998 - type: recall_at_1 value: 2.153 - type: recall_at_10 value: 15.836 - type: recall_at_100 value: 44.199 - type: recall_at_1000 value: 79.809 - type: recall_at_20 value: 24.375 - type: recall_at_3 value: 6.729 - type: recall_at_5 value: 10.829 task: type: Retrieval - dataset: config: en name: MTEB AmazonCounterfactualClassification (en) revision: e8379541af4e31359cca9fbcf4b00f2671dba205 split: test type: mteb/amazon_counterfactual metrics: - type: accuracy value: 93.46268656716417 - type: ap value: 73.16905656173336 - type: ap_weighted value: 73.16905656173336 - type: f1 value: 89.9835927572066 - type: f1_weighted value: 93.578175628546 - type: main_score value: 93.46268656716417 task: type: Classification - dataset: config: default name: MTEB AmazonPolarityClassification (default) revision: e2d317d38cd51312af73b3d32a06d1a08b442046 split: test type: mteb/amazon_polarity metrics: - type: accuracy value: 96.64014999999999 - type: ap value: 94.75468802312224 - type: ap_weighted value: 94.75468802312224 - type: f1 value: 96.63929533118718 - type: f1_weighted value: 96.63929533118718 - type: main_score value: 96.64014999999999 task: type: Classification - dataset: config: en name: MTEB AmazonReviewsClassification (en) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 63.970000000000006 - type: f1 value: 62.682765229278615 - type: f1_weighted value: 62.682765229278615 - type: main_score value: 63.970000000000006 task: type: Classification - dataset: config: default name: MTEB ArguAna (default) revision: c22ab2a51041ffd869aaddef7af8d8215647e41a split: test type: mteb/arguana metrics: - type: main_score value: 67.323 - type: map_at_1 value: 45.448 - type: map_at_10 value: 60.18599999999999 - type: map_at_100 value: 60.687999999999995 - type: map_at_1000 value: 60.690999999999995 - type: map_at_20 value: 60.563 - type: map_at_3 value: 57.053 - type: map_at_5 value: 58.867000000000004 - type: mrr_at_1 value: 45.59032716927454 - type: mrr_at_10 value: 60.22429384271503 - type: mrr_at_100 value: 60.72592259489321 - type: mrr_at_1000 value: 60.72916244163348 - type: mrr_at_20 value: 60.60091997479985 - type: mrr_at_3 value: 57.11237553342832 - type: mrr_at_5 value: 58.90469416785227 - type: nauc_map_at_1000_diff1 value: 33.068441925532255 - type: nauc_map_at_1000_max value: 10.276888386284378 - type: nauc_map_at_1000_std value: -16.78833416335307 - type: nauc_map_at_100_diff1 value: 33.07060210913634 - type: nauc_map_at_100_max value: 10.282642963249359 - type: nauc_map_at_100_std value: -16.781593405086635 - type: nauc_map_at_10_diff1 value: 32.83665966609534 - type: nauc_map_at_10_max value: 10.577416388110274 - type: nauc_map_at_10_std value: -16.505603731786895 - type: nauc_map_at_1_diff1 value: 38.109973823503346 - type: nauc_map_at_1_max value: 7.608684545790856 - type: nauc_map_at_1_std value: -17.893865428628576 - type: nauc_map_at_20_diff1 value: 33.044589968115 - type: nauc_map_at_20_max value: 10.375042647373576 - type: nauc_map_at_20_std value: -16.6822453639938 - type: nauc_map_at_3_diff1 value: 32.277891718391814 - type: nauc_map_at_3_max value: 9.850443641282443 - type: nauc_map_at_3_std value: -17.94797851381197 - type: nauc_map_at_5_diff1 value: 32.16092173570638 - type: nauc_map_at_5_max value: 10.209270409598851 - type: nauc_map_at_5_std value: -17.465881200007004 - type: nauc_mrr_at_1000_diff1 value: 32.827813536418006 - type: nauc_mrr_at_1000_max value: 10.087021629677352 - type: nauc_mrr_at_1000_std value: -16.967746341911923 - type: nauc_mrr_at_100_diff1 value: 32.83000077148736 - type: nauc_mrr_at_100_max value: 10.092796216302164 - type: nauc_mrr_at_100_std value: -16.960987105341093 - type: nauc_mrr_at_10_diff1 value: 32.60032888130517 - type: nauc_mrr_at_10_max value: 10.390784050073744 - type: nauc_mrr_at_10_std value: -16.681959182829477 - type: nauc_mrr_at_1_diff1 value: 37.728857246219 - type: nauc_mrr_at_1_max value: 7.4467908121287465 - type: nauc_mrr_at_1_std value: -18.30248538693518 - type: nauc_mrr_at_20_diff1 value: 32.80506350021981 - type: nauc_mrr_at_20_max value: 10.186006965165907 - type: nauc_mrr_at_20_std value: -16.86087660734542 - type: nauc_mrr_at_3_diff1 value: 32.19594731244019 - type: nauc_mrr_at_3_max value: 9.803200657757092 - type: nauc_mrr_at_3_std value: -18.11910256146044 - type: nauc_mrr_at_5_diff1 value: 31.933881085281225 - type: nauc_mrr_at_5_max value: 10.029923020334538 - type: nauc_mrr_at_5_std value: -17.635162099540345 - type: nauc_ndcg_at_1000_diff1 value: 32.518889050927 - type: nauc_ndcg_at_1000_max value: 10.875658070812662 - type: nauc_ndcg_at_1000_std value: -16.286324059189997 - type: nauc_ndcg_at_100_diff1 value: 32.57162076556983 - type: nauc_ndcg_at_100_max value: 11.011136236680544 - type: nauc_ndcg_at_100_std value: -16.1394614926114 - type: nauc_ndcg_at_10_diff1 value: 31.531506473288175 - type: nauc_ndcg_at_10_max value: 12.417307560165447 - type: nauc_ndcg_at_10_std value: -14.76971088523127 - type: nauc_ndcg_at_1_diff1 value: 38.109973823503346 - type: nauc_ndcg_at_1_max value: 7.608684545790856 - type: nauc_ndcg_at_1_std value: -17.893865428628576 - type: nauc_ndcg_at_20_diff1 value: 32.34260978744937 - type: nauc_ndcg_at_20_max value: 11.698122482769248 - type: nauc_ndcg_at_20_std value: -15.360551678773856 - type: nauc_ndcg_at_3_diff1 value: 30.412571299678465 - type: nauc_ndcg_at_3_max value: 10.694959789521832 - type: nauc_ndcg_at_3_std value: -18.138119030741954 - type: nauc_ndcg_at_5_diff1 value: 29.96746423000831 - type: nauc_ndcg_at_5_max value: 11.382928004181887 - type: nauc_ndcg_at_5_std value: -17.31473188362318 - type: nauc_precision_at_1000_diff1 value: 17.914806895369583 - type: nauc_precision_at_1000_max value: 24.542936056736938 - type: nauc_precision_at_1000_std value: 9.032925153517976 - type: nauc_precision_at_100_diff1 value: 36.40038451420755 - type: nauc_precision_at_100_max value: 44.12404870553998 - type: nauc_precision_at_100_std value: 23.899082906071847 - type: nauc_precision_at_10_diff1 value: 22.531117645662295 - type: nauc_precision_at_10_max value: 28.061598506640568 - type: nauc_precision_at_10_std value: 1.4390989358928021 - type: nauc_precision_at_1_diff1 value: 38.109973823503346 - type: nauc_precision_at_1_max value: 7.608684545790856 - type: nauc_precision_at_1_std value: -17.893865428628576 - type: nauc_precision_at_20_diff1 value: 27.52248228295167 - type: nauc_precision_at_20_max value: 31.544335924785592 - type: nauc_precision_at_20_std value: 7.8837210646197144 - type: nauc_precision_at_3_diff1 value: 23.746154368105525 - type: nauc_precision_at_3_max value: 13.770751722927347 - type: nauc_precision_at_3_std value: -18.895725316115847 - type: nauc_precision_at_5_diff1 value: 20.01291443486786 - type: nauc_precision_at_5_max value: 16.77718143645159 - type: nauc_precision_at_5_std value: -16.639028720975606 - type: nauc_recall_at_1000_diff1 value: 17.914806895363768 - type: nauc_recall_at_1000_max value: 24.542936056730795 - type: nauc_recall_at_1000_std value: 9.032925153519013 - type: nauc_recall_at_100_diff1 value: 36.400384514208625 - type: nauc_recall_at_100_max value: 44.1240487055395 - type: nauc_recall_at_100_std value: 23.899082906069786 - type: nauc_recall_at_10_diff1 value: 22.531117645662015 - type: nauc_recall_at_10_max value: 28.06159850664045 - type: nauc_recall_at_10_std value: 1.4390989358927389 - type: nauc_recall_at_1_diff1 value: 38.109973823503346 - type: nauc_recall_at_1_max value: 7.608684545790856 - type: nauc_recall_at_1_std value: -17.893865428628576 - type: nauc_recall_at_20_diff1 value: 27.52248228295106 - type: nauc_recall_at_20_max value: 31.54433592478498 - type: nauc_recall_at_20_std value: 7.883721064619468 - type: nauc_recall_at_3_diff1 value: 23.746154368105564 - type: nauc_recall_at_3_max value: 13.770751722927372 - type: nauc_recall_at_3_std value: -18.89572531611582 - type: nauc_recall_at_5_diff1 value: 20.01291443486774 - type: nauc_recall_at_5_max value: 16.77718143645164 - type: nauc_recall_at_5_std value: -16.639028720975606 - type: ndcg_at_1 value: 45.448 - type: ndcg_at_10 value: 67.323 - type: ndcg_at_100 value: 69.484 - type: ndcg_at_1000 value: 69.544 - type: ndcg_at_20 value: 68.644 - type: ndcg_at_3 value: 60.865 - type: ndcg_at_5 value: 64.125 - type: precision_at_1 value: 45.448 - type: precision_at_10 value: 8.969000000000001 - type: precision_at_100 value: 0.992 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.74 - type: precision_at_3 value: 23.968999999999998 - type: precision_at_5 value: 15.959999999999999 - type: recall_at_1 value: 45.448 - type: recall_at_10 value: 89.687 - type: recall_at_100 value: 99.21799999999999 - type: recall_at_1000 value: 99.644 - type: recall_at_20 value: 94.808 - type: recall_at_3 value: 71.906 - type: recall_at_5 value: 79.801 task: type: Retrieval - dataset: config: default name: MTEB ArxivClusteringP2P (default) revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d split: test type: mteb/arxiv-clustering-p2p metrics: - type: main_score value: 54.266038386390726 - type: v_measure value: 54.266038386390726 - type: v_measure_std value: 14.60711085325104 task: type: Clustering - dataset: config: default name: MTEB ArxivClusteringS2S (default) revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 split: test type: mteb/arxiv-clustering-s2s metrics: - type: main_score value: 49.82450675178832 - type: v_measure value: 49.82450675178832 - type: v_measure_std value: 14.692705635234821 task: type: Clustering - dataset: config: default name: MTEB AskUbuntuDupQuestions (default) revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 split: test type: mteb/askubuntudupquestions-reranking metrics: - type: main_score value: 63.50490353933854 - type: map value: 63.50490353933854 - type: mrr value: 76.79395858066218 - type: nAUC_map_diff1 value: 17.162853733308793 - type: nAUC_map_max value: 24.966054539639252 - type: nAUC_map_std value: 17.887481717389274 - type: nAUC_mrr_diff1 value: 19.033169471151794 - type: nAUC_mrr_max value: 37.52423297117104 - type: nAUC_mrr_std value: 13.636799292425081 task: type: Reranking - dataset: config: default name: MTEB BIOSSES (default) revision: d3fb88f8f02e40887cd149695127462bbcf29b4a split: test type: mteb/biosses-sts metrics: - type: cosine_pearson value: 82.07979992743572 - type: cosine_spearman value: 80.97112209037952 - type: euclidean_pearson value: 80.726157419205 - type: euclidean_spearman value: 80.97112209037952 - type: main_score value: 80.97112209037952 - type: manhattan_pearson value: 80.75553649447407 - type: manhattan_spearman value: 81.35366092726835 - type: pearson value: 82.07979992743572 - type: spearman value: 80.97112209037952 task: type: STS - dataset: config: default name: MTEB Banking77Classification (default) revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 split: test type: mteb/banking77 metrics: - type: accuracy value: 84.29870129870129 - type: f1 value: 83.68342680640103 - type: f1_weighted value: 83.68342680640104 - type: main_score value: 84.29870129870129 task: type: Classification - dataset: config: default name: MTEB BiorxivClusteringP2P (default) revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 split: test type: mteb/biorxiv-clustering-p2p metrics: - type: main_score value: 47.21939028186225 - type: v_measure value: 47.21939028186225 - type: v_measure_std value: 0.6399652619210745 task: type: Clustering - dataset: config: default name: MTEB BiorxivClusteringS2S (default) revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 split: test type: mteb/biorxiv-clustering-s2s metrics: - type: main_score value: 43.904503083954765 - type: v_measure value: 43.904503083954765 - type: v_measure_std value: 0.6741506180366014 task: type: Clustering - dataset: config: default name: MTEB CQADupstackAndroidRetrieval (default) revision: f46a197baaae43b4f621051089b82a364682dfeb split: test type: mteb/cqadupstack-android metrics: - type: main_score value: 50.441 - type: map_at_1 value: 30.581000000000003 - type: map_at_10 value: 43.536 - type: map_at_100 value: 45.086999999999996 - type: map_at_1000 value: 45.189 - type: map_at_20 value: 44.37 - type: map_at_3 value: 39.769 - type: map_at_5 value: 42.028999999999996 - type: mrr_at_1 value: 36.9098712446352 - type: mrr_at_10 value: 48.776483411676516 - type: mrr_at_100 value: 49.51782521965795 - type: mrr_at_1000 value: 49.5505304504549 - type: mrr_at_20 value: 49.20302191439193 - type: mrr_at_3 value: 45.85121602288984 - type: mrr_at_5 value: 47.696709585121575 - type: nauc_map_at_1000_diff1 value: 50.77442312287549 - type: nauc_map_at_1000_max value: 34.33647599905781 - type: nauc_map_at_1000_std value: -13.748516605067781 - type: nauc_map_at_100_diff1 value: 50.75894617435753 - type: nauc_map_at_100_max value: 34.35502812001472 - type: nauc_map_at_100_std value: -13.736841648468175 - type: nauc_map_at_10_diff1 value: 50.87929446622231 - type: nauc_map_at_10_max value: 34.27157508239978 - type: nauc_map_at_10_std value: -14.526407596674309 - type: nauc_map_at_1_diff1 value: 57.0909475560327 - type: nauc_map_at_1_max value: 32.2288149431883 - type: nauc_map_at_1_std value: -13.370874900310689 - type: nauc_map_at_20_diff1 value: 50.63798885082635 - type: nauc_map_at_20_max value: 34.26498561214445 - type: nauc_map_at_20_std value: -13.93188362561783 - type: nauc_map_at_3_diff1 value: 52.5737761085553 - type: nauc_map_at_3_max value: 33.76013333419806 - type: nauc_map_at_3_std value: -13.849008988263117 - type: nauc_map_at_5_diff1 value: 51.19968604216378 - type: nauc_map_at_5_max value: 33.54095507132505 - type: nauc_map_at_5_std value: -14.620211074645637 - type: nauc_mrr_at_1000_diff1 value: 48.38609356318301 - type: nauc_mrr_at_1000_max value: 33.98679377266471 - type: nauc_mrr_at_1000_std value: -13.759418374094038 - type: nauc_mrr_at_100_diff1 value: 48.37236116991555 - type: nauc_mrr_at_100_max value: 33.978575821483865 - type: nauc_mrr_at_100_std value: -13.748715391580502 - type: nauc_mrr_at_10_diff1 value: 48.20980705221954 - type: nauc_mrr_at_10_max value: 33.97030796624786 - type: nauc_mrr_at_10_std value: -14.023184119296047 - type: nauc_mrr_at_1_diff1 value: 52.835554088618565 - type: nauc_mrr_at_1_max value: 34.736747824514026 - type: nauc_mrr_at_1_std value: -14.782309133752246 - type: nauc_mrr_at_20_diff1 value: 48.185661393251586 - type: nauc_mrr_at_20_max value: 33.92181383095129 - type: nauc_mrr_at_20_std value: -13.749958473599438 - type: nauc_mrr_at_3_diff1 value: 49.06255086663413 - type: nauc_mrr_at_3_max value: 34.24245966485257 - type: nauc_mrr_at_3_std value: -14.121042079344855 - type: nauc_mrr_at_5_diff1 value: 48.02661914739764 - type: nauc_mrr_at_5_max value: 33.54319852163983 - type: nauc_mrr_at_5_std value: -14.40749724842102 - type: nauc_ndcg_at_1000_diff1 value: 48.93136634666757 - type: nauc_ndcg_at_1000_max value: 34.3178528230429 - type: nauc_ndcg_at_1000_std value: -11.95564837442876 - type: nauc_ndcg_at_100_diff1 value: 48.37542091427922 - type: nauc_ndcg_at_100_max value: 34.41374261950128 - type: nauc_ndcg_at_100_std value: -11.526876720456004 - type: nauc_ndcg_at_10_diff1 value: 48.27862794425633 - type: nauc_ndcg_at_10_max value: 34.06415523516767 - type: nauc_ndcg_at_10_std value: -14.602823441995778 - type: nauc_ndcg_at_1_diff1 value: 52.835554088618565 - type: nauc_ndcg_at_1_max value: 34.736747824514026 - type: nauc_ndcg_at_1_std value: -14.782309133752246 - type: nauc_ndcg_at_20_diff1 value: 47.6519433010848 - type: nauc_ndcg_at_20_max value: 33.800628012770034 - type: nauc_ndcg_at_20_std value: -12.852071902619322 - type: nauc_ndcg_at_3_diff1 value: 50.40632210084943 - type: nauc_ndcg_at_3_max value: 34.15616519598939 - type: nauc_ndcg_at_3_std value: -14.396914052394957 - type: nauc_ndcg_at_5_diff1 value: 48.2287768686924 - type: nauc_ndcg_at_5_max value: 32.68281782116356 - type: nauc_ndcg_at_5_std value: -15.15658424373146 - type: nauc_precision_at_1000_diff1 value: -16.822042402923493 - type: nauc_precision_at_1000_max value: -13.459387124925234 - type: nauc_precision_at_1000_std value: -4.684574162765856 - type: nauc_precision_at_100_diff1 value: -12.950405503358223 - type: nauc_precision_at_100_max value: -3.6973387744248694 - type: nauc_precision_at_100_std value: 1.0686120361051838 - type: nauc_precision_at_10_diff1 value: 5.680154771052575 - type: nauc_precision_at_10_max value: 17.15052960292624 - type: nauc_precision_at_10_std value: -8.839454848202234 - type: nauc_precision_at_1_diff1 value: 52.835554088618565 - type: nauc_precision_at_1_max value: 34.736747824514026 - type: nauc_precision_at_1_std value: -14.782309133752246 - type: nauc_precision_at_20_diff1 value: -4.147057156482801 - type: nauc_precision_at_20_max value: 8.943409955940282 - type: nauc_precision_at_20_std value: -1.1556219667822423 - type: nauc_precision_at_3_diff1 value: 28.31897232747757 - type: nauc_precision_at_3_max value: 28.82890100390525 - type: nauc_precision_at_3_std value: -14.111275428339304 - type: nauc_precision_at_5_diff1 value: 15.554085244274193 - type: nauc_precision_at_5_max value: 20.934501596265694 - type: nauc_precision_at_5_std value: -12.783947594197997 - type: nauc_recall_at_1000_diff1 value: 41.806713621678924 - type: nauc_recall_at_1000_max value: 45.83932148789026 - type: nauc_recall_at_1000_std value: 43.35832012725718 - type: nauc_recall_at_100_diff1 value: 33.259689472107425 - type: nauc_recall_at_100_max value: 34.680606932499764 - type: nauc_recall_at_100_std value: 13.022981792106265 - type: nauc_recall_at_10_diff1 value: 39.674972215899004 - type: nauc_recall_at_10_max value: 31.571411194709793 - type: nauc_recall_at_10_std value: -13.917597013140865 - type: nauc_recall_at_1_diff1 value: 57.0909475560327 - type: nauc_recall_at_1_max value: 32.2288149431883 - type: nauc_recall_at_1_std value: -13.370874900310689 - type: nauc_recall_at_20_diff1 value: 34.82477941545416 - type: nauc_recall_at_20_max value: 29.419097652367583 - type: nauc_recall_at_20_std value: -6.753466274035959 - type: nauc_recall_at_3_diff1 value: 47.05993622483161 - type: nauc_recall_at_3_max value: 31.788946521479673 - type: nauc_recall_at_3_std value: -12.589599804850593 - type: nauc_recall_at_5_diff1 value: 40.8980124793814 - type: nauc_recall_at_5_max value: 28.169478524380477 - type: nauc_recall_at_5_std value: -15.058399770454422 - type: ndcg_at_1 value: 36.91 - type: ndcg_at_10 value: 50.441 - type: ndcg_at_100 value: 55.986999999999995 - type: ndcg_at_1000 value: 57.50999999999999 - type: ndcg_at_20 value: 52.588 - type: ndcg_at_3 value: 45.039 - type: ndcg_at_5 value: 47.908 - type: precision_at_1 value: 36.91 - type: precision_at_10 value: 9.771 - type: precision_at_100 value: 1.5779999999999998 - type: precision_at_1000 value: 0.199 - type: precision_at_20 value: 5.808 - type: precision_at_3 value: 22.222 - type: precision_at_5 value: 16.28 - type: recall_at_1 value: 30.581000000000003 - type: recall_at_10 value: 64.43799999999999 - type: recall_at_100 value: 87.439 - type: recall_at_1000 value: 96.682 - type: recall_at_20 value: 72.021 - type: recall_at_3 value: 49.119 - type: recall_at_5 value: 56.650999999999996 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackEnglishRetrieval (default) revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 split: test type: mteb/cqadupstack-english metrics: - type: main_score value: 48.052 - type: map_at_1 value: 31.691000000000003 - type: map_at_10 value: 42.25 - type: map_at_100 value: 43.466 - type: map_at_1000 value: 43.592 - type: map_at_20 value: 42.925000000000004 - type: map_at_3 value: 39.196999999999996 - type: map_at_5 value: 40.837 - type: mrr_at_1 value: 40.0 - type: mrr_at_10 value: 48.40979172985544 - type: mrr_at_100 value: 49.01329345568664 - type: mrr_at_1000 value: 49.05317333733556 - type: mrr_at_20 value: 48.757963347938926 - type: mrr_at_3 value: 46.18895966029725 - type: mrr_at_5 value: 47.45647558386417 - type: nauc_map_at_1000_diff1 value: 52.63721197705168 - type: nauc_map_at_1000_max value: 34.927748424948255 - type: nauc_map_at_1000_std value: 1.0444719278570702 - type: nauc_map_at_100_diff1 value: 52.66002218018987 - type: nauc_map_at_100_max value: 34.89878215864321 - type: nauc_map_at_100_std value: 0.9008516460644733 - type: nauc_map_at_10_diff1 value: 52.889235851315775 - type: nauc_map_at_10_max value: 34.6922736480049 - type: nauc_map_at_10_std value: -0.6506284048085285 - type: nauc_map_at_1_diff1 value: 56.732243764713175 - type: nauc_map_at_1_max value: 30.49325212155099 - type: nauc_map_at_1_std value: -5.04800794470186 - type: nauc_map_at_20_diff1 value: 52.8862850560935 - type: nauc_map_at_20_max value: 34.829038965108325 - type: nauc_map_at_20_std value: 0.02178642495237562 - type: nauc_map_at_3_diff1 value: 53.608193764117 - type: nauc_map_at_3_max value: 33.53981267373349 - type: nauc_map_at_3_std value: -3.040418170003493 - type: nauc_map_at_5_diff1 value: 53.39851810143899 - type: nauc_map_at_5_max value: 34.5516659463275 - type: nauc_map_at_5_std value: -1.4969739346974889 - type: nauc_mrr_at_1000_diff1 value: 51.8960971254646 - type: nauc_mrr_at_1000_max value: 37.39091504745532 - type: nauc_mrr_at_1000_std value: 5.037970602087237 - type: nauc_mrr_at_100_diff1 value: 51.881385486300225 - type: nauc_mrr_at_100_max value: 37.38614133569158 - type: nauc_mrr_at_100_std value: 5.034384753845119 - type: nauc_mrr_at_10_diff1 value: 51.77335216991783 - type: nauc_mrr_at_10_max value: 37.61929128133669 - type: nauc_mrr_at_10_std value: 4.912421162621211 - type: nauc_mrr_at_1_diff1 value: 55.97789723641661 - type: nauc_mrr_at_1_max value: 38.07741378971052 - type: nauc_mrr_at_1_std value: 3.1114912067800407 - type: nauc_mrr_at_20_diff1 value: 51.924932204924964 - type: nauc_mrr_at_20_max value: 37.43188155675892 - type: nauc_mrr_at_20_std value: 4.912649497021889 - type: nauc_mrr_at_3_diff1 value: 52.62682614740191 - type: nauc_mrr_at_3_max value: 37.79696523235296 - type: nauc_mrr_at_3_std value: 4.297604310897065 - type: nauc_mrr_at_5_diff1 value: 51.93341098564305 - type: nauc_mrr_at_5_max value: 37.52261609729754 - type: nauc_mrr_at_5_std value: 4.798233142719436 - type: nauc_ndcg_at_1000_diff1 value: 50.48831175822571 - type: nauc_ndcg_at_1000_max value: 34.954324628161515 - type: nauc_ndcg_at_1000_std value: 5.914974932163024 - type: nauc_ndcg_at_100_diff1 value: 50.22642462713412 - type: nauc_ndcg_at_100_max value: 34.81144896724943 - type: nauc_ndcg_at_100_std value: 5.269669826884739 - type: nauc_ndcg_at_10_diff1 value: 50.638035087354346 - type: nauc_ndcg_at_10_max value: 35.548660617367744 - type: nauc_ndcg_at_10_std value: 2.757672387486977 - type: nauc_ndcg_at_1_diff1 value: 55.97789723641661 - type: nauc_ndcg_at_1_max value: 38.07741378971052 - type: nauc_ndcg_at_1_std value: 3.1114912067800407 - type: nauc_ndcg_at_20_diff1 value: 50.94165876070302 - type: nauc_ndcg_at_20_max value: 35.15720286509341 - type: nauc_ndcg_at_20_std value: 3.1700542955934177 - type: nauc_ndcg_at_3_diff1 value: 51.6668031483535 - type: nauc_ndcg_at_3_max value: 36.158392419704036 - type: nauc_ndcg_at_3_std value: 1.7945130542865129 - type: nauc_ndcg_at_5_diff1 value: 51.40374511387644 - type: nauc_ndcg_at_5_max value: 35.96747873017992 - type: nauc_ndcg_at_5_std value: 2.4750496896017036 - type: nauc_precision_at_1000_diff1 value: -14.459395103980057 - type: nauc_precision_at_1000_max value: 7.001254844374337 - type: nauc_precision_at_1000_std value: 38.87250799651196 - type: nauc_precision_at_100_diff1 value: -7.015008098259738 - type: nauc_precision_at_100_max value: 14.454169684224969 - type: nauc_precision_at_100_std value: 40.615163341328035 - type: nauc_precision_at_10_diff1 value: 14.105573590736311 - type: nauc_precision_at_10_max value: 27.637233565307927 - type: nauc_precision_at_10_std value: 24.80384513569725 - type: nauc_precision_at_1_diff1 value: 55.97789723641661 - type: nauc_precision_at_1_max value: 38.07741378971052 - type: nauc_precision_at_1_std value: 3.1114912067800407 - type: nauc_precision_at_20_diff1 value: 6.826222425028856 - type: nauc_precision_at_20_max value: 22.440750352931133 - type: nauc_precision_at_20_std value: 30.650961826400664 - type: nauc_precision_at_3_diff1 value: 33.56939227622927 - type: nauc_precision_at_3_max value: 35.81131949842977 - type: nauc_precision_at_3_std value: 13.39631093898116 - type: nauc_precision_at_5_diff1 value: 25.327171466051347 - type: nauc_precision_at_5_max value: 33.04313875843963 - type: nauc_precision_at_5_std value: 19.62165639744543 - type: nauc_recall_at_1000_diff1 value: 34.60133056300212 - type: nauc_recall_at_1000_max value: 21.161471663251515 - type: nauc_recall_at_1000_std value: 32.74321904619018 - type: nauc_recall_at_100_diff1 value: 36.43348185795896 - type: nauc_recall_at_100_max value: 25.704040738466205 - type: nauc_recall_at_100_std value: 17.990567238645156 - type: nauc_recall_at_10_diff1 value: 42.694617737297676 - type: nauc_recall_at_10_max value: 31.3298523819716 - type: nauc_recall_at_10_std value: 2.384843550540601 - type: nauc_recall_at_1_diff1 value: 56.732243764713175 - type: nauc_recall_at_1_max value: 30.49325212155099 - type: nauc_recall_at_1_std value: -5.04800794470186 - type: nauc_recall_at_20_diff1 value: 43.176907776217455 - type: nauc_recall_at_20_max value: 29.215827308916065 - type: nauc_recall_at_20_std value: 4.147830621064018 - type: nauc_recall_at_3_diff1 value: 48.35837999847456 - type: nauc_recall_at_3_max value: 31.92274839572281 - type: nauc_recall_at_3_std value: -2.714807149637697 - type: nauc_recall_at_5_diff1 value: 46.351251919981635 - type: nauc_recall_at_5_max value: 32.523267054288304 - type: nauc_recall_at_5_std value: 0.4952928034547165 - type: ndcg_at_1 value: 40.0 - type: ndcg_at_10 value: 48.052 - type: ndcg_at_100 value: 52.07000000000001 - type: ndcg_at_1000 value: 54.064 - type: ndcg_at_20 value: 49.626 - type: ndcg_at_3 value: 43.902 - type: ndcg_at_5 value: 45.701 - type: precision_at_1 value: 40.0 - type: precision_at_10 value: 9.203999999999999 - type: precision_at_100 value: 1.438 - type: precision_at_1000 value: 0.188 - type: precision_at_20 value: 5.376 - type: precision_at_3 value: 21.295 - type: precision_at_5 value: 15.082999999999998 - type: recall_at_1 value: 31.691000000000003 - type: recall_at_10 value: 57.859 - type: recall_at_100 value: 75.107 - type: recall_at_1000 value: 87.679 - type: recall_at_20 value: 63.698 - type: recall_at_3 value: 45.379000000000005 - type: recall_at_5 value: 50.556999999999995 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGamingRetrieval (default) revision: 4885aa143210c98657558c04aaf3dc47cfb54340 split: test type: mteb/cqadupstack-gaming metrics: - type: main_score value: 56.423 - type: map_at_1 value: 38.517 - type: map_at_10 value: 50.510999999999996 - type: map_at_100 value: 51.568000000000005 - type: map_at_1000 value: 51.625 - type: map_at_20 value: 51.157 - type: map_at_3 value: 46.861000000000004 - type: map_at_5 value: 49.138 - type: mrr_at_1 value: 44.32601880877743 - type: mrr_at_10 value: 54.006518385828805 - type: mrr_at_100 value: 54.71981356159521 - type: mrr_at_1000 value: 54.752151957526316 - type: mrr_at_20 value: 54.476952471748106 - type: mrr_at_3 value: 51.22257053291538 - type: mrr_at_5 value: 53.10658307210038 - type: nauc_map_at_1000_diff1 value: 46.99591363896863 - type: nauc_map_at_1000_max value: 36.24904681003381 - type: nauc_map_at_1000_std value: 5.266222409182784 - type: nauc_map_at_100_diff1 value: 46.98084517367969 - type: nauc_map_at_100_max value: 36.250423743143436 - type: nauc_map_at_100_std value: 5.28301960645914 - type: nauc_map_at_10_diff1 value: 47.06708588191781 - type: nauc_map_at_10_max value: 36.18369863811603 - type: nauc_map_at_10_std value: 4.540089547074973 - type: nauc_map_at_1_diff1 value: 50.48083670895566 - type: nauc_map_at_1_max value: 31.950879226720595 - type: nauc_map_at_1_std value: 0.8257060985358229 - type: nauc_map_at_20_diff1 value: 46.998991583288415 - type: nauc_map_at_20_max value: 36.22115301678039 - type: nauc_map_at_20_std value: 5.082303558564342 - type: nauc_map_at_3_diff1 value: 47.7005416643811 - type: nauc_map_at_3_max value: 35.88865564285155 - type: nauc_map_at_3_std value: 2.944332455222102 - type: nauc_map_at_5_diff1 value: 47.312929177575874 - type: nauc_map_at_5_max value: 35.862390825522844 - type: nauc_map_at_5_std value: 3.81274507266821 - type: nauc_mrr_at_1000_diff1 value: 46.6759837669438 - type: nauc_mrr_at_1000_max value: 36.70273979969576 - type: nauc_mrr_at_1000_std value: 5.372740994750759 - type: nauc_mrr_at_100_diff1 value: 46.675225471247536 - type: nauc_mrr_at_100_max value: 36.703302034269875 - type: nauc_mrr_at_100_std value: 5.389605566226372 - type: nauc_mrr_at_10_diff1 value: 46.50353044791382 - type: nauc_mrr_at_10_max value: 36.66777833991145 - type: nauc_mrr_at_10_std value: 5.243423563011071 - type: nauc_mrr_at_1_diff1 value: 49.02972042252377 - type: nauc_mrr_at_1_max value: 36.600499110729764 - type: nauc_mrr_at_1_std value: 2.5711258912407953 - type: nauc_mrr_at_20_diff1 value: 46.625296101632095 - type: nauc_mrr_at_20_max value: 36.678578716940855 - type: nauc_mrr_at_20_std value: 5.406361664314628 - type: nauc_mrr_at_3_diff1 value: 46.907538354326825 - type: nauc_mrr_at_3_max value: 36.91488611173621 - type: nauc_mrr_at_3_std value: 3.8761762810100473 - type: nauc_mrr_at_5_diff1 value: 46.774337072791255 - type: nauc_mrr_at_5_max value: 36.65454152790335 - type: nauc_mrr_at_5_std value: 4.753826902883721 - type: nauc_ndcg_at_1000_diff1 value: 46.312300114931396 - type: nauc_ndcg_at_1000_max value: 36.687577969558156 - type: nauc_ndcg_at_1000_std value: 8.04218255348285 - type: nauc_ndcg_at_100_diff1 value: 45.91371707529375 - type: nauc_ndcg_at_100_max value: 36.72698157851723 - type: nauc_ndcg_at_100_std value: 8.62715881456232 - type: nauc_ndcg_at_10_diff1 value: 