File size: 27,904 Bytes
6c02161 b2d8a8c 15059e3 b2d8a8c 6df3b9e 649509e 60eb847 51043fd b2d8a8c 6b78ccb 2936f7d 6b78ccb 98d025d 15059e3 472d32d c022c1a 472d32d c022c1a 472d32d c022c1a 9df60ba c022c1a 15059e3 c022c1a 9df60ba 472d32d 22e7225 6b78ccb 858dd79 310cc12 44d4a2f 649509e 6b78ccb 649509e 6b78ccb 649509e 6b78ccb a96918a 649509e 01bd804 649509e 0d14459 a96918a 649509e 310cc12 01bd804 a02a3fd 649509e 310cc12 649509e 15059e3 2936f7d 0d14459 a96918a 15059e3 310cc12 fa7e403 a96918a d758bba 10f6d5f a96918a 858dd79 a96918a 858dd79 310cc12 d758bba 44d4a2f 310cc12 a96918a 10f6d5f a96918a e6c9d72 44d4a2f d758bba 44d4a2f d758bba 44d4a2f b1201e2 44d4a2f 310cc12 d758bba 44d4a2f 310cc12 44d4a2f 310cc12 44d4a2f 310cc12 44d4a2f 310cc12 44d4a2f 310cc12 d758bba 310cc12 d758bba 310cc12 d758bba 310cc12 d758bba 310cc12 d758bba 310cc12 d758bba 310cc12 d758bba 310cc12 d758bba 310cc12 d758bba 310cc12 d758bba 3037e6c 310cc12 a96918a 649509e 193bc92 b1201e2 193bc92 5bb3bd1 a96918a 193bc92 a96918a 649509e 310cc12 a96918a 649509e e6c9d72 649509e 15059e3 649509e 5bb3bd1 193bc92 649509e 193bc92 310cc12 649509e 15059e3 649509e 3fe10eb 649509e fd82b48 649509e 8cd422c 649509e 15059e3 85b4489 15059e3 5730add 649509e 15059e3 725074b 15059e3 85b4489 725074b 85b4489 15059e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import torch
import sys
import uuid
import re
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True
)
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'
# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./xcodec_mini_infer"
)
# Change to the "inference" directory
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
# don't change above code
import argparse
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
import time
import copy
from collections import Counter
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched
device = "cuda:0"
stage2_model = "m-a-p/YuE-s2-1B-general"
model_stage2 = AutoModelForCausalLM.from_pretrained(
stage2_model,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2"
).to(device)
model_stage2.eval()
model = AutoModelForCausalLM.from_pretrained(
"m-a-p/YuE-s1-7B-anneal-en-cot",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(device)
model.eval()
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
config_path = './xcodec_mini_infer/decoders/config.yaml'
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
codectool_stage2 = CodecManipulator("xcodec", 0, 8)
model_config = OmegaConf.load(basic_model_config)
# Load codec model
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.eval()
# Preload and compile vocoders
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
vocal_decoder.to(device)
inst_decoder.to(device)
vocal_decoder.eval()
inst_decoder.eval()
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
# Convert to mono
audio = torch.mean(audio, dim=0, keepdim=True)
# Resample if needed
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics: str):
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
return structured_lyrics
def stage2_generate(model, prompt, batch_size=1): # set batch_size=1 for gradio demo
codec_ids = codectool.unflatten(prompt, n_quantizer=1)
codec_ids = codectool.offset_tok_ids(
codec_ids,
global_offset=codectool.global_offset,
codebook_size=codectool.codebook_size,
num_codebooks=codectool.num_codebooks,
).astype(np.int32)
# Prepare prompt_ids based on batch size or single input
if batch_size > 1:
codec_list = []
for i in range(batch_size):
idx_begin = i * 300
idx_end = (i + 1) * 300
codec_list.append(codec_ids[:, idx_begin:idx_end])
codec_ids = np.concatenate(codec_list, axis=0)
prompt_ids = np.concatenate(
[
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
codec_ids,
np.tile([mmtokenizer.stage_2], (batch_size, 1)),
],
axis=1
)
else:
prompt_ids = np.concatenate([
np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
codec_ids.flatten(), # Flatten the 2D array to 1D
np.array([mmtokenizer.stage_2])
]).astype(np.int32)
prompt_ids = prompt_ids[np.newaxis, ...]
