Spaces:
Running
on
Zero
Running
on
Zero
File size: 43,446 Bytes
6560c55 cf40b67 a6e4f9f cf40b67 a6e4f9f cf40b67 a6e4f9f ffc273f b8c63a2 3d63694 8652f53 ffc273f 6560c55 ffc273f 6560c55 b8c63a2 8652f53 ffc273f b8c63a2 6560c55 b8c63a2 6560c55 8652f53 ffc273f 3d63694 ffc273f 6560c55 ffc273f 6560c55 ffc273f 6560c55 ffc273f 6560c55 ffc273f 6560c55 3d63694 ffc273f b8c63a2 3d63694 ffc273f 8652f53 6560c55 b8c63a2 6560c55 8652f53 a6e4f9f 6560c55 8652f53 ffc273f 6560c55 b8c63a2 ffc273f a6e4f9f 6560c55 ffc273f 6560c55 ffc273f 6560c55 ffc273f 6560c55 ffc273f 6560c55 ffc273f 6560c55 ffc273f 3d63694 8652f53 ffc273f 6560c55 8652f53 b8c63a2 ffc273f 6560c55 3d63694 ffc273f 6560c55 8652f53 ffc273f 6560c55 ffc273f 3d63694 6560c55 8652f53 ffc273f a6e4f9f 6560c55 ffc273f 6560c55 ffc273f 6560c55 b8c63a2 6560c55 ffc273f 6560c55 ffc273f 6560c55 ffc273f 6560c55 3d63694 6560c55 3d63694 ffc273f 6560c55 3d63694 6560c55 3d63694 6560c55 3d63694 ffc273f 6560c55 ffc273f 3d63694 6560c55 8652f53 ffc273f 8652f53 ffc273f 8652f53 6560c55 8652f53 ffc273f 6560c55 8652f53 3d63694 ffc273f 8652f53 6560c55 3d63694 6560c55 ffc273f 6560c55 8652f53 ffc273f 6560c55 b8c63a2 6560c55 ffc273f b8c63a2 ffc273f 8652f53 6560c55 ffc273f 60c475d 6560c55 ffc273f b8c63a2 ffc273f 6560c55 8652f53 b8c63a2 ffc273f a6e4f9f ffc273f 8652f53 ffc273f a6e4f9f 8652f53 6560c55 a6e4f9f ffc273f a6e4f9f ffc273f 6560c55 ffc273f 8652f53 6560c55 3d63694 6560c55 8652f53 3d63694 6560c55 3d63694 6560c55 d64ad42 ffc273f cf40b67 8652f53 ffc273f 8652f53 ffc273f 6560c55 ffc273f a6e4f9f 8652f53 a6e4f9f 8652f53 a6e4f9f cf40b67 ffc273f cf40b67 ffc273f 6560c55 3d63694 ffc273f 8652f53 3d63694 ffc273f 3d63694 6560c55 3d63694 6560c55 ffc273f 3d63694 ffc273f 3d63694 6560c55 ffc273f 6560c55 8652f53 ffc273f 8652f53 3d63694 8652f53 6560c55 a6e4f9f ffc273f 8652f53 6560c55 a6e4f9f ffc273f 8652f53 3d63694 8652f53 ffc273f 8652f53 3d63694 6560c55 ffc273f 6560c55 ffc273f 3d63694 6560c55 3d63694 6560c55 ffc273f 3d63694 8652f53 3d63694 ffc273f 8652f53 6560c55 8652f53 6560c55 3d63694 6560c55 3d63694 8652f53 3d63694 a6e4f9f ffc273f 3d63694 6560c55 ffc273f 8652f53 ffc273f 3d63694 a6e4f9f 8652f53 a6e4f9f ffc273f 3d63694 ffc273f 6560c55 8652f53 ffc273f 6560c55 8652f53 6560c55 8652f53 6560c55 3d63694 6560c55 ffc273f 6560c55 3d63694 ffc273f 6560c55 b8c63a2 ffc273f 6560c55 3d63694 ffc273f 6560c55 a6e4f9f ffc273f 6560c55 3d63694 6560c55 ffc273f 8652f53 ffc273f 6560c55 a6e4f9f ffc273f 8652f53 6560c55 ffc273f 6560c55 ffc273f 6560c55 ffc273f 6560c55 a6e4f9f ffc273f 6560c55 cf40b67 6560c55 3d63694 8652f53 3d63694 8652f53 3d63694 6560c55 3d63694 8652f53 3d63694 6560c55 ffc273f 3d63694 ffc273f 3d63694 6560c55 8652f53 3d63694 8652f53 3d63694 8652f53 6560c55 3d63694 ffc273f 3d63694 6560c55 3d63694 ffc273f 8652f53 3d63694 cf40b67 3d63694 6560c55 ffc273f 3d63694 6560c55 ffc273f 3d63694 ffc273f 3d63694 6560c55 ffc273f 3d63694 ffc273f 6560c55 ffc273f 6560c55 ffc273f 6560c55 ffc273f 8652f53 ffc273f 3d63694 ffc273f 3d63694 ffc273f 3d63694 ffc273f 8652f53 ffc273f 3d63694 ffc273f 3d63694 6560c55 3d63694 ffc273f 6560c55 ffc273f 6560c55 ffc273f 6560c55 ffc273f 8652f53 6560c55 ffc273f 6560c55 a6e4f9f 6560c55 cf40b67 6560c55 b8c63a2 6560c55 cf40b67 ffc273f cf40b67 ffc273f cf40b67 6560c55 cf40b67 8652f53 6560c55 8652f53 ffc273f 6560c55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
