File size: 43,446 Bytes
6560c55
cf40b67
a6e4f9f
cf40b67
a6e4f9f
 
cf40b67
a6e4f9f
 
 
ffc273f
b8c63a2
 
 
 
3d63694
8652f53
ffc273f
6560c55
ffc273f
6560c55
b8c63a2
 
 
 
 
8652f53
ffc273f
b8c63a2
 
6560c55
b8c63a2
 
6560c55
 
8652f53
ffc273f
 
 
3d63694
ffc273f
 
 
6560c55
ffc273f
 
6560c55
ffc273f
 
 
 
 
 
6560c55
 
ffc273f
 
6560c55
ffc273f
6560c55
3d63694
ffc273f
b8c63a2
3d63694
ffc273f
8652f53
6560c55
b8c63a2
6560c55
 
 
 
8652f53
a6e4f9f
6560c55
8652f53
ffc273f
 
6560c55
b8c63a2
ffc273f
 
a6e4f9f
 
 
 
 
 
 
6560c55
 
 
ffc273f
6560c55
 
 
ffc273f
 
6560c55
 
 
 
 
 
 
ffc273f
 
6560c55
 
 
 
ffc273f
 
6560c55
 
 
ffc273f
 
6560c55
ffc273f
 
 
 
 
 
 
3d63694
8652f53
ffc273f
6560c55
8652f53
b8c63a2
ffc273f
6560c55
 
3d63694
ffc273f
 
6560c55
 
8652f53
ffc273f
6560c55
ffc273f
 
3d63694
6560c55
 
 
 
 
 
 
 
8652f53
ffc273f
 
a6e4f9f
6560c55
ffc273f
6560c55
ffc273f
 
 
6560c55
b8c63a2
6560c55
ffc273f
 
 
 
6560c55
ffc273f
 
6560c55
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc273f
6560c55
 
3d63694
6560c55
3d63694
ffc273f
6560c55
3d63694
6560c55
 
3d63694
 
6560c55
3d63694
ffc273f
 
 
 
 
6560c55
ffc273f
 
 
 
3d63694
6560c55
8652f53
 
ffc273f
 
 
8652f53
ffc273f
8652f53
6560c55
8652f53
ffc273f
 
6560c55
8652f53
 
3d63694
ffc273f
8652f53
6560c55
3d63694
6560c55
 
 
ffc273f
6560c55
8652f53
ffc273f
6560c55
 
 
 
 
 
 
 
 
 
 
 
 
b8c63a2
6560c55
ffc273f
b8c63a2
ffc273f
8652f53
6560c55
ffc273f
 
60c475d
6560c55
ffc273f
 
 
b8c63a2
ffc273f
6560c55
8652f53
b8c63a2
ffc273f
 
 
a6e4f9f
 
ffc273f
8652f53
ffc273f
 
 
 
 
 
 
a6e4f9f
8652f53
6560c55
a6e4f9f
 
ffc273f
 
a6e4f9f
ffc273f
6560c55
ffc273f
8652f53
6560c55
 
3d63694
6560c55
8652f53
 
 
3d63694
6560c55
3d63694
6560c55
d64ad42
ffc273f
 
cf40b67
8652f53
ffc273f
8652f53
ffc273f
 
6560c55
ffc273f
a6e4f9f
8652f53
a6e4f9f
8652f53
 
a6e4f9f
cf40b67
 
ffc273f
cf40b67
ffc273f
 
 
6560c55
 
3d63694
ffc273f
8652f53
3d63694
ffc273f
3d63694
 
 
 
6560c55
3d63694
6560c55
ffc273f
 
 
 
 
 
3d63694
 
 
 
ffc273f
 
3d63694
 
 
 
6560c55
ffc273f
 
 
 
6560c55
8652f53
 
ffc273f
 
8652f53
3d63694
8652f53
 
6560c55
a6e4f9f
ffc273f
 
 
 
8652f53
6560c55
 
a6e4f9f
 
ffc273f
8652f53
3d63694
8652f53
ffc273f
 
 
 
 
 
8652f53
3d63694
6560c55
 
 
 
 
 
 
ffc273f
 
6560c55
 
 
ffc273f
3d63694
6560c55
3d63694
6560c55
ffc273f
 
3d63694
8652f53
3d63694
ffc273f
8652f53
6560c55
 
8652f53
6560c55
3d63694
 
6560c55
3d63694
8652f53
3d63694
 
a6e4f9f
ffc273f
3d63694
 
6560c55
ffc273f
8652f53
ffc273f
3d63694
a6e4f9f
 
8652f53
 
a6e4f9f
 
ffc273f
3d63694
ffc273f
 
 
 
6560c55
8652f53
ffc273f
 
 
 
 
 
