File size: 6,574 Bytes
b051880
 
f98a043
0707d05
6cd7819
f6a8624
98c55ad
6cd7819
033d048
a4e5a59
d3237a4
f0f9dff
6cd7819
e57fc59
d3237a4
e57fc59
 
 
 
 
6cd7819
 
d79abfc
6cd7819
 
033d048
6cd7819
033d048
 
8a3e216
6cd7819
54fd24d
9235cc9
033d048
 
 
 
 
 
 
 
98c55ad
6cd7819
d3237a4
033d048
 
 
 
6cd7819
d3237a4
 
 
6cd7819
 
d3237a4
 
 
6cd7819
d3237a4
 
033d048
6cd7819
b5b4046
6cd7819
033d048
d3237a4
 
93f512e
8bf7fc4
 
 
 
d3237a4
6cd7819
 
 
 
 
 
033d048
6cd7819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
033d048
6cd7819
 
 
 
033d048
6cd7819
 
033d048
d3237a4
228b9ad
d3237a4
033d048
6cd7819
033d048
 
6cd7819
 
 
 
 
3374d3d
 
6cd7819
033d048
 
 
6cd7819
033d048
d3237a4
 
 
 
 
033d048
d3237a4
033d048
 
6cd7819
d3237a4
6cd7819
 
 
033d048
6cd7819
 
033d048
6cd7819
 
a4e5a59
 
 
228b9ad
3374d3d
 
 
a4e5a59
 
 
6cd7819
a4e5a59
 
6cd7819
 
 
033d048
6cd7819
d3237a4
 
6cd7819
d3237a4
6cd7819
 
 
 
 
 
 
d3237a4
6cd7819
 
033d048
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import tempfile
import cv2
import streamlit as st
import PIL
import requests
from ultralytics import YOLO
import time
import numpy as np
import imageio_ffmpeg as ffmpeg
import base64

# Page config first
st.set_page_config(
    page_title="Fire Watch: Fire and Smoke Detection with an AI Vision Model",
    page_icon="🔥",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Model path
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'

# Session state initialization
for key in ["processed_frames", "slider_value", "processed_video", "start_time"]:
    if key not in st.session_state:
        st.session_state[key] = [] if key == "processed_frames" else 0 if key == "slider_value" else None

# Sidebar
with st.sidebar:
    st.header("Upload & Settings")
    source_file = st.file_uploader("Upload image/video", type=["jpg", "jpeg", "png", "bmp", "webp", "mp4"])
    confidence = float(st.slider("Confidence Threshold", 10, 100, 20)) / 100
    fps_options = {
        "Original FPS": None,
        "3 FPS": 3,
        "1 FPS": 1,
        "1 frame/4s": 0.25,
        "1 frame/10s": 0.1,
        "1 frame/15s": 0.0667,
        "1 frame/30s": 0.0333
    }
    video_option = st.selectbox("Output Frame Rate", list(fps_options.keys()))
    process_button = st.button("Detect fire")
    progress_bar = st.progress(0)
    progress_text = st.empty()
    download_slot = st.empty()

# Main page
st.title("Fire Watch: AI-Powered Fire and Smoke Detection")

# Display result images directly
col1, col2 = st.columns(2)
with col1:
    fire_4a_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_4a.jpg"
    st.image(fire_4a_url, use_column_width=True)

with col2:
    fire_3a_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3a.jpg"
    st.image(fire_3a_url, use_column_width=True)

st.markdown("""
Early fire and smoke detection using YOLOv8 AI vision model. See detected results below, and upload more content for additional analysis!
""")

if not source_file:
    st.info("Please upload a file to begin.")

st.header("Your Results")
result_cols = st.columns(2)
viewer_slot = st.empty()


# Load model
try:
    model = YOLO(model_path)
except Exception as ex:
    st.error(f"Model loading failed: {str(ex)}")
    model = None

# Processing
if process_button and source_file and model:
    st.session_state.processed_frames = []
    if source_file.type.split('/')[0] == 'image':
        image = PIL.Image.open(source_file)
        res = model.predict(image, conf=confidence)
        result = res[0].plot()[:, :, ::-1]
        with result_cols[0]:
            st.image(image, caption="Original", use_column_width=True)
        with result_cols[1]:
            st.image(result, caption="Detected", use_column_width=True)
    else:
        # Video processing
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp:
            tmp.write(source_file.read())
            vidcap = cv2.VideoCapture(tmp.name)
        
        orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
        total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
        width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        
        output_fps = fps_options[video_option] if fps_options[video_option] else orig_fps
        sample_interval = max(1, int(orig_fps / output_fps)) if output_fps else 1
        
        # Set fixed output FPS to 2 (500ms per frame = 2 FPS)
        fixed_output_fps = 1
        
        st.session_state.start_time = time.time()
        frame_count = 0
        processed_count = 0
        
        success, frame = vidcap.read()
        while success:
            if frame_count % sample_interval == 0:
                res = model.predict(frame, conf=confidence)
                processed_frame = res[0].plot()[:, :, ::-1]
                if not processed_frame.flags['C_CONTIGUOUS']:
                    processed_frame = np.ascontiguousarray(processed_frame)
                st.session_state.processed_frames.append(processed_frame)
                
                processed_count += 1
                elapsed = time.time() - st.session_state.start_time
                progress = frame_count / total_frames
                
                if elapsed > 0 and progress > 0:
                    total_estimated_time = elapsed / progress
                    eta = total_estimated_time - elapsed
                    elapsed_str = f"{int(elapsed // 60)}m {int(elapsed % 60)}s"
                    eta_str = f"{int(eta // 60)}m {int(eta % 60)}s" if eta > 0 else "Almost done"
                else:
                    elapsed_str = "0s"
                    eta_str = "Calculating..."
                
                progress_bar.progress(min(progress, 1.0))
                progress_text.text(f"Progress: {progress:.1%}\nElapsed: {elapsed_str}\nETA: {eta_str}")
            
            frame_count += 1
            success, frame = vidcap.read()
        
        vidcap.release()
        os.unlink(tmp.name)
        
        if st.session_state.processed_frames:
            out_path = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
            writer = ffmpeg.write_frames(
                out_path,
                (width, height),
                fps=fixed_output_fps,  # Fixed at 1 FPS (1000ms per frame)
                codec='libx264',
                pix_fmt_in='bgr24',
                pix_fmt_out='yuv420p'
            )
            writer.send(None)  # Initialize writer
            
            for frame in st.session_state.processed_frames:
                writer.send(frame)
            writer.close()
            
            with open(out_path, 'rb') as f:
                st.session_state.processed_video = f.read()
            os.unlink(out_path)
            
            elapsed_final = time.time() - st.session_state.start_time
            elapsed_final_str = f"{int(elapsed_final // 60)}m {int(elapsed_final % 60)}s"
            progress_bar.progress(1.0)
            progress_text.text(f"Progress: 100%\nElapsed: {elapsed_final_str}\nETA: 0m 0s")
            with result_cols[0]:
                st.video(source_file)
            with result_cols[1]:
                st.video(st.session_state.processed_video)
            download_slot.download_button(
                label="Download Processed Video",
                data=st.session_state.processed_video,
                file_name="results_fire_analysis.mp4",
                mime="video/mp4"
            )