# --- Imports ---
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from duckduckgo_search import DDGS
import time
import torch
from datetime import datetime
import os
import subprocess
import numpy as np
from typing import List, Dict, Tuple, Any, Optional, Union
from functools import lru_cache
import asyncio
import threading
from concurrent.futures import ThreadPoolExecutor
import warnings
import traceback # For detailed error logging
import re # For text cleaning
import shutil # For checking sudo/file operations
import html # For escaping HTML
import sys # For sys.path manipulation
# --- Configuration ---
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
MAX_SEARCH_RESULTS = 5
TTS_SAMPLE_RATE = 24000
MAX_TTS_CHARS = 1000 # Max characters for a single TTS chunk
MAX_NEW_TOKENS = 300
TEMPERATURE = 0.7
TOP_P = 0.95
KOKORO_PATH = 'Kokoro-82M' # Relative path to TTS model directory
# --- Initialization ---
# Thread Pool Executor for blocking tasks
executor = ThreadPoolExecutor(max_workers=os.cpu_count() or 4)
# Suppress specific warnings
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
# --- LLM Initialization ---
llm_model: Optional[AutoModelForCausalLM] = None
llm_tokenizer: Optional[AutoTokenizer] = None
llm_device = "cpu"
try:
print("[LLM Init] Initializing Language Model...")
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
llm_tokenizer.pad_token = llm_tokenizer.eos_token
if torch.cuda.is_available():
llm_device = "cuda"
torch_dtype = torch.float16
device_map = "auto"
print(f"[LLM Init] CUDA detected. Loading model with device_map='{device_map}', dtype={torch_dtype}")
else:
llm_device = "cpu"
torch_dtype = torch.float32
device_map = {"": "cpu"}
print(f"[LLM Init] CUDA not found. Loading model on CPU with dtype={torch_dtype}")
llm_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map=device_map,
low_cpu_mem_usage=True,
torch_dtype=torch_dtype,
# attn_implementation="flash_attention_2" # Optional
)
# Get the actual device map if using 'auto'
effective_device_map = llm_model.hf_device_map if hasattr(llm_model, 'hf_device_map') else device_map
print(f"[LLM Init] LLM loaded successfully. Device map: {effective_device_map}")
llm_model.eval()
except Exception as e:
print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}")
print(traceback.format_exc())
llm_model = None
llm_tokenizer = None
print("[LLM Init] LLM features will be unavailable.")
# --- TTS Initialization ---
VOICE_CHOICES = {
'πΊπΈ Female (Default)': 'af',
'πΊπΈ Bella': 'af_bella',
'πΊπΈ Sarah': 'af_sarah',
'πΊπΈ Nicole': 'af_nicole'
}
TTS_ENABLED = False
tts_model: Optional[Any] = None
voicepacks: Dict[str, Any] = {}
tts_device = "cpu"
# Helper for running subprocesses
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None, timeout: int = 300) -> subprocess.CompletedProcess:
"""Runs a subprocess command, captures output, and handles errors."""