45.70764954649013 - type: nauc_ndcg_at_10_max value: 36.42241644937269 - type: nauc_ndcg_at_10_std value: 6.793309697483774 - type: nauc_ndcg_at_1_diff1 value: 49.02972042252377 - type: nauc_ndcg_at_1_max value: 36.600499110729764 - type: nauc_ndcg_at_1_std value: 2.5711258912407953 - type: nauc_ndcg_at_20_diff1 value: 45.71253409870376 - type: nauc_ndcg_at_20_max value: 36.478750872235075 - type: nauc_ndcg_at_20_std value: 8.032852116533649 - type: nauc_ndcg_at_3_diff1 value: 46.5055405749989 - type: nauc_ndcg_at_3_max value: 36.55925519576953 - type: nauc_ndcg_at_3_std value: 4.01635426914171 - type: nauc_ndcg_at_5_diff1 value: 46.17076704583506 - type: nauc_ndcg_at_5_max value: 36.00194839608453 - type: nauc_ndcg_at_5_std value: 5.290651961116129 - type: nauc_precision_at_1000_diff1 value: -7.810936686028834 - type: nauc_precision_at_1000_max value: 2.4457731990668035 - type: nauc_precision_at_1000_std value: 15.244382957052343 - type: nauc_precision_at_100_diff1 value: -6.24711281837766 - type: nauc_precision_at_100_max value: 9.274662370763165 - type: nauc_precision_at_100_std value: 21.156495677287772 - type: nauc_precision_at_10_diff1 value: 11.673391020454202 - type: nauc_precision_at_10_max value: 23.642781032334476 - type: nauc_precision_at_10_std value: 15.428694149947766 - type: nauc_precision_at_1_diff1 value: 49.02972042252377 - type: nauc_precision_at_1_max value: 36.600499110729764 - type: nauc_precision_at_1_std value: 2.5711258912407953 - type: nauc_precision_at_20_diff1 value: 4.320523799516288 - type: nauc_precision_at_20_max value: 18.529188355144083 - type: nauc_precision_at_20_std value: 20.63811919289391 - type: nauc_precision_at_3_diff1 value: 28.81527179707099 - type: nauc_precision_at_3_max value: 34.12169505571048 - type: nauc_precision_at_3_std value: 8.264026657534398 - type: nauc_precision_at_5_diff1 value: 20.643744683841586 - type: nauc_precision_at_5_max value: 28.520212611799007 - type: nauc_precision_at_5_std value: 11.159926260802324 - type: nauc_recall_at_1000_diff1 value: 47.89843496456478 - type: nauc_recall_at_1000_max value: 48.19346950585018 - type: nauc_recall_at_1000_std value: 69.35955862460499 - type: nauc_recall_at_100_diff1 value: 38.5657115857761 - type: nauc_recall_at_100_max value: 39.1799100059013 - type: nauc_recall_at_100_std value: 37.26868224318161 - type: nauc_recall_at_10_diff1 value: 39.70450871697248 - type: nauc_recall_at_10_max value: 34.7230529664253 - type: nauc_recall_at_10_std value: 12.967503176766982 - type: nauc_recall_at_1_diff1 value: 50.48083670895566 - type: nauc_recall_at_1_max value: 31.950879226720595 - type: nauc_recall_at_1_std value: 0.8257060985358229 - type: nauc_recall_at_20_diff1 value: 38.52009076825669 - type: nauc_recall_at_20_max value: 35.067067464590004 - type: nauc_recall_at_20_std value: 21.157205479969708 - type: nauc_recall_at_3_diff1 value: 44.359044172441294 - type: nauc_recall_at_3_max value: 35.53948139234034 - type: nauc_recall_at_3_std value: 3.9964883607424118 - type: nauc_recall_at_5_diff1 value: 42.071462939937625 - type: nauc_recall_at_5_max value: 33.59544974420819 - type: nauc_recall_at_5_std value: 7.414365501450481 - type: ndcg_at_1 value: 44.326 - type: ndcg_at_10 value: 56.423 - type: ndcg_at_100 value: 60.626999999999995 - type: ndcg_at_1000 value: 61.78 - type: ndcg_at_20 value: 58.336 - type: ndcg_at_3 value: 50.32299999999999 - type: ndcg_at_5 value: 53.808 - type: precision_at_1 value: 44.326 - type: precision_at_10 value: 9.21 - type: precision_at_100 value: 1.2189999999999999 - type: precision_at_1000 value: 0.136 - type: precision_at_20 value: 5.176 - type: precision_at_3 value: 22.487 - type: precision_at_5 value: 15.9 - type: recall_at_1 value: 38.517 - type: recall_at_10 value: 70.291 - type: recall_at_100 value: 88.53999999999999 - type: recall_at_1000 value: 96.67 - type: recall_at_20 value: 77.459 - type: recall_at_3 value: 54.44 - type: recall_at_5 value: 62.863 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGisRetrieval (default) revision: 5003b3064772da1887988e05400cf3806fe491f2 split: test type: mteb/cqadupstack-gis metrics: - type: main_score value: 40.245999999999995 - type: map_at_1 value: 25.66 - type: map_at_10 value: 34.781 - type: map_at_100 value: 35.825 - type: map_at_1000 value: 35.900999999999996 - type: map_at_20 value: 35.312 - type: map_at_3 value: 31.649 - type: map_at_5 value: 33.446 - type: mrr_at_1 value: 27.683615819209038 - type: mrr_at_10 value: 36.88897856694467 - type: mrr_at_100 value: 37.7983608873635 - type: mrr_at_1000 value: 37.85659419024201 - type: mrr_at_20 value: 37.40279188480636 - type: mrr_at_3 value: 33.97363465160076 - type: mrr_at_5 value: 35.76459510357815 - type: nauc_map_at_1000_diff1 value: 39.85966393937221 - type: nauc_map_at_1000_max value: 27.627327546922082 - type: nauc_map_at_1000_std value: -2.437000048637541 - type: nauc_map_at_100_diff1 value: 39.84937090664403 - type: nauc_map_at_100_max value: 27.637564346944988 - type: nauc_map_at_100_std value: -2.4109683806023408 - type: nauc_map_at_10_diff1 value: 39.71424425034042 - type: nauc_map_at_10_max value: 27.872378136740437 - type: nauc_map_at_10_std value: -2.8569524387609566 - type: nauc_map_at_1_diff1 value: 45.91775607893774 - type: nauc_map_at_1_max value: 26.899324806364007 - type: nauc_map_at_1_std value: -5.498609993557515 - type: nauc_map_at_20_diff1 value: 39.883943198146106 - type: nauc_map_at_20_max value: 27.64309227085422 - type: nauc_map_at_20_std value: -2.5654741454169816 - type: nauc_map_at_3_diff1 value: 39.91753278618007 - type: nauc_map_at_3_max value: 27.11865653999877 - type: nauc_map_at_3_std value: -3.3286492180678384 - type: nauc_map_at_5_diff1 value: 39.6313699695734 - type: nauc_map_at_5_max value: 27.710946419917548 - type: nauc_map_at_5_std value: -2.920297786058066 - type: nauc_mrr_at_1000_diff1 value: 39.690653898179 - type: nauc_mrr_at_1000_max value: 27.18398591982711 - type: nauc_mrr_at_1000_std value: -2.606447174750376 - type: nauc_mrr_at_100_diff1 value: 39.689803477387656 - type: nauc_mrr_at_100_max value: 27.189479576677762 - type: nauc_mrr_at_100_std value: -2.570807442132712 - type: nauc_mrr_at_10_diff1 value: 39.399614568431915 - type: nauc_mrr_at_10_max value: 27.304654766506253 - type: nauc_mrr_at_10_std value: -2.8847962104122584 - type: nauc_mrr_at_1_diff1 value: 45.70161189197341 - type: nauc_mrr_at_1_max value: 27.02826003278829 - type: nauc_mrr_at_1_std value: -4.831200831009949 - type: nauc_mrr_at_20_diff1 value: 39.69394763509078 - type: nauc_mrr_at_20_max value: 27.201336203029232 - type: nauc_mrr_at_20_std value: -2.6871497640498765 - type: nauc_mrr_at_3_diff1 value: 39.220307350990346 - type: nauc_mrr_at_3_max value: 26.7053856409676 - type: nauc_mrr_at_3_std value: -3.2176631206275514 - type: nauc_mrr_at_5_diff1 value: 39.166108393948406 - type: nauc_mrr_at_5_max value: 27.084050550858557 - type: nauc_mrr_at_5_std value: -2.87556996749801 - type: nauc_ndcg_at_1000_diff1 value: 38.603857523266925 - type: nauc_ndcg_at_1000_max value: 27.45135486355824 - type: nauc_ndcg_at_1000_std value: -0.46660995944134603 - type: nauc_ndcg_at_100_diff1 value: 38.444207274649884 - type: nauc_ndcg_at_100_max value: 27.549884957721194 - type: nauc_ndcg_at_100_std value: 0.47388375830707924 - type: nauc_ndcg_at_10_diff1 value: 37.72567187058473 - type: nauc_ndcg_at_10_max value: 28.44081574137556 - type: nauc_ndcg_at_10_std value: -1.8534359145108148 - type: nauc_ndcg_at_1_diff1 value: 45.70161189197341 - type: nauc_ndcg_at_1_max value: 27.02826003278829 - type: nauc_ndcg_at_1_std value: -4.831200831009949 - type: nauc_ndcg_at_20_diff1 value: 38.44184854108953 - type: nauc_ndcg_at_20_max value: 27.679973388870614 - type: nauc_ndcg_at_20_std value: -0.898582155647988 - type: nauc_ndcg_at_3_diff1 value: 37.97088409897179 - type: nauc_ndcg_at_3_max value: 27.106412295185066 - type: nauc_ndcg_at_3_std value: -2.730164275362466 - type: nauc_ndcg_at_5_diff1 value: 37.37607068800825 - type: nauc_ndcg_at_5_max value: 27.9502784140078 - type: nauc_ndcg_at_5_std value: -2.0027830470055075 - type: nauc_precision_at_1000_diff1 value: 0.5286110453963512 - type: nauc_precision_at_1000_max value: -2.3318515785442813 - type: nauc_precision_at_1000_std value: 7.80079288314789 - type: nauc_precision_at_100_diff1 value: 13.667186642269913 - type: nauc_precision_at_100_max value: 9.942092016059734 - type: nauc_precision_at_100_std value: 12.50332782268112 - type: nauc_precision_at_10_diff1 value: 26.281496960169953 - type: nauc_precision_at_10_max value: 24.46085080936575 - type: nauc_precision_at_10_std value: 2.8074535999287322 - type: nauc_precision_at_1_diff1 value: 45.70161189197341 - type: nauc_precision_at_1_max value: 27.02826003278829 - type: nauc_precision_at_1_std value: -4.831200831009949 - type: nauc_precision_at_20_diff1 value: 25.585868175418412 - type: nauc_precision_at_20_max value: 19.640567118702023 - type: nauc_precision_at_20_std value: 7.0865072321039 - type: nauc_precision_at_3_diff1 value: 31.522547430107718 - type: nauc_precision_at_3_max value: 25.87424549883876 - type: nauc_precision_at_3_std value: -0.6508524960745287 - type: nauc_precision_at_5_diff1 value: 28.958347089826553 - type: nauc_precision_at_5_max value: 26.541109281414073 - type: nauc_precision_at_5_std value: 1.8354704960749444 - type: nauc_recall_at_1000_diff1 value: 25.74128427270277 - type: nauc_recall_at_1000_max value: 21.011729073123906 - type: nauc_recall_at_1000_std value: 29.766333163064136 - type: nauc_recall_at_100_diff1 value: 31.785700068938166 - type: nauc_recall_at_100_max value: 25.476332277500607 - type: nauc_recall_at_100_std value: 20.47758699126873 - type: nauc_recall_at_10_diff1 value: 31.186789594770264 - type: nauc_recall_at_10_max value: 30.23366916255125 - type: nauc_recall_at_10_std value: 1.0690146258142572 - type: nauc_recall_at_1_diff1 value: 45.91775607893774 - type: nauc_recall_at_1_max value: 26.899324806364007 - type: nauc_recall_at_1_std value: -5.498609993557515 - type: nauc_recall_at_20_diff1 value: 33.32210083840443 - type: nauc_recall_at_20_max value: 26.910239736720104 - type: nauc_recall_at_20_std value: 5.087368762147268 - type: nauc_recall_at_3_diff1 value: 32.3606502852846 - type: nauc_recall_at_3_max value: 26.86643484335275 - type: nauc_recall_at_3_std value: -0.9468851994313872 - type: nauc_recall_at_5_diff1 value: 30.58200958021165 - type: nauc_recall_at_5_max value: 28.81049824914163 - type: nauc_recall_at_5_std value: 0.40032324122162105 - type: ndcg_at_1 value: 27.683999999999997 - type: ndcg_at_10 value: 40.245999999999995 - type: ndcg_at_100 value: 45.506 - type: ndcg_at_1000 value: 47.461999999999996 - type: ndcg_at_20 value: 42.122 - type: ndcg_at_3 value: 34.209 - type: ndcg_at_5 value: 37.279 - type: precision_at_1 value: 27.683999999999997 - type: precision_at_10 value: 6.3839999999999995 - type: precision_at_100 value: 0.955 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_20 value: 3.644 - type: precision_at_3 value: 14.539 - type: precision_at_5 value: 10.576 - type: recall_at_1 value: 25.66 - type: recall_at_10 value: 55.062999999999995 - type: recall_at_100 value: 79.38199999999999 - type: recall_at_1000 value: 94.233 - type: recall_at_20 value: 62.082 - type: recall_at_3 value: 39.078 - type: recall_at_5 value: 46.236 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackMathematicaRetrieval (default) revision: 90fceea13679c63fe563ded68f3b6f06e50061de split: test type: mteb/cqadupstack-mathematica metrics: - type: main_score value: 33.599000000000004 - type: map_at_1 value: 17.586 - type: map_at_10 value: 27.32 - type: map_at_100 value: 28.799999999999997 - type: map_at_1000 value: 28.921000000000003 - type: map_at_20 value: 28.153 - type: map_at_3 value: 24.066000000000003 - type: map_at_5 value: 25.755 - type: mrr_at_1 value: 22.263681592039802 - type: mrr_at_10 value: 32.360469478006785 - type: mrr_at_100 value: 33.438437513063704 - type: mrr_at_1000 value: 33.497473884762094 - type: mrr_at_20 value: 33.04969965022066 - type: mrr_at_3 value: 29.415422885572156 - type: mrr_at_5 value: 30.99502487562189 - type: nauc_map_at_1000_diff1 value: 27.265553741965775 - type: nauc_map_at_1000_max value: 19.288555820766756 - type: nauc_map_at_1000_std value: 1.7933416168321978 - type: nauc_map_at_100_diff1 value: 27.260040534250695 - type: nauc_map_at_100_max value: 19.304892141398717 - type: nauc_map_at_100_std value: 1.8491919829209627 - type: nauc_map_at_10_diff1 value: 26.86944291051016 - type: nauc_map_at_10_max value: 18.92320522759212 - type: nauc_map_at_10_std value: 0.889749881009448 - type: nauc_map_at_1_diff1 value: 30.584243017075806 - type: nauc_map_at_1_max value: 13.491468441422066 - type: nauc_map_at_1_std value: -0.8751763698025199 - type: nauc_map_at_20_diff1 value: 27.227733914801732 - type: nauc_map_at_20_max value: 19.278767798642207 - type: nauc_map_at_20_std value: 1.4312898630264221 - type: nauc_map_at_3_diff1 value: 26.919576048874767 - type: nauc_map_at_3_max value: 18.312759768115967 - type: nauc_map_at_3_std value: -0.5642361688764358 - type: nauc_map_at_5_diff1 value: 27.04032364592226 - type: nauc_map_at_5_max value: 19.191923558129698 - type: nauc_map_at_5_std value: 0.14080066912052358 - type: nauc_mrr_at_1000_diff1 value: 27.136068664109448 - type: nauc_mrr_at_1000_max value: 22.022262336934386 - type: nauc_mrr_at_1000_std value: 3.3308260159907976 - type: nauc_mrr_at_100_diff1 value: 27.147288894737333 - type: nauc_mrr_at_100_max value: 22.02852436815082 - type: nauc_mrr_at_100_std value: 3.3550379360464526 - type: nauc_mrr_at_10_diff1 value: 26.79942635668937 - type: nauc_mrr_at_10_max value: 22.030637334814642 - type: nauc_mrr_at_10_std value: 2.867852159546408 - type: nauc_mrr_at_1_diff1 value: 29.595744930714023 - type: nauc_mrr_at_1_max value: 17.736581194275356 - type: nauc_mrr_at_1_std value: 0.2159541136892455 - type: nauc_mrr_at_20_diff1 value: 27.176010332894013 - type: nauc_mrr_at_20_max value: 22.13536761286141 - type: nauc_mrr_at_20_std value: 3.237439208098252 - type: nauc_mrr_at_3_diff1 value: 26.57000851252062 - type: nauc_mrr_at_3_max value: 21.747583860129698 - type: nauc_mrr_at_3_std value: 1.721057838979949 - type: nauc_mrr_at_5_diff1 value: 26.92551416387028 - type: nauc_mrr_at_5_max value: 22.42993672746205 - type: nauc_mrr_at_5_std value: 2.725843108347625 - type: nauc_ndcg_at_1000_diff1 value: 27.46739757065543 - type: nauc_ndcg_at_1000_max value: 21.041702596702677 - type: nauc_ndcg_at_1000_std value: 5.604780462883483 - type: nauc_ndcg_at_100_diff1 value: 27.652630070854155 - type: nauc_ndcg_at_100_max value: 21.81166185983459 - type: nauc_ndcg_at_100_std value: 6.698607031446962 - type: nauc_ndcg_at_10_diff1 value: 26.00697734505188 - type: nauc_ndcg_at_10_max value: 20.828161505269204 - type: nauc_ndcg_at_10_std value: 2.8399382855194033 - type: nauc_ndcg_at_1_diff1 value: 29.595744930714023 - type: nauc_ndcg_at_1_max value: 17.736581194275356 - type: nauc_ndcg_at_1_std value: 0.2159541136892455 - type: nauc_ndcg_at_20_diff1 value: 27.27378051779869 - type: nauc_ndcg_at_20_max value: 21.736204369394024 - type: nauc_ndcg_at_20_std value: 4.739094883714155 - type: nauc_ndcg_at_3_diff1 value: 26.57231894661191 - type: nauc_ndcg_at_3_max value: 20.93227880070676 - type: nauc_ndcg_at_3_std value: 0.024589831513874137 - type: nauc_ndcg_at_5_diff1 value: 26.600828085337064 - type: nauc_ndcg_at_5_max value: 21.773794661183416 - type: nauc_ndcg_at_5_std value: 1.5522574657313302 - type: nauc_precision_at_1000_diff1 value: 3.4210541212862537 - type: nauc_precision_at_1000_max value: 3.102103455114947 - type: nauc_precision_at_1000_std value: 1.7521716451583618 - type: nauc_precision_at_100_diff1 value: 11.443300353934575 - type: nauc_precision_at_100_max value: 14.660009751798997 - type: nauc_precision_at_100_std value: 12.668177644524992 - type: nauc_precision_at_10_diff1 value: 17.394001289019975 - type: nauc_precision_at_10_max value: 22.223278134383104 - type: nauc_precision_at_10_std value: 7.242926879010027 - type: nauc_precision_at_1_diff1 value: 29.595744930714023 - type: nauc_precision_at_1_max value: 17.736581194275356 - type: nauc_precision_at_1_std value: 0.2159541136892455 - type: nauc_precision_at_20_diff1 value: 17.43115026349507 - type: nauc_precision_at_20_max value: 21.47538261589186 - type: nauc_precision_at_20_std value: 10.237040595580279 - type: nauc_precision_at_3_diff1 value: 22.012366289647648 - type: nauc_precision_at_3_max value: 25.106312117807487 - type: nauc_precision_at_3_std value: 1.9995028727881818 - type: nauc_precision_at_5_diff1 value: 20.398546387324117 - type: nauc_precision_at_5_max value: 26.303228187054806 - type: nauc_precision_at_5_std value: 5.564748189759881 - type: nauc_recall_at_1000_diff1 value: 29.03481056576388 - type: nauc_recall_at_1000_max value: 17.81464147740126 - type: nauc_recall_at_1000_std value: 52.084053180233646 - type: nauc_recall_at_100_diff1 value: 28.23982991718224 - type: nauc_recall_at_100_max value: 26.168366200103815 - type: nauc_recall_at_100_std value: 28.36050476271469 - type: nauc_recall_at_10_diff1 value: 21.64818157792201 - type: nauc_recall_at_10_max value: 20.853972890132304 - type: nauc_recall_at_10_std value: 5.713144094583624 - type: nauc_recall_at_1_diff1 value: 30.584243017075806 - type: nauc_recall_at_1_max value: 13.491468441422066 - type: nauc_recall_at_1_std value: -0.8751763698025199 - type: nauc_recall_at_20_diff1 value: 25.370812868482425 - type: nauc_recall_at_20_max value: 23.485918438346335 - type: nauc_recall_at_20_std value: 13.06270351478354 - type: nauc_recall_at_3_diff1 value: 23.22354479137504 - type: nauc_recall_at_3_max value: 21.931741628585574 - type: nauc_recall_at_3_std value: 0.22215343527463874 - type: nauc_recall_at_5_diff1 value: 23.762779317387583 - type: nauc_recall_at_5_max value: 23.86601516024228 - type: nauc_recall_at_5_std value: 2.9938661959173722 - type: ndcg_at_1 value: 22.264 - type: ndcg_at_10 value: 33.599000000000004 - type: ndcg_at_100 value: 40.149 - type: ndcg_at_1000 value: 42.663000000000004 - type: ndcg_at_20 value: 36.329 - type: ndcg_at_3 value: 27.736 - type: ndcg_at_5 value: 30.219 - type: precision_at_1 value: 22.264 - type: precision_at_10 value: 6.542000000000001 - type: precision_at_100 value: 1.1320000000000001 - type: precision_at_1000 value: 0.147 - type: precision_at_20 value: 4.061 - type: precision_at_3 value: 14.013 - type: precision_at_5 value: 10.274 - type: recall_at_1 value: 17.586 - type: recall_at_10 value: 47.932 - type: recall_at_100 value: 75.958 - type: recall_at_1000 value: 93.512 - type: recall_at_20 value: 57.708999999999996 - type: recall_at_3 value: 31.46 - type: recall_at_5 value: 37.842 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackPhysicsRetrieval (default) revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 split: test type: mteb/cqadupstack-physics metrics: - type: main_score value: 47.410000000000004 - type: map_at_1 value: 28.971999999999998 - type: map_at_10 value: 40.96 - type: map_at_100 value: 42.331 - type: map_at_1000 value: 42.441 - type: map_at_20 value: 41.742000000000004 - type: map_at_3 value: 37.393 - type: map_at_5 value: 39.407 - type: mrr_at_1 value: 36.092396535129936 - type: mrr_at_10 value: 46.3360297599951 - type: mrr_at_100 value: 47.12743931915083 - type: mrr_at_1000 value: 47.17149558717527 - type: mrr_at_20 value: 46.764900340591545 - type: mrr_at_3 value: 43.50336862367658 - type: mrr_at_5 value: 45.048123195380114 - type: nauc_map_at_1000_diff1 value: 48.875356927744015 - type: nauc_map_at_1000_max value: 26.846314785374048 - type: nauc_map_at_1000_std value: 0.23720537516106452 - type: nauc_map_at_100_diff1 value: 48.82990495193183 - type: nauc_map_at_100_max value: 26.843711103433947 - type: nauc_map_at_100_std value: 0.25686095628081784 - type: nauc_map_at_10_diff1 value: 48.72231653223161 - type: nauc_map_at_10_max value: 26.364353126291522 - type: nauc_map_at_10_std value: 0.01100727529750763 - type: nauc_map_at_1_diff1 value: 51.96344574112589 - type: nauc_map_at_1_max value: 27.671021546156044 - type: nauc_map_at_1_std value: -4.6808708326389805 - type: nauc_map_at_20_diff1 value: 48.870849394709346 - type: nauc_map_at_20_max value: 26.813670876224883 - type: nauc_map_at_20_std value: 0.2352693253381299 - type: nauc_map_at_3_diff1 value: 49.529072015100326 - type: nauc_map_at_3_max value: 27.77400144483059 - type: nauc_map_at_3_std value: -0.6453151987449416 - type: nauc_map_at_5_diff1 value: 49.20710807541119 - type: nauc_map_at_5_max value: 27.177488493074755 - type: nauc_map_at_5_std value: -0.25587902411032826 - type: nauc_mrr_at_1000_diff1 value: 48.498262710122425 - type: nauc_mrr_at_1000_max value: 26.11751051811526 - type: nauc_mrr_at_1000_std value: -0.7728285987105216 - type: nauc_mrr_at_100_diff1 value: 48.48746660434456 - type: nauc_mrr_at_100_max value: 26.115163451470647 - type: nauc_mrr_at_100_std value: -0.7480131276402198 - type: nauc_mrr_at_10_diff1 value: 48.43136858217138 - type: nauc_mrr_at_10_max value: 25.834024688307604 - type: nauc_mrr_at_10_std value: -0.9430552221216183 - type: nauc_mrr_at_1_diff1 value: 50.088598533173354 - type: nauc_mrr_at_1_max value: 27.648802533446197 - type: nauc_mrr_at_1_std value: -3.7628727544097984 - type: nauc_mrr_at_20_diff1 value: 48.473967578999215 - type: nauc_mrr_at_20_max value: 26.091998126081734 - type: nauc_mrr_at_20_std value: -0.7681300813435199 - type: nauc_mrr_at_3_diff1 value: 48.69610564249302 - type: nauc_mrr_at_3_max value: 27.373923497327624 - type: nauc_mrr_at_3_std value: -1.2747465922726908 - type: nauc_mrr_at_5_diff1 value: 48.53658899050662 - type: nauc_mrr_at_5_max value: 26.49833197267966 - type: nauc_mrr_at_5_std value: -0.8503446744063664 - type: nauc_ndcg_at_1000_diff1 value: 48.467870789955406 - type: nauc_ndcg_at_1000_max value: 26.04777255889547 - type: nauc_ndcg_at_1000_std value: 1.6645313343373058 - type: nauc_ndcg_at_100_diff1 value: 47.80533775872007 - type: nauc_ndcg_at_100_max value: 26.106122630999174 - type: nauc_ndcg_at_100_std value: 2.456751351490524 - type: nauc_ndcg_at_10_diff1 value: 47.57301034996511 - type: nauc_ndcg_at_10_max value: 24.379146216030552 - type: nauc_ndcg_at_10_std value: 1.2579497129670234 - type: nauc_ndcg_at_1_diff1 value: 50.088598533173354 - type: nauc_ndcg_at_1_max value: 27.648802533446197 - type: nauc_ndcg_at_1_std value: -3.7628727544097984 - type: nauc_ndcg_at_20_diff1 value: 47.87138595331042 - type: nauc_ndcg_at_20_max value: 25.648148427942452 - type: nauc_ndcg_at_20_std value: 2.1415614628731148 - type: nauc_ndcg_at_3_diff1 value: 48.40186907831459 - type: nauc_ndcg_at_3_max value: 27.015191238802633 - type: nauc_ndcg_at_3_std value: -0.28368565093265813 - type: nauc_ndcg_at_5_diff1 value: 48.43525178181797 - type: nauc_ndcg_at_5_max value: 26.033136810207125 - type: nauc_ndcg_at_5_std value: 0.5903319782637264 - type: nauc_precision_at_1000_diff1 value: -5.050204072247187 - type: nauc_precision_at_1000_max value: -1.706061543844424 - type: nauc_precision_at_1000_std value: 0.4935798158915392 - type: nauc_precision_at_100_diff1 value: 1.581628126436549 - type: nauc_precision_at_100_max value: 5.131864973231214 - type: nauc_precision_at_100_std value: 5.818785250601078 - type: nauc_precision_at_10_diff1 value: 17.826909304567316 - type: nauc_precision_at_10_max value: 10.047556755952215 - type: nauc_precision_at_10_std value: 5.828288769562702 - type: nauc_precision_at_1_diff1 value: 50.088598533173354 - type: nauc_precision_at_1_max value: 27.648802533446197 - type: nauc_precision_at_1_std value: -3.7628727544097984 - type: nauc_precision_at_20_diff1 value: 12.647456163352691 - type: nauc_precision_at_20_max value: 10.821622040896782 - type: nauc_precision_at_20_std value: 6.6782471423372405 - type: nauc_precision_at_3_diff1 value: 33.03366844205296 - type: nauc_precision_at_3_max value: 21.61654824915879 - type: nauc_precision_at_3_std value: 3.1117767791018403 - type: nauc_precision_at_5_diff1 value: 25.873738881952193 - type: nauc_precision_at_5_max value: 16.50897302333537 - type: nauc_precision_at_5_std value: 4.306391187216285 - type: nauc_recall_at_1000_diff1 value: 46.920916880807226 - type: nauc_recall_at_1000_max value: 18.93033931407027 - type: nauc_recall_at_1000_std value: 30.343625789039912 - type: nauc_recall_at_100_diff1 value: 36.99917690641126 - type: nauc_recall_at_100_max value: 21.9225154657857 - type: nauc_recall_at_100_std value: 20.18252525903621 - type: nauc_recall_at_10_diff1 value: 40.849017544403544 - type: nauc_recall_at_10_max value: 15.573050231627782 - type: nauc_recall_at_10_std value: 6.199240253446229 - type: nauc_recall_at_1_diff1 value: 51.96344574112589 - type: nauc_recall_at_1_max value: 27.671021546156044 - type: nauc_recall_at_1_std value: -4.6808708326389805 - type: nauc_recall_at_20_diff1 value: 41.15264820688897 - type: nauc_recall_at_20_max value: 19.50230922026062 - type: nauc_recall_at_20_std value: 11.139703256952268 - type: nauc_recall_at_3_diff1 value: 45.76731873825665 - type: nauc_recall_at_3_max value: 24.89502530374308 - type: nauc_recall_at_3_std value: 1.8833756018456458 - type: nauc_recall_at_5_diff1 value: 44.65491098304952 - type: nauc_recall_at_5_max value: 22.218813760031296 - type: nauc_recall_at_5_std value: 3.985541104014005 - type: ndcg_at_1 value: 36.092 - type: ndcg_at_10 value: 47.410000000000004 - type: ndcg_at_100 value: 52.829 - type: ndcg_at_1000 value: 54.736 - type: ndcg_at_20 value: 49.563 - type: ndcg_at_3 value: 41.724 - type: ndcg_at_5 value: 44.358 - type: precision_at_1 value: 36.092 - type: precision_at_10 value: 8.807 - type: precision_at_100 value: 1.336 - type: precision_at_1000 value: 0.166 - type: precision_at_20 value: 5.140000000000001 - type: precision_at_3 value: 20.244 - type: precision_at_5 value: 14.418000000000001 - type: recall_at_1 value: 28.971999999999998 - type: recall_at_10 value: 61.160000000000004 - type: recall_at_100 value: 83.60600000000001 - type: recall_at_1000 value: 95.696 - type: recall_at_20 value: 68.569 - type: recall_at_3 value: 45.269 - type: recall_at_5 value: 52.168000000000006 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackProgrammersRetrieval (default) revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 split: test type: mteb/cqadupstack-programmers metrics: - type: main_score value: 47.107 - type: map_at_1 value: 29.509999999999998 - type: map_at_10 value: 40.872 - type: map_at_100 value: 42.349 - type: map_at_1000 value: 42.441 - type: map_at_20 value: 41.743 - type: map_at_3 value: 37.174 - type: map_at_5 value: 39.232 - type: mrr_at_1 value: 36.41552511415525 - type: mrr_at_10 value: 46.10585634558234 - type: mrr_at_100 value: 47.04388507378313 - type: mrr_at_1000 value: 47.085192151800705 - type: mrr_at_20 value: 46.71053512338389 - type: mrr_at_3 value: 43.45509893455097 - type: mrr_at_5 value: 44.95624048706236 - type: nauc_map_at_1000_diff1 value: 47.17063593584487 - type: nauc_map_at_1000_max value: 35.6595416622568 - type: nauc_map_at_1000_std value: 1.882360177794315 - type: nauc_map_at_100_diff1 value: 47.141224266698956 - type: nauc_map_at_100_max value: 35.64890271359889 - type: nauc_map_at_100_std value: 1.909040104973397 - type: nauc_map_at_10_diff1 value: 47.0080172506447 - type: nauc_map_at_10_max value: 35.6271740598076 - type: nauc_map_at_10_std value: 1.5963064045936786 - type: nauc_map_at_1_diff1 value: 50.45344698710353 - type: nauc_map_at_1_max value: 34.1407536673108 - type: nauc_map_at_1_std value: -2.503693156800745 - type: nauc_map_at_20_diff1 value: 47.198265744193066 - type: nauc_map_at_20_max value: 35.59983959295096 - type: nauc_map_at_20_std value: 1.709629193868128 - type: nauc_map_at_3_diff1 value: 47.86035115628325 - type: nauc_map_at_3_max value: 33.91453079017758 - type: nauc_map_at_3_std value: -1.0125268264345189 - type: nauc_map_at_5_diff1 value: 47.57075430825601 - type: nauc_map_at_5_max value: 35.340050213538674 - type: nauc_map_at_5_std value: 0.565360701196888 - type: nauc_mrr_at_1000_diff1 value: 46.19502136847612 - type: nauc_mrr_at_1000_max value: 36.22787621665649 - type: nauc_mrr_at_1000_std value: 0.871072004307322 - type: nauc_mrr_at_100_diff1 value: 46.18202150096684 - type: nauc_mrr_at_100_max value: 36.2180237985802 - type: nauc_mrr_at_100_std value: 0.9124059695477915 - type: nauc_mrr_at_10_diff1 value: 46.016490051238904 - type: nauc_mrr_at_10_max value: 36.19342604363148 - type: nauc_mrr_at_10_std value: 0.9071792646788923 - type: nauc_mrr_at_1_diff1 value: 50.04822644213264 - type: nauc_mrr_at_1_max value: 38.40049220874411 - type: nauc_mrr_at_1_std value: -0.4331805170196953 - type: nauc_mrr_at_20_diff1 value: 46.154472362472056 - type: nauc_mrr_at_20_max value: 36.21027910317236 - type: nauc_mrr_at_20_std value: 0.7953830560986073 - type: nauc_mrr_at_3_diff1 value: 46.69193692769359 - type: nauc_mrr_at_3_max value: 36.09347122586123 - type: nauc_mrr_at_3_std value: -0.8314592280863028 - type: nauc_mrr_at_5_diff1 value: 46.36247573613005 - type: nauc_mrr_at_5_max value: 36.1332024555296 - type: nauc_mrr_at_5_std value: 0.08254138511110683 - type: nauc_ndcg_at_1000_diff1 value: 45.502836278293714 - type: nauc_ndcg_at_1000_max value: 35.46858202686828 - type: nauc_ndcg_at_1000_std value: 4.220566466316345 - type: nauc_ndcg_at_100_diff1 value: 44.97146510067551 - type: nauc_ndcg_at_100_max value: 35.20514680813267 - type: nauc_ndcg_at_100_std value: 5.3327590512159295 - type: nauc_ndcg_at_10_diff1 value: 44.77893725971796 - type: nauc_ndcg_at_10_max value: 35.30984188181181 - type: nauc_ndcg_at_10_std value: 3.643838626739208 - type: nauc_ndcg_at_1_diff1 value: 50.04822644213264 - type: nauc_ndcg_at_1_max value: 38.40049220874411 - type: nauc_ndcg_at_1_std value: -0.4331805170196953 - type: nauc_ndcg_at_20_diff1 value: 