codec_ids = torch.as_tensor(codec_ids).to(device)
prompt_ids = torch.as_tensor(prompt_ids).to(device)
len_prompt = prompt_ids.shape[-1]
block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)])
# Teacher forcing generate loop
for frames_idx in range(codec_ids.shape[1]):
cb0 = codec_ids[:, frames_idx:frames_idx+1]
prompt_ids = torch.cat([prompt_ids, cb0], dim=1)
input_ids = prompt_ids
with torch.no_grad():
stage2_output = model.generate(input_ids=input_ids,
min_new_tokens=7,
max_new_tokens=7,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=block_list,
)
assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1]-prompt_ids.shape[1]}"
prompt_ids = stage2_output
# Return output based on batch size
if batch_size > 1:
output = prompt_ids.cpu().numpy()[:, len_prompt:]
output_list = [output[i] for i in range(batch_size)]
output = np.concatenate(output_list, axis=0)
else:
output = prompt_ids[0].cpu().numpy()[len_prompt:]
return output
def stage2_inference(model, stage1_output_set, stage2_output_dir, batch_size=1): # set batch_size=1 for gradio demo
stage2_result = []
for i in tqdm(range(len(stage1_output_set))):
output_filename = os.path.join(stage2_output_dir, os.path.basename(stage1_output_set[i]))
if os.path.exists(output_filename):
print(f'{output_filename} stage2 has done.')
continue
# Load the prompt
prompt = np.load(stage1_output_set[i]).astype(np.int32)
# Only accept 6s segments
output_duration = prompt.shape[-1] // 50 // 6 * 6
num_batch = output_duration // 6
if num_batch <= batch_size:
# If num_batch is less than or equal to batch_size, we can infer the entire prompt at once
output = stage2_generate(model, prompt[:, :output_duration*50], batch_size=num_batch)
else:
# If num_batch is greater than batch_size, process in chunks of batch_size
segments = []
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
for seg in range(num_segments):
start_idx = seg * batch_size * 300
# Ensure the end_idx does not exceed the available length
end_idx = min((seg + 1) * batch_size * 300, output_duration*50) # Adjust the last segment
current_batch_size = batch_size if seg != num_segments-1 or num_batch % batch_size == 0 else num_batch % batch_size
segment = stage2_generate(
model,
prompt[:, start_idx:end_idx],
batch_size=current_batch_size
)
segments.append(segment)
# Concatenate all the segments
output = np.concatenate(segments, axis=0)
# Process the ending part of the prompt
if output_duration*50 != prompt.shape[-1]:
ending = stage2_generate(model, prompt[:, output_duration*50:], batch_size=1)
output = np.concatenate([output, ending], axis=0)
output = codectool_stage2.ids2npy(output)
# Fix invalid codes (a dirty solution, which may harm the quality of audio)
# We are trying to find better one
fixed_output = copy.deepcopy(output)
for i, line in enumerate(output):
for j, element in enumerate(line):
if element < 0 or element > 1023:
counter = Counter(line)
most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
fixed_output[i, j] = most_frequant
# save output
np.save(output_filename, fixed_output)
stage2_result.append(output_filename)
return stage2_result
@spaces.GPU(duration=120)
def generate_music(
max_new_tokens=5,
run_n_segments=2,
genre_txt=None,
lyrics_txt=None,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
cuda_idx=0,
rescale=False,
):
if use_audio_prompt and not audio_prompt_path:
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
cuda_idx = cuda_idx
max_new_tokens = max_new_tokens * 100
with tempfile.TemporaryDirectory() as output_dir:
stage1_output_dir = os.path.join(output_dir, f"stage1")
stage2_output_dir = stage1_output_dir.replace('stage1', 'stage2')
os.makedirs(stage1_output_dir, exist_ok=True)
os.makedirs(stage2_output_dir, exist_ok=True)
stage1_output_set = []
genres = genre_txt.strip()
lyrics = split_lyrics(lyrics_txt + "\n")
# intruction
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
prompt_texts += lyrics
random_id = uuid.uuid4()
output_seq = None
# Here is suggested decoding config
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
# special tokens
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
raw_output = None
# Format text prompt
run_n_segments = min(run_n_segments + 1, len(lyrics))
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <= 1 else 1.2
if i == 0:
continue
if i == 1:
if use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt.unsqueeze_(0)
with torch.no_grad():
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
# Format audio prompt
code_ids = codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [
mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize(
"[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
# Use window slicing in case output sequence exceeds the context of model
max_context = 16384 - max_new_tokens - 1
if input_ids.shape[-1] > max_context:
print(
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