print(f"Running command: {' '.join(cmd)}")
try:
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
# Only print output details if check failed or for specific successful commands
if not check or result.returncode != 0:
if result.stdout: print(f" Stdout: {result.stdout.strip()}")
if result.stderr: print(f" Stderr: {result.stderr.strip()}")
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
print(f" Command successful.") # Concise success message
return result
except FileNotFoundError:
print(f" Error: Command not found - {cmd[0]}")
raise
except subprocess.TimeoutExpired:
print(f" Error: Command timed out - {' '.join(cmd)}")
raise
except subprocess.CalledProcessError as e:
print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})")
if e.stdout: print(f" Stdout: {e.stdout.strip()}")
if e.stderr: print(f" Stderr: {e.stderr.strip()}")
raise
# TTS Setup Task (runs in background thread)
def setup_tts_task():
"""Initializes Kokoro TTS model and dependencies."""
global TTS_ENABLED, tts_model, voicepacks, tts_device
print("[TTS Setup] Starting background initialization...")
tts_device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[TTS Setup] Target device: {tts_device}")
can_sudo = shutil.which('sudo') is not None
apt_cmd_prefix = ['sudo'] if can_sudo else []
absolute_kokoro_path = os.path.abspath(KOKORO_PATH) # Use absolute path
try:
# 1. Clone Kokoro Repo if needed
if not os.path.exists(absolute_kokoro_path):
print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...")
try:
_run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
except Exception as lfs_err:
print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}. Continuing...")
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path])
try:
print("[TTS Setup] Running git lfs pull...")
_run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
except Exception as lfs_pull_err:
print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
else:
print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.")
# Optional: Run git pull and lfs pull to update if needed
# try:
# print("[TTS Setup] Updating existing repo...")
# _run_subprocess(['git', 'pull'], cwd=absolute_kokoro_path)
# _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
# except Exception as update_err:
# print(f"[TTS Setup] Warning: Failed to update repo: {update_err}")
# 2. Install espeak dependency
print("[TTS Setup] Checking/Installing espeak...")
try:
# Run update quietly first
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
# Try installing espeak-ng
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
print("[TTS Setup] espeak-ng installed or already present.")
except Exception:
print("[TTS Setup] espeak-ng installation failed, trying espeak...")
try:
# Fallback to legacy espeak
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak'])
print("[TTS Setup] espeak installed or already present.")
except Exception as espeak_err:
print(f"[TTS Setup] ERROR: Failed to install both espeak-ng and espeak: {espeak_err}. TTS disabled.")
return # Cannot proceed
# 3. Load Kokoro Model and Voices
sys_path_updated = False
if os.path.exists(absolute_kokoro_path):
print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}")
try:
dir_contents = os.listdir(absolute_kokoro_path)
print(f"[TTS Setup] Contents: {dir_contents}")
if 'models.py' not in dir_contents or 'kokoro.py' not in dir_contents:
print("[TTS Setup] Warning: Core Kokoro python files ('models.py', 'kokoro.py') might be missing!")
except OSError as list_err:
print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}")
# Add path temporarily for import
if absolute_kokoro_path not in sys.path:
sys.path.insert(0, absolute_kokoro_path) # Add to beginning
sys_path_updated = True
print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.")
try:
print("[TTS Setup] Attempting to import Kokoro modules...")
from models import build_model
from kokoro import generate as generate_tts_internal
print("[TTS Setup] Kokoro modules imported successfully.")
# Make functions globally accessible IF NEEDED (alternative: pass them around)
globals()['build_model'] = build_model
globals()['generate_tts_internal'] = generate_tts_internal
model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth')
if not os.path.exists(model_file):
print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.")
return
print(f"[TTS Setup] Loading TTS model from {model_file} onto {tts_device}...")
tts_model = build_model(model_file, tts_device)
tts_model.eval()
print("[TTS Setup] TTS model loaded.")