45.347579096264255 - type: nauc_ndcg_at_20_max value: 35.23900153649932 - type: nauc_ndcg_at_20_std value: 3.870932080127777 - type: nauc_ndcg_at_3_diff1 value: 45.73489028100815 - type: nauc_ndcg_at_3_max value: 33.456282441683534 - type: nauc_ndcg_at_3_std value: -0.4316489511717149 - type: nauc_ndcg_at_5_diff1 value: 45.64448042343172 - type: nauc_ndcg_at_5_max value: 34.82550522784654 - type: nauc_ndcg_at_5_std value: 1.625202909591719 - type: nauc_precision_at_1000_diff1 value: -11.082584414320458 - type: nauc_precision_at_1000_max value: -0.10525239966679063 - type: nauc_precision_at_1000_std value: 1.2049688164002124 - type: nauc_precision_at_100_diff1 value: -4.401663460913719 - type: nauc_precision_at_100_max value: 6.217580097767219 - type: nauc_precision_at_100_std value: 11.507170914733113 - type: nauc_precision_at_10_diff1 value: 15.316762589026817 - type: nauc_precision_at_10_max value: 24.094651080086884 - type: nauc_precision_at_10_std value: 14.997661405160551 - type: nauc_precision_at_1_diff1 value: 50.04822644213264 - type: nauc_precision_at_1_max value: 38.40049220874411 - type: nauc_precision_at_1_std value: -0.4331805170196953 - type: nauc_precision_at_20_diff1 value: 9.71755375786461 - type: nauc_precision_at_20_max value: 17.50245364945517 - type: nauc_precision_at_20_std value: 13.42442276093188 - type: nauc_precision_at_3_diff1 value: 33.92303910717078 - type: nauc_precision_at_3_max value: 31.577604822025844 - type: nauc_precision_at_3_std value: 4.225871813818534 - type: nauc_precision_at_5_diff1 value: 26.434077412071776 - type: nauc_precision_at_5_max value: 30.415493182198862 - type: nauc_precision_at_5_std value: 9.962587204978579 - type: nauc_recall_at_1000_diff1 value: 19.583141827294416 - type: nauc_recall_at_1000_max value: 25.331531875118163 - type: nauc_recall_at_1000_std value: 47.19745406634415 - type: nauc_recall_at_100_diff1 value: 28.38177952031043 - type: nauc_recall_at_100_max value: 27.04348472020136 - type: nauc_recall_at_100_std value: 32.64978369730068 - type: nauc_recall_at_10_diff1 value: 36.77645976843529 - type: nauc_recall_at_10_max value: 31.508362325677286 - type: nauc_recall_at_10_std value: 9.845183301924783 - type: nauc_recall_at_1_diff1 value: 50.45344698710353 - type: nauc_recall_at_1_max value: 34.1407536673108 - type: nauc_recall_at_1_std value: -2.503693156800745 - type: nauc_recall_at_20_diff1 value: 37.1245830532323 - type: nauc_recall_at_20_max value: 30.01404898730656 - type: nauc_recall_at_20_std value: 11.991031997571183 - type: nauc_recall_at_3_diff1 value: 41.50397374838714 - type: nauc_recall_at_3_max value: 28.605530200805894 - type: nauc_recall_at_3_std value: -0.2718652433235268 - type: nauc_recall_at_5_diff1 value: 39.85347018437693 - type: nauc_recall_at_5_max value: 30.8839592452558 - type: nauc_recall_at_5_std value: 4.6501737002456505 - type: ndcg_at_1 value: 36.416 - type: ndcg_at_10 value: 47.107 - type: ndcg_at_100 value: 52.998999999999995 - type: ndcg_at_1000 value: 54.647 - type: ndcg_at_20 value: 49.748 - type: ndcg_at_3 value: 41.555 - type: ndcg_at_5 value: 44.079 - type: precision_at_1 value: 36.416 - type: precision_at_10 value: 8.870000000000001 - type: precision_at_100 value: 1.381 - type: precision_at_1000 value: 0.168 - type: precision_at_20 value: 5.303 - type: precision_at_3 value: 19.901 - type: precision_at_5 value: 14.292 - type: recall_at_1 value: 29.509999999999998 - type: recall_at_10 value: 60.169 - type: recall_at_100 value: 84.745 - type: recall_at_1000 value: 95.515 - type: recall_at_20 value: 69.571 - type: recall_at_3 value: 44.751000000000005 - type: recall_at_5 value: 51.675000000000004 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackRetrieval (default) revision: CQADupstackRetrieval_is_a_combined_dataset split: test type: CQADupstackRetrieval_is_a_combined_dataset metrics: - type: main_score value: 42.74816666666667 - type: ndcg_at_10 value: 42.74816666666667 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackStatsRetrieval (default) revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a split: test type: mteb/cqadupstack-stats metrics: - type: main_score value: 38.574999999999996 - type: map_at_1 value: 26.184 - type: map_at_10 value: 33.796 - type: map_at_100 value: 34.942 - type: map_at_1000 value: 35.027 - type: map_at_20 value: 34.400999999999996 - type: map_at_3 value: 31.247000000000003 - type: map_at_5 value: 32.618 - type: mrr_at_1 value: 29.447852760736197 - type: mrr_at_10 value: 36.7572913623527 - type: mrr_at_100 value: 37.75134813088362 - type: mrr_at_1000 value: 37.80936473092716 - type: mrr_at_20 value: 37.32794705157665 - type: mrr_at_3 value: 34.50920245398773 - type: mrr_at_5 value: 35.70552147239264 - type: nauc_map_at_1000_diff1 value: 41.03705943910151 - type: nauc_map_at_1000_max value: 31.212034574788223 - type: nauc_map_at_1000_std value: 5.0860482737872585 - type: nauc_map_at_100_diff1 value: 41.036679724384975 - type: nauc_map_at_100_max value: 31.22552462503921 - type: nauc_map_at_100_std value: 5.066442366854383 - type: nauc_map_at_10_diff1 value: 41.10544250629236 - type: nauc_map_at_10_max value: 31.36660549991616 - type: nauc_map_at_10_std value: 4.918474556305647 - type: nauc_map_at_1_diff1 value: 45.012348658917084 - type: nauc_map_at_1_max value: 32.97795481425923 - type: nauc_map_at_1_std value: 2.378119627191972 - type: nauc_map_at_20_diff1 value: 41.08979133865055 - type: nauc_map_at_20_max value: 31.215468276820857 - type: nauc_map_at_20_std value: 5.029740972247495 - type: nauc_map_at_3_diff1 value: 41.628234253590776 - type: nauc_map_at_3_max value: 32.53336359524941 - type: nauc_map_at_3_std value: 4.860348221405528 - type: nauc_map_at_5_diff1 value: 41.537709900129116 - type: nauc_map_at_5_max value: 32.276330681668654 - type: nauc_map_at_5_std value: 4.846181729651669 - type: nauc_mrr_at_1000_diff1 value: 42.29004874474518 - type: nauc_mrr_at_1000_max value: 31.307199153225735 - type: nauc_mrr_at_1000_std value: 4.605131934451417 - type: nauc_mrr_at_100_diff1 value: 42.280047109551546 - type: nauc_mrr_at_100_max value: 31.289947735731538 - type: nauc_mrr_at_100_std value: 4.582937582219149 - type: nauc_mrr_at_10_diff1 value: 42.34222112143596 - type: nauc_mrr_at_10_max value: 31.359940250531142 - type: nauc_mrr_at_10_std value: 4.453370071132275 - type: nauc_mrr_at_1_diff1 value: 45.95443881951325 - type: nauc_mrr_at_1_max value: 32.619135528025325 - type: nauc_mrr_at_1_std value: 2.052662449953393 - type: nauc_mrr_at_20_diff1 value: 42.26941002683479 - type: nauc_mrr_at_20_max value: 31.187438688521034 - type: nauc_mrr_at_20_std value: 4.5359475550655715 - type: nauc_mrr_at_3_diff1 value: 43.531839392022135 - type: nauc_mrr_at_3_max value: 32.21473960551518 - type: nauc_mrr_at_3_std value: 4.241677481952446 - type: nauc_mrr_at_5_diff1 value: 43.00448483997977 - type: nauc_mrr_at_5_max value: 31.936515068920237 - type: nauc_mrr_at_5_std value: 4.254613914320285 - type: nauc_ndcg_at_1000_diff1 value: 39.08960919974518 - type: nauc_ndcg_at_1000_max value: 30.08930269294802 - type: nauc_ndcg_at_1000_std value: 7.0902275178016225 - type: nauc_ndcg_at_100_diff1 value: 38.98713815279589 - type: nauc_ndcg_at_100_max value: 29.82144804645644 - type: nauc_ndcg_at_100_std value: 6.759601980797914 - type: nauc_ndcg_at_10_diff1 value: 39.418527591834795 - type: nauc_ndcg_at_10_max value: 30.08055189001222 - type: nauc_ndcg_at_10_std value: 5.721375611075414 - type: nauc_ndcg_at_1_diff1 value: 45.95443881951325 - type: nauc_ndcg_at_1_max value: 32.619135528025325 - type: nauc_ndcg_at_1_std value: 2.052662449953393 - type: nauc_ndcg_at_20_diff1 value: 39.05782103145853 - type: nauc_ndcg_at_20_max value: 29.49942876513546 - type: nauc_ndcg_at_20_std value: 6.34657136486055 - type: nauc_ndcg_at_3_diff1 value: 41.125063900984635 - type: nauc_ndcg_at_3_max value: 32.139095393552424 - type: nauc_ndcg_at_3_std value: 5.191262454292501 - type: nauc_ndcg_at_5_diff1 value: 40.717371213208544 - type: nauc_ndcg_at_5_max value: 31.774089542050117 - type: nauc_ndcg_at_5_std value: 5.223234037768828 - type: nauc_precision_at_1000_diff1 value: 0.006638310316025911 - type: nauc_precision_at_1000_max value: -9.546883023580094 - type: nauc_precision_at_1000_std value: -1.475622979214972 - type: nauc_precision_at_100_diff1 value: 11.010276773793507 - type: nauc_precision_at_100_max value: -0.08180253887926077 - type: nauc_precision_at_100_std value: 3.287046242664858 - type: nauc_precision_at_10_diff1 value: 27.262245018901698 - type: nauc_precision_at_10_max value: 16.2877591608577 - type: nauc_precision_at_10_std value: 5.839311010801853 - type: nauc_precision_at_1_diff1 value: 45.95443881951325 - type: nauc_precision_at_1_max value: 32.619135528025325 - type: nauc_precision_at_1_std value: 2.052662449953393 - type: nauc_precision_at_20_diff1 value: 22.408421524281493 - type: nauc_precision_at_20_max value: 10.077231751543565 - type: nauc_precision_at_20_std value: 6.236324897139737 - type: nauc_precision_at_3_diff1 value: 37.104186066630184 - type: nauc_precision_at_3_max value: 28.93970664421486 - type: nauc_precision_at_3_std value: 6.189175805816679 - type: nauc_precision_at_5_diff1 value: 33.481383755503344 - type: nauc_precision_at_5_max value: 24.574152076881976 - type: nauc_precision_at_5_std value: 5.787283838050964 - type: nauc_recall_at_1000_diff1 value: 13.749745478534466 - type: nauc_recall_at_1000_max value: 27.46595915304242 - type: nauc_recall_at_1000_std value: 43.337093159412746 - type: nauc_recall_at_100_diff1 value: 25.71608004026722 - type: nauc_recall_at_100_max value: 23.295361701635084 - type: nauc_recall_at_100_std value: 17.803464732957156 - type: nauc_recall_at_10_diff1 value: 31.44102657586473 - type: nauc_recall_at_10_max value: 25.636789857993808 - type: nauc_recall_at_10_std value: 8.690210156923568 - type: nauc_recall_at_1_diff1 value: 45.012348658917084 - type: nauc_recall_at_1_max value: 32.97795481425923 - type: nauc_recall_at_1_std value: 2.378119627191972 - type: nauc_recall_at_20_diff1 value: 29.75929214314049 - type: nauc_recall_at_20_max value: 22.919735188320487 - type: nauc_recall_at_20_std value: 11.567442926310765 - type: nauc_recall_at_3_diff1 value: 36.76334334420757 - type: nauc_recall_at_3_max value: 31.59129150974883 - type: nauc_recall_at_3_std value: 7.166175857606125 - type: nauc_recall_at_5_diff1 value: 35.13282132180025 - type: nauc_recall_at_5_max value: 30.350684835131553 - type: nauc_recall_at_5_std value: 7.142861662933231 - type: ndcg_at_1 value: 29.448 - type: ndcg_at_10 value: 38.574999999999996 - type: ndcg_at_100 value: 44.263999999999996 - type: ndcg_at_1000 value: 46.32 - type: ndcg_at_20 value: 40.628 - type: ndcg_at_3 value: 33.906 - type: ndcg_at_5 value: 36.03 - type: precision_at_1 value: 29.448 - type: precision_at_10 value: 6.166 - type: precision_at_100 value: 0.992 - type: precision_at_1000 value: 0.124 - type: precision_at_20 value: 3.627 - type: precision_at_3 value: 14.417 - type: precision_at_5 value: 10.184 - type: recall_at_1 value: 26.184 - type: recall_at_10 value: 50.339 - type: recall_at_100 value: 76.44300000000001 - type: recall_at_1000 value: 91.376 - type: recall_at_20 value: 57.94200000000001 - type: recall_at_3 value: 37.602000000000004 - type: recall_at_5 value: 42.708 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackTexRetrieval (default) revision: 46989137a86843e03a6195de44b09deda022eec7 split: test type: mteb/cqadupstack-tex metrics: - type: main_score value: 30.446 - type: map_at_1 value: 16.888 - type: map_at_10 value: 25.169999999999998 - type: map_at_100 value: 26.432 - type: map_at_1000 value: 26.558 - type: map_at_20 value: 25.884 - type: map_at_3 value: 22.392 - type: map_at_5 value: 23.862 - type: mrr_at_1 value: 20.612525808671712 - type: mrr_at_10 value: 28.94379717934435 - type: mrr_at_100 value: 29.956026940991578 - type: mrr_at_1000 value: 30.030396196620284 - type: mrr_at_20 value: 29.543198182591162 - type: mrr_at_3 value: 26.34778618949303 - type: mrr_at_5 value: 27.725969259004412 - type: nauc_map_at_1000_diff1 value: 37.47997469039452 - type: nauc_map_at_1000_max value: 21.421931473251863 - type: nauc_map_at_1000_std value: 1.5690124401135066 - type: nauc_map_at_100_diff1 value: 37.478584664432304 - type: nauc_map_at_100_max value: 21.422143658021053 - type: nauc_map_at_100_std value: 1.566528536384738 - type: nauc_map_at_10_diff1 value: 37.63897487891542 - type: nauc_map_at_10_max value: 21.320030910527255 - type: nauc_map_at_10_std value: 1.0327570489355187 - type: nauc_map_at_1_diff1 value: 44.71163328349228 - type: nauc_map_at_1_max value: 22.446113464782112 - type: nauc_map_at_1_std value: -0.41970785990162957 - type: nauc_map_at_20_diff1 value: 37.60131283021686 - type: nauc_map_at_20_max value: 21.3691373960991 - type: nauc_map_at_20_std value: 1.2704576929639178 - type: nauc_map_at_3_diff1 value: 38.569300112130584 - type: nauc_map_at_3_max value: 21.599281592197645 - type: nauc_map_at_3_std value: 0.17312117243077374 - type: nauc_map_at_5_diff1 value: 38.003272593074534 - type: nauc_map_at_5_max value: 21.470587264514265 - type: nauc_map_at_5_std value: 0.8202467504176192 - type: nauc_mrr_at_1000_diff1 value: 36.40070606249303 - type: nauc_mrr_at_1000_max value: 20.918159385616235 - type: nauc_mrr_at_1000_std value: 1.4689044699534843 - type: nauc_mrr_at_100_diff1 value: 36.382723733435185 - type: nauc_mrr_at_100_max value: 20.914130048646378 - type: nauc_mrr_at_100_std value: 1.4695708792966349 - type: nauc_mrr_at_10_diff1 value: 36.39783865629839 - type: nauc_mrr_at_10_max value: 20.807844052080004 - type: nauc_mrr_at_10_std value: 1.0924977932781788 - type: nauc_mrr_at_1_diff1 value: 42.57454091873592 - type: nauc_mrr_at_1_max value: 21.672943617832036 - type: nauc_mrr_at_1_std value: -0.10189138615103883 - type: nauc_mrr_at_20_diff1 value: 36.3838114124106 - type: nauc_mrr_at_20_max value: 20.87264072376547 - type: nauc_mrr_at_20_std value: 1.3432553141494952 - type: nauc_mrr_at_3_diff1 value: 37.51571566935928 - type: nauc_mrr_at_3_max value: 21.19647468708375 - type: nauc_mrr_at_3_std value: 0.6277750127835567 - type: nauc_mrr_at_5_diff1 value: 36.87464282453542 - type: nauc_mrr_at_5_max value: 21.0704963624643 - type: nauc_mrr_at_5_std value: 0.9052912701483784 - type: nauc_ndcg_at_1000_diff1 value: 34.552555694361274 - type: nauc_ndcg_at_1000_max value: 21.259928579786788 - type: nauc_ndcg_at_1000_std value: 3.938486886570975 - type: nauc_ndcg_at_100_diff1 value: 34.37518593610454 - type: nauc_ndcg_at_100_max value: 21.182389588343348 - type: nauc_ndcg_at_100_std value: 4.3168049004409275 - type: nauc_ndcg_at_10_diff1 value: 35.211341808407504 - type: nauc_ndcg_at_10_max value: 20.84028975529198 - type: nauc_ndcg_at_10_std value: 1.8086338693039452 - type: nauc_ndcg_at_1_diff1 value: 42.57454091873592 - type: nauc_ndcg_at_1_max value: 21.672943617832036 - type: nauc_ndcg_at_1_std value: -0.10189138615103883 - type: nauc_ndcg_at_20_diff1 value: 35.00363891684754 - type: nauc_ndcg_at_20_max value: 20.922087179049363 - type: nauc_ndcg_at_20_std value: 2.660205273507509 - type: nauc_ndcg_at_3_diff1 value: 36.92485381743134 - type: nauc_ndcg_at_3_max value: 21.25737761098354 - type: nauc_ndcg_at_3_std value: 0.28798539980447146 - type: nauc_ndcg_at_5_diff1 value: 36.04502896798978 - type: nauc_ndcg_at_5_max value: 21.148648295149318 - type: nauc_ndcg_at_5_std value: 1.243003231031824 - type: nauc_precision_at_1000_diff1 value: -0.7759478803048101 - type: nauc_precision_at_1000_max value: 3.2826437330805502 - type: nauc_precision_at_1000_std value: 2.7787334076838173 - type: nauc_precision_at_100_diff1 value: 6.959433786637141 - type: nauc_precision_at_100_max value: 10.104545782506289 - type: nauc_precision_at_100_std value: 8.917540163713769 - type: nauc_precision_at_10_diff1 value: 22.003522151797437 - type: nauc_precision_at_10_max value: 16.164192732980553 - type: nauc_precision_at_10_std value: 3.275914834741683 - type: nauc_precision_at_1_diff1 value: 42.57454091873592 - type: nauc_precision_at_1_max value: 21.672943617832036 - type: nauc_precision_at_1_std value: -0.10189138615103883 - type: nauc_precision_at_20_diff1 value: 18.129059379732563 - type: nauc_precision_at_20_max value: 14.512665907788747 - type: nauc_precision_at_20_std value: 5.022877954638016 - type: nauc_precision_at_3_diff1 value: 29.98093015706584 - type: nauc_precision_at_3_max value: 19.728491902142636 - type: nauc_precision_at_3_std value: 1.4470534167918057 - type: nauc_precision_at_5_diff1 value: 26.50099880522309 - type: nauc_precision_at_5_max value: 18.138610189869738 - type: nauc_precision_at_5_std value: 2.551091667929808 - type: nauc_recall_at_1000_diff1 value: 16.96943824149726 - type: nauc_recall_at_1000_max value: 23.257191427293964 - type: nauc_recall_at_1000_std value: 24.9502432707826 - type: nauc_recall_at_100_diff1 value: 21.669754477643142 - type: nauc_recall_at_100_max value: 19.164964731074388 - type: nauc_recall_at_100_std value: 16.85249185076977 - type: nauc_recall_at_10_diff1 value: 27.551237362397828 - type: nauc_recall_at_10_max value: 18.28543172320463 - type: nauc_recall_at_10_std value: 3.5306584526336846 - type: nauc_recall_at_1_diff1 value: 44.71163328349228 - type: nauc_recall_at_1_max value: 22.446113464782112 - type: nauc_recall_at_1_std value: -0.41970785990162957 - type: nauc_recall_at_20_diff1 value: 26.271222471772326 - type: nauc_recall_at_20_max value: 18.12240775027493 - type: nauc_recall_at_20_std value: 6.607853337331698 - type: nauc_recall_at_3_diff1 value: 32.25185781878737 - type: nauc_recall_at_3_max value: 20.129371018198135 - type: nauc_recall_at_3_std value: 0.44779691255305437 - type: nauc_recall_at_5_diff1 value: 29.921019600841547 - type: nauc_recall_at_5_max value: 19.573769036363174 - type: nauc_recall_at_5_std value: 2.3711269481227277 - type: ndcg_at_1 value: 20.613 - type: ndcg_at_10 value: 30.446 - type: ndcg_at_100 value: 36.296 - type: ndcg_at_1000 value: 39.062999999999995 - type: ndcg_at_20 value: 32.756 - type: ndcg_at_3 value: 25.413000000000004 - type: ndcg_at_5 value: 27.61 - type: precision_at_1 value: 20.613 - type: precision_at_10 value: 5.785 - type: precision_at_100 value: 1.013 - type: precision_at_1000 value: 0.14400000000000002 - type: precision_at_20 value: 3.567 - type: precision_at_3 value: 12.216000000000001 - type: precision_at_5 value: 9.030000000000001 - type: recall_at_1 value: 16.888 - type: recall_at_10 value: 42.64 - type: recall_at_100 value: 68.771 - type: recall_at_1000 value: 88.018 - type: recall_at_20 value: 51.121 - type: recall_at_3 value: 28.505000000000003 - type: recall_at_5 value: 34.099000000000004 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackUnixRetrieval (default) revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 split: test type: mteb/cqadupstack-unix metrics: - type: main_score value: 42.283 - type: map_at_1 value: 26.326 - type: map_at_10 value: 36.515 - type: map_at_100 value: 37.832 - type: map_at_1000 value: 37.937 - type: map_at_20 value: 37.269999999999996 - type: map_at_3 value: 33.338 - type: map_at_5 value: 35.169 - type: mrr_at_1 value: 31.25 - type: mrr_at_10 value: 40.64062129827054 - type: mrr_at_100 value: 41.61370050636776 - type: mrr_at_1000 value: 41.67017916648837 - type: mrr_at_20 value: 41.18797257145757 - type: mrr_at_3 value: 37.93532338308455 - type: mrr_at_5 value: 39.55845771144274 - type: nauc_map_at_1000_diff1 value: 50.56683743231891 - type: nauc_map_at_1000_max value: 39.19969051920628 - type: nauc_map_at_1000_std value: -0.9554342712910933 - type: nauc_map_at_100_diff1 value: 50.544855645079345 - type: nauc_map_at_100_max value: 39.191632786859124 - type: nauc_map_at_100_std value: -0.962267377904227 - type: nauc_map_at_10_diff1 value: 50.74377893641161 - type: nauc_map_at_10_max value: 39.19344096202928 - type: nauc_map_at_10_std value: -1.22618961567281 - type: nauc_map_at_1_diff1 value: 57.492804899336434 - type: nauc_map_at_1_max value: 38.451829796562365 - type: nauc_map_at_1_std value: -2.2223809957991993 - type: nauc_map_at_20_diff1 value: 50.37379315470132 - type: nauc_map_at_20_max value: 39.15268041299702 - type: nauc_map_at_20_std value: -1.1542173582571251 - type: nauc_map_at_3_diff1 value: 52.114315032062265 - type: nauc_map_at_3_max value: 39.506520142355846 - type: nauc_map_at_3_std value: -1.136869114727129 - type: nauc_map_at_5_diff1 value: 51.137878020043615 - type: nauc_map_at_5_max value: 39.41597927774479 - type: nauc_map_at_5_std value: -1.414373986733375 - type: nauc_mrr_at_1000_diff1 value: 49.28345924937687 - type: nauc_mrr_at_1000_max value: 39.49024565022835 - type: nauc_mrr_at_1000_std value: -0.7389778084722739 - type: nauc_mrr_at_100_diff1 value: 49.25964062379304 - type: nauc_mrr_at_100_max value: 39.49625691927597 - type: nauc_mrr_at_100_std value: -0.7233812120562104 - type: nauc_mrr_at_10_diff1 value: 49.28005195010669 - type: nauc_mrr_at_10_max value: 39.502594291827194 - type: nauc_mrr_at_10_std value: -0.854578965146599 - type: nauc_mrr_at_1_diff1 value: 54.51968972219606 - type: nauc_mrr_at_1_max value: 38.985521654330725 - type: nauc_mrr_at_1_std value: -3.17796307755014 - type: nauc_mrr_at_20_diff1 value: 49.140932871712586 - type: nauc_mrr_at_20_max value: 39.44307540677674 - type: nauc_mrr_at_20_std value: -0.8396065147276742 - type: nauc_mrr_at_3_diff1 value: 50.04344397525612 - type: nauc_mrr_at_3_max value: 39.56654196970236 - type: nauc_mrr_at_3_std value: -1.2528287637913136 - type: nauc_mrr_at_5_diff1 value: 49.489373600446605 - type: nauc_mrr_at_5_max value: 39.659057230991316 - type: nauc_mrr_at_5_std value: -0.8720012571429344 - type: nauc_ndcg_at_1000_diff1 value: 48.748836050761405 - type: nauc_ndcg_at_1000_max value: 39.3457622357591 - type: nauc_ndcg_at_1000_std value: 1.1002389454170685 - type: nauc_ndcg_at_100_diff1 value: 48.22509167328338 - type: nauc_ndcg_at_100_max value: 39.3256932518086 - type: nauc_ndcg_at_100_std value: 1.438492059971218 - type: nauc_ndcg_at_10_diff1 value: 48.523357452437814 - type: nauc_ndcg_at_10_max value: 39.34471711241775 - type: nauc_ndcg_at_10_std value: -0.2137972110670513 - type: nauc_ndcg_at_1_diff1 value: 54.51968972219606 - type: nauc_ndcg_at_1_max value: 38.985521654330725 - type: nauc_ndcg_at_1_std value: -3.17796307755014 - type: nauc_ndcg_at_20_diff1 value: 47.51869995272205 - type: nauc_ndcg_at_20_max value: 39.30246710982855 - type: nauc_ndcg_at_20_std value: 0.1356281374446824 - type: nauc_ndcg_at_3_diff1 value: 50.12867016794126 - type: nauc_ndcg_at_3_max value: 39.4353732876648 - type: nauc_ndcg_at_3_std value: -0.9234551014485096 - type: nauc_ndcg_at_5_diff1 value: 49.10482448457108 - type: nauc_ndcg_at_5_max value: 39.604661308610275 - type: nauc_ndcg_at_5_std value: -0.7590788407730459 - type: nauc_precision_at_1000_diff1 value: -13.992133335670959 - type: nauc_precision_at_1000_max value: -7.214390627220537 - type: nauc_precision_at_1000_std value: 1.639261412748335 - type: nauc_precision_at_100_diff1 value: -0.557128351079009 - type: nauc_precision_at_100_max value: 7.486849612096312 - type: nauc_precision_at_100_std value: 7.1810501898680394 - type: nauc_precision_at_10_diff1 value: 21.213914544802844 - type: nauc_precision_at_10_max value: 25.864858450310546 - type: nauc_precision_at_10_std value: 0.39125389546740813 - type: nauc_precision_at_1_diff1 value: 54.51968972219606 - type: nauc_precision_at_1_max value: 38.985521654330725 - type: nauc_precision_at_1_std value: -3.17796307755014 - type: nauc_precision_at_20_diff1 value: 11.601304405847157 - type: nauc_precision_at_20_max value: 20.185407711622904 - type: nauc_precision_at_20_std value: 2.1916426458779488 - type: nauc_precision_at_3_diff1 value: 36.89740060012004 - type: nauc_precision_at_3_max value: 35.568914734056975 - type: nauc_precision_at_3_std value: 0.038850738796324405 - type: nauc_precision_at_5_diff1 value: 29.183999992678782 - type: nauc_precision_at_5_max value: 31.72969928353064 - type: nauc_precision_at_5_std value: -0.5629836594620032 - type: nauc_recall_at_1000_diff1 value: 37.261390414310384 - type: nauc_recall_at_1000_max value: 34.923735354550324 - type: nauc_recall_at_1000_std value: 45.97695232902403 - type: nauc_recall_at_100_diff1 value: 35.67925434563207 - type: nauc_recall_at_100_max value: 35.26178579038922 - type: nauc_recall_at_100_std value: 17.131274487036695 - type: nauc_recall_at_10_diff1 value: 40.90067655059736 - type: nauc_recall_at_10_max value: 36.79952710248241 - type: nauc_recall_at_10_std value: 2.716241775569224 - type: nauc_recall_at_1_diff1 value: 57.492804899336434 - type: nauc_recall_at_1_max value: 38.451829796562365 - type: nauc_recall_at_1_std value: -2.2223809957991993 - type: nauc_recall_at_20_diff1 value: 36.08583461458776 - type: nauc_recall_at_20_max value: 36.62990105037789 - type: nauc_recall_at_20_std value: 4.337305167037863 - type: nauc_recall_at_3_diff1 value: 46.41673012651659 - type: nauc_recall_at_3_max value: 38.842854844453505 - type: nauc_recall_at_3_std value: 0.8460605171745147 - type: nauc_recall_at_5_diff1 value: 43.29735456270288 - type: nauc_recall_at_5_max value: 38.51958912080913 - type: nauc_recall_at_5_std value: 1.1156101097663538 - type: ndcg_at_1 value: 31.25 - type: ndcg_at_10 value: 42.283 - type: ndcg_at_100 value: 48.067 - type: ndcg_at_1000 value: 50.246 - type: ndcg_at_20 value: 44.644 - type: ndcg_at_3 value: 36.858000000000004 - type: ndcg_at_5 value: 39.516 - type: precision_at_1 value: 31.25 - type: precision_at_10 value: 7.369000000000001 - type: precision_at_100 value: 1.137 - type: precision_at_1000 value: 0.14400000000000002 - type: precision_at_20 value: 4.328 - type: precision_at_3 value: 17.071 - type: precision_at_5 value: 12.257 - type: recall_at_1 value: 26.326 - type: recall_at_10 value: 55.689 - type: recall_at_100 value: 80.60000000000001 - type: recall_at_1000 value: 95.33500000000001 - type: recall_at_20 value: 64.229 - type: recall_at_3 value: 40.836 - type: recall_at_5 value: 47.577000000000005 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWebmastersRetrieval (default) revision: 160c094312a0e1facb97e55eeddb698c0abe3571 split: test type: mteb/cqadupstack-webmasters metrics: - type: main_score value: 42.841 - type: map_at_1 value: 26.180999999999997 - type: map_at_10 value: 36.370000000000005 - type: map_at_100 value: 38.143 - type: map_at_1000 value: 38.344 - type: map_at_20 value: 37.333 - type: map_at_3 value: 33.061 - type: map_at_5 value: 34.776 - type: mrr_at_1 value: 31.422924901185773 - type: mrr_at_10 value: 40.798513081121804 - type: mrr_at_100 value: 41.768341726195324 - type: mrr_at_1000 value: 41.814384046688836 - type: mrr_at_20 value: 41.39358410960642 - type: mrr_at_3 value: 37.91172595520424 - type: mrr_at_5 value: 39.39393939393942 - type: nauc_map_at_1000_diff1 value: 54.03266808787207 - type: nauc_map_at_1000_max value: 27.336058137590257 - type: nauc_map_at_1000_std value: 7.929483408524749 - type: nauc_map_at_100_diff1 value: 54.07605617892997 - type: nauc_map_at_100_max value: 27.420933517205988 - type: nauc_map_at_100_std value: 7.654364598186232 - type: nauc_map_at_10_diff1 value: 54.49638487392654 - type: nauc_map_at_10_max value: 26.95803941812555 - type: nauc_map_at_10_std value: 6.0656481626678955 - type: nauc_map_at_1_diff1 value: 60.62163331093275 - type: nauc_map_at_1_max value: 30.354161137182604 - type: nauc_map_at_1_std value: 3.283563596176243 - type: nauc_map_at_20_diff1 value: 54.2171414323596 - type: nauc_map_at_20_max value: 27.284531333468713 - type: nauc_map_at_20_std value: 6.98275284446578 - type: nauc_map_at_3_diff1 value: 55.48999072237882 - type: nauc_map_at_3_max value: 27.87434380647368 - type: nauc_map_at_3_std value: 5.868275382905556 - type: nauc_map_at_5_diff1 value: 54.84718663927504 - type: nauc_map_at_5_max value: 26.76192258450303 - type: nauc_map_at_5_std value: 4.739255945404961 - type: nauc_mrr_at_1000_diff1 value: 53.90866989000705 - type: nauc_mrr_at_1000_max value: 28.600059918390247 - type: nauc_mrr_at_1000_std value: 9.096507718338657 - type: nauc_mrr_at_100_diff1 value: 53.902988075226396 - type: nauc_mrr_at_100_max value: 28.599830953942174 - type: nauc_mrr_at_100_std value: 9.106284426792636 - type: nauc_mrr_at_10_diff1 value: 53.80346272826417 - type: nauc_mrr_at_10_max value: 28.281963295521706 - type: nauc_mrr_at_10_std value: 8.759210459852863 - type: nauc_mrr_at_1_diff1 value: 60.080144505628354 - type: nauc_mrr_at_1_max value: 33.74016395865226 - type: nauc_mrr_at_1_std value: 7.6714142708021305 - type: nauc_mrr_at_20_diff1 value: 53.760177497884406 - type: nauc_mrr_at_20_max value: 28.463215939799813 - type: nauc_mrr_at_20_std value: 9.068314971833093 - type: nauc_mrr_at_3_diff1 value: 54.41179314982579 - type: nauc_mrr_at_3_max value: 29.01231966941189 - type: nauc_mrr_at_3_std value: 9.383760609453352 - type: nauc_mrr_at_5_diff1 value: 54.261154767714515 - type: nauc_mrr_at_5_max value: 28.187796326709314 - type: nauc_mrr_at_5_std value: 8.324984381963386 - type: nauc_ndcg_at_1000_diff1 value: 52.16756830119805 - type: nauc_ndcg_at_1000_max value: 27.47333072396369 - type: nauc_ndcg_at_1000_std value: 10.433977027658207 - type: nauc_ndcg_at_100_diff1 value: 51.67893475997602 - type: nauc_ndcg_at_100_max value: 27.364432612842776 - type: nauc_ndcg_at_100_std value: 10.418878470827911 - type: nauc_ndcg_at_10_diff1 value: 51.455066768364546 - type: nauc_ndcg_at_10_max value: 24.86204769904609 - type: nauc_ndcg_at_10_std value: 7.975685972633213 - type: nauc_ndcg_at_1_diff1 value: 60.080144505628354 - type: nauc_ndcg_at_1_max value: 33.74016395865226 - type: nauc_ndcg_at_1_std value: 7.6714142708021305 - type: nauc_ndcg_at_20_diff1 value: 51.135229230296154 - type: nauc_ndcg_at_20_max value: 25.718284057364894 - type: nauc_ndcg_at_20_std value: 