 
6560c55
8652f53
 
6560c55
8652f53
6560c55
3d63694
 
6560c55
 
ffc273f
6560c55
 
 
 
 
 
 
 
3d63694
ffc273f
6560c55
 
b8c63a2
ffc273f
 
 
 
6560c55
3d63694
ffc273f
6560c55
 
 
 
a6e4f9f
ffc273f
 
 
6560c55
3d63694
6560c55
ffc273f
8652f53
ffc273f
6560c55
 
a6e4f9f
ffc273f
 
 
 
 
8652f53
6560c55
 
 
 
ffc273f
6560c55
 
ffc273f
 
 
 
6560c55
 
 
 
ffc273f
 
6560c55
a6e4f9f
 
ffc273f
6560c55
cf40b67
6560c55
3d63694
 
 
 
 
8652f53
 
 
 
 
 
3d63694
8652f53
3d63694
 
 
6560c55
 
3d63694
 
 
 
 
 
 
8652f53
 
3d63694
 
6560c55
ffc273f
3d63694
 
 
 
ffc273f
3d63694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6560c55
 
8652f53
 
3d63694
8652f53
3d63694
 
 
 
 
 
 
8652f53
6560c55
3d63694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc273f
3d63694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6560c55
 
3d63694
 
 
ffc273f
8652f53
 
 
3d63694
 
 
cf40b67
 
3d63694
6560c55
ffc273f
3d63694
6560c55
ffc273f
3d63694
 
 
 
ffc273f
3d63694
6560c55
ffc273f
 
 
3d63694
ffc273f
6560c55
 
ffc273f
 
 
 
6560c55
ffc273f
6560c55
 
 
ffc273f
 
 
8652f53
 
ffc273f
 
3d63694
ffc273f
3d63694
ffc273f
3d63694
 
 
 
ffc273f
 
8652f53
ffc273f
3d63694
ffc273f
3d63694
6560c55
3d63694
 
ffc273f
 
 
6560c55
 
 
 
 
ffc273f
 
 
6560c55
 
 
ffc273f
6560c55
 
 
 
 
ffc273f
 
8652f53
6560c55
 
 
ffc273f
 
 
 
6560c55
a6e4f9f
6560c55
 
cf40b67
6560c55
 
 
 
 
 
 
b8c63a2
6560c55
 
cf40b67
ffc273f
 
 
cf40b67
 
ffc273f
 
 
cf40b67
 
6560c55
cf40b67
8652f53
6560c55
 
8652f53
ffc273f
6560c55
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
# --- Imports ---
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from duckduckgo_search import DDGS
import time
import torch
from datetime import datetime
import os
import subprocess
import numpy as np
from typing import List, Dict, Tuple, Any, Optional, Union
from functools import lru_cache
import asyncio
import threading
from concurrent.futures import ThreadPoolExecutor
import warnings
import traceback # For detailed error logging
import re # For text cleaning
import shutil # For checking sudo/file operations
import html # For escaping HTML
import sys # For sys.path manipulation

# --- Configuration ---
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
MAX_SEARCH_RESULTS = 5
TTS_SAMPLE_RATE = 24000
MAX_TTS_CHARS = 1000 # Max characters for a single TTS chunk
MAX_NEW_TOKENS = 300
TEMPERATURE = 0.7
TOP_P = 0.95
KOKORO_PATH = 'Kokoro-82M' # Relative path to TTS model directory

# --- Initialization ---
# Thread Pool Executor for blocking tasks
executor = ThreadPoolExecutor(max_workers=os.cpu_count() or 4)

# Suppress specific warnings
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")

# --- LLM Initialization ---
llm_model: Optional[AutoModelForCausalLM] = None
llm_tokenizer: Optional[AutoTokenizer] = None
llm_device = "cpu"

try:
    print("[LLM Init] Initializing Language Model...")
    llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    llm_tokenizer.pad_token = llm_tokenizer.eos_token

    if torch.cuda.is_available():
        llm_device = "cuda"
        torch_dtype = torch.float16
        device_map = "auto"
        print(f"[LLM Init] CUDA detected. Loading model with device_map='{device_map}', dtype={torch_dtype}")
    else:
        llm_device = "cpu"
        torch_dtype = torch.float32
        device_map = {"": "cpu"}
        print(f"[LLM Init] CUDA not found. Loading model on CPU with dtype={torch_dtype}")

    llm_model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        device_map=device_map,
        low_cpu_mem_usage=True,
        torch_dtype=torch_dtype,
        # attn_implementation="flash_attention_2" # Optional
    )
    # Get the actual device map if using 'auto'
    effective_device_map = llm_model.hf_device_map if hasattr(llm_model, 'hf_device_map') else device_map
    print(f"[LLM Init] LLM loaded successfully. Device map: {effective_device_map}")
    llm_model.eval()

except Exception as e:
    print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}")
    print(traceback.format_exc())
    llm_model = None
    llm_tokenizer = None
    print("[LLM Init] LLM features will be unavailable.")