# Load voices
loaded_voices = 0
for voice_name, voice_id in VOICE_CHOICES.items():
voice_file_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt')
if os.path.exists(voice_file_path):
try:
print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name})")
voicepacks[voice_id] = torch.load(voice_file_path, map_location=tts_device)
loaded_voices += 1
except Exception as e:
print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
else:
print(f"[TTS Setup] Info: Voice file {voice_file_path} not found.")
if loaded_voices == 0:
print("[TTS Setup] ERROR: No voicepacks could be loaded. TTS disabled.")
tts_model = None # Free memory if no voices
return
TTS_ENABLED = True
print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
# Catch the specific import error
except ImportError as ie:
print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}.")
print(f" Please ensure '{absolute_kokoro_path}' contains 'models.py' and 'kokoro.py'.")
print(traceback.format_exc())
except Exception as load_err:
print(f"[TTS Setup] ERROR: Exception during TTS model/voice loading: {load_err}. TTS disabled.")
print(traceback.format_exc())
finally:
# *** Crucial: Clean up sys.path ***
if sys_path_updated:
try:
if sys.path[0] == absolute_kokoro_path:
sys.path.pop(0)
print(f"[TTS Setup] Removed {absolute_kokoro_path} from sys.path.")
else:
# It might have been removed elsewhere, or wasn't at index 0
if absolute_kokoro_path in sys.path:
sys.path.remove(absolute_kokoro_path)
print(f"[TTS Setup] Removed {absolute_kokoro_path} from sys.path (was not index 0).")
except Exception as cleanup_err:
print(f"[TTS Setup] Warning: Error removing path from sys.path: {cleanup_err}")
else:
print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")
except Exception as e:
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
print(traceback.format_exc())
TTS_ENABLED = False # Ensure disabled on any top-level error
tts_model = None
voicepacks.clear()
# Start TTS setup in background
print("Starting TTS setup thread...")
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
tts_setup_thread.start()
# --- Core Logic Functions ---
@lru_cache(maxsize=128)
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
"""Synchronous web search function with caching."""
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
print(f"[Web Search] Found {len(results)} results.")
formatted = [{
"id": i + 1,
"title": res.get("title", "No Title"),
"snippet": res.get("body", "No Snippet"),
"url": res.get("href", "#"),
} for i, res in enumerate(results)]
return formatted
except Exception as e:
print(f"[Web Search] Error: {e}")
# Avoid printing full traceback repeatedly for common network errors maybe
return []
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
"""Formats the prompt for the LLM, including context and instructions."""
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
context_str = "\n\n".join(
[f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]
) if context else "No relevant web context found."
# Using a clear, structured prompt
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}
CONTEXT:
---
{context_str}
---
USER: {html.escape(query)}
ASSISTANT:""" # Using ASSISTANT: marker might help some models
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
"""Formats search results into HTML for display."""
if not web_results:
return "<div class='no-sources'>No sources found for this query.</div>"
items_html = ""
for res in web_results:
title_safe = html.escape(res.get("title", "Source"))
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
url = html.escape(res.get("url", "#")) # Escape URL too
items_html += f"""
<div class='source-item'>
<div class='source-number'>[{res['id']}]</div>
<div class='source-content'>
<a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a>
<div class='source-snippet'>{snippet_safe}</div>
</div>
</div>
"""
return f"<div class='sources-container'>{items_html}</div>"
async def generate_llm_answer(prompt: str) -> str:
"""Generates answer using the loaded LLM (Async Wrapper)."""
if not llm_model or not llm_tokenizer:
print("[LLM Generate] LLM model or tokenizer not available.")
return "Error: Language Model is not available."
print(f"[LLM Generate] Requesting generation (prompt length {len(prompt)})...")
start_time = time.time()
try:
inputs = llm_tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=1024, # Adjust based on model limits
return_attention_mask=True
).to(llm_model.device)
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
outputs = await asyncio.get_event_loop().run_in_executor(
executor,
llm_model.generate,
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
top_p=TOP_P,
pad_token_id=llm_tokenizer.eos_token_id,
eos_token_id=llm_tokenizer.eos_token_id,
do_sample=True,
num_return_sequences=1
)
# Decode only newly generated tokens
output_ids = outputs[0][inputs.input_ids.shape[1]:]
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
if not answer_part:
answer_part = "*Model generated an empty response.*"
end_time = time.time()
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
return answer_part
except Exception as e:
print(f"[LLM Generate] Error: {e}")
print(traceback.format_exc())
return f"Error during answer generation: Check logs for details." # User-friendly error
async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
"""Generates speech using the loaded TTS model (Async Wrapper)."""
if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals():
print("[TTS Generate] Skipping: TTS not ready.")
return None
if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model generated"):
print("[TTS Generate] Skipping: Invalid or empty text.")
return None
print(f"[TTS Generate] Requesting speech (length {len(text)}, voice '{voice_id}')...")
start_time = time.time()
try:
actual_voice_id = voice_id
if voice_id not in voicepacks:
print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying default 'af'.")