9.289363271312794 - type: nauc_ndcg_at_3_diff1 value: 52.70782059846899 - type: nauc_ndcg_at_3_max value: 27.470104306225863 - type: nauc_ndcg_at_3_std value: 8.98582220953654 - type: nauc_ndcg_at_5_diff1 value: 52.13622381467935 - type: nauc_ndcg_at_5_max value: 25.012072634464516 - type: nauc_ndcg_at_5_std value: 6.400559275913626 - type: nauc_precision_at_1000_diff1 value: -8.068455064670975 - type: nauc_precision_at_1000_max value: -10.387599717496192 - type: nauc_precision_at_1000_std value: 29.28771717137362 - type: nauc_precision_at_100_diff1 value: -4.542486688876828 - type: nauc_precision_at_100_max value: 2.2213727010948805 - type: nauc_precision_at_100_std value: 28.27046916836265 - type: nauc_precision_at_10_diff1 value: 19.415176505821286 - type: nauc_precision_at_10_max value: 13.444503991503346 - type: nauc_precision_at_10_std value: 16.810075843089322 - type: nauc_precision_at_1_diff1 value: 60.080144505628354 - type: nauc_precision_at_1_max value: 33.74016395865226 - type: nauc_precision_at_1_std value: 7.6714142708021305 - type: nauc_precision_at_20_diff1 value: 7.891942509311732 - type: nauc_precision_at_20_max value: 9.684197810455526 - type: nauc_precision_at_20_std value: 22.88953757757932 - type: nauc_precision_at_3_diff1 value: 37.07359628126754 - type: nauc_precision_at_3_max value: 23.182518856006016 - type: nauc_precision_at_3_std value: 15.043709459451618 - type: nauc_precision_at_5_diff1 value: 30.603525439923317 - type: nauc_precision_at_5_max value: 17.887460487183446 - type: nauc_precision_at_5_std value: 10.354003595459048 - type: nauc_recall_at_1000_diff1 value: 37.24937924148794 - type: nauc_recall_at_1000_max value: 27.116312668851744 - type: nauc_recall_at_1000_std value: 53.85172781866263 - type: nauc_recall_at_100_diff1 value: 36.95341517350607 - type: nauc_recall_at_100_max value: 26.388323872148362 - type: nauc_recall_at_100_std value: 25.552378739251036 - type: nauc_recall_at_10_diff1 value: 40.71842158421213 - type: nauc_recall_at_10_max value: 16.378208729794906 - type: nauc_recall_at_10_std value: 7.038163226525162 - type: nauc_recall_at_1_diff1 value: 60.62163331093275 - type: nauc_recall_at_1_max value: 30.354161137182604 - type: nauc_recall_at_1_std value: 3.283563596176243 - type: nauc_recall_at_20_diff1 value: 37.67229343743934 - type: nauc_recall_at_20_max value: 19.09861858622759 - type: nauc_recall_at_20_std value: 12.498129510164299 - type: nauc_recall_at_3_diff1 value: 47.38926382155088 - type: nauc_recall_at_3_max value: 21.835926284104218 - type: nauc_recall_at_3_std value: 6.956536082796651 - type: nauc_recall_at_5_diff1 value: 44.52691027171522 - type: nauc_recall_at_5_max value: 16.60678467044489 - type: nauc_recall_at_5_std value: 2.751824192702687 - type: ndcg_at_1 value: 31.423000000000002 - type: ndcg_at_10 value: 42.841 - type: ndcg_at_100 value: 49.003 - type: ndcg_at_1000 value: 51.117999999999995 - type: ndcg_at_20 value: 45.273 - type: ndcg_at_3 value: 37.469 - type: ndcg_at_5 value: 39.841 - type: precision_at_1 value: 31.423000000000002 - type: precision_at_10 value: 8.419 - type: precision_at_100 value: 1.638 - type: precision_at_1000 value: 0.243 - type: precision_at_20 value: 5.375 - type: precision_at_3 value: 17.852 - type: precision_at_5 value: 12.964 - type: recall_at_1 value: 26.180999999999997 - type: recall_at_10 value: 55.564 - type: recall_at_100 value: 83.22500000000001 - type: recall_at_1000 value: 96.124 - type: recall_at_20 value: 64.68199999999999 - type: recall_at_3 value: 40.28 - type: recall_at_5 value: 46.535 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWordpressRetrieval (default) revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 split: test type: mteb/cqadupstack-wordpress metrics: - type: main_score value: 35.555 - type: map_at_1 value: 22.286 - type: map_at_10 value: 30.61 - type: map_at_100 value: 31.619999999999997 - type: map_at_1000 value: 31.724999999999998 - type: map_at_20 value: 31.092 - type: map_at_3 value: 27.962999999999997 - type: map_at_5 value: 29.383 - type: mrr_at_1 value: 24.399260628465804 - type: mrr_at_10 value: 32.696065487193025 - type: mrr_at_100 value: 33.58070054530842 - type: mrr_at_1000 value: 33.654777325405774 - type: mrr_at_20 value: 33.11457792065027 - type: mrr_at_3 value: 30.31423290203327 - type: mrr_at_5 value: 31.552680221811464 - type: nauc_map_at_1000_diff1 value: 39.79013314997585 - type: nauc_map_at_1000_max value: 22.27888746840121 - type: nauc_map_at_1000_std value: 4.539318966935818 - type: nauc_map_at_100_diff1 value: 39.776949099430524 - type: nauc_map_at_100_max value: 22.23994720281935 - type: nauc_map_at_100_std value: 4.532364090321059 - type: nauc_map_at_10_diff1 value: 40.214668109177545 - type: nauc_map_at_10_max value: 22.310555615555764 - type: nauc_map_at_10_std value: 3.7456514343350205 - type: nauc_map_at_1_diff1 value: 46.18393596000586 - type: nauc_map_at_1_max value: 24.547598678024556 - type: nauc_map_at_1_std value: 6.0574958769530465 - type: nauc_map_at_20_diff1 value: 39.95037327455914 - type: nauc_map_at_20_max value: 22.369335761495186 - type: nauc_map_at_20_std value: 4.248871676377463 - type: nauc_map_at_3_diff1 value: 40.39031064698702 - type: nauc_map_at_3_max value: 22.036440129422672 - type: nauc_map_at_3_std value: 2.4849784793648846 - type: nauc_map_at_5_diff1 value: 40.55531780202422 - type: nauc_map_at_5_max value: 22.34099868910038 - type: nauc_map_at_5_std value: 3.989437759311683 - type: nauc_mrr_at_1000_diff1 value: 38.22864890501086 - type: nauc_mrr_at_1000_max value: 22.196145770688915 - type: nauc_mrr_at_1000_std value: 6.366087881052758 - type: nauc_mrr_at_100_diff1 value: 38.19684329027937 - type: nauc_mrr_at_100_max value: 22.17259263583887 - type: nauc_mrr_at_100_std value: 6.3579191826046895 - type: nauc_mrr_at_10_diff1 value: 38.50520505165495 - type: nauc_mrr_at_10_max value: 22.14145550999763 - type: nauc_mrr_at_10_std value: 5.87670477461074 - type: nauc_mrr_at_1_diff1 value: 43.580238226066754 - type: nauc_mrr_at_1_max value: 25.37631028483947 - type: nauc_mrr_at_1_std value: 8.27700367711168 - type: nauc_mrr_at_20_diff1 value: 38.301149084550985 - type: nauc_mrr_at_20_max value: 22.237002751026584 - type: nauc_mrr_at_20_std value: 6.157632931853065 - type: nauc_mrr_at_3_diff1 value: 38.40064989443 - type: nauc_mrr_at_3_max value: 22.300592015957253 - type: nauc_mrr_at_3_std value: 5.111142119521902 - type: nauc_mrr_at_5_diff1 value: 38.74181914377854 - type: nauc_mrr_at_5_max value: 22.25441111952184 - type: nauc_mrr_at_5_std value: 6.22876437673998 - type: nauc_ndcg_at_1000_diff1 value: 36.69736142976795 - type: nauc_ndcg_at_1000_max value: 21.867116284783787 - type: nauc_ndcg_at_1000_std value: 7.265926771096148 - type: nauc_ndcg_at_100_diff1 value: 36.09322471126019 - type: nauc_ndcg_at_100_max value: 21.11550289992875 - type: nauc_ndcg_at_100_std value: 7.040857596769399 - type: nauc_ndcg_at_10_diff1 value: 38.066185877266406 - type: nauc_ndcg_at_10_max value: 21.406313151333396 - type: nauc_ndcg_at_10_std value: 3.714388060329858 - type: nauc_ndcg_at_1_diff1 value: 43.580238226066754 - type: nauc_ndcg_at_1_max value: 25.37631028483947 - type: nauc_ndcg_at_1_std value: 8.27700367711168 - type: nauc_ndcg_at_20_diff1 value: 37.176737325196655 - type: nauc_ndcg_at_20_max value: 21.605872861888944 - type: nauc_ndcg_at_20_std value: 5.139273672061484 - type: nauc_ndcg_at_3_diff1 value: 37.99865829973418 - type: nauc_ndcg_at_3_max value: 21.628352451265933 - type: nauc_ndcg_at_3_std value: 2.5403484884659906 - type: nauc_ndcg_at_5_diff1 value: 38.68827688198417 - type: nauc_ndcg_at_5_max value: 21.766119634697375 - type: nauc_ndcg_at_5_std value: 4.663477639905768 - type: nauc_precision_at_1000_diff1 value: -24.32404164272638 - type: nauc_precision_at_1000_max value: -0.1920006879032294 - type: nauc_precision_at_1000_std value: 3.8459453302163835 - type: nauc_precision_at_100_diff1 value: 0.0961190193116701 - type: nauc_precision_at_100_max value: 10.432470527841613 - type: nauc_precision_at_100_std value: 19.51298317615412 - type: nauc_precision_at_10_diff1 value: 24.865309916077123 - type: nauc_precision_at_10_max value: 19.106193444839885 - type: nauc_precision_at_10_std value: 6.1319125503229985 - type: nauc_precision_at_1_diff1 value: 43.580238226066754 - type: nauc_precision_at_1_max value: 25.37631028483947 - type: nauc_precision_at_1_std value: 8.27700367711168 - type: nauc_precision_at_20_diff1 value: 17.152528821707108 - type: nauc_precision_at_20_max value: 18.550074587326083 - type: nauc_precision_at_20_std value: 12.414087853840773 - type: nauc_precision_at_3_diff1 value: 29.793753328467677 - type: nauc_precision_at_3_max value: 18.856628740486958 - type: nauc_precision_at_3_std value: 1.7490040552720874 - type: nauc_precision_at_5_diff1 value: 27.95189102052665 - type: nauc_precision_at_5_max value: 20.089236844488443 - type: nauc_precision_at_5_std value: 8.272526795799227 - type: nauc_recall_at_1000_diff1 value: 13.869138770344335 - type: nauc_recall_at_1000_max value: 25.76264057259768 - type: nauc_recall_at_1000_std value: 42.620945012763244 - type: nauc_recall_at_100_diff1 value: 18.954723626828734 - type: nauc_recall_at_100_max value: 15.591123917397793 - type: nauc_recall_at_100_std value: 18.872204747720037 - type: nauc_recall_at_10_diff1 value: 32.50173111514971 - type: nauc_recall_at_10_max value: 18.335922588632688 - type: nauc_recall_at_10_std value: 1.6231924423632595 - type: nauc_recall_at_1_diff1 value: 46.18393596000586 - type: nauc_recall_at_1_max value: 24.547598678024556 - type: nauc_recall_at_1_std value: 6.0574958769530465 - type: nauc_recall_at_20_diff1 value: 29.101695015438395 - type: nauc_recall_at_20_max value: 18.63912055487345 - type: nauc_recall_at_20_std value: 6.064314698688468 - type: nauc_recall_at_3_diff1 value: 33.83121888715772 - type: nauc_recall_at_3_max value: 19.258419406401263 - type: nauc_recall_at_3_std value: -0.9541791506796478 - type: nauc_recall_at_5_diff1 value: 34.75197279898117 - type: nauc_recall_at_5_max value: 19.704512261533242 - type: nauc_recall_at_5_std value: 4.482729218598009 - type: ndcg_at_1 value: 24.399 - type: ndcg_at_10 value: 35.555 - type: ndcg_at_100 value: 40.723 - type: ndcg_at_1000 value: 43.155 - type: ndcg_at_20 value: 37.141999999999996 - type: ndcg_at_3 value: 30.45 - type: ndcg_at_5 value: 32.749 - type: precision_at_1 value: 24.399 - type: precision_at_10 value: 5.601 - type: precision_at_100 value: 0.8909999999999999 - type: precision_at_1000 value: 0.121 - type: precision_at_20 value: 3.216 - type: precision_at_3 value: 12.939 - type: precision_at_5 value: 9.168 - type: recall_at_1 value: 22.286 - type: recall_at_10 value: 48.925000000000004 - type: recall_at_100 value: 72.791 - type: recall_at_1000 value: 90.69 - type: recall_at_20 value: 54.649 - type: recall_at_3 value: 35.022 - type: recall_at_5 value: 40.579 task: type: Retrieval - dataset: config: default name: MTEB ClimateFEVER (default) revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 split: test type: mteb/climate-fever metrics: - type: main_score value: 41.177 - type: map_at_1 value: 17.376 - type: map_at_10 value: 30.705 - type: map_at_100 value: 33.145 - type: map_at_1000 value: 33.324 - type: map_at_20 value: 32.129999999999995 - type: map_at_3 value: 25.352000000000004 - type: map_at_5 value: 28.23 - type: mrr_at_1 value: 41.56351791530945 - type: mrr_at_10 value: 53.54648156765427 - type: mrr_at_100 value: 54.16634559859816 - type: mrr_at_1000 value: 54.18645395732765 - type: mrr_at_20 value: 53.9378827028433 - type: mrr_at_3 value: 50.228013029316024 - type: mrr_at_5 value: 52.172638436482174 - type: nauc_map_at_1000_diff1 value: 6.876082348162679 - type: nauc_map_at_1000_max value: 21.009396900572714 - type: nauc_map_at_1000_std value: 14.066430895753937 - type: nauc_map_at_100_diff1 value: 6.850348439065698 - type: nauc_map_at_100_max value: 21.00364553924676 - type: nauc_map_at_100_std value: 14.059870647686076 - type: nauc_map_at_10_diff1 value: 6.509819157572225 - type: nauc_map_at_10_max value: 20.8065690550504 - type: nauc_map_at_10_std value: 12.562768638969086 - type: nauc_map_at_1_diff1 value: 19.113985692043915 - type: nauc_map_at_1_max value: 27.403489479561337 - type: nauc_map_at_1_std value: 8.997280354530837 - type: nauc_map_at_20_diff1 value: 6.689209935271891 - type: nauc_map_at_20_max value: 20.829284453048967 - type: nauc_map_at_20_std value: 13.537098219731128 - type: nauc_map_at_3_diff1 value: 8.354071849010772 - type: nauc_map_at_3_max value: 21.39794707841315 - type: nauc_map_at_3_std value: 10.16825293444317 - type: nauc_map_at_5_diff1 value: 6.353792564160103 - type: nauc_map_at_5_max value: 20.654610018600735 - type: nauc_map_at_5_std value: 11.51720666348388 - type: nauc_mrr_at_1000_diff1 value: 18.719626503061086 - type: nauc_mrr_at_1000_max value: 25.382297708144915 - type: nauc_mrr_at_1000_std value: 20.795619918235513 - type: nauc_mrr_at_100_diff1 value: 18.707844253612848 - type: nauc_mrr_at_100_max value: 25.37308894691589 - type: nauc_mrr_at_100_std value: 20.792369663110737 - type: nauc_mrr_at_10_diff1 value: 18.599552029091104 - type: nauc_mrr_at_10_max value: 25.27052175696751 - type: nauc_mrr_at_10_std value: 20.780213374556904 - type: nauc_mrr_at_1_diff1 value: 24.986463675582733 - type: nauc_mrr_at_1_max value: 28.633615906622467 - type: nauc_mrr_at_1_std value: 18.935003813583457 - type: nauc_mrr_at_20_diff1 value: 18.58009831602654 - type: nauc_mrr_at_20_max value: 25.309342060502825 - type: nauc_mrr_at_20_std value: 20.811933813239104 - type: nauc_mrr_at_3_diff1 value: 19.03652325617102 - type: nauc_mrr_at_3_max value: 25.590424434633995 - type: nauc_mrr_at_3_std value: 20.672321139371263 - type: nauc_mrr_at_5_diff1 value: 18.62484399593036 - type: nauc_mrr_at_5_max value: 25.69914791020157 - type: nauc_mrr_at_5_std value: 20.85655370414309 - type: nauc_ndcg_at_1000_diff1 value: 8.54695673292356 - type: nauc_ndcg_at_1000_max value: 20.965191922952513 - type: nauc_ndcg_at_1000_std value: 18.638066252011978 - type: nauc_ndcg_at_100_diff1 value: 8.031774449316728 - type: nauc_ndcg_at_100_max value: 21.075278652222494 - type: nauc_ndcg_at_100_std value: 19.202919369605972 - type: nauc_ndcg_at_10_diff1 value: 6.857083069946808 - type: nauc_ndcg_at_10_max value: 20.253829678610604 - type: nauc_ndcg_at_10_std value: 15.456896398668595 - type: nauc_ndcg_at_1_diff1 value: 24.986463675582733 - type: nauc_ndcg_at_1_max value: 28.633615906622467 - type: nauc_ndcg_at_1_std value: 18.935003813583457 - type: nauc_ndcg_at_20_diff1 value: 7.310618350530157 - type: nauc_ndcg_at_20_max value: 20.48058063251671 - type: nauc_ndcg_at_20_std value: 17.35126095861103 - type: nauc_ndcg_at_3_diff1 value: 10.284697710828992 - type: nauc_ndcg_at_3_max value: 21.404564460904535 - type: nauc_ndcg_at_3_std value: 13.811528596529799 - type: nauc_ndcg_at_5_diff1 value: 6.932072809009071 - type: nauc_ndcg_at_5_max value: 20.648949990060657 - type: nauc_ndcg_at_5_std value: 14.368751919376846 - type: nauc_precision_at_1000_diff1 value: -1.4140589422343832 - type: nauc_precision_at_1000_max value: -6.6374826556613264 - type: nauc_precision_at_1000_std value: 11.116149167404775 - type: nauc_precision_at_100_diff1 value: -0.5816105386152639 - type: nauc_precision_at_100_max value: 1.2367532155168361 - type: nauc_precision_at_100_std value: 20.01762008226351 - type: nauc_precision_at_10_diff1 value: -1.8634971794747164 - type: nauc_precision_at_10_max value: 6.8960226644416185 - type: nauc_precision_at_10_std value: 17.20121919885631 - type: nauc_precision_at_1_diff1 value: 24.986463675582733 - type: nauc_precision_at_1_max value: 28.633615906622467 - type: nauc_precision_at_1_std value: 18.935003813583457 - type: nauc_precision_at_20_diff1 value: -1.4459597575880887 - type: nauc_precision_at_20_max value: 5.307806932575533 - type: nauc_precision_at_20_std value: 19.451800377499655 - type: nauc_precision_at_3_diff1 value: 4.236106307523834 - type: nauc_precision_at_3_max value: 14.046883704229765 - type: nauc_precision_at_3_std value: 17.800580068504328 - type: nauc_precision_at_5_diff1 value: -1.3650327582096584 - type: nauc_precision_at_5_max value: 10.207588037756324 - type: nauc_precision_at_5_std value: 17.342725667697678 - type: nauc_recall_at_1000_diff1 value: -0.3456913485138751 - type: nauc_recall_at_1000_max value: 9.035999568091443 - type: nauc_recall_at_1000_std value: 24.89435133186522 - type: nauc_recall_at_100_diff1 value: -0.4515116177152527 - type: nauc_recall_at_100_max value: 13.308695449140274 - type: nauc_recall_at_100_std value: 24.08184104676165 - type: nauc_recall_at_10_diff1 value: -1.7208221232376235 - type: nauc_recall_at_10_max value: 13.184289213175079 - type: nauc_recall_at_10_std value: 12.654581726678604 - type: nauc_recall_at_1_diff1 value: 19.113985692043915 - type: nauc_recall_at_1_max value: 27.403489479561337 - type: nauc_recall_at_1_std value: 8.997280354530837 - type: nauc_recall_at_20_diff1 value: -0.7023429202973307 - type: nauc_recall_at_20_max value: 12.830137977471596 - type: nauc_recall_at_20_std value: 16.37670340447336 - type: nauc_recall_at_3_diff1 value: 2.8972253611264143 - type: nauc_recall_at_3_max value: 16.779165952414292 - type: nauc_recall_at_3_std value: 9.121837904207856 - type: nauc_recall_at_5_diff1 value: -1.2895779049988085 - type: nauc_recall_at_5_max value: 14.974218341119162 - type: nauc_recall_at_5_std value: 11.278321881932376 - type: ndcg_at_1 value: 41.564 - type: ndcg_at_10 value: 41.177 - type: ndcg_at_100 value: 49.036 - type: ndcg_at_1000 value: 51.864 - type: ndcg_at_20 value: 44.535000000000004 - type: ndcg_at_3 value: 34.183 - type: ndcg_at_5 value: 36.636 - type: precision_at_1 value: 41.564 - type: precision_at_10 value: 12.886000000000001 - type: precision_at_100 value: 2.145 - type: precision_at_1000 value: 0.268 - type: precision_at_20 value: 7.922 - type: precision_at_3 value: 25.668000000000003 - type: precision_at_5 value: 19.713 - type: recall_at_1 value: 17.376 - type: recall_at_10 value: 48.116 - type: recall_at_100 value: 73.983 - type: recall_at_1000 value: 89.557 - type: recall_at_20 value: 57.376000000000005 - type: recall_at_3 value: 30.624000000000002 - type: recall_at_5 value: 38.072 task: type: Retrieval - dataset: config: default name: MTEB DBPedia (default) revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 split: test type: mteb/dbpedia metrics: - type: main_score value: 48.979 - type: map_at_1 value: 9.858 - type: map_at_10 value: 22.772000000000002 - type: map_at_100 value: 32.067 - type: map_at_1000 value: 33.789 - type: map_at_20 value: 26.6 - type: map_at_3 value: 15.817999999999998 - type: map_at_5 value: 18.88 - type: mrr_at_1 value: 75.75 - type: mrr_at_10 value: 81.4422619047619 - type: mrr_at_100 value: 81.66908663880871 - type: mrr_at_1000 value: 81.67603961133557 - type: mrr_at_20 value: 81.58319354256854 - type: mrr_at_3 value: 79.91666666666667 - type: mrr_at_5 value: 81.05416666666666 - type: nauc_map_at_1000_diff1 value: 23.991232076620477 - type: nauc_map_at_1000_max value: 35.287316450717924 - type: nauc_map_at_1000_std value: 19.352326951207623 - type: nauc_map_at_100_diff1 value: 24.340309156988095 - type: nauc_map_at_100_max value: 35.68099330475215 - type: nauc_map_at_100_std value: 17.175838739585252 - type: nauc_map_at_10_diff1 value: 21.561923328790826 - type: nauc_map_at_10_max value: 30.221314679896555 - type: nauc_map_at_10_std value: -5.171508970583829 - type: nauc_map_at_1_diff1 value: 27.8980502688949 - type: nauc_map_at_1_max value: 18.011347877902235 - type: nauc_map_at_1_std value: -21.8828654183319 - type: nauc_map_at_20_diff1 value: 21.97593079179927 - type: nauc_map_at_20_max value: 33.1027436090741 - type: nauc_map_at_20_std value: 3.8376582930602887 - type: nauc_map_at_3_diff1 value: 23.696811666749362 - type: nauc_map_at_3_max value: 25.004984475522406 - type: nauc_map_at_3_std value: -16.036281146384134 - type: nauc_map_at_5_diff1 value: 22.303297302695672 - type: nauc_map_at_5_max value: 25.908488411484537 - type: nauc_map_at_5_std value: -12.727467597748399 - type: nauc_mrr_at_1000_diff1 value: 50.807506669263105 - type: nauc_mrr_at_1000_max value: 59.521138888646895 - type: nauc_mrr_at_1000_std value: 39.72453658171713 - type: nauc_mrr_at_100_diff1 value: 50.809052816882414 - type: nauc_mrr_at_100_max value: 59.52443036190528 - type: nauc_mrr_at_100_std value: 39.71360790190832 - type: nauc_mrr_at_10_diff1 value: 50.71551464513347 - type: nauc_mrr_at_10_max value: 59.46887584854914 - type: nauc_mrr_at_10_std value: 39.720073174909146 - type: nauc_mrr_at_1_diff1 value: 51.23431960913661 - type: nauc_mrr_at_1_max value: 59.02477220193181 - type: nauc_mrr_at_1_std value: 37.613094567706604 - type: nauc_mrr_at_20_diff1 value: 50.68567900468689 - type: nauc_mrr_at_20_max value: 59.398702247575116 - type: nauc_mrr_at_20_std value: 39.84349342123071 - type: nauc_mrr_at_3_diff1 value: 50.84159182980731 - type: nauc_mrr_at_3_max value: 59.586303879639814 - type: nauc_mrr_at_3_std value: 39.115703986532054 - type: nauc_mrr_at_5_diff1 value: 50.9427075304326 - type: nauc_mrr_at_5_max value: 59.9197314639652 - type: nauc_mrr_at_5_std value: 40.03939021575725 - type: nauc_ndcg_at_1000_diff1 value: 35.299374382112134 - type: nauc_ndcg_at_1000_max value: 42.17483524995039 - type: nauc_ndcg_at_1000_std value: 36.65033986688723 - type: nauc_ndcg_at_100_diff1 value: 34.44823939199226 - type: nauc_ndcg_at_100_max value: 41.7528959441004 - type: nauc_ndcg_at_100_std value: 28.72365119802961 - type: nauc_ndcg_at_10_diff1 value: 29.32293547048091 - type: nauc_ndcg_at_10_max value: 40.101679400646006 - type: nauc_ndcg_at_10_std value: 26.5721071370353 - type: nauc_ndcg_at_1_diff1 value: 48.319456575299284 - type: nauc_ndcg_at_1_max value: 48.27377641677222 - type: nauc_ndcg_at_1_std value: 29.76971701564757 - type: nauc_ndcg_at_20_diff1 value: 30.927032015266835 - type: nauc_ndcg_at_20_max value: 40.52043580178855 - type: nauc_ndcg_at_20_std value: 25.197926348678955 - type: nauc_ndcg_at_3_diff1 value: 33.082418428993115 - type: nauc_ndcg_at_3_max value: 40.62252050374572 - type: nauc_ndcg_at_3_std value: 28.113380979394726 - type: nauc_ndcg_at_5_diff1 value: 29.635117682340617 - type: nauc_ndcg_at_5_max value: 38.11353464984394 - type: nauc_ndcg_at_5_std value: 28.33324261545152 - type: nauc_precision_at_1000_diff1 value: -18.548687962963978 - type: nauc_precision_at_1000_max value: -14.491062706051878 - type: nauc_precision_at_1000_std value: 10.681709294585238 - type: nauc_precision_at_100_diff1 value: -1.688856131371092 - type: nauc_precision_at_100_max value: 5.481319501702683 - type: nauc_precision_at_100_std value: 39.979879645237446 - type: nauc_precision_at_10_diff1 value: 0.576840213887176 - type: nauc_precision_at_10_max value: 18.614962845466955 - type: nauc_precision_at_10_std value: 42.024684223351464 - type: nauc_precision_at_1_diff1 value: 51.23431960913661 - type: nauc_precision_at_1_max value: 59.02477220193181 - type: nauc_precision_at_1_std value: 37.613094567706604 - type: nauc_precision_at_20_diff1 value: 1.3707715784045262 - type: nauc_precision_at_20_max value: 14.922028634512083 - type: nauc_precision_at_20_std value: 44.76530134675204 - type: nauc_precision_at_3_diff1 value: 13.094243395849992 - type: nauc_precision_at_3_max value: 29.850584449565037 - type: nauc_precision_at_3_std value: 35.77371986318991 - type: nauc_precision_at_5_diff1 value: 6.798339179999441 - type: nauc_precision_at_5_max value: 23.08541604839939 - type: nauc_precision_at_5_std value: 40.28922731098164 - type: nauc_recall_at_1000_diff1 value: 27.24738341174725 - type: nauc_recall_at_1000_max value: 31.09981332493123 - type: nauc_recall_at_1000_std value: 41.96422474881881 - type: nauc_recall_at_100_diff1 value: 24.922315595458294 - type: nauc_recall_at_100_max value: 32.53690673184911 - type: nauc_recall_at_100_std value: 23.02548177144121 - type: nauc_recall_at_10_diff1 value: 15.873395525740868 - type: nauc_recall_at_10_max value: 23.963191643746132 - type: nauc_recall_at_10_std value: -7.2368622521479296 - type: nauc_recall_at_1_diff1 value: 27.8980502688949 - type: nauc_recall_at_1_max value: 18.011347877902235 - type: nauc_recall_at_1_std value: -21.8828654183319 - type: nauc_recall_at_20_diff1 value: 17.63321564134115 - type: nauc_recall_at_20_max value: 27.284001947728797 - type: nauc_recall_at_20_std value: 2.3851101283717666 - type: nauc_recall_at_3_diff1 value: 21.72291192189032 - type: nauc_recall_at_3_max value: 23.109590882141113 - type: nauc_recall_at_3_std value: -16.34348495895044 - type: nauc_recall_at_5_diff1 value: 17.596468253564954 - type: nauc_recall_at_5_max value: 20.664891173216603 - type: nauc_recall_at_5_std value: -14.565623699193717 - type: ndcg_at_1 value: 65.125 - type: ndcg_at_10 value: 48.979 - type: ndcg_at_100 value: 52.317 - type: ndcg_at_1000 value: 59.424 - type: ndcg_at_20 value: 47.806 - type: ndcg_at_3 value: 54.032000000000004 - type: ndcg_at_5 value: 51.520999999999994 - type: precision_at_1 value: 75.75 - type: precision_at_10 value: 38.975 - type: precision_at_100 value: 11.848 - type: precision_at_1000 value: 2.199 - type: precision_at_20 value: 29.387 - type: precision_at_3 value: 57.333 - type: precision_at_5 value: 50.0 - type: recall_at_1 value: 9.858 - type: recall_at_10 value: 28.061999999999998 - type: recall_at_100 value: 56.413000000000004 - type: recall_at_1000 value: 79.963 - type: recall_at_20 value: 36.161 - type: recall_at_3 value: 16.631 - type: recall_at_5 value: 21.363 task: type: Retrieval - dataset: config: default name: MTEB EmotionClassification (default) revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 split: test type: mteb/emotion metrics: - type: accuracy value: 79.985 - type: f1 value: 74.58481640194556 - type: f1_weighted value: 80.85307620086522 - type: main_score value: 79.985 task: type: Classification - dataset: config: default name: MTEB FEVER (default) revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 split: test type: mteb/fever metrics: - type: main_score value: 88.228 - type: map_at_1 value: 75.053 - type: map_at_10 value: 84.631 - type: map_at_100 value: 84.832 - type: map_at_1000 value: 84.844 - type: map_at_20 value: 84.756 - type: map_at_3 value: 83.553 - type: map_at_5 value: 84.273 - type: mrr_at_1 value: 80.993099309931 - type: mrr_at_10 value: 88.46116754532582 - type: mrr_at_100 value: 88.51308773245357 - type: mrr_at_1000 value: 88.51396221984112 - type: mrr_at_20 value: 88.49642168590128 - type: mrr_at_3 value: 87.86128612861275 - type: mrr_at_5 value: 88.30083008300812 - type: nauc_map_at_1000_diff1 value: 53.97823649031981 - type: nauc_map_at_1000_max value: 26.11243091917843 - type: nauc_map_at_1000_std value: -10.057644234421986 - type: nauc_map_at_100_diff1 value: 53.925080266687445 - type: nauc_map_at_100_max value: 26.074046044483406 - type: nauc_map_at_100_std value: -10.057139918091936 - type: nauc_map_at_10_diff1 value: 53.378232678228535 - type: nauc_map_at_10_max value: 25.583629956942904 - type: nauc_map_at_10_std value: -10.296034633396092 - type: nauc_map_at_1_diff1 value: 60.507796141511605 - type: nauc_map_at_1_max value: 24.81979211893891 - type: nauc_map_at_1_std value: -15.864717081534302 - type: nauc_map_at_20_diff1 value: 53.712573269726484 - type: nauc_map_at_20_max value: 25.870196380003335 - type: nauc_map_at_20_std value: -10.139248046597455 - type: nauc_map_at_3_diff1 value: 53.261264809399556 - type: nauc_map_at_3_max value: 25.65803011606916 - type: nauc_map_at_3_std value: -10.953616682218243 - type: nauc_map_at_5_diff1 value: 53.17212766431546 - type: nauc_map_at_5_max value: 25.60582034909538 - type: nauc_map_at_5_std value: -10.32613724902313 - type: nauc_mrr_at_1000_diff1 value: 70.38955167949939 - type: nauc_mrr_at_1000_max value: 39.821515037282204 - type: nauc_mrr_at_1000_std value: -9.98013185324074 - type: nauc_mrr_at_100_diff1 value: 70.38352452325266 - type: nauc_mrr_at_100_max value: 39.82466363867733 - type: nauc_mrr_at_100_std value: -9.976145831114493 - type: nauc_mrr_at_10_diff1 value: 70.26683508867457 - type: nauc_mrr_at_10_max value: 39.80122496712571 - type: nauc_mrr_at_10_std value: -9.909384325865775 - type: nauc_mrr_at_1_diff1 value: 73.24890171347613 - type: nauc_mrr_at_1_max value: 37.367459553642426 - type: nauc_mrr_at_1_std value: -13.316391532791135 - type: nauc_mrr_at_20_diff1 value: 70.34500637714407 - type: nauc_mrr_at_20_max value: 39.84118580511733 - type: nauc_mrr_at_20_std value: -9.920771311393942 - type: nauc_mrr_at_3_diff1 value: 70.04420618345499 - type: nauc_mrr_at_3_max value: 40.33885175872482 - type: nauc_mrr_at_3_std value: -9.2308606747524 - type: nauc_mrr_at_5_diff1 value: 70.23298852823912 - type: nauc_mrr_at_5_max value: 40.28613289657475 - type: nauc_mrr_at_5_std value: -9.408644815171415 - type: nauc_ndcg_at_1000_diff1 value: 56.14884407654613 - type: nauc_ndcg_at_1000_max value: 29.027269391217793 - type: nauc_ndcg_at_1000_std value: -8.185655036370417 - type: nauc_ndcg_at_100_diff1 value: 54.898228209830854 - type: nauc_ndcg_at_100_max value: 28.23127072967732 - type: nauc_ndcg_at_100_std value: -7.937951960666996 - type: nauc_ndcg_at_10_diff1 value: 52.76884326536276 - type: nauc_ndcg_at_10_max value: 26.501133559532004 - type: nauc_ndcg_at_10_std value: -8.561291306720568 - type: nauc_ndcg_at_1_diff1 value: 73.24890171347613 - type: nauc_ndcg_at_1_max value: 37.367459553642426 - type: nauc_ndcg_at_1_std value: -13.316391532791135 - type: nauc_ndcg_at_20_diff1 value: 53.782879241534154 - type: nauc_ndcg_at_20_max value: 27.344714620733146 - type: nauc_ndcg_at_20_std value: -8.174365511016143 - type: nauc_ndcg_at_3_diff1 value: 54.07748391367295 - type: nauc_ndcg_at_3_max value: 28.740769448822867 - type: nauc_ndcg_at_3_std