File size: 7,282 Bytes
b051880
 
f98a043
0707d05
6cd7819
f6a8624
98c55ad
6cd7819
033d048
a4e5a59
d75eede
f0f9dff
6cd7819
e57fc59
8bf7fc4
e57fc59
 
 
 
 
6cd7819
 
d79abfc
6cd7819
 
033d048
6cd7819
033d048
 
8a3e216
6cd7819
d1bdd7f
9235cc9
033d048
 
 
 
 
 
 
 
98c55ad
6cd7819
8bf7fc4
033d048
 
 
 
6cd7819
8bf7fc4
72e648a
43d04b9
6cd7819
 
ab6efec
43d04b9
72e648a
6cd7819
ab6efec
43d04b9
033d048
6cd7819
43d04b9
fa31122
6cd7819
033d048
9235cc9
d1bdd7f
aaa9c0f
 
 
93f512e
8bf7fc4
 
 
 
9235cc9
d1bdd7f
 
 
 
 
 
 
 
 
 
 
6cd7819
 
 
 
 
 
 
033d048
6cd7819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
033d048
6cd7819
 
 
 
033d048
6cd7819
 
033d048
9235cc9
 
 
033d048
6cd7819
033d048
 
6cd7819
 
 
 
 
3374d3d
 
6cd7819
033d048
 
 
6cd7819
033d048
fa31122
 
 
 
 
033d048
fa31122
033d048
 
6cd7819
9235cc9
6cd7819
 
 
033d048
6cd7819
 
033d048
6cd7819
 
a4e5a59
 
 
9235cc9
3374d3d
 
 
a4e5a59
 
 
6cd7819
a4e5a59
 
6cd7819
 
 
033d048
6cd7819
fa31122
 
6cd7819
9235cc9
6cd7819
 
 
 
 
 
 
180769c
6cd7819
 
033d048
6cd7819
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import tempfile
import cv2
import streamlit as st
import PIL
import requests
from ultralytics import YOLO
import time
import numpy as np
import imageio_ffmpeg as ffmpeg
import base64

# Page config first
st.set_page_config(
    page_title="Fire Watch: Fire and Smoke Detection with an AI Vision Model",
    page_icon="🔥",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Model path
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'

# Session state initialization
for key in ["processed_frames", "slider_value", "processed_video", "start_time"]:
    if key not in st.session_state:
        st.session_state[key] = [] if key == "processed_frames" else 0 if key == "slider_value" else None

# Sidebar
with st.sidebar:
    st.header("Upload & Settings")
    source_file = st.file_uploader("Upload image or video to be analyzed:", type=["jpg", "jpeg", "png", "bmp", "webp", "mp4"])
    confidence = float(st.slider("Confidence Threshold", 10, 100, 20)) / 100
    fps_options = {
        "Original FPS": None,
        "3 FPS": 3,
        "1 FPS": 1,
        "1 frame/4s": 0.25,
        "1 frame/10s": 0.1,
        "1 frame/15s": 0.0667,
        "1 frame/30s": 0.0333
    }
    video_option = st.selectbox("Output Frame Rate", list(fps_options.keys()))
    process_button = st.button("Detect fire")
    progress_bar = st.progress(0)
    progress_text = st.empty()
    download_slot = st.empty()

# Main page
st.title("Fire Watch: AI-Powered Fire and Smoke Detection")

# Display result images directly
col1, col2 = st.columns(2)
with col1:
    fire_4a_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_4a.jpg"
    st.image(fire_4a_url, use_column_width=True)

with col2:
    fire_3a_url = "https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/Fire_3a.jpg"
    st.image(fire_3a_url, use_column_width=True)

st.markdown("""
Early wildfire detection using YOLOv8 AI vision model. See detected results above and video examples below, or upload your own content!
Click on video frames to load and play examples.
""")

# Function to create simple video pair HTML


if not source_file:
    st.info("Please upload a file to begin.")

st.header("Your Results")
result_cols = st.columns(2)
viewer_slot = st.empty()

