Spaces:
Sleeping
Sleeping
File size: 6,504 Bytes
b051880 d79abfc 033d048 f98a043 0707d05 f6a8624 98c55ad 033d048 f0f9dff 033d048 e57fc59 033d048 e57fc59 033d048 f6a8624 d79abfc f6a8624 033d048 d79abfc 033d048 f6a8624 d79abfc 033d048 8a3e216 033d048 98c55ad 033d048 d79abfc 033d048 af04f31 033d048 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import os
import tempfile
import base64
import time
import cv2
import streamlit as st
import requests
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
import imageio
import numpy as np
# Page config must be first
st.set_page_config(
page_title="Wildfire Detection Demo",
page_icon="🔥",
layout="wide",
initial_sidebar_state="expanded"
)
# Helper function to display videos
def show_video(video_bytes: bytes, title: str, loop=True):
if not video_bytes:
st.warning(f"No {title} video available.")
return
video_base64 = base64.b64encode(video_bytes).decode()
loop_attr = "loop" if loop else ""
video_html = f"""
<h4>{title}</h4>
<video width="100%" controls autoplay muted {loop_attr}>
<source src="data:video/mp4;base64,{video_base64}" type="video/mp4">
Your browser does not support the video tag.
</video>
"""
st.markdown(video_html, unsafe_allow_html=True)
# Initialize session state
for key in ["processed_video", "processing_complete", "start_time", "progress"]:
if key not in st.session_state:
st.session_state[key] = None if key in ["processed_video", "start_time"] else False if key == "processing_complete" else 0
# Load model
@st.cache_resource
def load_model():
repo_id = "tstone87/ccr-colorado"
filename = "best.pt"
try:
model_path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="model")
return YOLO(model_path)
except Exception as e:
st.error(f"Failed to load model: {str(e)}")
return None
model = load_model()
# Sidebar
with st.sidebar:
st.header("Process Your Own Video")
uploaded_file = st.file_uploader("Upload a video", type=["mp4"])
confidence = st.slider("Detection Confidence", 0.25, 1.0, 0.4)
fps_options = {
"Original FPS": None,
"3 FPS": 3,
"1 FPS": 1,
"1 frame/4s": 0.25,
"1 frame/10s": 0.1,
"1 frame/15s": 0.0667,
"1 frame/30s": 0.0333
}
selected_fps = st.selectbox("Output FPS", list(fps_options.keys()), index=0)
process_button = st.button("Process Video")
progress_bar = st.progress(0)
progress_text = st.empty()
download_slot = st.empty()
# Main content
st.title("Wildfire Detection Demo")
st.markdown("Watch our example videos below or upload your own in the sidebar!")
# Example videos
example_videos = {
"T Example": ("T1.mp4", "T2.mpg"),
"LA Example": ("LA1.mp4", "LA2.mp4")
}
for example_name in example_videos:
col1, col2 = st.columns(2)
orig_file, proc_file = example_videos[example_name]
try:
orig_url = f"https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/{orig_file}"
proc_url = f"https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/{proc_file}"
orig_data = requests.get(orig_url).content
proc_data = requests.get(proc_url).content
with col1:
show_video(orig_data, f"{example_name} - Original", loop=True)
with col2:
show_video(proc_data, f"{example_name} - Processed", loop=True)
except Exception as e:
st.error(f"Failed to load {example_name}: {str(e)}")
# Video processing
def process_video(video_file, target_fps, confidence):
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp:
tmp.write(video_file.read())
tmp_path = tmp.name
try:
reader = imageio.get_reader(tmp_path)
meta = reader.get_meta_data()
original_fps = meta['fps']
width, height = meta['size']
total_frames = meta['nframes'] if meta['nframes'] != float('inf') else 1000 # Fallback for unknown length
output_fps = fps_options[target_fps] if fps_options[target_fps] else original_fps
frame_interval = max(1, int(original_fps / output_fps)) if output_fps else 1
out_path = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'mp4v'), output_fps or original_fps, (width, height))
st.session_state.start_time = time.time()
processed_count = 0
for i, frame in enumerate(reader):
if i % frame_interval == 0:
frame_rgb = np.array(frame)
results = model.predict(frame_rgb, conf=confidence)
processed_frame = results[0].plot()[:, :, ::-1]
writer.write(processed_frame)
processed_count += 1
elapsed = time.time() - st.session_state.start_time
progress = (i + 1) / total_frames
st.session_state.progress = min(progress, 1.0)
if elapsed > 0:
frames_left = total_frames - i - 1
time_per_frame = elapsed / processed_count
eta = frames_left * time_per_frame / frame_interval
eta_str = f"{int(eta // 60)}m {int(eta % 60)}s"
else:
eta_str = "Calculating..."
progress_bar.progress(st.session_state.progress)
progress_text.text(f"Progress: {st.session_state.progress:.1%} | ETA: {eta_str}")
writer.release()
reader.close()
with open(out_path, 'rb') as f:
return f.read()
finally:
if os.path.exists(tmp_path):
os.unlink(tmp_path)
if os.path.exists(out_path):
os.unlink(out_path)
# Process uploaded video
if process_button and uploaded_file and model:
with st.spinner("Processing video..."):
st.session_state.processed_video = process_video(uploaded_file, selected_fps, confidence)
st.session_state.processing_complete = True
progress_bar.progress(1.0)
progress_text.text("Processing complete!")
# Show processed video and download button
if st.session_state.processing_complete and st.session_state.processed_video:
st.subheader("Your Processed Video")
show_video(st.session_state.processed_video, "Processed Result", loop=False)
download_slot.download_button(
label="Download Processed Video",
data=st.session_state.processed_video,
file_name="processed_wildfire.mp4",
mime="video/mp4"
)
if not model:
st.error("Model loading failed. Please check the repository and model file availability.") |