value: -8.800638719106981 - type: nauc_ndcg_at_5_diff1 value: 52.91102194973326 - type: nauc_ndcg_at_5_max value: 27.35297204098582 - type: nauc_ndcg_at_5_std value: -8.202780538104845 - type: nauc_precision_at_1000_diff1 value: -6.462960135986346 - type: nauc_precision_at_1000_max value: 12.759892798322381 - type: nauc_precision_at_1000_std value: 17.830413795603956 - type: nauc_precision_at_100_diff1 value: -10.714161244793623 - type: nauc_precision_at_100_max value: 10.80916133379338 - type: nauc_precision_at_100_std value: 21.01280694690889 - type: nauc_precision_at_10_diff1 value: -12.867253218059915 - type: nauc_precision_at_10_max value: 9.575643543429718 - type: nauc_precision_at_10_std value: 21.405171955259224 - type: nauc_precision_at_1_diff1 value: 73.24890171347613 - type: nauc_precision_at_1_max value: 37.367459553642426 - type: nauc_precision_at_1_std value: -13.316391532791135 - type: nauc_precision_at_20_diff1 value: -11.766460335141424 - type: nauc_precision_at_20_max value: 10.17190973145006 - type: nauc_precision_at_20_std value: 21.752924700590835 - type: nauc_precision_at_3_diff1 value: 5.241669513189873 - type: nauc_precision_at_3_max value: 21.722890037760354 - type: nauc_precision_at_3_std value: 16.83232605784222 - type: nauc_precision_at_5_diff1 value: -6.750151592516413 - type: nauc_precision_at_5_max value: 15.059744329415048 - type: nauc_precision_at_5_std value: 21.831836531443653 - type: nauc_recall_at_1000_diff1 value: 8.852828649246417 - type: nauc_recall_at_1000_max value: 6.683830914994345 - type: nauc_recall_at_1000_std value: 37.66593889403836 - type: nauc_recall_at_100_diff1 value: -2.4986179820673344 - type: nauc_recall_at_100_max value: -1.230471742842536 - type: nauc_recall_at_100_std value: 22.724612835383482 - type: nauc_recall_at_10_diff1 value: 8.921193487520886 - type: nauc_recall_at_10_max value: 1.4012350766088484 - type: nauc_recall_at_10_std value: 2.9284367419689037 - type: nauc_recall_at_1_diff1 value: 60.507796141511605 - type: nauc_recall_at_1_max value: 24.81979211893891 - type: nauc_recall_at_1_std value: -15.864717081534302 - type: nauc_recall_at_20_diff1 value: 6.778598529994739 - type: nauc_recall_at_20_max value: 1.9108915219621572 - type: nauc_recall_at_20_std value: 9.15003581851989 - type: nauc_recall_at_3_diff1 value: 30.17670764440773 - type: nauc_recall_at_3_max value: 17.769313053478434 - type: nauc_recall_at_3_std value: -2.7848998516990386 - type: nauc_recall_at_5_diff1 value: 19.986644381812553 - type: nauc_recall_at_5_max value: 11.751813635626322 - type: nauc_recall_at_5_std value: 1.6890369172263033 - type: ndcg_at_1 value: 80.99300000000001 - type: ndcg_at_10 value: 88.228 - type: ndcg_at_100 value: 88.897 - type: ndcg_at_1000 value: 89.093 - type: ndcg_at_20 value: 88.542 - type: ndcg_at_3 value: 86.687 - type: ndcg_at_5 value: 87.607 - type: precision_at_1 value: 80.99300000000001 - type: precision_at_10 value: 10.707 - type: precision_at_100 value: 1.127 - type: precision_at_1000 value: 0.116 - type: precision_at_20 value: 5.457999999999999 - type: precision_at_3 value: 33.538000000000004 - type: precision_at_5 value: 20.801 - type: recall_at_1 value: 75.053 - type: recall_at_10 value: 95.27799999999999 - type: recall_at_100 value: 97.853 - type: recall_at_1000 value: 99.03800000000001 - type: recall_at_20 value: 96.318 - type: recall_at_3 value: 91.08000000000001 - type: recall_at_5 value: 93.45400000000001 task: type: Retrieval - dataset: config: default name: MTEB FiQA2018 (default) revision: 27a168819829fe9bcd655c2df245fb19452e8e06 split: test type: mteb/fiqa metrics: - type: main_score value: 54.071999999999996 - type: map_at_1 value: 27.345000000000002 - type: map_at_10 value: 45.694 - type: map_at_100 value: 47.949999999999996 - type: map_at_1000 value: 48.093 - type: map_at_20 value: 47.035 - type: map_at_3 value: 40.049 - type: map_at_5 value: 42.92 - type: mrr_at_1 value: 52.160493827160494 - type: mrr_at_10 value: 61.28527336860672 - type: mrr_at_100 value: 61.884625221750596 - type: mrr_at_1000 value: 61.915904963540726 - type: mrr_at_20 value: 61.667012493286734 - type: mrr_at_3 value: 59.10493827160492 - type: mrr_at_5 value: 60.362654320987616 - type: nauc_map_at_1000_diff1 value: 45.38067605515959 - type: nauc_map_at_1000_max value: 37.86197840734717 - type: nauc_map_at_1000_std value: -10.88609599497855 - type: nauc_map_at_100_diff1 value: 45.34384139935809 - type: nauc_map_at_100_max value: 37.79374163212799 - type: nauc_map_at_100_std value: -10.800059266281165 - type: nauc_map_at_10_diff1 value: 45.3913490132632 - type: nauc_map_at_10_max value: 36.79840356578914 - type: nauc_map_at_10_std value: -12.036133364054884 - type: nauc_map_at_1_diff1 value: 51.66552774401746 - type: nauc_map_at_1_max value: 25.324194752193236 - type: nauc_map_at_1_std value: -14.34697090462958 - type: nauc_map_at_20_diff1 value: 45.27320308873338 - type: nauc_map_at_20_max value: 37.29442746411085 - type: nauc_map_at_20_std value: -11.635204276133472 - type: nauc_map_at_3_diff1 value: 46.88138818586725 - type: nauc_map_at_3_max value: 32.99288436262902 - type: nauc_map_at_3_std value: -13.639274978165444 - type: nauc_map_at_5_diff1 value: 45.76135530895121 - type: nauc_map_at_5_max value: 34.97804527762444 - type: nauc_map_at_5_std value: -12.678346477642899 - type: nauc_mrr_at_1000_diff1 value: 53.864293429447955 - type: nauc_mrr_at_1000_max value: 45.79808916389802 - type: nauc_mrr_at_1000_std value: -9.713381409523494 - type: nauc_mrr_at_100_diff1 value: 53.85134409074757 - type: nauc_mrr_at_100_max value: 45.80389587114905 - type: nauc_mrr_at_100_std value: -9.683169165384212 - type: nauc_mrr_at_10_diff1 value: 53.805490205878 - type: nauc_mrr_at_10_max value: 45.806760270208564 - type: nauc_mrr_at_10_std value: -9.76722195012393 - type: nauc_mrr_at_1_diff1 value: 56.27330361790344 - type: nauc_mrr_at_1_max value: 47.01503122847836 - type: nauc_mrr_at_1_std value: -10.774154484447495 - type: nauc_mrr_at_20_diff1 value: 53.83482468037953 - type: nauc_mrr_at_20_max value: 45.719679695052974 - type: nauc_mrr_at_20_std value: -9.77923533594551 - type: nauc_mrr_at_3_diff1 value: 54.44641861789147 - type: nauc_mrr_at_3_max value: 45.94905694818705 - type: nauc_mrr_at_3_std value: -11.177467065728768 - type: nauc_mrr_at_5_diff1 value: 54.09429588760707 - type: nauc_mrr_at_5_max value: 46.004166041517216 - type: nauc_mrr_at_5_std value: -9.769538819499722 - type: nauc_ndcg_at_1000_diff1 value: 46.80179242198247 - type: nauc_ndcg_at_1000_max value: 40.806989668058186 - type: nauc_ndcg_at_1000_std value: -8.015013067414483 - type: nauc_ndcg_at_100_diff1 value: 46.26031710590574 - type: nauc_ndcg_at_100_max value: 40.2874844490879 - type: nauc_ndcg_at_100_std value: -6.325738537481981 - type: nauc_ndcg_at_10_diff1 value: 46.0597385861321 - type: nauc_ndcg_at_10_max value: 38.12369512757341 - type: nauc_ndcg_at_10_std value: -9.95387894167638 - type: nauc_ndcg_at_1_diff1 value: 56.27330361790344 - type: nauc_ndcg_at_1_max value: 47.01503122847836 - type: nauc_ndcg_at_1_std value: -10.774154484447495 - type: nauc_ndcg_at_20_diff1 value: 46.112983276165046 - type: nauc_ndcg_at_20_max value: 38.60654549021085 - type: nauc_ndcg_at_20_std value: -9.66055049547148 - type: nauc_ndcg_at_3_diff1 value: 46.07426386701122 - type: nauc_ndcg_at_3_max value: 39.30739016101109 - type: nauc_ndcg_at_3_std value: -12.50493736255984 - type: nauc_ndcg_at_5_diff1 value: 45.71298951268576 - type: nauc_ndcg_at_5_max value: 37.27961846995706 - type: nauc_ndcg_at_5_std value: -11.154006989020496 - type: nauc_precision_at_1000_diff1 value: -11.592438042119445 - type: nauc_precision_at_1000_max value: 17.294449668418288 - type: nauc_precision_at_1000_std value: 9.709962161201647 - type: nauc_precision_at_100_diff1 value: -6.0095430176874345 - type: nauc_precision_at_100_max value: 22.901828845166698 - type: nauc_precision_at_100_std value: 14.993379617197682 - type: nauc_precision_at_10_diff1 value: 6.719203274493172 - type: nauc_precision_at_10_max value: 32.512145720381795 - type: nauc_precision_at_10_std value: 5.244187871424349 - type: nauc_precision_at_1_diff1 value: 56.27330361790344 - type: nauc_precision_at_1_max value: 47.01503122847836 - type: nauc_precision_at_1_std value: -10.774154484447495 - type: nauc_precision_at_20_diff1 value: 1.754389508301811 - type: nauc_precision_at_20_max value: 29.02035054956672 - type: nauc_precision_at_20_std value: 8.161759871402037 - type: nauc_precision_at_3_diff1 value: 24.040968725090252 - type: nauc_precision_at_3_max value: 40.10318275587437 - type: nauc_precision_at_3_std value: -3.878413890678057 - type: nauc_precision_at_5_diff1 value: 15.218812798552142 - type: nauc_precision_at_5_max value: 37.25953351705925 - type: nauc_precision_at_5_std value: 0.7155796998283327 - type: nauc_recall_at_1000_diff1 value: 10.583253250637997 - type: nauc_recall_at_1000_max value: -3.5637377831543846 - type: nauc_recall_at_1000_std value: 34.74872993454209 - type: nauc_recall_at_100_diff1 value: 26.680647396718747 - type: nauc_recall_at_100_max value: 25.289227360067045 - type: nauc_recall_at_100_std value: 19.215575737374877 - type: nauc_recall_at_10_diff1 value: 35.49850774071538 - type: nauc_recall_at_10_max value: 27.12975488283297 - type: nauc_recall_at_10_std value: -6.7757139852899995 - type: nauc_recall_at_1_diff1 value: 51.66552774401746 - type: nauc_recall_at_1_max value: 25.324194752193236 - type: nauc_recall_at_1_std value: -14.34697090462958 - type: nauc_recall_at_20_diff1 value: 33.87213110916921 - type: nauc_recall_at_20_max value: 25.15617289177912 - type: nauc_recall_at_20_std value: -6.44141075455468 - type: nauc_recall_at_3_diff1 value: 42.167552979112784 - type: nauc_recall_at_3_max value: 26.47073745859859 - type: nauc_recall_at_3_std value: -13.151450499133057 - type: nauc_recall_at_5_diff1 value: 38.5058386963604 - type: nauc_recall_at_5_max value: 26.128698034399218 - type: nauc_recall_at_5_std value: -8.92423552488776 - type: ndcg_at_1 value: 52.16 - type: ndcg_at_10 value: 54.071999999999996 - type: ndcg_at_100 value: 60.851 - type: ndcg_at_1000 value: 62.907999999999994 - type: ndcg_at_20 value: 57.001000000000005 - type: ndcg_at_3 value: 49.712 - type: ndcg_at_5 value: 50.791 - type: precision_at_1 value: 52.16 - type: precision_at_10 value: 15.062000000000001 - type: precision_at_100 value: 2.218 - type: precision_at_1000 value: 0.258 - type: precision_at_20 value: 8.827 - type: precision_at_3 value: 33.282000000000004 - type: precision_at_5 value: 24.012 - type: recall_at_1 value: 27.345000000000002 - type: recall_at_10 value: 61.846999999999994 - type: recall_at_100 value: 86.125 - type: recall_at_1000 value: 98.13199999999999 - type: recall_at_20 value: 70.545 - type: recall_at_3 value: 45.446 - type: recall_at_5 value: 52.031000000000006 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA (default) revision: ab518f4d6fcca38d87c25209f94beba119d02014 split: test type: mteb/hotpotqa metrics: - type: main_score value: 74.959 - type: map_at_1 value: 39.507 - type: map_at_10 value: 67.368 - type: map_at_100 value: 68.208 - type: map_at_1000 value: 68.258 - type: map_at_20 value: 67.9 - type: map_at_3 value: 63.695 - type: map_at_5 value: 66.069 - type: mrr_at_1 value: 79.01417960837273 - type: mrr_at_10 value: 85.29256294009818 - type: mrr_at_100 value: 85.43598687762321 - type: mrr_at_1000 value: 85.44005185885888 - type: mrr_at_20 value: 85.385908910377 - type: mrr_at_3 value: 84.41368444744523 - type: mrr_at_5 value: 84.9990997074046 - type: nauc_map_at_1000_diff1 value: 21.12170489619495 - type: nauc_map_at_1000_max value: 26.275894183746722 - type: nauc_map_at_1000_std value: -6.270422764724773 - type: nauc_map_at_100_diff1 value: 21.100748412891427 - type: nauc_map_at_100_max value: 26.267357900952376 - type: nauc_map_at_100_std value: -6.244347667315573 - type: nauc_map_at_10_diff1 value: 20.674777133569105 - type: nauc_map_at_10_max value: 26.0464950302885 - type: nauc_map_at_10_std value: -6.879486555235194 - type: nauc_map_at_1_diff1 value: 61.578918111691614 - type: nauc_map_at_1_max value: 42.809228851971554 - type: nauc_map_at_1_std value: -18.693501607160478 - type: nauc_map_at_20_diff1 value: 21.016679127441627 - type: nauc_map_at_20_max value: 26.26493055547197 - type: nauc_map_at_20_std value: -6.348265956664924 - type: nauc_map_at_3_diff1 value: 19.211524514269673 - type: nauc_map_at_3_max value: 25.179630796295072 - type: nauc_map_at_3_std value: -9.469682815051597 - type: nauc_map_at_5_diff1 value: 19.802257269903983 - type: nauc_map_at_5_max value: 25.843065189828675 - type: nauc_map_at_5_std value: -7.6911117288836275 - type: nauc_mrr_at_1000_diff1 value: 60.90611255392621 - type: nauc_mrr_at_1000_max value: 45.28902337460921 - type: nauc_mrr_at_1000_std value: -15.081836800607629 - type: nauc_mrr_at_100_diff1 value: 60.906319613903634 - type: nauc_mrr_at_100_max value: 45.294454122569135 - type: nauc_mrr_at_100_std value: -15.070354934845525 - type: nauc_mrr_at_10_diff1 value: 60.89081258769886 - type: nauc_mrr_at_10_max value: 45.340063090713706 - type: nauc_mrr_at_10_std value: -15.019436328769977 - type: nauc_mrr_at_1_diff1 value: 61.578918111691614 - type: nauc_mrr_at_1_max value: 42.809228851971554 - type: nauc_mrr_at_1_std value: -18.693501607160478 - type: nauc_mrr_at_20_diff1 value: 60.91444288979141 - type: nauc_mrr_at_20_max value: 45.31431373445948 - type: nauc_mrr_at_20_std value: -14.97309014683095 - type: nauc_mrr_at_3_diff1 value: 60.772894031312696 - type: nauc_mrr_at_3_max value: 45.605293386022225 - type: nauc_mrr_at_3_std value: -15.391241831624658 - type: nauc_mrr_at_5_diff1 value: 60.71990183490615 - type: nauc_mrr_at_5_max value: 45.478031078283045 - type: nauc_mrr_at_5_std value: -15.099732959629012 - type: nauc_ndcg_at_1000_diff1 value: 27.86370916809549 - type: nauc_ndcg_at_1000_max value: 29.961195201820917 - type: nauc_ndcg_at_1000_std value: -3.669547648606182 - type: nauc_ndcg_at_100_diff1 value: 27.222363197903203 - type: nauc_ndcg_at_100_max value: 29.83590955603319 - type: nauc_ndcg_at_100_std value: -2.706914023646432 - type: nauc_ndcg_at_10_diff1 value: 25.720275283710905 - type: nauc_ndcg_at_10_max value: 29.099451842124513 - type: nauc_ndcg_at_10_std value: -4.974149196543083 - type: nauc_ndcg_at_1_diff1 value: 61.578918111691614 - type: nauc_ndcg_at_1_max value: 42.809228851971554 - type: nauc_ndcg_at_1_std value: -18.693501607160478 - type: nauc_ndcg_at_20_diff1 value: 26.6414778719889 - type: nauc_ndcg_at_20_max value: 29.7153470420483 - type: nauc_ndcg_at_20_std value: -3.323674164247545 - type: nauc_ndcg_at_3_diff1 value: 23.854705547556676 - type: nauc_ndcg_at_3_max value: 28.16819582399863 - type: nauc_ndcg_at_3_std value: -9.175742937548364 - type: nauc_ndcg_at_5_diff1 value: 24.235289969946336 - type: nauc_ndcg_at_5_max value: 28.837159697000736 - type: nauc_ndcg_at_5_std value: -6.6312641809059825 - type: nauc_precision_at_1000_diff1 value: 15.588021360728687 - type: nauc_precision_at_1000_max value: 22.39953961246837 - type: nauc_precision_at_1000_std value: 47.68406787651948 - type: nauc_precision_at_100_diff1 value: 14.082191847912181 - type: nauc_precision_at_100_max value: 24.398280717374227 - type: nauc_precision_at_100_std value: 29.845964300686106 - type: nauc_precision_at_10_diff1 value: 14.078430107561424 - type: nauc_precision_at_10_max value: 24.03621964514711 - type: nauc_precision_at_10_std value: 6.216273371941104 - type: nauc_precision_at_1_diff1 value: 61.578918111691614 - type: nauc_precision_at_1_max value: 42.809228851971554 - type: nauc_precision_at_1_std value: -18.693501607160478 - type: nauc_precision_at_20_diff1 value: 15.305783955465262 - type: nauc_precision_at_20_max value: 25.331504698917186 - type: nauc_precision_at_20_std value: 14.995465986068544 - type: nauc_precision_at_3_diff1 value: 13.428353704090718 - type: nauc_precision_at_3_max value: 24.235140590205866 - type: nauc_precision_at_3_std value: -5.482186394535428 - type: nauc_precision_at_5_diff1 value: 12.446233438129173 - type: nauc_precision_at_5_max value: 24.572973116392642 - type: nauc_precision_at_5_std value: 0.24277662503234543 - type: nauc_recall_at_1000_diff1 value: 15.588021360729346 - type: nauc_recall_at_1000_max value: 22.399539612468512 - type: nauc_recall_at_1000_std value: 47.684067876519485 - type: nauc_recall_at_100_diff1 value: 14.082191847912085 - type: nauc_recall_at_100_max value: 24.398280717374345 - type: nauc_recall_at_100_std value: 29.845964300686095 - type: nauc_recall_at_10_diff1 value: 14.078430107561557 - type: nauc_recall_at_10_max value: 24.03621964514713 - type: nauc_recall_at_10_std value: 6.216273371941132 - type: nauc_recall_at_1_diff1 value: 61.578918111691614 - type: nauc_recall_at_1_max value: 42.809228851971554 - type: nauc_recall_at_1_std value: -18.693501607160478 - type: nauc_recall_at_20_diff1 value: 15.30578395546536 - type: nauc_recall_at_20_max value: 25.33150469891727 - type: nauc_recall_at_20_std value: 14.995465986068684 - type: nauc_recall_at_3_diff1 value: 13.428353704090698 - type: nauc_recall_at_3_max value: 24.235140590205813 - type: nauc_recall_at_3_std value: -5.482186394535521 - type: nauc_recall_at_5_diff1 value: 12.446233438129164 - type: nauc_recall_at_5_max value: 24.572973116392614 - type: nauc_recall_at_5_std value: 0.242776625032411 - type: ndcg_at_1 value: 79.014 - type: ndcg_at_10 value: 74.959 - type: ndcg_at_100 value: 77.70700000000001 - type: ndcg_at_1000 value: 78.628 - type: ndcg_at_20 value: 76.23400000000001 - type: ndcg_at_3 value: 69.891 - type: ndcg_at_5 value: 72.82600000000001 - type: precision_at_1 value: 79.014 - type: precision_at_10 value: 15.946 - type: precision_at_100 value: 1.806 - type: precision_at_1000 value: 0.193 - type: precision_at_20 value: 8.381 - type: precision_at_3 value: 45.726 - type: precision_at_5 value: 29.75 - type: recall_at_1 value: 39.507 - type: recall_at_10 value: 79.73 - type: recall_at_100 value: 90.28399999999999 - type: recall_at_1000 value: 96.327 - type: recall_at_20 value: 83.815 - type: recall_at_3 value: 68.589 - type: recall_at_5 value: 74.375 task: type: Retrieval - dataset: config: default name: MTEB ImdbClassification (default) revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 split: test type: mteb/imdb metrics: - type: accuracy value: 96.6444 - type: ap value: 94.71353946976426 - type: ap_weighted value: 94.71353946976426 - type: f1 value: 96.64368622221421 - type: f1_weighted value: 96.64368622221419 - type: main_score value: 96.6444 task: type: Classification - dataset: config: default name: MTEB MSMARCO (default) revision: c5a29a104738b98a9e76336939199e264163d4a0 split: dev type: mteb/msmarco metrics: - type: main_score value: 42.545 - type: map_at_1 value: 22.655 - type: map_at_10 value: 35.467999999999996 - type: map_at_100 value: 36.652 - type: map_at_1000 value: 36.692 - type: map_at_20 value: 36.236000000000004 - type: map_at_3 value: 31.485000000000003 - type: map_at_5 value: 33.908 - type: mrr_at_1 value: 23.280802292263612 - type: mrr_at_10 value: 36.02329217264742 - type: mrr_at_100 value: 37.148118537446415 - type: mrr_at_1000 value: 37.183801105059956 - type: mrr_at_20 value: 36.76525675340281 - type: mrr_at_3 value: 32.096466093600654 - type: mrr_at_5 value: 34.50334288443163 - type: nauc_map_at_1000_diff1 value: 34.520324529857184 - type: nauc_map_at_1000_max value: 35.326534835022514 - type: nauc_map_at_1000_std value: -21.366160566488187 - type: nauc_map_at_100_diff1 value: 34.51815749165448 - type: nauc_map_at_100_max value: 35.36490672794807 - type: nauc_map_at_100_std value: -21.34319223709314 - type: nauc_map_at_10_diff1 value: 34.36733390350321 - type: nauc_map_at_10_max value: 35.47907368100861 - type: nauc_map_at_10_std value: -21.932334599571735 - type: nauc_map_at_1_diff1 value: 37.89554066876773 - type: nauc_map_at_1_max value: 28.579792597905413 - type: nauc_map_at_1_std value: -20.51606339206856 - type: nauc_map_at_20_diff1 value: 34.51926497566516 - type: nauc_map_at_20_max value: 35.497148638709895 - type: nauc_map_at_20_std value: -21.595925239714767 - type: nauc_map_at_3_diff1 value: 34.64924634604746 - type: nauc_map_at_3_max value: 33.298757220805754 - type: nauc_map_at_3_std value: -22.44092979514115 - type: nauc_map_at_5_diff1 value: 34.52262452267762 - type: nauc_map_at_5_max value: 34.993794904126 - type: nauc_map_at_5_std value: -22.19799323514771 - type: nauc_mrr_at_1000_diff1 value: 34.30028152962552 - type: nauc_mrr_at_1000_max value: 34.84294030005338 - type: nauc_mrr_at_1000_std value: -21.3040159303398 - type: nauc_mrr_at_100_diff1 value: 34.29714922716057 - type: nauc_mrr_at_100_max value: 34.8773691257525 - type: nauc_mrr_at_100_std value: -21.280800887086606 - type: nauc_mrr_at_10_diff1 value: 34.141133687651255 - type: nauc_mrr_at_10_max value: 34.97057209823848 - type: nauc_mrr_at_10_std value: -21.82443447975521 - type: nauc_mrr_at_1_diff1 value: 37.68273289251851 - type: nauc_mrr_at_1_max value: 28.375793374298752 - type: nauc_mrr_at_1_std value: -20.548630760150132 - type: nauc_mrr_at_20_diff1 value: 34.29297087665669 - type: nauc_mrr_at_20_max value: 34.99361503254817 - type: nauc_mrr_at_20_std value: -21.492481020546688 - type: nauc_mrr_at_3_diff1 value: 34.46337545862703 - type: nauc_mrr_at_3_max value: 32.91269289394109 - type: nauc_mrr_at_3_std value: -22.400479840328636 - type: nauc_mrr_at_5_diff1 value: 34.28655737221164 - type: nauc_mrr_at_5_max value: 34.57504983292885 - type: nauc_mrr_at_5_std value: -22.11521048383527 - type: nauc_ndcg_at_1000_diff1 value: 33.62874580335025 - type: nauc_ndcg_at_1000_max value: 37.1872988379906 - type: nauc_ndcg_at_1000_std value: -19.60332451143694 - type: nauc_ndcg_at_100_diff1 value: 33.5135571710796 - type: nauc_ndcg_at_100_max value: 38.255675537823564 - type: nauc_ndcg_at_100_std value: -18.69039354080076 - type: nauc_ndcg_at_10_diff1 value: 33.04700239507369 - type: nauc_ndcg_at_10_max value: 38.87644726684572 - type: nauc_ndcg_at_10_std value: -21.761270791633518 - type: nauc_ndcg_at_1_diff1 value: 37.68273289251851 - type: nauc_ndcg_at_1_max value: 28.375793374298752 - type: nauc_ndcg_at_1_std value: -20.548630760150132 - type: nauc_ndcg_at_20_diff1 value: 33.59333929099863 - type: nauc_ndcg_at_20_max value: 39.13869119152796 - type: nauc_ndcg_at_20_std value: -20.455820914752028 - type: nauc_ndcg_at_3_diff1 value: 33.72195690786571 - type: nauc_ndcg_at_3_max value: 34.58224856532535 - type: nauc_ndcg_at_3_std value: -22.932493269664924 - type: nauc_ndcg_at_5_diff1 value: 33.454322211125806 - type: nauc_ndcg_at_5_max value: 37.62697388354373 - type: nauc_ndcg_at_5_std value: -22.471519101664132 - type: nauc_precision_at_1000_diff1 value: -4.815785976068792 - type: nauc_precision_at_1000_max value: -1.6093873845854942 - type: nauc_precision_at_1000_std value: 14.781030440554144 - type: nauc_precision_at_100_diff1 value: 11.770023400226492 - type: nauc_precision_at_100_max value: 32.39585905434347 - type: nauc_precision_at_100_std value: 13.926995268735807 - type: nauc_precision_at_10_diff1 value: 26.033870063028758 - type: nauc_precision_at_10_max value: 46.706875249128515 - type: nauc_precision_at_10_std value: -19.221899044995098 - type: nauc_precision_at_1_diff1 value: 37.68273289251851 - type: nauc_precision_at_1_max value: 28.375793374298752 - type: nauc_precision_at_1_std value: -20.548630760150132 - type: nauc_precision_at_20_diff1 value: 25.100441174579007 - type: nauc_precision_at_20_max value: 46.91020875403547 - type: nauc_precision_at_20_std value: -11.192277515531218 - type: nauc_precision_at_3_diff1 value: 30.618588495438985 - type: nauc_precision_at_3_max value: 37.248088037331286 - type: nauc_precision_at_3_std value: -23.92085440457614 - type: nauc_precision_at_5_diff1 value: 29.142344221391838 - type: nauc_precision_at_5_max value: 43.527892902769175 - type: nauc_precision_at_5_std value: -22.312841501376514 - type: nauc_recall_at_1000_diff1 value: 12.994211769214695 - type: nauc_recall_at_1000_max value: 55.743471097359446 - type: nauc_recall_at_1000_std value: 50.500646267896954 - type: nauc_recall_at_100_diff1 value: 25.84611790014738 - type: nauc_recall_at_100_max value: 62.84236269533729 - type: nauc_recall_at_100_std value: 16.99467383693571 - type: nauc_recall_at_10_diff1 value: 28.494332014682527 - type: nauc_recall_at_10_max value: 50.75293572531052 - type: nauc_recall_at_10_std value: -20.592936248452297 - type: nauc_recall_at_1_diff1 value: 37.89554066876773 - type: nauc_recall_at_1_max value: 28.579792597905413 - type: nauc_recall_at_1_std value: -20.51606339206856 - type: nauc_recall_at_20_diff1 value: 30.144206368539777 - type: nauc_recall_at_20_max value: 55.78415931465269 - type: nauc_recall_at_20_std value: -13.536686353112964 - type: nauc_recall_at_3_diff1 value: 31.153704257566993 - type: nauc_recall_at_3_max value: 38.10114875174283 - type: nauc_recall_at_3_std value: -24.098427776224725 - type: nauc_recall_at_5_diff1 value: 30.330462760076372 - type: nauc_recall_at_5_max value: 45.334521843132926 - type: nauc_recall_at_5_std value: -23.00539480314331 - type: ndcg_at_1 value: 23.281 - type: ndcg_at_10 value: 42.545 - type: ndcg_at_100 value: 48.091 - type: ndcg_at_1000 value: 49.135 - type: ndcg_at_20 value: 45.279 - type: ndcg_at_3 value: 34.507 - type: ndcg_at_5 value: 38.824 - type: precision_at_1 value: 23.281 - type: precision_at_10 value: 6.7250000000000005 - type: precision_at_100 value: 0.947 - type: precision_at_1000 value: 0.104 - type: precision_at_20 value: 3.9309999999999996 - type: precision_at_3 value: 14.771 - type: precision_at_5 value: 11.049000000000001 - type: recall_at_1 value: 22.655 - type: recall_at_10 value: 64.316 - type: recall_at_100 value: 89.596 - type: recall_at_1000 value: 97.627 - type: recall_at_20 value: 74.946 - type: recall_at_3 value: 42.625 - type: recall_at_5 value: 52.967 task: type: Retrieval - dataset: config: en name: MTEB MTOPDomainClassification (en) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 97.02462380300956 - type: f1 value: 96.7276440209508 - type: f1_weighted value: 97.04875399973407 - type: main_score value: 97.02462380300956 task: type: Classification - dataset: config: en name: MTEB MTOPIntentClassification (en) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 87.9252165982672 - type: f1 value: 67.80472291570956 - type: f1_weighted value: 87.85202683538105 - type: main_score value: 87.9252165982672 task: type: Classification - dataset: config: en name: MTEB MassiveIntentClassification (en) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 80.60524546065905 - type: f1 value: 78.33960315662881 - type: f1_weighted value: 79.95922500362934 - type: main_score value: 80.60524546065905 task: type: Classification - dataset: config: en name: MTEB MassiveScenarioClassification (en) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 81.93006052454606 - type: f1 value: 81.2714057686431 - type: f1_weighted value: 81.85548518216183 - type: main_score value: 81.93006052454606 task: type: Classification - dataset: config: default name: MTEB MedrxivClusteringP2P (default) revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 split: test type: mteb/medrxiv-clustering-p2p metrics: - type: main_score value: 41.53648349744648 - type: v_measure value: 41.53648349744648 - type: v_measure_std value: 1.3073220375465617 task: type: Clustering - dataset: config: default name: MTEB MedrxivClusteringS2S (default) revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 split: test type: mteb/medrxiv-clustering-s2s metrics: - type: main_score value: 40.53587011806646 - type: v_measure value: 40.53587011806646 - type: v_measure_std value: 1.4167198988428324 task: type: Clustering - dataset: config: default name: MTEB MindSmallReranking (default) revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7 split: test type: mteb/mind_small metrics: - type: main_score value: 34.12179940649658 - type: map value: 34.12179940649658 - type: mrr value: 35.58575183247432 - type: nAUC_map_diff1 value: 18.455263729874243 - type: nAUC_map_max value: -18.69448732764168 - type: nAUC_map_std value: 8.198608386567457 - type: nAUC_mrr_diff1 value: 16.22907129322154 - type: nAUC_mrr_max value: -13.594180628663738 - type: nAUC_mrr_std value: 8.300689743851711 task: type: Reranking - dataset: config: default name: MTEB NFCorpus (default) revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 split: test type: mteb/nfcorpus metrics: - type: main_score value: 37.545 - type: map_at_1 value: 5.949999999999999 - type: map_at_10 value: 13.8 - type: map_at_100 value: 17.653 - type: map_at_1000 value: 19.322 - type: map_at_20 value: 15.318999999999999 - type: map_at_3 value: 10.211 - type: map_at_5 value: 11.757 - type: mrr_at_1 value: 49.84520123839009 - type: mrr_at_10 value: 58.26490245220894 - type: mrr_at_100 value: 58.751461262818694 - type: mrr_at_1000 value: 58.782721242595436 - type: mrr_at_20 value: 58.51537179710553 - type: mrr_at_3 value: 56.24355005159959 - type: mrr_at_5 value: 57.26522187822497 - type: nauc_map_at_1000_diff1 value: 24.708811804064975 - type: nauc_map_at_1000_max value: 22.51050994461675 - type: nauc_map_at_1000_std value: 12.29167974269923 - type: nauc_map_at_100_diff1 value: 27.740081813309736 - type: nauc_map_at_100_max value: 22.220395977232094 - type: nauc_map_at_100_std value: 8.670978243811184 - type: nauc_map_at_10_diff1 value: 34.4703308010072 - type: nauc_map_at_10_max value: 18.539226897919768 - type: nauc_map_at_10_std value: -0.9186030178287692 - type: nauc_map_at_1_diff1 value: 48.903950722167245 - type: nauc_map_at_1_max value: 4.368015121190565 - type: nauc_map_at_1_std value: -11.682230965520118 - type: nauc_map_at_20_diff1 value: 30.85072911235718 - type: nauc_map_at_20_max value: 