# Example videos (LA before T)
#st.header("Example Results")
#examples = [
 #   ("LA Example", "LA1.mp4", "LA2.mp4"),
  #  ("T Example", "T1.mp4", "T2.mp4")
#]
#for title, orig_file, proc_file in examples:
 #   st.subheader(title)
  #  orig_url = f"https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/{orig_file}"
   # proc_url = f"https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/{proc_file}"
   # video_html = create_video_pair(orig_url, proc_url)
   # st.markdown(video_html, unsafe_allow_html=True)

# Load model
try:
    model = YOLO(model_path)
except Exception as ex:
    st.error(f"Model loading failed: {str(ex)}")
    model = None

# Processing
if process_button and source_file and model:
    st.session_state.processed_frames = []
    if source_file.type.split('/')[0] == 'image':
        image = PIL.Image.open(source_file)
        res = model.predict(image, conf=confidence)
        result = res[0].plot()[:, :, ::-1]
        with result_cols[0]:
            st.image(image, caption="Original", use_column_width=True)
        with result_cols[1]:
            st.image(result, caption="Detected", use_column_width=True)
    else:
        # Video processing
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp:
            tmp.write(source_file.read())
            vidcap = cv2.VideoCapture(tmp.name)
        
        orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
        total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
        width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        
        output_fps = fps_options[video_option] if fps_options[video_option] else orig_fps
        sample_interval = max(1, int(orig_fps / output_fps)) if output_fps else 1
        
        # Set fixed output FPS to 2 (500ms per frame = 2 FPS)
        fixed_output_fps = 2
        
        st.session_state.start_time = time.time()
        frame_count = 0
        processed_count = 0
        
        success, frame = vidcap.read()
        while success:
            if frame_count % sample_interval == 0:
                res = model.predict(frame, conf=confidence)
                processed_frame = res[0].plot()[:, :, ::-1]
                if not processed_frame.flags['C_CONTIGUOUS']:
                    processed_frame = np.ascontiguousarray(processed_frame)
                st.session_state.processed_frames.append(processed_frame)
                
                processed_count += 1
                elapsed = time.time() - st.session_state.start_time
                progress = frame_count / total_frames
                
                if elapsed > 0 and progress > 0:
                    total_estimated_time = elapsed / progress
                    eta = total_estimated_time - elapsed
                    elapsed_str = f"{int(elapsed // 60)}m {int(elapsed % 60)}s"
                    eta_str = f"{int(eta // 60)}m {int(eta % 60)}s" if eta > 0 else "Almost done"
                else:
                    elapsed_str = "0s"
                    eta_str = "Calculating..."
                
                progress_bar.progress(min(progress, 1.0))
                progress_text.text(f"Progress: {progress:.1%}\nElapsed: {elapsed_str}\nETA: {eta_str}")
            
            frame_count += 1
            success, frame = vidcap.read()
        
        vidcap.release()
        os.unlink(tmp.name)
        
        if st.session_state.processed_frames:
            out_path = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
            writer = ffmpeg.write_frames(
                out_path,
                (width, height),
                fps=fixed_output_fps,  # Fixed at 2 FPS (500ms per frame)
                codec='libx264',
                pix_fmt_in='bgr24',
                pix_fmt_out='yuv420p'
            )
            writer.send(None)  # Initialize writer
            
            for frame in st.session_state.processed_frames:
                writer.send(frame)
            writer.close()
            
            with open(out_path, 'rb') as f:
                st.session_state.processed_video = f.read()
            os.unlink(out_path)
            
            elapsed_final = time.time() - st.session_state.start_time
            elapsed_final_str = f"{int(elapsed_final // 60)}m {int(elapsed_final % 60)}s"
            progress_bar.progress(1.0)
            progress_text.text(f"Progress: 100%\nElapsed: {elapsed_final_str}\nETA: 0m 0s")
            with result_cols[0]:
                st.video(source_file)
            with result_cols[1]:
                st.video(st.session_state.processed_video)
            download_slot.download_button(
                label="Download Processed Video",
                data=st.session_state.processed_video,
                file_name="results_fire_analysis.mp4",
                mime="video/mp4"
            )

if not source_file:
    st.info("Please upload a file to begin.")