input_ids = input_ids[:, -(max_context):]
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
output_seq = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
guidance_scale=guidance_scale,
use_cache=True
)
if output_seq[0][-1].item() != mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
if i > 1:
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
print(len(raw_output))
# save raw output and check sanity
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
if len(soa_idx) != len(eoa_idx):
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
vocals = []
instrumentals = []
range_begin = 1 if use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
vocals.append(vocals_ids)
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
instrumentals.append(instrumentals_ids)
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{random_id}".replace('.', '@') + '.npy')
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{random_id}".replace('.', '@') + '.npy')
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set.append(vocal_save_path)
stage1_output_set.append(inst_save_path)
print("Stage 2 inference...")
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=1) # set batch_size=1 for gradio demo
print('Stage 2 DONE.\n')
print("Converting to Audio...")
# convert audio tokens to audio
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
folder_path = os.path.dirname(path)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
# reconstruct tracks from stage 1
recons_output_dir = os.path.join(output_dir, "recons_stage1") # changed folder name to recons_stage1
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
os.makedirs(recons_mix_dir, exist_ok=True)
tracks_stage1 = [] # changed variable name to tracks_stage1
for npy in stage1_output_set:
codec_result = np.load(npy)
decodec_rlt=[]
with torch.no_grad():
decoded_waveform = codec_model.decode(
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
device))
decoded_waveform = decoded_waveform.cpu().squeeze(0)
decodec_rlt.append(torch.as_tensor(decoded_waveform))
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + "_stage1.mp3") # changed filename to include _stage1
tracks_stage1.append(save_path) # changed variable name to tracks_stage1
save_audio(decodec_rlt, save_path, 16000)
# reconstruct tracks from stage 2 and vocoder
recons_output_dir = os.path.join(output_dir, "recons_stage2_vocoder") # changed folder name to recons_stage2_vocoder
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
os.makedirs(recons_mix_dir, exist_ok=True)
tracks_stage2_vocoder = [] # changed variable name to tracks_stage2_vocoder
vocoder_stems_dir = os.path.join(recons_output_dir, 'stems') # vocoder output stems in recons_stage2_vocoder
os.makedirs(vocoder_stems_dir, exist_ok=True)
vocal_output = None # initialize for mix error handling
instrumental_output = None # initialize for mix error handling
for npy in stage2_result:
if 'instrumental' in npy:
# Process instrumental
instrumental_output = process_audio(
npy,
os.path.join(vocoder_stems_dir, 'instrumental.mp3'), # vocoder output to vocoder_stems_dir
rescale,
None, # Removed args, use default vocoder args
inst_decoder,
codec_model
)
else:
# Process vocal
vocal_output = process_audio(
npy,
os.path.join(vocoder_stems_dir, 'vocal.mp3'), # vocoder output to vocoder_stems_dir
rescale,
None, # Removed args, use default vocoder args
vocal_decoder,
codec_model
)
# mix tracks from vocoder output
try:
mix_output = instrumental_output + vocal_output
vocoder_mix = os.path.join(recons_mix_dir, 'mixed_stage2_vocoder.mp3') # mixed output in recons_stage2_vocoder, changed filename
save_audio(mix_output, vocoder_mix, 44100, rescale)
print(f"Created mix: {vocoder_mix}")
tracks_stage2_vocoder.append(vocoder_mix) # add mixed vocoder output path
except RuntimeError as e:
print(e)
vocoder_mix = None # set to None if mix failed
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape if instrumental_output is not None else 'None'}, vocal: {vocal_output.shape if vocal_output is not None else 'None'}")
# mix tracks from stage 1
mixed_stage1_path = None
vocal_stage1_path = None
instrumental_stage1_path = None
for inst_path in tracks_stage1: # changed variable name to tracks_stage1
try:
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
and 'instrumental' in inst_path:
# find pair
vocal_path = inst_path.replace('instrumental', 'vocal')
if not os.path.exists(vocal_path):
continue
# mix
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental_stage1', 'mixed_stage1')) # changed mixed filename
vocal_stem, sr = sf.read(vocal_path)
instrumental_stem, _ = sf.read(inst_path)
mix_stem = (vocal_stem + instrumental_stem) / 1
sf.write(recons_mix, mix_stem, sr)
mixed_stage1_path = recons_mix # store mixed stage 1 path
vocal_stage1_path = vocal_path # store vocal stage 1 path
instrumental_stage1_path = inst_path # store instrumental stage 1 path
except Exception as e:
print(e)