20.024421045580016 - type: nauc_map_at_20_std value: 2.4437812527877223 - type: nauc_map_at_3_diff1 value: 39.1701521223124 - type: nauc_map_at_3_max value: 12.315298159822717 - type: nauc_map_at_3_std value: -5.1211175310668775 - type: nauc_map_at_5_diff1 value: 38.23279649034153 - type: nauc_map_at_5_max value: 14.562453378970972 - type: nauc_map_at_5_std value: -3.8872952078037306 - type: nauc_mrr_at_1000_diff1 value: 25.76454031603339 - type: nauc_mrr_at_1000_max value: 36.987486973646504 - type: nauc_mrr_at_1000_std value: 23.993127405911782 - type: nauc_mrr_at_100_diff1 value: 25.75748809964789 - type: nauc_mrr_at_100_max value: 37.00137109451698 - type: nauc_mrr_at_100_std value: 24.02115415632134 - type: nauc_mrr_at_10_diff1 value: 25.859969609083706 - type: nauc_mrr_at_10_max value: 36.94417043125623 - type: nauc_mrr_at_10_std value: 23.69193588816108 - type: nauc_mrr_at_1_diff1 value: 25.13856497503111 - type: nauc_mrr_at_1_max value: 33.3647833822104 - type: nauc_mrr_at_1_std value: 21.516825179743293 - type: nauc_mrr_at_20_diff1 value: 25.642602521543896 - type: nauc_mrr_at_20_max value: 37.00173585685738 - type: nauc_mrr_at_20_std value: 23.948759826317996 - type: nauc_mrr_at_3_diff1 value: 24.57379470383737 - type: nauc_mrr_at_3_max value: 35.05292254453142 - type: nauc_mrr_at_3_std value: 22.164140056553332 - type: nauc_mrr_at_5_diff1 value: 25.945828840033407 - type: nauc_mrr_at_5_max value: 36.28692013847132 - type: nauc_mrr_at_5_std value: 23.029834512220173 - type: nauc_ndcg_at_1000_diff1 value: 20.296757719323153 - type: nauc_ndcg_at_1000_max value: 37.48395095000081 - type: nauc_ndcg_at_1000_std value: 31.427363488785897 - type: nauc_ndcg_at_100_diff1 value: 20.850922448339382 - type: nauc_ndcg_at_100_max value: 31.994561388810332 - type: nauc_ndcg_at_100_std value: 24.999776113877374 - type: nauc_ndcg_at_10_diff1 value: 15.294338982345188 - type: nauc_ndcg_at_10_max value: 28.88313313311664 - type: nauc_ndcg_at_10_std value: 20.868634992089486 - type: nauc_ndcg_at_1_diff1 value: 26.184542545764266 - type: nauc_ndcg_at_1_max value: 33.49408854189648 - type: nauc_ndcg_at_1_std value: 21.644457229854616 - type: nauc_ndcg_at_20_diff1 value: 15.341797014632963 - type: nauc_ndcg_at_20_max value: 27.84956487113421 - type: nauc_ndcg_at_20_std value: 21.97010876262456 - type: nauc_ndcg_at_3_diff1 value: 16.617546176572887 - type: nauc_ndcg_at_3_max value: 31.0807079505372 - type: nauc_ndcg_at_3_std value: 20.563003372087447 - type: nauc_ndcg_at_5_diff1 value: 17.141262698147518 - type: nauc_ndcg_at_5_max value: 31.014000002769315 - type: nauc_ndcg_at_5_std value: 21.903989918122914 - type: nauc_precision_at_1000_diff1 value: -26.736915033118148 - type: nauc_precision_at_1000_max value: 0.41514162563304957 - type: nauc_precision_at_1000_std value: 29.414979920206335 - type: nauc_precision_at_100_diff1 value: -22.29841081134693 - type: nauc_precision_at_100_max value: 10.670850649163286 - type: nauc_precision_at_100_std value: 37.030209783550625 - type: nauc_precision_at_10_diff1 value: -7.401740939284052 - type: nauc_precision_at_10_max value: 26.372442015476512 - type: nauc_precision_at_10_std value: 28.058522245561985 - type: nauc_precision_at_1_diff1 value: 25.992836361025546 - type: nauc_precision_at_1_max value: 33.81712388873076 - type: nauc_precision_at_1_std value: 22.130100241561536 - type: nauc_precision_at_20_diff1 value: -14.715825716659179 - type: nauc_precision_at_20_max value: 21.0400050444382 - type: nauc_precision_at_20_std value: 32.37056700564148 - type: nauc_precision_at_3_diff1 value: 5.626852329412606 - type: nauc_precision_at_3_max value: 31.486758990096703 - type: nauc_precision_at_3_std value: 23.372250462239542 - type: nauc_precision_at_5_diff1 value: 1.2273456188651337 - type: nauc_precision_at_5_max value: 30.63448937975829 - type: nauc_precision_at_5_std value: 27.319392615570614 - type: nauc_recall_at_1000_diff1 value: 7.442058577828199 - type: nauc_recall_at_1000_max value: 17.366286208134948 - type: nauc_recall_at_1000_std value: 16.538023469059937 - type: nauc_recall_at_100_diff1 value: 18.263940318090828 - type: nauc_recall_at_100_max value: 18.766819889035368 - type: nauc_recall_at_100_std value: 10.297431485613268 - type: nauc_recall_at_10_diff1 value: 30.052808504776717 - type: nauc_recall_at_10_max value: 17.223636924464284 - type: nauc_recall_at_10_std value: -2.8915719805312126 - type: nauc_recall_at_1_diff1 value: 48.903950722167245 - type: nauc_recall_at_1_max value: 4.368015121190565 - type: nauc_recall_at_1_std value: -11.682230965520118 - type: nauc_recall_at_20_diff1 value: 25.00678345922952 - type: nauc_recall_at_20_max value: 17.734815525743993 - type: nauc_recall_at_20_std value: 1.2937788396283523 - type: nauc_recall_at_3_diff1 value: 34.053479666933164 - type: nauc_recall_at_3_max value: 10.356061180744728 - type: nauc_recall_at_3_std value: -7.622782189103819 - type: nauc_recall_at_5_diff1 value: 35.282050319114994 - type: nauc_recall_at_5_max value: 13.444414495259005 - type: nauc_recall_at_5_std value: -6.406123122708332 - type: ndcg_at_1 value: 47.833 - type: ndcg_at_10 value: 37.545 - type: ndcg_at_100 value: 34.608 - type: ndcg_at_1000 value: 43.789 - type: ndcg_at_20 value: 34.724 - type: ndcg_at_3 value: 43.055 - type: ndcg_at_5 value: 40.595 - type: precision_at_1 value: 49.536 - type: precision_at_10 value: 27.678000000000004 - type: precision_at_100 value: 8.901 - type: precision_at_1000 value: 2.225 - type: precision_at_20 value: 20.279 - type: precision_at_3 value: 40.144000000000005 - type: precision_at_5 value: 34.675 - type: recall_at_1 value: 5.949999999999999 - type: recall_at_10 value: 18.368000000000002 - type: recall_at_100 value: 36.702 - type: recall_at_1000 value: 69.39800000000001 - type: recall_at_20 value: 22.241 - type: recall_at_3 value: 11.618 - type: recall_at_5 value: 14.338999999999999 task: type: Retrieval - dataset: config: default name: MTEB NQ (default) revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 split: test type: mteb/nq metrics: - type: main_score value: 64.693 - type: map_at_1 value: 40.119 - type: map_at_10 value: 57.008 - type: map_at_100 value: 57.769999999999996 - type: map_at_1000 value: 57.782999999999994 - type: map_at_20 value: 57.528999999999996 - type: map_at_3 value: 52.713 - type: map_at_5 value: 55.462 - type: mrr_at_1 value: 45.017381228273464 - type: mrr_at_10 value: 59.62700481892242 - type: mrr_at_100 value: 60.11977007964554 - type: mrr_at_1000 value: 60.12838314206039 - type: mrr_at_20 value: 59.96971543639854 - type: mrr_at_3 value: 56.38277327153322 - type: mrr_at_5 value: 58.559772112784756 - type: nauc_map_at_1000_diff1 value: 39.016224863361316 - type: nauc_map_at_1000_max value: 30.677526741613914 - type: nauc_map_at_1000_std value: -9.925306326190029 - type: nauc_map_at_100_diff1 value: 39.02038091276591 - type: nauc_map_at_100_max value: 30.687899774856326 - type: nauc_map_at_100_std value: -9.914518833390677 - type: nauc_map_at_10_diff1 value: 39.04523753783543 - type: nauc_map_at_10_max value: 30.976052448225627 - type: nauc_map_at_10_std value: -10.41607954987974 - type: nauc_map_at_1_diff1 value: 40.06219774868448 - type: nauc_map_at_1_max value: 26.735486652072517 - type: nauc_map_at_1_std value: -8.304382193524896 - type: nauc_map_at_20_diff1 value: 39.05577477358533 - type: nauc_map_at_20_max value: 30.78179300885049 - type: nauc_map_at_20_std value: -10.033002471334074 - type: nauc_map_at_3_diff1 value: 38.802559695913885 - type: nauc_map_at_3_max value: 30.365699555342978 - type: nauc_map_at_3_std value: -11.716942405728881 - type: nauc_map_at_5_diff1 value: 38.88593641854277 - type: nauc_map_at_5_max value: 30.93585211223555 - type: nauc_map_at_5_std value: -10.926633622752911 - type: nauc_mrr_at_1000_diff1 value: 39.04692080086692 - type: nauc_mrr_at_1000_max value: 30.197468259524175 - type: nauc_mrr_at_1000_std value: -7.818491692833017 - type: nauc_mrr_at_100_diff1 value: 39.0473015118493 - type: nauc_mrr_at_100_max value: 30.203218891973965 - type: nauc_mrr_at_100_std value: -7.809410627895269 - type: nauc_mrr_at_10_diff1 value: 39.022526617566456 - type: nauc_mrr_at_10_max value: 30.41103199763037 - type: nauc_mrr_at_10_std value: -7.986473780645788 - type: nauc_mrr_at_1_diff1 value: 40.2687402313342 - type: nauc_mrr_at_1_max value: 26.56359606867155 - type: nauc_mrr_at_1_std value: -6.6659359448538025 - type: nauc_mrr_at_20_diff1 value: 39.048111884686826 - type: nauc_mrr_at_20_max value: 30.246914959156364 - type: nauc_mrr_at_20_std value: -7.801804075454251 - type: nauc_mrr_at_3_diff1 value: 38.8647060004973 - type: nauc_mrr_at_3_max value: 30.225427021287963 - type: nauc_mrr_at_3_std value: -9.016676247800575 - type: nauc_mrr_at_5_diff1 value: 38.95589884289447 - type: nauc_mrr_at_5_max value: 30.55482027762662 - type: nauc_mrr_at_5_std value: -8.287991164740555 - type: nauc_ndcg_at_1000_diff1 value: 38.935229352725536 - type: nauc_ndcg_at_1000_max value: 31.318278701790277 - type: nauc_ndcg_at_1000_std value: -8.498883716013742 - type: nauc_ndcg_at_100_diff1 value: 39.00131687376651 - type: nauc_ndcg_at_100_max value: 31.60126452179523 - type: nauc_ndcg_at_100_std value: -8.0878761098937 - type: nauc_ndcg_at_10_diff1 value: 38.997637272745976 - type: nauc_ndcg_at_10_max value: 32.81562205617119 - type: nauc_ndcg_at_10_std value: -9.809117549403716 - type: nauc_ndcg_at_1_diff1 value: 40.2687402313342 - type: nauc_ndcg_at_1_max value: 26.56359606867155 - type: nauc_ndcg_at_1_std value: -6.6659359448538025 - type: nauc_ndcg_at_20_diff1 value: 39.05787809282005 - type: nauc_ndcg_at_20_max value: 32.148837127474216 - type: nauc_ndcg_at_20_std value: -8.538216720226362 - type: nauc_ndcg_at_3_diff1 value: 38.514904225460185 - type: nauc_ndcg_at_3_max value: 31.647932572190907 - type: nauc_ndcg_at_3_std value: -12.117323520301271 - type: nauc_ndcg_at_5_diff1 value: 38.67523620158631 - type: nauc_ndcg_at_5_max value: 32.71111428248374 - type: nauc_ndcg_at_5_std value: -10.830509911489106 - type: nauc_precision_at_1000_diff1 value: -10.134425320872637 - type: nauc_precision_at_1000_max value: -7.9214866985442836 - type: nauc_precision_at_1000_std value: 14.593125138517463 - type: nauc_precision_at_100_diff1 value: -6.427184925035445 - type: nauc_precision_at_100_max value: -3.565171885582329 - type: nauc_precision_at_100_std value: 15.87161403279646 - type: nauc_precision_at_10_diff1 value: 9.87974963974257 - type: nauc_precision_at_10_max value: 14.701681974930208 - type: nauc_precision_at_10_std value: 3.7336847482921924 - type: nauc_precision_at_1_diff1 value: 40.2687402313342 - type: nauc_precision_at_1_max value: 26.56359606867155 - type: nauc_precision_at_1_std value: -6.6659359448538025 - type: nauc_precision_at_20_diff1 value: 2.890969722929749 - type: nauc_precision_at_20_max value: 6.794303444012595 - type: nauc_precision_at_20_std value: 10.705845010583102 - type: nauc_precision_at_3_diff1 value: 25.828531407512916 - type: nauc_precision_at_3_max value: 26.003194922700068 - type: nauc_precision_at_3_std value: -9.365843001852745 - type: nauc_precision_at_5_diff1 value: 18.442430286590213 - type: nauc_precision_at_5_max value: 22.17126455978319 - type: nauc_precision_at_5_std value: -3.307912326207094 - type: nauc_recall_at_1000_diff1 value: 37.08230039820157 - type: nauc_recall_at_1000_max value: 47.10529218716289 - type: nauc_recall_at_1000_std value: 47.786964110589096 - type: nauc_recall_at_100_diff1 value: 41.32053677940413 - type: nauc_recall_at_100_max value: 53.09289155866568 - type: nauc_recall_at_100_std value: 32.47492854799267 - type: nauc_recall_at_10_diff1 value: 37.31427344851398 - type: nauc_recall_at_10_max value: 43.0702780767873 - type: nauc_recall_at_10_std value: -10.887409444200305 - type: nauc_recall_at_1_diff1 value: 40.06219774868448 - type: nauc_recall_at_1_max value: 26.735486652072517 - type: nauc_recall_at_1_std value: -8.304382193524896 - type: nauc_recall_at_20_diff1 value: 38.026247692487225 - type: nauc_recall_at_20_max value: 43.122612480943125 - type: nauc_recall_at_20_std value: 0.06425536869830446 - type: nauc_recall_at_3_diff1 value: 36.42120384763962 - type: nauc_recall_at_3_max value: 34.94129978903372 - type: nauc_recall_at_3_std value: -15.716640140198779 - type: nauc_recall_at_5_diff1 value: 36.15895636103322 - type: nauc_recall_at_5_max value: 38.80623578799298 - type: nauc_recall_at_5_std value: -13.51525373978869 - type: ndcg_at_1 value: 45.017 - type: ndcg_at_10 value: 64.693 - type: ndcg_at_100 value: 67.632 - type: ndcg_at_1000 value: 67.91199999999999 - type: ndcg_at_20 value: 66.277 - type: ndcg_at_3 value: 57.046 - type: ndcg_at_5 value: 61.516999999999996 - type: precision_at_1 value: 45.017 - type: precision_at_10 value: 10.18 - type: precision_at_100 value: 1.185 - type: precision_at_1000 value: 0.121 - type: precision_at_20 value: 5.479 - type: precision_at_3 value: 25.541000000000004 - type: precision_at_5 value: 17.949 - type: recall_at_1 value: 40.119 - type: recall_at_10 value: 85.139 - type: recall_at_100 value: 97.444 - type: recall_at_1000 value: 99.529 - type: recall_at_20 value: 90.88199999999999 - type: recall_at_3 value: 65.88000000000001 - type: recall_at_5 value: 76.132 task: type: Retrieval - dataset: config: default name: MTEB QuoraRetrieval (default) revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 split: test type: mteb/quora metrics: - type: main_score value: 88.773 - type: map_at_1 value: 70.96000000000001 - type: map_at_10 value: 85.174 - type: map_at_100 value: 85.804 - type: map_at_1000 value: 85.817 - type: map_at_20 value: 85.596 - type: map_at_3 value: 82.219 - type: map_at_5 value: 84.098 - type: mrr_at_1 value: 81.76 - type: mrr_at_10 value: 87.79770634920607 - type: mrr_at_100 value: 87.89799102352673 - type: mrr_at_1000 value: 87.89865476743903 - type: mrr_at_20 value: 87.87680512328197 - type: mrr_at_3 value: 86.81999999999978 - type: mrr_at_5 value: 87.51299999999969 - type: nauc_map_at_1000_diff1 value: 76.90119675123604 - type: nauc_map_at_1000_max value: 20.079761155170527 - type: nauc_map_at_1000_std value: -62.08844878736319 - type: nauc_map_at_100_diff1 value: 76.91315659037733 - type: nauc_map_at_100_max value: 20.037613519830543 - type: nauc_map_at_100_std value: -62.1809605413574 - type: nauc_map_at_10_diff1 value: 77.29490073584684 - type: nauc_map_at_10_max value: 18.97493585375514 - type: nauc_map_at_10_std value: -65.06133578431042 - type: nauc_map_at_1_diff1 value: 80.92204517914038 - type: nauc_map_at_1_max value: 12.955779715044127 - type: nauc_map_at_1_std value: -53.185870692847814 - type: nauc_map_at_20_diff1 value: 77.06595372320452 - type: nauc_map_at_20_max value: 19.587544100405307 - type: nauc_map_at_20_std value: -63.38932039031718 - type: nauc_map_at_3_diff1 value: 77.81358593606132 - type: nauc_map_at_3_max value: 16.415667501797888 - type: nauc_map_at_3_std value: -65.91817124009025 - type: nauc_map_at_5_diff1 value: 77.55572041802866 - type: nauc_map_at_5_max value: 17.84810271472641 - type: nauc_map_at_5_std value: -66.5202429218229 - type: nauc_mrr_at_1000_diff1 value: 77.25919152483527 - type: nauc_mrr_at_1000_max value: 23.266505681060313 - type: nauc_mrr_at_1000_std value: -56.997207262592106 - type: nauc_mrr_at_100_diff1 value: 77.25865200926027 - type: nauc_mrr_at_100_max value: 23.266917952901537 - type: nauc_mrr_at_100_std value: -56.99775622461676 - type: nauc_mrr_at_10_diff1 value: 77.27177237809222 - type: nauc_mrr_at_10_max value: 23.234422413279194 - type: nauc_mrr_at_10_std value: -57.287098821203166 - type: nauc_mrr_at_1_diff1 value: 77.87705968629228 - type: nauc_mrr_at_1_max value: 23.357364820166353 - type: nauc_mrr_at_1_std value: -52.724677718394254 - type: nauc_mrr_at_20_diff1 value: 77.26510245027495 - type: nauc_mrr_at_20_max value: 23.250601444229872 - type: nauc_mrr_at_20_std value: -57.073576665896155 - type: nauc_mrr_at_3_diff1 value: 77.08835110871802 - type: nauc_mrr_at_3_max value: 23.37973990414157 - type: nauc_mrr_at_3_std value: -57.54668286148783 - type: nauc_mrr_at_5_diff1 value: 77.22940631493309 - type: nauc_mrr_at_5_max value: 23.256197542861436 - type: nauc_mrr_at_5_std value: -57.710428425249404 - type: nauc_ndcg_at_1000_diff1 value: 76.67905982606639 - type: nauc_ndcg_at_1000_max value: 21.96802435224643 - type: nauc_ndcg_at_1000_std value: -59.660695538408405 - type: nauc_ndcg_at_100_diff1 value: 76.72641745578917 - type: nauc_ndcg_at_100_max value: 21.752538833557992 - type: nauc_ndcg_at_100_std value: -60.14387533073589 - type: nauc_ndcg_at_10_diff1 value: 77.1697583832975 - type: nauc_ndcg_at_10_max value: 19.90438134636175 - type: nauc_ndcg_at_10_std value: -65.62207352990609 - type: nauc_ndcg_at_1_diff1 value: 77.87705968629228 - type: nauc_ndcg_at_1_max value: 23.357364820166353 - type: nauc_ndcg_at_1_std value: -52.724677718394254 - type: nauc_ndcg_at_20_diff1 value: 76.98061052184806 - type: nauc_ndcg_at_20_max value: 20.514885434747328 - type: nauc_ndcg_at_20_std value: -63.237149791291415 - type: nauc_ndcg_at_3_diff1 value: 76.32552624964065 - type: nauc_ndcg_at_3_max value: 19.923840442393544 - type: nauc_ndcg_at_3_std value: -63.588842129524245 - type: nauc_ndcg_at_5_diff1 value: 76.9533163521833 - type: nauc_ndcg_at_5_max value: 19.51602820692585 - type: nauc_ndcg_at_5_std value: -66.23316232094454 - type: nauc_precision_at_1000_diff1 value: -45.73706664910733 - type: nauc_precision_at_1000_max value: 7.913436156563994 - type: nauc_precision_at_1000_std value: 53.06948338411226 - type: nauc_precision_at_100_diff1 value: -45.31368947263091 - type: nauc_precision_at_100_max value: 7.188900869218029 - type: nauc_precision_at_100_std value: 50.86284056359611 - type: nauc_precision_at_10_diff1 value: -39.50336694936736 - type: nauc_precision_at_10_max value: 6.702378324096768 - type: nauc_precision_at_10_std value: 31.03637763595204 - type: nauc_precision_at_1_diff1 value: 77.87705968629228 - type: nauc_precision_at_1_max value: 23.357364820166353 - type: nauc_precision_at_1_std value: -52.724677718394254 - type: nauc_precision_at_20_diff1 value: -43.09729408672091 - type: nauc_precision_at_20_max value: 6.532907159014953 - type: nauc_precision_at_20_std value: 40.98770041852758 - type: nauc_precision_at_3_diff1 value: -19.675745078316503 - type: nauc_precision_at_3_max value: 9.254372245883973 - type: nauc_precision_at_3_std value: 3.557752877438361 - type: nauc_precision_at_5_diff1 value: -32.17451238619065 - type: nauc_precision_at_5_max value: 7.457382998315637 - type: nauc_precision_at_5_std value: 17.684523480181884 - type: nauc_recall_at_1000_diff1 value: 35.54833030189762 - type: nauc_recall_at_1000_max value: -113.13072963237435 - type: nauc_recall_at_1000_std value: -45.37230224613866 - type: nauc_recall_at_100_diff1 value: 74.70783770156788 - type: nauc_recall_at_100_max value: 5.165483155761366 - type: nauc_recall_at_100_std value: -98.18356589742223 - type: nauc_recall_at_10_diff1 value: 76.44831137766471 - type: nauc_recall_at_10_max value: 6.645874880559598 - type: nauc_recall_at_10_std value: -104.42733750490795 - type: nauc_recall_at_1_diff1 value: 80.92204517914038 - type: nauc_recall_at_1_max value: 12.955779715044127 - type: nauc_recall_at_1_std value: -53.185870692847814 - type: nauc_recall_at_20_diff1 value: 76.9330017100496 - type: nauc_recall_at_20_max value: 1.3282965733900722 - type: nauc_recall_at_20_std value: -110.44267520170585 - type: nauc_recall_at_3_diff1 value: 74.75571112449231 - type: nauc_recall_at_3_max value: 11.392712834655518 - type: nauc_recall_at_3_std value: -77.70319541112546 - type: nauc_recall_at_5_diff1 value: 74.44393885573719 - type: nauc_recall_at_5_max value: 9.071230160466847 - type: nauc_recall_at_5_std value: -90.6015799064062 - type: ndcg_at_1 value: 81.76 - type: ndcg_at_10 value: 88.773 - type: ndcg_at_100 value: 89.93100000000001 - type: ndcg_at_1000 value: 90.005 - type: ndcg_at_20 value: 89.436 - type: ndcg_at_3 value: 85.997 - type: ndcg_at_5 value: 87.571 - type: precision_at_1 value: 81.76 - type: precision_at_10 value: 13.542000000000002 - type: precision_at_100 value: 1.538 - type: precision_at_1000 value: 0.157 - type: precision_at_20 value: 7.184 - type: precision_at_3 value: 37.8 - type: precision_at_5 value: 24.898 - type: recall_at_1 value: 70.96000000000001 - type: recall_at_10 value: 95.741 - type: recall_at_100 value: 99.685 - type: recall_at_1000 value: 99.995 - type: recall_at_20 value: 97.909 - type: recall_at_3 value: 87.739 - type: recall_at_5 value: 92.203 task: type: Retrieval - dataset: config: default name: MTEB RedditClustering (default) revision: 24640382cdbf8abc73003fb0fa6d111a705499eb split: test type: mteb/reddit-clustering metrics: - type: main_score value: 65.91810902432418 - type: v_measure value: 65.91810902432418 - type: v_measure_std value: 3.988775454635202 task: type: Clustering - dataset: config: default name: MTEB RedditClusteringP2P (default) revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 split: test type: mteb/reddit-clustering-p2p metrics: - type: main_score value: 68.02321609158898 - type: v_measure value: 68.02321609158898 - type: v_measure_std value: 13.048787017567099 task: type: Clustering - dataset: config: default name: MTEB SCIDOCS (default) revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 split: test type: mteb/scidocs metrics: - type: main_score value: 23.814 - type: map_at_1 value: 5.455 - type: map_at_10 value: 14.208000000000002 - type: map_at_100 value: 17.328 - type: map_at_1000 value: 17.748 - type: map_at_20 value: 15.735 - type: map_at_3 value: 9.614 - type: map_at_5 value: 11.777999999999999 - type: mrr_at_1 value: 26.900000000000002 - type: mrr_at_10 value: 38.7683333333333 - type: mrr_at_100 value: 39.86887355087612 - type: mrr_at_1000 value: 39.89416581484622 - type: mrr_at_20 value: 39.45076687545336 - type: mrr_at_3 value: 34.283333333333324 - type: mrr_at_5 value: 36.7733333333333 - type: nauc_map_at_1000_diff1 value: 6.582032797360866 - type: nauc_map_at_1000_max value: 17.29971642208067 - type: nauc_map_at_1000_std value: 6.571653079053965 - type: nauc_map_at_100_diff1 value: 6.6520274055220945 - type: nauc_map_at_100_max value: 17.28927582943446 - type: nauc_map_at_100_std value: 6.3788070086997735 - type: nauc_map_at_10_diff1 value: 7.8097868021789765 - type: nauc_map_at_10_max value: 15.868814598414307 - type: nauc_map_at_10_std value: 1.3833485160000003 - type: nauc_map_at_1_diff1 value: 20.002393048021077 - type: nauc_map_at_1_max value: 16.777673629413144 - type: nauc_map_at_1_std value: -1.5982142140773345 - type: nauc_map_at_20_diff1 value: 7.026484961291383 - type: nauc_map_at_20_max value: 16.358039615308098 - type: nauc_map_at_20_std value: 4.265555678748822 - type: nauc_map_at_3_diff1 value: 11.670235117521639 - type: nauc_map_at_3_max value: 15.421371305785032 - type: nauc_map_at_3_std value: -2.0891385987905253 - type: nauc_map_at_5_diff1 value: 8.782941099433515 - type: nauc_map_at_5_max value: 15.429505319062791 - type: nauc_map_at_5_std value: 0.01706038881959217 - type: nauc_mrr_at_1000_diff1 value: 14.424089575104654 - type: nauc_mrr_at_1000_max value: 18.354632635310146 - type: nauc_mrr_at_1000_std value: 3.148669746271006 - type: nauc_mrr_at_100_diff1 value: 14.43190469520255 - type: nauc_mrr_at_100_max value: 18.37445314994635 - type: nauc_mrr_at_100_std value: 3.175095104402658 - type: nauc_mrr_at_10_diff1 value: 14.015953357582356 - type: nauc_mrr_at_10_max value: 18.334773185007375 - type: nauc_mrr_at_10_std value: 3.1788218175601917 - type: nauc_mrr_at_1_diff1 value: 20.06438180516676 - type: nauc_mrr_at_1_max value: 16.906770193671957 - type: nauc_mrr_at_1_std value: -1.591329233808127 - type: nauc_mrr_at_20_diff1 value: 14.126339493553159 - type: nauc_mrr_at_20_max value: 18.316449447055653 - type: nauc_mrr_at_20_std value: 3.1850941428621042 - type: nauc_mrr_at_3_diff1 value: 14.730386161975737 - type: nauc_mrr_at_3_max value: 17.32498171231654 - type: nauc_mrr_at_3_std value: 1.321654906709584 - type: nauc_mrr_at_5_diff1 value: 14.46476336413886 - type: nauc_mrr_at_5_max value: 17.940958841978826 - type: nauc_mrr_at_5_std value: 2.9529508335708945 - type: nauc_ndcg_at_1000_diff1 value: 6.681346718194129 - type: nauc_ndcg_at_1000_max value: 21.404613477283746 - type: nauc_ndcg_at_1000_std value: 14.596655479547055 - type: nauc_ndcg_at_100_diff1 value: 6.3302594607492155 - type: nauc_ndcg_at_100_max value: 21.26459769654865 - type: nauc_ndcg_at_100_std value: 14.522962033467959 - type: nauc_ndcg_at_10_diff1 value: 7.025732359853311 - type: nauc_ndcg_at_10_max value: 17.31881906701822 - type: nauc_ndcg_at_10_std value: 4.692540938431521 - type: nauc_ndcg_at_1_diff1 value: 20.06438180516676 - type: nauc_ndcg_at_1_max value: 16.906770193671957 - type: nauc_ndcg_at_1_std value: -1.591329233808127 - type: nauc_ndcg_at_20_diff1 value: 6.355140893975436 - type: nauc_ndcg_at_20_max value: 18.29467935307024 - type: nauc_ndcg_at_20_std value: 8.87309764856374 - type: nauc_ndcg_at_3_diff1 value: 11.131091987737578 - type: nauc_ndcg_at_3_max value: 15.876946297140213 - type: nauc_ndcg_at_3_std value: -0.19961674229045062 - type: nauc_ndcg_at_5_diff1 value: 8.719384001108486 - type: nauc_ndcg_at_5_max value: 16.561854761839523 - type: nauc_ndcg_at_5_std value: 2.849455858958004 - type: nauc_precision_at_1000_diff1 value: -3.264266561841031 - type: nauc_precision_at_1000_max value: 27.054907731659355 - type: nauc_precision_at_1000_std value: 42.6582722652614 - type: nauc_precision_at_100_diff1 value: -1.4147583046219077 - type: nauc_precision_at_100_max value: 22.691769918104637 - type: nauc_precision_at_100_std value: 30.417860777083998 - type: nauc_precision_at_10_diff1 value: 0.7460714765387558 - type: nauc_precision_at_10_max value: 16.189155199570223 - type: nauc_precision_at_10_std value: 8.466856326540606 - type: nauc_precision_at_1_diff1 value: 20.06438180516676 - type: nauc_precision_at_1_max value: 16.906770193671957 - type: nauc_precision_at_1_std value: -1.591329233808127 - type: nauc_precision_at_20_diff1 value: -0.29107581757496714 - type: nauc_precision_at_20_max value: 17.13909220544385 - type: nauc_precision_at_20_std value: 16.413326815174717 - type: nauc_precision_at_3_diff1 value: 7.101179998696147 - type: nauc_precision_at_3_max value: 14.797248842818975 - type: nauc_precision_at_3_std value: 0.40582828085273265 - type: nauc_precision_at_5_diff1 value: 3.4483179666389696 - type: nauc_precision_at_5_max value: 15.735507259648934 - type: nauc_precision_at_5_std value: 5.671451893149887 - type: nauc_recall_at_1000_diff1 value: -3.8075718189695547 - type: nauc_recall_at_1000_max value: 27.218180153734124 - type: nauc_recall_at_1000_std value: 44.46679820329153 - type: nauc_recall_at_100_diff1 value: -1.4536649156519559 - type: nauc_recall_at_100_max value: 22.44690502045992 - type: nauc_recall_at_100_std value: 30.235557227945275 - type: nauc_recall_at_10_diff1 value: 0.6119379049099861 - type: nauc_recall_at_10_max value: 15.882135185205446 - type: nauc_recall_at_10_std value: 8.176733663905573 - type: nauc_recall_at_1_diff1 value: 20.002393048021077 - type: nauc_recall_at_1_max value: 16.777673629413144 - type: nauc_recall_at_1_std value: -1.5982142140773345 - type: nauc_recall_at_20_diff1 value: -0.1682800060016626 - type: nauc_recall_at_20_max value: 16.971491120013564 - type: nauc_recall_at_20_std value: 16.122046383351293 - type: nauc_recall_at_3_diff1 value: 6.988663029514718 - type: nauc_recall_at_3_max value: 14.528152900658856 - type: nauc_recall_at_3_std value: 0.17590933968510467 - type: nauc_recall_at_5_diff1 value: 3.353041984845736 - type: nauc_recall_at_5_max value: 15.403568054057326 - type: nauc_recall_at_5_std value: 5.319244399661828 - type: ndcg_at_1 value: 26.900000000000002 - type: ndcg_at_10 value: 23.814 - type: ndcg_at_100 value: 34.943999999999996 - type: ndcg_at_1000 value: 40.78 - type: ndcg_at_20 value: 27.643 - type: ndcg_at_3 value: 21.227 - type: ndcg_at_5 value: 19.038 - type: precision_at_1 value: 26.900000000000002 - type: precision_at_10 value: 12.73 - type: precision_at_100 value: 2.881 - type: precision_at_1000 value: 0.426 - type: precision_at_20 value: 8.57 - type: precision_at_3 value: 19.6 - type: precision_at_5 value: 16.8 - type: recall_at_1 value: 5.455 - type: recall_at_10 value: 25.802999999999997 - type: recall_at_100 value: 58.45 - type: recall_at_1000 value: 86.457 - type: recall_at_20 value: 34.762 - type: recall_at_3 value: 11.943 - type: recall_at_5 value: 17.043 task: type: Retrieval - dataset: config: default name: MTEB SICK-R (default) revision: 20a6d6f312dd54037fe07a32d58e5e168867909d split: test type: mteb/sickr-sts metrics: - type: cosine_pearson value: 85.60157402941752 - type: cosine_spearman value: 82.98956725441452 - type: euclidean_pearson value: 83.07824357271161 - type: euclidean_spearman value: 82.98957395335212 - type: main_score value: 82.98956725441452 - type: manhattan_pearson value: 83.10748351148622 - type: manhattan_spearman value: 83.16217281563378 - type: pearson value: 85.60157402941752 - type: spearman value: 82.98956725441452 task: type: STS - dataset: config: default name: MTEB STS12 (default) revision: a0d554a64d88156834ff5ae9920b964011b16384 split: test type: mteb/sts12-sts metrics: - type: cosine_pearson value: 85.20198919395854 - type: cosine_spearman value: 78.17308450713497 - type: euclidean_pearson value: 82.91465813078975 - type: euclidean_spearman value: 78.17308450713497 - type: main_score value: 78.17308450713497 - type: manhattan_pearson value: 83.36938760055344 - type: manhattan_spearman value: 78.77166023561925 - type: pearson value: 85.20198919395854 - type: spearman value: 78.17308450713497 task: type: STS - dataset: config: default name: MTEB STS13 (default) revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca split: test type: mteb/sts13-sts metrics: - type: cosine_pearson value: 87.3197290035165 - type: cosine_spearman value: 88.12589189918039 - type: euclidean_pearson value: 87.88474436451652 - type: euclidean_spearman value: 88.12589189918039 - type: main_score value: 88.12589189918039 - type: manhattan_pearson value: 88.1114243109502 - type: manhattan_spearman value: 88.40111910955112 - type: pearson value: 87.3197290035165 - type: spearman value: 88.12589189918039 task: type: STS - dataset: config: default name: MTEB STS15 (default) revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 split: test type: mteb/sts15-sts metrics: - type: cosine_pearson value: 87.91424745154934 - type: cosine_spearman value: 88.78510857775494 - type: euclidean_pearson value: 88.60854825357943 - type: euclidean_spearman value: 88.78511307332248 - type: main_score value: 88.78510857775494 - type: manhattan_pearson value: 88.81490531409946 - type: manhattan_spearman value: 89.10162579991359 - type: pearson value: 87.91424745154934 - type: spearman value: 88.78510857775494 task: type: STS - dataset: config: default name: MTEB STS16 (default) revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 split: test type: mteb/sts16-sts metrics: - type: cosine_pearson value: 84.42255273136605 - type: cosine_spearman value: 86.46810322536955 - type: euclidean_pearson value: 86.255541184091 - type: euclidean_spearman value: 86.46810322536955 - type: main_score value: 86.46810322536955 - type: manhattan_pearson value: 86.72678851651064 - type: manhattan_spearman value: 86.93777990302539 - type: pearson value: 84.42255273136605 - type: spearman value: 86.46810322536955 task: type: STS - dataset: config: en-en name: MTEB STS17 (en-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 91.72746389892356 - type: cosine_spearman value: 92.23283881812245 - type: euclidean_pearson value: 92.29179177488737 - type: euclidean_spearman value: 92.23283881812245 - type: main_score value: 92.23283881812245 - type: manhattan_pearson value: 92.13764526009247 - type: manhattan_spearman value: 92.0582843442798 - type: pearson value: 91.72746389892356 - type: spearman value: 92.23283881812245 task: type: STS - dataset: config: default name: MTEB STSBenchmark (default) revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 split: test type: mteb/stsbenchmark-sts metrics: - type: cosine_pearson value: 86.14912927994007 - type: cosine_spearman value: 87.46655844472012 - type: euclidean_pearson value: 87.53026653408118 - type: euclidean_spearman value: 87.46655844472012 - type: main_score value: 87.46655844472012 - type: manhattan_pearson value: 87.68289898403299 - type: manhattan_spearman value: 87.73630507998439 - type: pearson value: 86.14912927994007 - type: spearman value: 87.46655844472012 task: type: STS - dataset: config: default name: MTEB SciDocsRR (default) revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab split: test type: mteb/scidocs-reranking metrics: - type: main_score value: 86.97859154411299 - type: map value: 86.97859154411299 - type: mrr value: 96.35598968932302 - type: nAUC_map_diff1 value: -18.506120190268017 - type: nAUC_map_max value: 55.78442121746724 - type: nAUC_map_std value: 66.27889919160313 - type: nAUC_mrr_diff1 value: 18.288014199762895 - type: nAUC_mrr_max value: 83.25297655347828 - type: nAUC_mrr_std value: 72.809885375971 task: type: Reranking - dataset: config: default name: MTEB SciFact (default) revision: 0228b52cf27578f30900b9e5271d331663a030d7 split: test type: mteb/scifact metrics: - type: main_score value: 52.842 - type: map_at_1 value: 32.911 - type: map_at_10 value: 46.013 - type: map_at_100 value: 47.11 - type: map_at_1000 value: 47.137 - type: map_at_20 value: 46.78 - type: map_at_3 value: 41.900999999999996 - type: map_at_5 value: 44.357 - type: mrr_at_1 value: 35.0 - type: mrr_at_10 value: 46.96574074074072 - type: mrr_at_100 value: 47.959931245967184 - type: mrr_at_1000 value: 47.98510849619688 - type: mrr_at_20 value: 47.68440206880607 - type: mrr_at_3 value: 43.77777777777776 - type: mrr_at_5 value: 45.611111111111086 - type: nauc_map_at_1000_diff1 value: 42.89180178126247 - type: nauc_map_at_1000_max value: 45.75105611403444 - type: nauc_map_at_1000_std value: 17.463513608950578 - type: nauc_map_at_100_diff1 value: 42.893512582653656 - type: nauc_map_at_100_max value: 45.754617699990035 - type: nauc_map_at_100_std value: 17.490513656867037 - type: nauc_map_at_10_diff1 value: 42.364748689290415 - type: nauc_map_at_10_max value: 45.56642444523947 - type: nauc_map_at_10_std value: 17.079579644716894 - type: nauc_map_at_1_diff1 value: 48.949793800671124 - type: nauc_map_at_1_max value: 45.82239538118238 - type: nauc_map_at_1_std value: 11.183927196674755 - type: nauc_map_at_20_diff1 value: 42.67947282270775 - type: nauc_map_at_20_max value: 45.62274524098362 - type: nauc_map_at_20_std value: 17.51316198529124 - type: nauc_map_at_3_diff1 value: 43.238404886755745 - type: nauc_map_at_3_max value: 43.350130089078895 - type: nauc_map_at_3_std value: 14.13657834477199 - type: nauc_map_at_5_diff1 value: 42.54474356788842 - type: nauc_map_at_5_max value: 44.75146781225222 - type: nauc_map_at_5_std value: 16.15648396925114 - type: nauc_mrr_at_1000_diff1 value: 43.556859926201554 - type: nauc_mrr_at_1000_max value: 47.140291020802906 - type: nauc_mrr_at_1000_std value: 18.805424261346374 - type: nauc_mrr_at_100_diff1 value: 43.55633267437543 - type: nauc_mrr_at_100_max value: 47.14214569591525 - type: nauc_mrr_at_100_std value: 18.828541893531277 - type: nauc_mrr_at_10_diff1 value: 43.07000882702881 - type: nauc_mrr_at_10_max value: 47.10398430807609 - type: nauc_mrr_at_10_std value: 18.672657418468155 - type: nauc_mrr_at_1_diff1 value: 50.71044015206451 - type: nauc_mrr_at_1_max value: 50.31094117388535 - type: nauc_mrr_at_1_std value: 16.308699760476404 - type: nauc_mrr_at_20_diff1 value: 43.34419341411509 - type: nauc_mrr_at_20_max value: 47.127839363881634 - type: nauc_mrr_at_20_std value: 18.93672383999524 - type: nauc_mrr_at_3_diff1 value: 44.09886232125989 - type: nauc_mrr_at_3_max value: 47.35761798607356 - type: nauc_mrr_at_3_std value: 18.66293179466984 - type: nauc_mrr_at_5_diff1 value: 43.455234122310486 - type: nauc_mrr_at_5_max value: 46.95579311628989 - type: nauc_mrr_at_5_std value: 18.637801785868913 - type: nauc_ndcg_at_1000_diff1 value: 42.09778197382488 - type: nauc_ndcg_at_1000_max value: 46.41254633930011 - type: nauc_ndcg_at_1000_std value: 19.727442899891408 - type: nauc_ndcg_at_100_diff1 value: 42.127587196947616 - type: nauc_ndcg_at_100_max value: 46.56257426488274 - type: nauc_ndcg_at_100_std value: 20.848893214507893 - type: nauc_ndcg_at_10_diff1 value: 39.520585737534184 - type: nauc_ndcg_at_10_max value: 45.58832499779741 - type: nauc_ndcg_at_10_std value: 19.230954524847657 - type: nauc_ndcg_at_1_diff1 value: 50.71044015206451 - type: nauc_ndcg_at_1_max value: 50.31094117388535 - type: nauc_ndcg_at_1_std value: 16.308699760476404 - type: nauc_ndcg_at_20_diff1 value: 40.57140695180754 - type: nauc_ndcg_at_20_max value: 45.78884507871275 - type: nauc_ndcg_at_20_std value: 20.87311919719877 - type: nauc_ndcg_at_3_diff1 value: 42.23214214323953 - type: nauc_ndcg_at_3_max value: 44.25227959403861 - type: nauc_ndcg_at_3_std value: 16.808716032720582 - type: nauc_ndcg_at_5_diff1 value: 40.32970262607426 - type: nauc_ndcg_at_5_max value: 44.170446333441234 - type: nauc_ndcg_at_5_std value: 17.670796157538952 - type: nauc_precision_at_1000_diff1 value: 4.4855757822300575 - type: nauc_precision_at_1000_max value: 40.96816841248859 - type: nauc_precision_at_1000_std value: 52.76450049154224 - type: nauc_precision_at_100_diff1 value: 13.467456291972423 - type: nauc_precision_at_100_max value: 46.07633674307899 - type: nauc_precision_at_100_std value: 58.38655747924394 - type: nauc_precision_at_10_diff1 value: 18.885447707274754 - type: nauc_precision_at_10_max value: 47.475287933169 - type: nauc_precision_at_10_std value: 40.78242836332111 - type: nauc_precision_at_1_diff1 value: 50.71044015206451 - type: nauc_precision_at_1_max value: 50.31094117388535 - type: nauc_precision_at_1_std value: 16.308699760476404 - type: nauc_precision_at_20_diff1 value: 15.953924273102402 - type: nauc_precision_at_20_max value: 45.47509365077202 - type: nauc_precision_at_20_std value: 51.47100789520174 - type: nauc_precision_at_3_diff1 value: 34.84717380734587 - type: nauc_precision_at_3_max value: 45.610933933265756 - type: nauc_precision_at_3_std value: 27.734101378690852 - type: nauc_precision_at_5_diff1 value: 26.59896898222078 - type: nauc_precision_at_5_max value: 46.140890589971264 - type: nauc_precision_at_5_std value: 33.56649457748371 - type: nauc_recall_at_1000_diff1 value: 86.92810457516407 - type: nauc_recall_at_1000_max value: 100.0 - type: nauc_recall_at_1000_std value: 100.0 - type: nauc_recall_at_100_diff1 value: 43.86702049240759 - type: nauc_recall_at_100_max value: 53.33308762101326 - type: nauc_recall_at_100_std value: 63.09523809523798 - type: nauc_recall_at_10_diff1 value: 25.88560487444265 - type: nauc_recall_at_10_max value: 41.6157709657381 - type: nauc_recall_at_10_std value: 24.04962076662668 - type: nauc_recall_at_1_diff1 value: 48.949793800671124 - type: nauc_recall_at_1_max value: 45.82239538118238 - type: nauc_recall_at_1_std value: 11.183927196674755 - type: nauc_recall_at_20_diff1 value: 27.507691414639822 - type: nauc_recall_at_20_max value: 41.70246318763185 - type: nauc_recall_at_20_std value: 37.33722257696256 - type: nauc_recall_at_3_diff1 value: 35.956192998402784 - type: nauc_recall_at_3_max value: 38.74690791289058 - type: nauc_recall_at_3_std value: 15.683526476441553 - type: nauc_recall_at_5_diff1 value: 31.03358342668625 - type: nauc_recall_at_5_max value: 37.820450291250786 - type: nauc_recall_at_5_std value: 18.52848795003198 - type: ndcg_at_1 value: 35.0 - type: ndcg_at_10 value: 52.842 - type: ndcg_at_100 value: 57.513999999999996 - type: ndcg_at_1000 value: 58.272999999999996 - type: ndcg_at_20 value: 55.454 - type: ndcg_at_3 value: 45.452 - type: ndcg_at_5 value: 49.169000000000004 - type: precision_at_1 value: 35.0 - type: precision_at_10 value: 8.366999999999999 - type: precision_at_100 value: 1.0630000000000002 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 4.75 - type: precision_at_3 value: 19.333 - type: precision_at_5 value: 14.066999999999998 - type: recall_at_1 value: 32.911 - type: recall_at_10 value: 73.033 - type: recall_at_100 value: 93.667 - type: recall_at_1000 value: 99.667 - type: recall_at_20 value: 83.0 - type: recall_at_3 value: 52.878 - type: recall_at_5 value: 62.06700000000001 task: type: Retrieval - dataset: config: default name: MTEB SprintDuplicateQuestions (default) revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 split: test type: mteb/sprintduplicatequestions-pairclassification metrics: - type: cosine_accuracy value: 99.87425742574257 - type: cosine_accuracy_threshold value: 85.4932188987732 - type: cosine_ap value: 97.03588351132844 - type: cosine_f1 value: 93.60201511335012 - type: cosine_f1_threshold value: 85.4932188987732 - type: cosine_precision value: 94.31472081218274 - type: cosine_recall value: 92.9 - type: dot_accuracy value: 99.87425742574257 - type: dot_accuracy_threshold value: 85.4932188987732 - type: dot_ap value: 97.03588351132846 - type: dot_f1 value: 93.60201511335012 - type: dot_f1_threshold value: 85.4932188987732 - type: dot_precision value: 94.31472081218274 - type: dot_recall value: 92.9 - type: euclidean_accuracy value: 99.87425742574257 - type: euclidean_accuracy_threshold value: 53.864240646362305 - type: euclidean_ap value: 97.03588351132844 - type: euclidean_f1 value: 93.60201511335012 - type: euclidean_f1_threshold value: 53.864240646362305 - type: euclidean_precision value: 94.31472081218274 - type: euclidean_recall value: 92.9 - type: main_score value: 97.12020380643673 - type: manhattan_accuracy value: 99.87821782178217 - type: manhattan_accuracy_threshold value: 2557.1868896484375 - type: manhattan_ap value: 97.12020380643673 - type: manhattan_f1 value: 93.83458646616543 - type: manhattan_f1_threshold value: 2559.8316192626953 - type: manhattan_precision value: 94.07035175879398 - type: manhattan_recall value: 93.60000000000001 - type: max_accuracy value: 99.87821782178217 - type: max_ap value: 97.12020380643673 - type: max_f1 value: 93.83458646616543 - type: max_precision value: 94.31472081218274 - type: max_recall value: 93.60000000000001 - type: similarity_accuracy value: 99.87425742574257 - type: similarity_accuracy_threshold value: 85.4932188987732 - type: similarity_ap value: 97.03588351132844 - type: similarity_f1 value: 93.60201511335012 - type: similarity_f1_threshold value: 85.4932188987732 - type: similarity_precision value: 94.31472081218274 - type: similarity_recall value: 92.9 task: type: PairClassification - dataset: config: default name: MTEB StackExchangeClustering (default) revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 split: test type: mteb/stackexchange-clustering metrics: - type: main_score value: 76.98818225336838 - type: v_measure value: 76.98818225336838 - type: v_measure_std value: 3.154967965946174 task: type: Clustering - dataset: config: default name: MTEB StackExchangeClusteringP2P (default) revision: 815ca46b2622cec33ccafc3735d572c266efdb44 split: test type: mteb/stackexchange-clustering-p2p metrics: - type: main_score value: 45.163651140607605 - type: v_measure value: 45.163651140607605 - type: v_measure_std value: 1.4322970276083837 task: type: Clustering - dataset: config: default name: MTEB StackOverflowDupQuestions (default) revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 split: test type: mteb/stackoverflowdupquestions-reranking metrics: - type: main_score value: 56.391883714372696 - type: map value: 56.391883714372696 - type: mrr value: 57.349492827434 - type: nAUC_map_diff1 value: 39.157250127064955 - type: nAUC_map_max value: 18.467392575309553 - type: nAUC_map_std value: 6.562904741623687 - type: nAUC_mrr_diff1 value: 39.2616391317946 - type: nAUC_mrr_max value: 20.17824080849778 - type: nAUC_mrr_std value: 7.3151994802766005 task: type: Reranking - dataset: config: default name: MTEB SummEval (default) revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c split: test type: mteb/summeval metrics: - type: cosine_pearson value: 31.115370364087013 - type: cosine_spearman value: 30.168250595399797 - type: dot_pearson value: 31.11537534713581 - type: dot_spearman value: 30.168250595399797 - type: main_score value: 30.168250595399797 - type: pearson value: 31.115370364087013 - type: spearman value: 30.168250595399797 task: type: Summarization - dataset: config: default name: MTEB TRECCOVID (default) revision: bb9466bac8153a0349341eb1b22e06409e78ef4e split: test type: mteb/trec-covid metrics: - type: main_score value: 58.492 - type: map_at_1 value: 0.20600000000000002 - type: map_at_10 value: 1.355 - type: map_at_100 value: 7.682 - type: map_at_1000 value: 19.422 - type: map_at_20 value: 2.307 - type: map_at_3 value: 0.504 - type: map_at_5 value: 0.756 - type: mrr_at_1 value: 76.0 - type: mrr_at_10 value: 83.07460317460317 - type: mrr_at_100 value: 83.34653299916457 - type: mrr_at_1000 value: 83.34653299916457 - type: mrr_at_20 value: 83.34653299916457 - type: mrr_at_3 value: 81.66666666666666 - type: mrr_at_5 value: 82.56666666666666 - type: nauc_map_at_1000_diff1 value: -0.9517122101342602 - type: nauc_map_at_1000_max value: 35.489825727736665 - type: nauc_map_at_1000_std value: 72.31927320292716 - type: nauc_map_at_100_diff1 value: -2.6696855309157197 - type: nauc_map_at_100_max value: 16.881012905948 - type: nauc_map_at_100_std value: 60.636797544764796 - type: nauc_map_at_10_diff1 value: 3.3220618387062166 - type: nauc_map_at_10_max value: 7.9728051776655136 - type: nauc_map_at_10_std value: 37.001872811447676 - type: nauc_map_at_1_diff1 value: 19.385947791364455 - type: nauc_map_at_1_max value: -2.017784609408856 - type: nauc_map_at_1_std value: 15.846915472515105 - type: nauc_map_at_20_diff1 value: 1.0613460412567055 - type: nauc_map_at_20_max value: 7.639419874542262 - type: nauc_map_at_20_std value: 42.004875229740826 - type: nauc_map_at_3_diff1 value: 7.0015165243253366 - type: nauc_map_at_3_max value: 7.084211457521959 - type: nauc_map_at_3_std value: 24.788352390570584 - type: nauc_map_at_5_diff1 value: 6.657899114095232 - type: nauc_map_at_5_max value: 4.976947597730104 - type: nauc_map_at_5_std value: 29.481454683941184 - type: nauc_mrr_at_1000_diff1 value: 14.561577730498792 - type: nauc_mrr_at_1000_max value: 57.72810732532122 - type: nauc_mrr_at_1000_std value: 66.88388647529588 - type: nauc_mrr_at_100_diff1 value: 14.561577730498792 - type: nauc_mrr_at_100_max value: 57.72810732532122 - type: nauc_mrr_at_100_std value: 66.88388647529588 - type: nauc_mrr_at_10_diff1 value: 14.57469254485188 - type: nauc_mrr_at_10_max value: 58.079825098428714 - type: nauc_mrr_at_10_std value: 67.32128458796227 - type: nauc_mrr_at_1_diff1 value: 25.34827377347056 - type: nauc_mrr_at_1_max value: 50.58838798996285 - type: nauc_mrr_at_1_std value: 59.36661763433414 - type: nauc_mrr_at_20_diff1 value: 14.561577730498792 - type: nauc_mrr_at_20_max value: 57.72810732532122 - type: nauc_mrr_at_20_std value: 66.88388647529588 - type: nauc_mrr_at_3_diff1 value: 9.063532868160214 - type: nauc_mrr_at_3_max value: 58.71832537642312 - type: nauc_mrr_at_3_std value: 69.07730444362834 - type: nauc_mrr_at_5_diff1 value: 13.555968426927894 - type: nauc_mrr_at_5_max value: 59.22085120600723 - type: nauc_mrr_at_5_std value: 67.47575721875769 - type: nauc_ndcg_at_1000_diff1 value: -1.8751322983265282 - type: nauc_ndcg_at_1000_max value: 38.78712823179003 - type: nauc_ndcg_at_1000_std value: 70.43132053994896 - type: nauc_ndcg_at_100_diff1 value: -10.220936212671377 - type: nauc_ndcg_at_100_max value: 47.70220514113511 - type: nauc_ndcg_at_100_std value: 75.65229647100806 - type: nauc_ndcg_at_10_diff1 value: 2.0956279601914227 - type: nauc_ndcg_at_10_max value: 48.868693823231304 - type: nauc_ndcg_at_10_std value: 70.16734895474447 - type: nauc_ndcg_at_1_diff1 value: 27.89880129091742 - type: nauc_ndcg_at_1_max value: 44.14668818195789 - type: nauc_ndcg_at_1_std value: 60.28699861687413 - type: nauc_ndcg_at_20_diff1 value: -3.5946895305356623 - type: nauc_ndcg_at_20_max value: 46.68859141418255 - type: nauc_ndcg_at_20_std value: 70.27067652865686 - type: nauc_ndcg_at_3_diff1 value: 7.400409149522286 - type: nauc_ndcg_at_3_max value: 45.61078758588923 - type: nauc_ndcg_at_3_std value: 62.06453130401961 - type: nauc_ndcg_at_5_diff1 value: 5.830725665736509 - type: nauc_ndcg_at_5_max value: 46.62678021725239 - type: nauc_ndcg_at_5_std value: 64.28848314363539 - type: nauc_precision_at_1000_diff1 value: -9.666313428844905 - type: nauc_precision_at_1000_max value: 47.57616298626001 - type: nauc_precision_at_1000_std value: 49.81803250713608 - type: nauc_precision_at_100_diff1 value: -10.753663329125686 - type: nauc_precision_at_100_max value: 45.231033820687834 - type: nauc_precision_at_100_std value: 74.22025319558313 - type: nauc_precision_at_10_diff1 value: -0.9044324563451003 - type: nauc_precision_at_10_max value: 46.282938258557955 - type: nauc_precision_at_10_std value: 67.20654075066248 - type: nauc_precision_at_1_diff1 value: 25.34827377347056 - type: nauc_precision_at_1_max value: 50.58838798996285 - type: nauc_precision_at_1_std value: 59.36661763433414 - type: nauc_precision_at_20_diff1 value: -5.192190687520166 - type: nauc_precision_at_20_max value: 39.61181596936397 - type: nauc_precision_at_20_std value: 65.90673204251821 - type: nauc_precision_at_3_diff1 value: -1.1581585542804733 - type: nauc_precision_at_3_max value: 48.095238095238116 - type: nauc_precision_at_3_std value: 57.79976256430543 - type: nauc_precision_at_5_diff1 value: 3.355915932928888 - type: nauc_precision_at_5_max value: 43.99987410397438 - type: nauc_precision_at_5_std value: 62.106083138587906 - type: nauc_recall_at_1000_diff1 value: 3.655993902820825 - type: nauc_recall_at_1000_max value: 28.761919544640335 - type: nauc_recall_at_1000_std value: 61.94123910402753 - type: nauc_recall_at_100_diff1 value: 2.5155941410242977 - type: nauc_recall_at_100_max value: 9.499702402437284 - type: nauc_recall_at_100_std value: 52.57449917231589 - type: nauc_recall_at_10_diff1 value: 5.939411921276368 - type: nauc_recall_at_10_max value: 4.994244760738587 - type: nauc_recall_at_10_std value: 33.64383950012248 - type: nauc_recall_at_1_diff1 value: 19.385947791364455 - type: nauc_recall_at_1_max value: -2.017784609408856 - type: nauc_recall_at_1_std value: 15.846915472515105 - type: nauc_recall_at_20_diff1 value: 3.339213533105717 - type: nauc_recall_at_20_max value: 1.4182715611821584 - type: nauc_recall_at_20_std value: 36.13152761959804 - type: nauc_recall_at_3_diff1 value: 2.9154975009752775 - type: nauc_recall_at_3_max value: 5.418186566728512 - type: nauc_recall_at_3_std value: 24.420940449950507 - type: nauc_recall_at_5_diff1 value: 7.4799616256209305 - type: nauc_recall_at_5_max value: 2.1601588551873823 - type: nauc_recall_at_5_std value: 28.09415304774757 - type: ndcg_at_1 value: 72.0 - type: ndcg_at_10 value: 58.492 - type: ndcg_at_100 value: 45.437 - type: ndcg_at_1000 value: 44.108999999999995 - type: ndcg_at_20 value: 54.969 - type: ndcg_at_3 value: 64.93900000000001 - type: ndcg_at_5 value: 60.736999999999995 - type: precision_at_1 value: 76.0 - type: precision_at_10 value: 61.199999999999996 - type: precision_at_100 value: 46.839999999999996 - type: precision_at_1000 value: 19.666 - type: precision_at_20 value: 56.8 - type: precision_at_3 value: 68.0 - type: precision_at_5 value: 62.8 - type: recall_at_1 value: 0.20600000000000002 - type: recall_at_10 value: 1.5939999999999999 - type: recall_at_100 value: 11.498 - type: recall_at_1000 value: 42.729 - type: recall_at_20 value: 2.922 - type: recall_at_3 value: 0.5309999999999999 - type: recall_at_5 value: 0.8370000000000001 task: type: Retrieval - dataset: config: default name: MTEB ToxicConversationsClassification (default) revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de split: test type: mteb/toxic_conversations_50k metrics: - type: accuracy value: 85.9521484375 - type: ap value: 30.374730390938566 - type: ap_weighted value: 30.374730390938566 - type: f1 value: 70.3917271343218 - type: f1_weighted value: 88.45609971763992 - type: main_score value: 85.9521484375 task: type: Classification - dataset: config: default name: MTEB TweetSentimentExtractionClassification (default) revision: d604517c81ca91fe16a244d1248fc021f9ecee7a split: test type: mteb/tweet_sentiment_extraction metrics: - type: accuracy value: 80.12733446519525 - type: f1 value: 80.418094849412 - type: f1_weighted value: 80.10847441279616 - type: main_score value: 80.12733446519525 task: type: Classification - dataset: config: default name: MTEB TwentyNewsgroupsClustering (default) revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 split: test type: mteb/twentynewsgroups-clustering metrics: - type: main_score value: 64.6036121602603 - type: v_measure value: 64.6036121602603 - type: v_measure_std value: 1.2991377356017484 task: type: Clustering - dataset: config: default name: MTEB TwitterSemEval2015 (default) revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 split: test type: mteb/twittersemeval2015-pairclassification metrics: - type: cosine_accuracy value: 87.86433808189784 - type: cosine_accuracy_threshold value: 85.5525255203247 - type: cosine_ap value: 78.93155350890012 - type: cosine_f1 value: 71.80031864046734 - type: cosine_f1_threshold value: 83.99585485458374 - type: cosine_precision value: 72.26082308925709 - type: cosine_recall value: 71.34564643799473 - type: dot_accuracy value: 87.86433808189784 - type: dot_accuracy_threshold value: 85.55253744125366 - type: dot_ap value: 78.93157147282707 - type: dot_f1 value: 71.80031864046734 - type: dot_f1_threshold value: 83.99585485458374 - type: dot_precision value: 72.26082308925709 - type: dot_recall value: 71.34564643799473 - type: euclidean_accuracy value: 87.86433808189784 - type: euclidean_accuracy_threshold value: 53.75403165817261 - type: euclidean_ap value: 78.93157128337329 - type: euclidean_f1 value: 71.80031864046734 - type: euclidean_f1_threshold value: 56.575870513916016 - type: euclidean_precision value: 72.26082308925709 - type: euclidean_recall value: 71.34564643799473 - type: main_score value: 79.12654131533807 - type: manhattan_accuracy value: 87.98950944745782 - type: manhattan_accuracy_threshold value: 2512.5680923461914 - type: manhattan_ap value: 79.12654131533807 - type: manhattan_f1 value: 71.90745366110163 - type: manhattan_f1_threshold value: 2624.722671508789 - type: manhattan_precision value: 71.65313073094053 - type: manhattan_recall value: 72.16358839050132 - type: max_accuracy value: 87.98950944745782 - type: max_ap value: 79.12654131533807 - type: max_f1 value: 71.90745366110163 - type: max_precision value: 72.26082308925709 - type: max_recall value: 72.16358839050132 - type: similarity_accuracy value: 87.86433808189784 - type: similarity_accuracy_threshold value: 85.5525255203247 - type: similarity_ap value: 78.93155350890012 - type: similarity_f1 value: 71.80031864046734 - type: similarity_f1_threshold value: 83.99585485458374 - type: similarity_precision value: 72.26082308925709 - type: similarity_recall value: 71.34564643799473 task: type: PairClassification - dataset: config: default name: MTEB TwitterURLCorpus (default) revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf split: test type: mteb/twitterurlcorpus-pairclassification metrics: - type: cosine_accuracy value: 89.03248340901153 - type: cosine_accuracy_threshold value: 84.39068794250488 - type: cosine_ap value: 85.87150718008797 - type: cosine_f1 value: 78.39147286821706 - type: cosine_f1_threshold value: 82.88650512695312 - type: cosine_precision value: 75.96792834440913 - type: cosine_recall value: 80.97474591931014 - type: dot_accuracy value: 89.03248340901153 - type: dot_accuracy_threshold value: 84.39069986343384 - type: dot_ap value: 85.87150946221163 - type: dot_f1 value: 78.39147286821706 - type: dot_f1_threshold value: 82.88650512695312 - type: dot_precision value: 75.96792834440913 - type: dot_recall value: 80.97474591931014 - type: euclidean_accuracy value: 89.03248340901153 - type: euclidean_accuracy_threshold value: 55.873626470565796 - type: euclidean_ap value: 85.87151445202907 - type: euclidean_f1 value: 78.39147286821706 - type: euclidean_f1_threshold value: 58.5038423538208 - type: euclidean_precision value: 75.96792834440913 - type: euclidean_recall value: 80.97474591931014 - type: main_score value: 85.95871260636034 - type: manhattan_accuracy value: 89.09069740365584 - type: manhattan_accuracy_threshold value: 2603.150749206543 - type: manhattan_ap value: 85.95871260636034 - type: manhattan_f1 value: 78.53649430651484 - type: manhattan_f1_threshold value: 2714.5809173583984 - type: manhattan_precision value: 76.23396390519677 - type: manhattan_recall value: 80.9824453341546 - type: max_accuracy value: 89.09069740365584 - type: max_ap value: 85.95871260636034 - type: max_f1 value: 78.53649430651484 - type: max_precision value: 76.23396390519677 - type: max_recall value: 80.9824453341546 - type: similarity_accuracy value: 89.03248340901153 - type: similarity_accuracy_threshold value: 84.39068794250488 - type: similarity_ap value: 85.87150718008797 - type: similarity_f1 value: 78.39147286821706 - type: similarity_f1_threshold value: 82.88650512695312 - type: similarity_precision value: 75.96792834440913 - type: similarity_recall value: 80.97474591931014 task: type: PairClassification tags: - mteb ---
ctu-aic/flan-t5-large
ctu-aic
"2023-08-07T14:27:58Z"
71
0
transformers
[ "transformers", "pytorch", "t5", "feature-extraction", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
"2023-08-07T14:00:29Z"
This model's tokenizer is extended with CS, SK and PL accents using the following code: ````python from transformers import ( AutoModel, AutoTokenizer, ) model_id = "google/flan-t5-large" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModel.from_pretrained(model_id) accents = "áčďéěíňóřšťúůýž" # CS accents += "ąćęłńóśźż" # PL accents += "áäčďéíĺľňóôŕšťúýž" # SK accents += accents.upper() accents = set(c for c in accents) new_tokens = accents - set(tokenizer.vocab.keys()) tokenizer.add_tokens(list(new_tokens)) model.resize_token_embeddings(len(tokenizer)) ````
LarryAIDraw/iono_pokemon
LarryAIDraw
"2023-12-09T15:56:23Z"
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-12-09T15:47:24Z"
--- license: creativeml-openrail-m --- https://civitai.com/models/226468/iono-nanjyamo-pokemon-or-goofy-ai
shrenikb/abla3
shrenikb
"2024-06-10T00:35:59Z"
4
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:shrenikb/sparsegpt75sparsitymodel", "base_model:adapter:shrenikb/sparsegpt75sparsitymodel", "region:us" ]
null
"2024-06-10T00:07:52Z"
--- library_name: peft base_model: shrenikb/sparsegpt75sparsitymodel --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
shopitalic/elliot-navy-cashmere-short-sleeve-polo-rafael
shopitalic
"2025-03-04T17:07:40Z"
0
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
"2025-03-04T17:07:31Z"
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: black-forest-labs/FLUX.1-dev instance_prompt: license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # elliot navy cashmere short sleeve polo rafael <Gallery /> ## Model description ## Trigger words You should use `` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/shopitalic/elliot-navy-cashmere-short-sleeve-polo-rafael/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/flux-lora-fast-training](https://fal.ai/models/fal-ai/flux-lora-fast-training).