actual_voice_id = 'af'
if 'af' not in voicepacks:
print("[TTS Generate] Error: Default voice 'af' also not available.")
return None
# Clean text more thoroughly for TTS
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text) # Remove citations [1], [2][3]
clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL) # Remove code blocks
clean_text = re.sub(r'`[^`]*`', '', clean_text) # Remove inline code
clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE) # Remove list markers/blockquotes at line start
clean_text = re.sub(r'[\*#_]', '', clean_text) # Remove remaining markdown emphasis/headers
clean_text = html.unescape(clean_text) # Decode HTML entities
clean_text = ' '.join(clean_text.split()) # Normalize whitespace
if not clean_text:
print("[TTS Generate] Skipping: Text empty after cleaning.")
return None
if len(clean_text) > MAX_TTS_CHARS:
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
clean_text = clean_text[:MAX_TTS_CHARS]
last_punct = max(clean_text.rfind(p) for p in '.?!; ') # Find reasonable cut-off
if last_punct != -1: clean_text = clean_text[:last_punct+1]
clean_text += "..."
print(f"[TTS Generate] Generating audio for: '{clean_text[:100]}...'")
gen_func = globals()['generate_tts_internal']
voice_pack_data = voicepacks[actual_voice_id]
# Execute in thread pool
# Verify the expected language code ('afr', 'eng', etc.) for Kokoro
audio_data, _ = await asyncio.get_event_loop().run_in_executor(
executor, gen_func, tts_model, clean_text, voice_pack_data, 'afr'
)
# Process output
if isinstance(audio_data, torch.Tensor):
audio_np = audio_data.detach().cpu().numpy()
elif isinstance(audio_data, np.ndarray):
audio_np = audio_data
else:
print("[TTS Generate] Warning: Unexpected audio data type.")
return None
audio_np = audio_np.flatten().astype(np.float32) # Ensure 1D float32
end_time = time.time()
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
return (TTS_SAMPLE_RATE, audio_np)
except Exception as e:
print(f"[TTS Generate] Error: {str(e)}")
print(traceback.format_exc())
return None
def get_voice_id_from_display(voice_display_name: str) -> str:
"""Maps the user-friendly voice name to the internal voice ID."""
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af'
# --- Gradio Interaction Logic ---
ChatHistoryType = List[Dict[str, Optional[str]]] # Allow None for content during streaming
async def handle_interaction(
query: str,
history: ChatHistoryType,
selected_voice_display_name: str
):
"""Main async generator function to handle user queries and update Gradio UI."""
print(f"\n--- Handling Query ---")
query = query.strip() # Clean input query
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
if not query:
print("Empty query received.")
yield history, "*Please enter a non-empty query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
return
# Use 'messages' format: List of {'role': 'user'/'assistant', 'content': '...'}
current_history: ChatHistoryType = history + [{"role": "user", "content": query}]
# Add placeholder for assistant response
current_history.append({"role": "assistant", "content": None}) # Content starts as None
# Define states to yield
chatbot_state = current_history
status_state = "*Searching...*"
sources_state = "<div class='searching'><span>Searching the web...</span></div>"
audio_state = None
button_state = gr.Button(value="Searching...", interactive=False)
# 1. Initial State: Searching
current_history[-1]["content"] = status_state # Update placeholder
yield chatbot_state, status_state, sources_state, audio_state, button_state
# 2. Perform Web Search (in executor)
web_results = await asyncio.get_event_loop().run_in_executor(
executor, get_web_results_sync, query
)
sources_state = format_sources_html(web_results)
# Update state: Generating Answer
status_state = "*Generating answer...*"
button_state = gr.Button(value="Generating...", interactive=False)
current_history[-1]["content"] = status_state # Update placeholder
yield chatbot_state, status_state, sources_state, audio_state, button_state
# 3. Generate LLM Answer (async)
llm_prompt = format_llm_prompt(query, web_results)
final_answer = await generate_llm_answer(llm_prompt)
status_state = final_answer # Now status holds the actual answer
# Update assistant message in history fully
current_history[-1]["content"] = final_answer
# Update state: Generating Audio (if applicable)
button_state = gr.Button(value="Audio...", interactive=False) if TTS_ENABLED else gr.Button(value="Search", interactive=True)
yield chatbot_state, status_state, sources_state, audio_state, button_state
# 4. Generate TTS Speech (async)
tts_status_message = ""
if not TTS_ENABLED:
if tts_setup_thread.is_alive():
tts_status_message = "\n\n*(TTS initializing...)*"
else:
# Check if setup failed vs just disabled
# This info isn't easily available here, assume failed/disabled
tts_status_message = "\n\n*(TTS unavailable)*"
else:
voice_id = get_voice_id_from_display(selected_voice_display_name)
audio_state = await generate_tts_speech(final_answer, voice_id) # Returns (rate, data) or None
if audio_state is None and not final_answer.startswith("Error"): # Don't show TTS fail if LLM failed
tts_status_message = "\n\n*(Audio generation failed)*"
# 5. Final State: Show all results
final_answer_with_status = final_answer + tts_status_message