# Post process - skip post process for gradio to simplify.
# recons_mix_final_path = os.path.join(output_dir, os.path.basename(mixed_stage1_path).replace('_stage1', '_final')) # final output path
# replace_low_freq_with_energy_matched(
# a_file=mixed_stage1_path, # 16kHz
# b_file=vocoder_mix, # 48kHz
# c_file=recons_mix_final_path,
# cutoff_freq=5500.0
# )
if vocoder_mix is not None: # return vocoder mix if successful
mixed_audio_data, sr_vocoder_mix = sf.read(vocoder_mix)
vocal_audio_data = None # stage 2 vocoder stems are not mixed and returned in this demo, set to None
instrumental_audio_data = None # stage 2 vocoder stems are not mixed and returned in this demo, set to None
return (sr_vocoder_mix, (mixed_audio_data * 32767).astype(np.int16)), vocal_audio_data, instrumental_audio_data
elif mixed_stage1_path is not None: # if vocoder failed, return stage 1 mix
mixed_audio_data_stage1, sr_stage1_mix = sf.read(mixed_stage1_path)
vocal_audio_data_stage1, sr_vocal_stage1 = sf.read(vocal_stage1_path)
instrumental_audio_data_stage1, sr_inst_stage1 = sf.read(instrumental_stage1_path)
return (sr_stage1_mix, (mixed_audio_data_stage1 * 32767).astype(np.int16)), (sr_vocal_stage1, (vocal_audio_data_stage1 * 32767).astype(np.int16)), (sr_inst_stage1, (instrumental_audio_data_stage1 * 32767).astype(np.int16))
else: # if both failed, return None
return None, None, None
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15):
# Execute the command
try:
mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
cuda_idx=0, max_new_tokens=max_new_tokens)
return mixed_audio_data, vocal_audio_data, instrumental_audio_data
except Exception as e:
gr.Warning("An Error Occured: " + str(e))
return None, None, None
finally:
print("Temporary files deleted.")
# Gradio
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
with gr.Column():
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Mixed Audio Result (Stage 2 + Vocoder)")
with gr.Accordion(label="Stage 1 Vocal and Instrumental Result", open=False):
vocal_out = gr.Audio(label="Vocal Audio (Stage 1)")
instrumental_out = gr.Audio(label="Instrumental Audio (Stage 1)")
gr.Examples(
examples=[
[
"Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar",
"""[verse]
Step back cause I'll ignite
Won't quit without a fight
No escape, gear up, it's a fierce fight
Brace up, raise your hands up and light
Fear the might. Step back cause I'll ignite
Won't back down without a fight
It keeps going and going, the heat is on.
[chorus]
Hot flame. Hot flame.
Still here, still holding aim
I don't care if I'm bright or dim: nah.
I've made it clear, I'll make it again
All I want is my crew and my gain.
I'm feeling wild, got a bit of rebel style.
Locked inside my mind, hot flame.
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out, vocal_out, instrumental_out],
cache_examples=True,
cache_mode="eager",
fn=infer
)
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs=[music_out, vocal_out, instrumental_out]
)
gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.")
demo.queue().launch(show_error=True) |