hgnoi/ygsPT9KCCH3gbiy0
hgnoi
"2024-05-22T13:44:30Z"
126
0
transformers
[ "transformers", "safetensors", "stablelm", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-05-22T13:42:53Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
isspek/roberta-base_ebola_gpt4o_1_2e-5_16_weight
isspek
"2025-03-23T14:31:39Z"
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
"2025-03-23T14:31:25Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dynapp/lora_model_cloud_tuned_combined
dynapp
"2025-02-01T20:30:39Z"
27
0
transformers
[ "transformers", "pytorch", "safetensors", "gguf", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2025-02-01T17:33:45Z"
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** dynapp - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF
mradermacher
"2025-04-02T10:54:37Z"
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:quantized:Qwen/Qwen2.5-VL-3B-Instruct", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
"2025-04-02T10:35:06Z"
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 0.9 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 1.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.3 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 1.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 1.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.7 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 1.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q4_1.gguf) | i1-Q4_1 | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-VL-3B-Instruct-i1-GGUF/resolve/main/Qwen2.5-VL-3B-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 2.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
rororo1010/Test_tyatyaa
rororo1010
"2023-10-02T09:42:48Z"
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
"2023-05-22T21:47:37Z"
--- license: creativeml-openrail-m ---
mradermacher/Alpacino30b-GGUF
mradermacher
"2024-05-06T05:12:21Z"
71
0
transformers
[ "transformers", "gguf", "alpaca", "en", "base_model:digitous/Alpacino30b", "base_model:quantized:digitous/Alpacino30b", "license:other", "endpoints_compatible", "region:us" ]
null
"2024-04-06T11:56:58Z"
--- base_model: digitous/Alpacino30b language: - en library_name: transformers license: other quantized_by: mradermacher tags: - alpaca --- ## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/digitous/Alpacino30b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Alpacino30b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q2_K.gguf) | Q2_K | 12.1 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.IQ3_XS.gguf) | IQ3_XS | 13.4 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.IQ3_S.gguf) | IQ3_S | 14.2 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q3_K_S.gguf) | Q3_K_S | 14.2 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.IQ3_M.gguf) | IQ3_M | 15.0 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q3_K_M.gguf) | Q3_K_M | 15.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q3_K_L.gguf) | Q3_K_L | 17.4 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.IQ4_XS.gguf) | IQ4_XS | 17.6 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q4_K_S.gguf) | Q4_K_S | 18.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q4_K_M.gguf) | Q4_K_M | 19.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q5_K_S.gguf) | Q5_K_S | 22.5 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q5_K_M.gguf) | Q5_K_M | 23.1 | | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q6_K.gguf) | Q6_K | 26.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Alpacino30b-GGUF/resolve/main/Alpacino30b.Q8_0.gguf) | Q8_0 | 34.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ishaq101/llama3-8b-finetune-4bit-lora
ishaq101
"2024-10-07T11:00:24Z"
76
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:ishaq101/llama3-8b-finetune-4bit", "base_model:quantized:ishaq101/llama3-8b-finetune-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
"2024-10-07T10:58:53Z"
--- base_model: ishaq101/llama3-8b-finetune-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** ishaq101 - **License:** apache-2.0 - **Finetuned from model :** ishaq101/llama3-8b-finetune-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
NiharGupte/resnet-50-finetuned-student_two_classes
NiharGupte
"2024-05-04T07:11:35Z"
210
0
transformers
[ "transformers", "tensorboard", "safetensors", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/resnet-50", "base_model:finetune:microsoft/resnet-50", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2024-05-04T07:06:25Z"
--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-finetuned-student_two_classes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.85 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-finetuned-student_two_classes This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4531 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5955 | 1.0 | 13 | 0.4665 | 0.85 | | 0.5303 | 2.0 | 26 | 0.4790 | 0.85 | | 0.6127 | 3.0 | 39 | 0.4787 | 0.85 | | 0.5025 | 4.0 | 52 | 0.4547 | 0.85 | | 0.471 | 5.0 | 65 | 0.4621 | 0.85 | | 0.4673 | 6.0 | 78 | 0.4775 | 0.86 | | 0.4492 | 7.0 | 91 | 0.4648 | 0.86 | | 0.4144 | 8.0 | 104 | 0.4733 | 0.85 | | 0.4963 | 9.0 | 117 | 0.4575 | 0.85 | | 0.4149 | 10.0 | 130 | 0.4691 | 0.85 | | 0.4588 | 11.0 | 143 | 0.4596 | 0.84 | | 0.3995 | 12.0 | 156 | 0.4754 | 0.85 | | 0.359 | 13.0 | 169 | 0.4616 | 0.85 | | 0.4246 | 14.0 | 182 | 0.4552 | 0.85 | | 0.4001 | 15.0 | 195 | 0.4839 | 0.85 | | 0.3919 | 16.0 | 208 | 0.4708 | 0.85 | | 0.4137 | 17.0 | 221 | 0.4416 | 0.85 | | 0.3912 | 18.0 | 234 | 0.4507 | 0.85 | | 0.4322 | 19.0 | 247 | 0.4237 | 0.85 | | 0.4043 | 20.0 | 260 | 0.4531 | 0.85 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
texanrangee/59c70021-8f2f-4e30-8998-b0f6230af9b4
texanrangee
"2025-03-16T22:08:02Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2025-03-16T16:26:35Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lier007/xiaobu-embedding-v2
lier007
"2025-01-03T10:07:40Z"
1,842
49
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "safetensors", "bert", "mteb", "arxiv:2002.10857", "model-index", "region:us" ]
null
"2024-06-30T13:01:04Z"
--- tags: - mteb model-index: - name: piccolo-embedding_mixed2 results: - task: type: STS dataset: type: C-MTEB/AFQMC name: MTEB AFQMC config: default split: validation revision: None metrics: - type: cos_sim_pearson value: 56.918538280469875 - type: cos_sim_spearman value: 60.95597435855258 - type: euclidean_pearson value: 59.73821610051437 - type: euclidean_spearman value: 60.956778530262454 - type: manhattan_pearson value: 59.739675774225475 - type: manhattan_spearman value: 60.95243600302903 - task: type: STS dataset: type: C-MTEB/ATEC name: MTEB ATEC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 56.79417977023184 - type: cos_sim_spearman value: 58.80984726256814 - type: euclidean_pearson value: 63.42225182281334 - type: euclidean_spearman value: 58.80957930593542 - type: manhattan_pearson value: 63.41128425333986 - type: manhattan_spearman value: 58.80784321716389 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 50.074000000000005 - type: f1 value: 47.11468271375511 - task: type: STS dataset: type: C-MTEB/BQ name: MTEB BQ config: default split: test revision: None metrics: - type: cos_sim_pearson value: 73.3412976021806 - type: cos_sim_spearman value: 75.0799965464816 - type: euclidean_pearson value: 73.7874729086686 - type: euclidean_spearman value: 75.07910973646369 - type: manhattan_pearson value: 73.7716616949607 - type: manhattan_spearman value: 75.06089549008017 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringP2P name: MTEB CLSClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 60.4206935177474 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringS2S name: MTEB CLSClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 49.53654617222264 - task: type: Reranking dataset: type: C-MTEB/CMedQAv1-reranking name: MTEB CMedQAv1 config: default split: test revision: None metrics: - type: map value: 90.96386786978509 - type: mrr value: 92.8897619047619 - task: type: Reranking dataset: type: C-MTEB/CMedQAv2-reranking name: MTEB CMedQAv2 config: default split: test revision: None metrics: - type: map value: 90.41014127763198 - type: mrr value: 92.45039682539682 - task: type: Retrieval dataset: type: C-MTEB/CmedqaRetrieval name: MTEB CmedqaRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 26.901999999999997 - type: map_at_10 value: 40.321 - type: map_at_100 value: 42.176 - type: map_at_1000 value: 42.282 - type: map_at_3 value: 35.882 - type: map_at_5 value: 38.433 - type: mrr_at_1 value: 40.910000000000004 - type: mrr_at_10 value: 49.309999999999995 - type: mrr_at_100 value: 50.239 - type: mrr_at_1000 value: 50.278 - type: mrr_at_3 value: 46.803 - type: mrr_at_5 value: 48.137 - type: ndcg_at_1 value: 40.785 - type: ndcg_at_10 value: 47.14 - type: ndcg_at_100 value: 54.156000000000006 - type: ndcg_at_1000 value: 55.913999999999994 - type: ndcg_at_3 value: 41.669 - type: ndcg_at_5 value: 43.99 - type: precision_at_1 value: 40.785 - type: precision_at_10 value: 10.493 - type: precision_at_100 value: 1.616 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 23.723 - type: precision_at_5 value: 17.249 - type: recall_at_1 value: 26.901999999999997 - type: recall_at_10 value: 58.25 - type: recall_at_100 value: 87.10900000000001 - type: recall_at_1000 value: 98.804 - type: recall_at_3 value: 41.804 - type: recall_at_5 value: 48.884 - task: type: PairClassification dataset: type: C-MTEB/CMNLI name: MTEB Cmnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 86.42212868310283 - type: cos_sim_ap value: 92.83788702972741 - type: cos_sim_f1 value: 87.08912233141307 - type: cos_sim_precision value: 84.24388111888112 - type: cos_sim_recall value: 90.13327098433481 - type: dot_accuracy value: 86.44618159951895 - type: dot_ap value: 92.81146275060858 - type: dot_f1 value: 87.06857911250562 - type: dot_precision value: 83.60232408005164 - type: dot_recall value: 90.83469721767594 - type: euclidean_accuracy value: 86.42212868310283 - type: euclidean_ap value: 92.83805700492603 - type: euclidean_f1 value: 87.08803611738148 - type: euclidean_precision value: 84.18066768492254 - type: euclidean_recall value: 90.20341360766892 - type: manhattan_accuracy value: 86.28983764281419 - type: manhattan_ap value: 92.82818970981005 - type: manhattan_f1 value: 87.12625521832335 - type: manhattan_precision value: 84.19101613606628 - type: manhattan_recall value: 90.27355623100304 - type: max_accuracy value: 86.44618159951895 - type: max_ap value: 92.83805700492603 - type: max_f1 value: 87.12625521832335 - task: type: Retrieval dataset: type: C-MTEB/CovidRetrieval name: MTEB CovidRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 79.215 - type: map_at_10 value: 86.516 - type: map_at_100 value: 86.6 - type: map_at_1000 value: 86.602 - type: map_at_3 value: 85.52 - type: map_at_5 value: 86.136 - type: mrr_at_1 value: 79.663 - type: mrr_at_10 value: 86.541 - type: mrr_at_100 value: 86.625 - type: mrr_at_1000 value: 86.627 - type: mrr_at_3 value: 85.564 - type: mrr_at_5 value: 86.15899999999999 - type: ndcg_at_1 value: 79.663 - type: ndcg_at_10 value: 89.399 - type: ndcg_at_100 value: 89.727 - type: ndcg_at_1000 value: 89.781 - type: ndcg_at_3 value: 87.402 - type: ndcg_at_5 value: 88.479 - type: precision_at_1 value: 79.663 - type: precision_at_10 value: 9.926 - type: precision_at_100 value: 1.006 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 31.226 - type: precision_at_5 value: 19.283 - type: recall_at_1 value: 79.215 - type: recall_at_10 value: 98.209 - type: recall_at_100 value: 99.579 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 92.703 - type: recall_at_5 value: 95.364 - task: type: Retrieval dataset: type: C-MTEB/DuRetrieval name: MTEB DuRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 27.391 - type: map_at_10 value: 82.82000000000001 - type: map_at_100 value: 85.5 - type: map_at_1000 value: 85.533 - type: map_at_3 value: 57.802 - type: map_at_5 value: 72.82600000000001 - type: mrr_at_1 value: 92.80000000000001 - type: mrr_at_10 value: 94.83500000000001 - type: mrr_at_100 value: 94.883 - type: mrr_at_1000 value: 94.884 - type: mrr_at_3 value: 94.542 - type: mrr_at_5 value: 94.729 - type: ndcg_at_1 value: 92.7 - type: ndcg_at_10 value: 89.435 - type: ndcg_at_100 value: 91.78699999999999 - type: ndcg_at_1000 value: 92.083 - type: ndcg_at_3 value: 88.595 - type: ndcg_at_5 value: 87.53 - type: precision_at_1 value: 92.7 - type: precision_at_10 value: 42.4 - type: precision_at_100 value: 4.823 - type: precision_at_1000 value: 0.48900000000000005 - type: precision_at_3 value: 79.133 - type: precision_at_5 value: 66.8 - type: recall_at_1 value: 27.391 - type: recall_at_10 value: 90.069 - type: recall_at_100 value: 97.875 - type: recall_at_1000 value: 99.436 - type: recall_at_3 value: 59.367999999999995 - type: recall_at_5 value: 76.537 - task: type: Retrieval dataset: type: C-MTEB/EcomRetrieval name: MTEB EcomRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 54.800000000000004 - type: map_at_10 value: 65.289 - type: map_at_100 value: 65.845 - type: map_at_1000 value: 65.853 - type: map_at_3 value: 62.766999999999996 - type: map_at_5 value: 64.252 - type: mrr_at_1 value: 54.800000000000004 - type: mrr_at_10 value: 65.255 - type: mrr_at_100 value: 65.81700000000001 - type: mrr_at_1000 value: 65.824 - type: mrr_at_3 value: 62.683 - type: mrr_at_5 value: 64.248 - type: ndcg_at_1 value: 54.800000000000004 - type: ndcg_at_10 value: 70.498 - type: ndcg_at_100 value: 72.82300000000001 - type: ndcg_at_1000 value: 73.053 - type: ndcg_at_3 value: 65.321 - type: ndcg_at_5 value: 67.998 - type: precision_at_1 value: 54.800000000000004 - type: precision_at_10 value: 8.690000000000001 - type: precision_at_100 value: 0.97 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 24.233 - type: precision_at_5 value: 15.840000000000002 - type: recall_at_1 value: 54.800000000000004 - type: recall_at_10 value: 86.9 - type: recall_at_100 value: 97 - type: recall_at_1000 value: 98.9 - type: recall_at_3 value: 72.7 - type: recall_at_5 value: 79.2 - task: type: Classification dataset: type: C-MTEB/IFlyTek-classification name: MTEB IFlyTek config: default split: validation revision: None metrics: - type: accuracy value: 51.758368603308966 - type: f1 value: 40.249503783871596 - task: type: Classification dataset: type: C-MTEB/JDReview-classification name: MTEB JDReview config: default split: test revision: None metrics: - type: accuracy value: 89.08067542213884 - type: ap value: 60.31281895139249 - type: f1 value: 84.20883153932607 - task: type: STS dataset: type: C-MTEB/LCQMC name: MTEB LCQMC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 74.04193577551248 - type: cos_sim_spearman value: 79.81875884845549 - type: euclidean_pearson value: 80.02581187503708 - type: euclidean_spearman value: 79.81877215060574 - type: manhattan_pearson value: 80.01767830530258 - type: manhattan_spearman value: 79.81178852172727 - task: type: Reranking dataset: type: C-MTEB/Mmarco-reranking name: MTEB MMarcoReranking config: default split: dev revision: None metrics: - type: map value: 39.90939429947956 - type: mrr value: 39.71071428571429 - task: type: Retrieval dataset: type: C-MTEB/MMarcoRetrieval name: MTEB MMarcoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 68.485 - type: map_at_10 value: 78.27199999999999 - type: map_at_100 value: 78.54100000000001 - type: map_at_1000 value: 78.546 - type: map_at_3 value: 76.339 - type: map_at_5 value: 77.61099999999999 - type: mrr_at_1 value: 70.80199999999999 - type: mrr_at_10 value: 78.901 - type: mrr_at_100 value: 79.12400000000001 - type: mrr_at_1000 value: 79.128 - type: mrr_at_3 value: 77.237 - type: mrr_at_5 value: 78.323 - type: ndcg_at_1 value: 70.759 - type: ndcg_at_10 value: 82.191 - type: ndcg_at_100 value: 83.295 - type: ndcg_at_1000 value: 83.434 - type: ndcg_at_3 value: 78.57600000000001 - type: ndcg_at_5 value: 80.715 - type: precision_at_1 value: 70.759 - type: precision_at_10 value: 9.951 - type: precision_at_100 value: 1.049 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 29.660999999999998 - type: precision_at_5 value: 18.94 - type: recall_at_1 value: 68.485 - type: recall_at_10 value: 93.65 - type: recall_at_100 value: 98.434 - type: recall_at_1000 value: 99.522 - type: recall_at_3 value: 84.20100000000001 - type: recall_at_5 value: 89.261 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 77.45460659045055 - type: f1 value: 73.84987702455533 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 85.29926025554808 - type: f1 value: 84.40636286569843 - task: type: Retrieval dataset: type: C-MTEB/MedicalRetrieval name: MTEB MedicalRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 57.599999999999994 - type: map_at_10 value: 64.691 - type: map_at_100 value: 65.237 - type: map_at_1000 value: 65.27 - type: map_at_3 value: 62.733000000000004 - type: map_at_5 value: 63.968 - type: mrr_at_1 value: 58.099999999999994 - type: mrr_at_10 value: 64.952 - type: mrr_at_100 value: 65.513 - type: mrr_at_1000 value: 65.548 - type: mrr_at_3 value: 63 - type: mrr_at_5 value: 64.235 - type: ndcg_at_1 value: 57.599999999999994 - type: ndcg_at_10 value: 68.19 - type: ndcg_at_100 value: 70.98400000000001 - type: ndcg_at_1000 value: 71.811 - type: ndcg_at_3 value: 64.276 - type: ndcg_at_5 value: 66.47999999999999 - type: precision_at_1 value: 57.599999999999994 - type: precision_at_10 value: 7.920000000000001 - type: precision_at_100 value: 0.9259999999999999 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 22.900000000000002 - type: precision_at_5 value: 14.799999999999999 - type: recall_at_1 value: 57.599999999999994 - type: recall_at_10 value: 79.2 - type: recall_at_100 value: 92.60000000000001 - type: recall_at_1000 value: 99 - type: recall_at_3 value: 68.7 - type: recall_at_5 value: 74 - task: type: Classification dataset: type: C-MTEB/MultilingualSentiment-classification name: MTEB MultilingualSentiment config: default split: validation revision: None metrics: - type: accuracy value: 79.45 - type: f1 value: 79.25610578280538 - task: type: PairClassification dataset: type: C-MTEB/OCNLI name: MTEB Ocnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 85.43584190579317 - type: cos_sim_ap value: 90.89979725191012 - type: cos_sim_f1 value: 86.48383937316358 - type: cos_sim_precision value: 80.6392694063927 - type: cos_sim_recall value: 93.24181626187962 - type: dot_accuracy value: 85.38170005414185 - type: dot_ap value: 90.87532457866699 - type: dot_f1 value: 86.48383937316358 - type: dot_precision value: 80.6392694063927 - type: dot_recall value: 93.24181626187962 - type: euclidean_accuracy value: 85.43584190579317 - type: euclidean_ap value: 90.90126652086121 - type: euclidean_f1 value: 86.48383937316358 - type: euclidean_precision value: 80.6392694063927 - type: euclidean_recall value: 93.24181626187962 - type: manhattan_accuracy value: 85.43584190579317 - type: manhattan_ap value: 90.87896997853466 - type: manhattan_f1 value: 86.47581441263573 - type: manhattan_precision value: 81.18628359592215 - type: manhattan_recall value: 92.5026399155227 - type: max_accuracy value: 85.43584190579317 - type: max_ap value: 90.90126652086121 - type: max_f1 value: 86.48383937316358 - task: type: Classification dataset: type: C-MTEB/OnlineShopping-classification name: MTEB OnlineShopping config: default split: test revision: None metrics: - type: accuracy value: 94.9 - type: ap value: 93.1468223150745 - type: f1 value: 94.88918689508299 - task: type: STS dataset: type: C-MTEB/PAWSX name: MTEB PAWSX config: default split: test revision: None metrics: - type: cos_sim_pearson value: 40.4831743182905 - type: cos_sim_spearman value: 47.4163675550491 - type: euclidean_pearson value: 46.456319899274924 - type: euclidean_spearman value: 47.41567079730661 - type: manhattan_pearson value: 46.48561639930895 - type: manhattan_spearman value: 47.447721653461215 - task: type: STS dataset: type: C-MTEB/QBQTC name: MTEB QBQTC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 42.96423587663398 - type: cos_sim_spearman value: 45.13742225167858 - type: euclidean_pearson value: 39.275452114075435 - type: euclidean_spearman value: 45.137763540967406 - type: manhattan_pearson value: 39.24797626417764 - type: manhattan_spearman value: 45.13817773119268 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 66.26687809086202 - type: cos_sim_spearman value: 66.9569145816897 - type: euclidean_pearson value: 65.72390780809788 - type: euclidean_spearman value: 66.95406938095539 - type: manhattan_pearson value: 65.6220809000381 - type: manhattan_spearman value: 66.88531036320953 - task: type: STS dataset: type: C-MTEB/STSB name: MTEB STSB config: default split: test revision: None metrics: - type: cos_sim_pearson value: 80.30831700726195 - type: cos_sim_spearman value: 82.05184068558792 - type: euclidean_pearson value: 81.73198597791563 - type: euclidean_spearman value: 82.05326103582206 - type: manhattan_pearson value: 81.70886400949136 - type: manhattan_spearman value: 82.03473274756037 - task: type: Reranking dataset: type: C-MTEB/T2Reranking name: MTEB T2Reranking config: default split: dev revision: None metrics: - type: map value: 69.03398835347575 - type: mrr value: 79.9212528613341 - task: type: Retrieval dataset: type: C-MTEB/T2Retrieval name: MTEB T2Retrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 27.515 - type: map_at_10 value: 77.40599999999999 - type: map_at_100 value: 81.087 - type: map_at_1000 value: 81.148 - type: map_at_3 value: 54.327000000000005 - type: map_at_5 value: 66.813 - type: mrr_at_1 value: 89.764 - type: mrr_at_10 value: 92.58 - type: mrr_at_100 value: 92.663 - type: mrr_at_1000 value: 92.666 - type: mrr_at_3 value: 92.15299999999999 - type: mrr_at_5 value: 92.431 - type: ndcg_at_1 value: 89.777 - type: ndcg_at_10 value: 85.013 - type: ndcg_at_100 value: 88.62100000000001 - type: ndcg_at_1000 value: 89.184 - type: ndcg_at_3 value: 86.19200000000001 - type: ndcg_at_5 value: 84.909 - type: precision_at_1 value: 89.777 - type: precision_at_10 value: 42.218 - type: precision_at_100 value: 5.032 - type: precision_at_1000 value: 0.517 - type: precision_at_3 value: 75.335 - type: precision_at_5 value: 63.199000000000005 - type: recall_at_1 value: 27.515 - type: recall_at_10 value: 84.258 - type: recall_at_100 value: 95.908 - type: recall_at_1000 value: 98.709 - type: recall_at_3 value: 56.189 - type: recall_at_5 value: 70.50800000000001 - task: type: Classification dataset: type: C-MTEB/TNews-classification name: MTEB TNews config: default split: validation revision: None metrics: - type: accuracy value: 54.635999999999996 - type: f1 value: 52.63073912739558 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringP2P name: MTEB ThuNewsClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 78.75676284855221 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringS2S name: MTEB ThuNewsClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 71.95583733802839 - task: type: Retrieval dataset: type: C-MTEB/VideoRetrieval name: MTEB VideoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 64.9 - type: map_at_10 value: 75.622 - type: map_at_100 value: 75.93900000000001 - type: map_at_1000 value: 75.93900000000001 - type: map_at_3 value: 73.933 - type: map_at_5 value: 74.973 - type: mrr_at_1 value: 65 - type: mrr_at_10 value: 75.676 - type: mrr_at_100 value: 75.994 - type: mrr_at_1000 value: 75.994 - type: mrr_at_3 value: 74.05000000000001 - type: mrr_at_5 value: 75.03999999999999 - type: ndcg_at_1 value: 64.9 - type: ndcg_at_10 value: 80.08999999999999 - type: ndcg_at_100 value: 81.44500000000001 - type: ndcg_at_1000 value: 81.45599999999999 - type: ndcg_at_3 value: 76.688 - type: ndcg_at_5 value: 78.53 - type: precision_at_1 value: 64.9 - type: precision_at_10 value: 9.379999999999999 - type: precision_at_100 value: 0.997 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 28.199999999999996 - type: precision_at_5 value: 17.8 - type: recall_at_1 value: 64.9 - type: recall_at_10 value: 93.8 - type: recall_at_100 value: 99.7 - type: recall_at_1000 value: 99.8 - type: recall_at_3 value: 84.6 - type: recall_at_5 value: 89 - task: type: Classification dataset: type: C-MTEB/waimai-classification name: MTEB Waimai config: default split: test revision: None metrics: - type: accuracy value: 89.34 - type: ap value: 75.20638024616892 - type: f1 value: 87.88648489072128 library_name: sentence-transformers --- # xiaobu-embedding-v2 基于piccolo-embedding[1],主要改动如下: - 合成数据替换为xiaobu-embedding-v1[2]所积累数据 - 在circle_loss[3]视角下统一处理CMTEB的6类问题,最大优势是可充分利用原始数据集中的多个正例,其次是可一定程度上避免考虑多个不同loss之间的权重问题 ## Usage (Sentence-Transformers) ``` pip install -U sentence-transformers ``` 相似度计算: ```python from sentence_transformers import SentenceTransformer sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = SentenceTransformer('lier007/xiaobu-embedding-v2') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` ## Reference 1. https://github.com/hjq133/piccolo-embedding 2. https://huggingface.co/lier007/xiaobu-embedding 3. https://arxiv.org/abs/2002.10857
dx2102/llama-midi
dx2102
"2025-04-05T00:28:12Z"
217
4
null
[ "safetensors", "llama", "dataset:amaai-lab/MidiCaps", "dataset:projectlosangeles/Los-Angeles-MIDI-Dataset", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "region:us" ]
null
"2025-02-11T05:13:51Z"
--- datasets: - amaai-lab/MidiCaps - projectlosangeles/Los-Angeles-MIDI-Dataset base_model: - meta-llama/Llama-3.2-1B-Instruct --- ### Write music scores with llama ### Try the model online: https://huggingface.co/spaces/dx2102/llama-midi This model is finetuned from the `Llama-3.2-1B` language model. It learns to write MIDI music scores with a text representation. Optionally, the score title can also be used as a text prompt. To use this model, you can simply take existing code and replace `meta-llama/Llama-3.2-1B` with `dx2102/llama-midi`. ```python import torch from transformers import pipeline pipe = pipeline( "text-generation", model="dx2102/llama-midi", torch_dtype=torch.bfloat16, device="cuda", # cuda/mps/cpu ) txt = pipe( ''' Bach pitch duration wait velocity instrument '''.strip(), max_length=100, temperature=1.0, top_p=1.0, ) print(txt) ``` To convert the text representation back to a midi file, try this: ```bash # install this midi library pip install symusic ``` ```python import symusic # For example txt = '''pitch duration wait velocity instrument 71 1310 0 20 0 48 330 350 20 0 55 330 350 20 0 64 1310 690 20 0 74 660 690 20 0 69 1310 0 20 0 48 330 350 20 0 57 330 350 20 0 66 1310 690 20 0 67 330 350 20 0 69 330 350 20 0 71 1310 0 20 0 48 330 350 20 0 55 330 350 20 0 64 1310 690 20 0 74 660 690 20 0 69 1970 0 20 0 48 330 350 20 0 ''' def postprocess(txt, path): # assert txt.startswith(prompt) txt = txt.split('\n\n')[-1] tracks = {} now = 0 # we need to ignore the invalid output by the model try: for line in txt.split('\n'): pitch, duration, wait, velocity, instrument = line.split() pitch, duration, wait, velocity = [int(x) for x in [pitch, duration, wait, velocity]] if instrument not in tracks: tracks[instrument] = symusic.core.TrackSecond() if instrument != 'drum': tracks[instrument].program = int(instrument) else: tracks[instrument].is_drum = True # Eg. Note(time=7.47, duration=5.25, pitch=43, velocity=64, ttype='Second') tracks[instrument].notes.append(symusic.core.NoteSecond( time=now/1000, duration=duration/1000, pitch=int(pitch), velocity=int(velocity * 4), )) now += wait except Exception as e: print('Postprocess: Ignored error:', e) print(f'Postprocess: Got {sum(len(track.notes) for track in tracks.values())} notes') try: score = symusic.Score(ttype='Second') score.tracks.extend(tracks.values()) score.dump_midi(path) except Exception as e: print('Postprocess: Ignored postprocessing error:', e) postprocess(txt, './result.mid') ```
lilly9928/LogicLLM
lilly9928
"2024-06-04T06:24:05Z"
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-06-04T06:23:11Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dima806/67_cat_breeds_image_detection
dima806
"2024-10-19T10:54:29Z"
228
2
transformers
[ "transformers", "pytorch", "safetensors", "vit", "image-classification", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2023-09-10T17:40:42Z"
--- license: apache-2.0 metrics: - accuracy base_model: - google/vit-base-patch16-224-in21k --- See https://www.kaggle.com/code/dima806/67-cat-breed-image-detection-vit for more details.
Scalino84/my-flux-face-v2
Scalino84
"2024-12-30T13:38:20Z"
30
0
diffusers
[ "diffusers", "stable-diffusion-lora", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "en", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2024-12-30T13:28:39Z"
--- language: en tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora license: other # oder "unknown" wenn du dir nicht sicher bist base_model: runwayml/stable-diffusion-v1-5 instance_prompt: xyz person --- # My Flux Face LoRA Model This is a custom LoRA model trained for face generation using Stable Diffusion. ## Model Details - Base Model: runwayml/stable-diffusion-v1-5 - Training Type: LoRA - Resolution: 512x512 - Trigger Word: "xyz person" ## License This model is for non-commercial use only. ## Usage ```python from diffusers import StableDiffusionPipeline import torch model_id = "Scalino84/my-flux-face-v2" pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe.load_lora_weights(model_id) prompt = "a photo of xyz person, professional headshot" image = pipe(prompt).images[0]
pphildan/vit-base-patch16-224-v22
pphildan
"2023-05-20T09:19:48Z"
216
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
"2023-05-20T08:57:02Z"
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-v22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-v22 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0399 - Accuracy: 0.9856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.282 | 1.0 | 190 | 0.1316 | 0.9530 | | 0.1866 | 2.0 | 380 | 0.1104 | 0.9644 | | 0.1409 | 3.0 | 570 | 0.0662 | 0.9781 | | 0.1085 | 4.0 | 760 | 0.0515 | 0.9826 | | 0.0655 | 5.0 | 950 | 0.0399 | 0.9856 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Tokenizers 0.13.3
Nexspear/7ec63d8b-3416-4ce9-817c-d3af13bec894
Nexspear
"2025-02-02T18:16:43Z"
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-64k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-64k", "region:us" ]
null
"2025-02-02T18:03:12Z"
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: 7ec63d8b-3416-4ce9-817c-d3af13bec894 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-64k bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 74aeb5c63551d548_train_data.json ds_type: json format: custom path: /workspace/input_data/74aeb5c63551d548_train_data.json type: field_input: '' field_instruction: name field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: Nexspear/7ec63d8b-3416-4ce9-817c-d3af13bec894 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/74aeb5c63551d548_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 05d6a97d-a07b-424f-b289-aea33906250f wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 05d6a97d-a07b-424f-b289-aea33906250f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7ec63d8b-3416-4ce9-817c-d3af13bec894 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.9002 | 0.0061 | 1 | 1.8614 | | 3.1135 | 0.3030 | 50 | 0.7905 | | 2.8538 | 0.6061 | 100 | 0.7226 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1