status_state = final_answer_with_status # Update status display
current_history[-1]["content"] = final_answer_with_status # Update history *again* with status msg
button_state = gr.Button(value="Search", interactive=True) # Re-enable button
print("--- Query Handling Complete ---")
yield chatbot_state, status_state, sources_state, audio_state, button_state
# --- Gradio UI Definition ---
# (CSS from previous response)
css = """
/* ... [Your existing refined CSS] ... */
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
#header h3 { color: #a8a9ab; }
.search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; }
.search-box { padding: 0; margin-bottom: 1rem; display: flex; align-items: center; }
.search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; height: 44px !important; flex-grow: 1; }
.search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px; height: 44px !important; width: 180px; flex-shrink: 0; }
.search-box .gradio-button { border-radius: 0 8px 8px 0 !important; height: 44px !important; flex-shrink: 0; }
.search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 100% !important; padding: 0 12px !important;}
.search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; z-index: 1; }
.search-box input[type="text"]::placeholder { color: #9ca3af !important; }
.search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 100% !important; }
.search-box button:hover { background: #1d4ed8 !important; }
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
.answer-box { /* Now used for status/interim text */ background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;}
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
.sources-container { margin-top: 0; }
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; }
.source-item:last-child { border-bottom: none; }
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
.source-content { flex: 1; min-width: 0;} /* Allow content to shrink */
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
.chat-history { /* Style the chatbot container */ max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; /* margin-top: 1rem; */ scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
.chat-history > div { padding: 1rem; } /* Add padding inside the chatbot display area */
.chat-history::-webkit-scrollbar { width: 6px; }
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; }
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
.markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; }
.markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; }
.markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;}
.markdown-content h3 { font-size: 1.2em !important; }
.markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; }
.markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; }
.markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; }
.markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;}
.markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;}
.markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; }
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
/* .accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; } */
/* .accordion > .label-wrap { padding: 10px 15px !important; } */
.voice-selector { margin: 0; padding: 0; height: 100%; }
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;}
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
.audio-player audio { width: 100% !important; }
.searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; }
.searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; }
.error { background: #fef2f2; color: #ef4444; border-color: #fecaca; }
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
/* Dark Mode Styles */
.dark .gradio-container { background-color: #111827 !important; }
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
.dark #header h3 { color: #9ca3af; }
.dark .search-container { background: #1f2937; border-color: #374151; }
.dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; }
.dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; }
.dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; }
.dark .search-box button { background: #3b82f6 !important; }
.dark .search-box button:hover { background: #2563eb !important; }
.dark .search-box button:disabled { background: #4b5563 !important; }
.dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; }
.dark .answer-box p { color: #d1d5db; }
.dark .answer-box code { background: #374151; color: #9ca3af; }
.dark .sources-box { background: #1f2937; border-color: #374151; }
.dark .sources-box h3 { color: #f9fafb; }
.dark .source-item { border-bottom-color: #374151; }
.dark .source-item:hover { background-color: #374151; }
.dark .source-number { color: #9ca3af; }
.dark .source-title { color: #60a5fa; }
.dark .source-title:hover { color: #93c5fd; }
.dark .source-snippet { color: #d1d5db; }
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;}
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
.dark .examples-container { background: #374151; border-color: #4b5563; }
.dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; }
.dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; }
.dark .markdown-content { color: #d1d5db !important; }
.dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; }
