Spaces:
Running
Running
File size: 6,105 Bytes
b051880 f98a043 0707d05 6cd7819 f6a8624 98c55ad 6cd7819 033d048 f0f9dff 6cd7819 e57fc59 6cd7819 e57fc59 6cd7819 d79abfc 6cd7819 033d048 6cd7819 033d048 8a3e216 6cd7819 033d048 98c55ad 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 033d048 6cd7819 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import tempfile
import cv2
import streamlit as st
import PIL
import requests
from ultralytics import YOLO
import time
import numpy as np
# Page config first
st.set_page_config(
page_title="WildfireWatch: AI Detection",
page_icon="🔥",
layout="wide",
initial_sidebar_state="expanded"
)
# Model path
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
# Session state initialization
for key in ["processed_frames", "slider_value", "processed_video", "start_time"]:
if key not in st.session_state:
st.session_state[key] = [] if key == "processed_frames" else 0 if key == "slider_value" else None
# Sidebar
with st.sidebar:
st.header("Upload & Settings")
source_file = st.file_uploader("Upload image/video", type=["jpg", "jpeg", "png", "bmp", "webp", "mp4"])
confidence = float(st.slider("Confidence Threshold", 25, 100, 40)) / 100
fps_options = {
"Original FPS": None,
"3 FPS": 3,
"1 FPS": 1,
"1 frame/4s": 0.25,
"1 frame/10s": 0.1,
"1 frame/15s": 0.0667,
"1 frame/30s": 0.0333
}
video_option = st.selectbox("Output Frame Rate", list(fps_options.keys()))
process_button = st.button("Detect Wildfire")
progress_bar = st.progress(0)
progress_text = st.empty()
download_slot = st.empty()
# Main page
st.title("WildfireWatch: AI-Powered Detection")
col1, col2 = st.columns(2)
with col1:
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_1.jpeg", use_column_width=True)
with col2:
st.image("https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3.png", use_column_width=True)
st.markdown("""
Early wildfire detection using YOLOv8 AI vision model. See examples below or upload your own content!
""")
# Example videos
st.header("Example Results")
for example in [("T1.mp4", "T2.mpg"), ("LA1.mp4", "LA2.mp4")]:
col1, col2 = st.columns(2)
orig_url = f"https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/{example[0]}"
proc_url = f"https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/{example[1]}"
orig_data = requests.get(orig_url).content
proc_data = requests.get(proc_url).content
with col1:
st.video(orig_data)
with col2:
st.video(proc_data)
st.header("Your Results")
result_cols = st.columns(2)
viewer_slot = st.empty()
# Load model
try:
model = YOLO(model_path)
except Exception as ex:
st.error(f"Model loading failed: {str(ex)}")
model = None
# Processing
if process_button and source_file and model:
st.session_state.processed_frames = []
if source_file.type.split('/')[0] == 'image':
image = PIL.Image.open(source_file)
res = model.predict(image, conf=confidence)
result = res[0].plot()[:, :, ::-1]
with result_cols[0]:
st.image(image, caption="Original", use_column_width=True)
with result_cols[1]:
st.image(result, caption="Detected", use_column_width=True)
else:
# Video processing
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp:
tmp.write(source_file.read())
vidcap = cv2.VideoCapture(tmp.name)
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_fps = fps_options[video_option] if fps_options[video_option] else orig_fps
sample_interval = max(1, int(orig_fps / output_fps)) if output_fps else 1
st.session_state.start_time = time.time()
frame_count = 0
processed_count = 0
success, frame = vidcap.read()
while success:
if frame_count % sample_interval == 0:
res = model.predict(frame, conf=confidence)
processed_frame = res[0].plot()[:, :, ::-1]
st.session_state.processed_frames.append(processed_frame)
processed_count += 1
elapsed = time.time() - st.session_state.start_time
progress = frame_count / total_frames
if elapsed > 0 and processed_count > 0:
time_per_frame = elapsed / processed_count
frames_left = (total_frames - frame_count) / sample_interval
eta = frames_left * time_per_frame
eta_str = f"{int(eta // 60)}m {int(eta % 60)}s"
else:
eta_str = "Calculating..."
progress_bar.progress(min(progress, 1.0))
progress_text.text(f"Progress: {progress:.1%} | ETA: {eta_str}")
frame_count += 1
success, frame = vidcap.read()
vidcap.release()
os.unlink(tmp.name)
if st.session_state.processed_frames:
out_path = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'mp4v'), output_fps or orig_fps, (width, height))
for frame in st.session_state.processed_frames:
writer.write(frame)
writer.release()
with open(out_path, 'rb') as f:
st.session_state.processed_video = f.read()
os.unlink(out_path)
progress_bar.progress(1.0)
progress_text.text("Processing complete!")
with result_cols[0]:
st.video(source_file)
with result_cols[1]:
st.video(st.session_state.processed_video)
download_slot.download_button(
label="Download Processed Video",
data=st.session_state.processed_video,
file_name="processed_wildfire.mp4",
mime="video/mp4"
)
if not source_file:
st.info("Please upload a file to begin.") |