.dark .markdown-content a { color: #60a5fa !important; }
.dark .markdown-content a:hover { color: #93c5fd !important; }
.dark .markdown-content code { background: #374151 !important; color: #9ca3af; }
.dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;}
.dark .markdown-content pre code { background: transparent !important; }
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
.dark .markdown-content th { background: #374151 !important; }
/* .dark .accordion { background: #374151 !important; border-color: #4b5563 !important; } */
/* .dark .accordion > .label-wrap { color: #d1d5db !important; } */
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
.dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; }
.dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; }
.dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; }
.dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; }
.dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; }
.dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; }
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
"""
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
# Use gr.State for chat history in 'messages' format
chat_history_state = gr.State([])
with gr.Column():
# Header
with gr.Column(elem_id="header"):
gr.Markdown("# π AI Search Assistant")
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
# Search Area
with gr.Column(elem_classes="search-container"):
with gr.Row(elem_classes="search-box"):
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
# Results Area
with gr.Row(elem_classes="results-container"):
# Left Column: Chatbot, Status, Audio
with gr.Column(scale=3):
chatbot_display = gr.Chatbot(
label="Conversation",
bubble_full_width=True,
height=500, # Adjusted height
elem_classes="chat-history",
type="messages", # IMPORTANT: Use 'messages' format
show_label=False,
avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png") # User/Assistant avatars
)
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
# Right Column: Sources
with gr.Column(scale=2):
with gr.Column(elem_classes="sources-box"):
gr.Markdown("### Sources")
sources_output_html = gr.HTML(value="<div class='no-sources'>Sources will appear here.</div>")
# Examples Area
with gr.Row(elem_classes="examples-container"):
gr.Examples(
examples=[
"Latest news about renewable energy",
"Explain Large Language Models (LLMs)",
"Symptoms and prevention tips for the flu",
"Compare Python and JavaScript for web development",
"Summarize the main points of the Paris Agreement",
],
inputs=search_input,
label="Try these examples:",
# elem_classes removed
)
# --- Event Handling Setup ---
event_inputs = [search_input, chat_history_state, voice_select]
event_outputs = [
chatbot_display, # Output 1: Updated chat history
answer_status_output, # Output 2: Status/final text
sources_output_html, # Output 3: Sources HTML
audio_player, # Output 4: Audio data
search_btn # Output 5: Button state
]
async def stream_interaction_updates(query, history, voice_display_name):
"""Wraps the async generator to handle streaming updates and errors."""
print("[Gradio Stream] Starting interaction...")
final_state_tuple = None # To store the last successful state
try:
async for state_update_tuple in handle_interaction(query, history, voice_display_name):
yield state_update_tuple # Yield the tuple for Gradio to update outputs
final_state_tuple = state_update_tuple # Keep track of the last state
print("[Gradio Stream] Interaction completed successfully.")
except Exception as e:
print(f"[Gradio Stream] Error during interaction: {e}")
print(traceback.format_exc())
# Construct error state to yield
error_history = history + [{"role":"user", "content":query}, {"role":"assistant", "content":f"*An error occurred. Please check logs.*"}]
error_state_tuple = (
error_history,
f"An error occurred: {e}",
"<div class='error'>Request failed.</div>",
None,
gr.Button(value="Search", interactive=True) # Ensure button is re-enabled
)
yield error_state_tuple # Yield the error state to UI
final_state_tuple = error_state_tuple # Store error state as last state
# Optionally clear input ONLY if the interaction finished (success or error)
# Requires adding search_input to event_outputs and handling the update dict
# Example (if search_input is the 6th output):
# if final_state_tuple:
# yield (*final_state_tuple, gr.Textbox(value=""))
# else: # Handle case where no state was ever yielded (e.g., immediate empty query return)
# yield (history, "*Please enter a query.*", "...", None, gr.Button(value="Search", interactive=True), gr.Textbox(value=""))
# Connect the streaming function
search_btn.click(
fn=stream_interaction_updates,
inputs=event_inputs,
outputs=event_outputs
)
search_input.submit(
fn=stream_interaction_updates,
inputs=event_inputs,
outputs=event_outputs
)
# --- Main Execution ---
if __name__ == "__main__":
print("Starting Gradio application...")
# Optional: Wait a moment for TTS setup thread to start and potentially print messages
# time.sleep(1)
demo.queue(max_size=20).launch(
debug=True,
share=True, # Set to False if not running on Spaces or don't need public link
# server_name="0.0.0.0", # Uncomment to bind to all network interfaces
# server_port=7860 # Optional: Specify port
)
print("Gradio application stopped.") |