# --- TTS Initialization ---
VOICE_CHOICES = {
    'πŸ‡ΊπŸ‡Έ Female (Default)': 'af',
    'πŸ‡ΊπŸ‡Έ Bella': 'af_bella',
    'πŸ‡ΊπŸ‡Έ Sarah': 'af_sarah',
    'πŸ‡ΊπŸ‡Έ Nicole': 'af_nicole'
}
TTS_ENABLED = False
tts_model: Optional[Any] = None
voicepacks: Dict[str, Any] = {}
tts_device = "cpu"

# Helper for running subprocesses
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None, timeout: int = 300) -> subprocess.CompletedProcess:
    """Runs a subprocess command, captures output, and handles errors."""
    print(f"Running command: {' '.join(cmd)}")
    try:
        result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
        # Only print output details if check failed or for specific successful commands
        if not check or result.returncode != 0:
            if result.stdout: print(f"  Stdout: {result.stdout.strip()}")
            if result.stderr: print(f"  Stderr: {result.stderr.strip()}")
        elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
            print(f"  Command successful.") # Concise success message
        return result
    except FileNotFoundError:
        print(f"  Error: Command not found - {cmd[0]}")
        raise
    except subprocess.TimeoutExpired:
        print(f"  Error: Command timed out - {' '.join(cmd)}")
        raise
    except subprocess.CalledProcessError as e:
        print(f"  Error running command: {' '.join(e.cmd)} (Code: {e.returncode})")
        if e.stdout: print(f"  Stdout: {e.stdout.strip()}")
        if e.stderr: print(f"  Stderr: {e.stderr.strip()}")
        raise

# TTS Setup Task (runs in background thread)
def setup_tts_task():
    """Initializes Kokoro TTS model and dependencies."""
    global TTS_ENABLED, tts_model, voicepacks, tts_device
    print("[TTS Setup] Starting background initialization...")

    tts_device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"[TTS Setup] Target device: {tts_device}")

    can_sudo = shutil.which('sudo') is not None
    apt_cmd_prefix = ['sudo'] if can_sudo else []
    absolute_kokoro_path = os.path.abspath(KOKORO_PATH) # Use absolute path

    try:
        # 1. Clone Kokoro Repo if needed
        if not os.path.exists(absolute_kokoro_path):
            print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...")
            try:
                _run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
            except Exception as lfs_err:
                print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}. Continuing...")
            _run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path])
            try:
                 print("[TTS Setup] Running git lfs pull...")
                 _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
            except Exception as lfs_pull_err:
                 print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
        else:
            print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.")
            # Optional: Run git pull and lfs pull to update if needed
            # try:
            #     print("[TTS Setup] Updating existing repo...")
            #     _run_subprocess(['git', 'pull'], cwd=absolute_kokoro_path)
            #     _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
            # except Exception as update_err:
            #     print(f"[TTS Setup] Warning: Failed to update repo: {update_err}")

        # 2. Install espeak dependency
        print("[TTS Setup] Checking/Installing espeak...")
        try:
            # Run update quietly first
            _run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
            # Try installing espeak-ng
            _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
            print("[TTS Setup] espeak-ng installed or already present.")
        except Exception:
            print("[TTS Setup] espeak-ng installation failed, trying espeak...")
            try:
                # Fallback to legacy espeak
                _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak'])
                print("[TTS Setup] espeak installed or already present.")
            except Exception as espeak_err:
                print(f"[TTS Setup] ERROR: Failed to install both espeak-ng and espeak: {espeak_err}. TTS disabled.")
                return # Cannot proceed

        # 3. Load Kokoro Model and Voices
        sys_path_updated = False
        if os.path.exists(absolute_kokoro_path):
            print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}")
            try:
                dir_contents = os.listdir(absolute_kokoro_path)
                print(f"[TTS Setup] Contents: {dir_contents}")
                if 'models.py' not in dir_contents or 'kokoro.py' not in dir_contents:
                     print("[TTS Setup] Warning: Core Kokoro python files ('models.py', 'kokoro.py') might be missing!")
            except OSError as list_err:
                print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}")

            # Add path temporarily for import
            if absolute_kokoro_path not in sys.path:
                sys.path.insert(0, absolute_kokoro_path) # Add to beginning
                sys_path_updated = True
                print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.")

            try:
                print("[TTS Setup] Attempting to import Kokoro modules...")
                from models import build_model
                from kokoro import generate as generate_tts_internal
                print("[TTS Setup] Kokoro modules imported successfully.")

                # Make functions globally accessible IF NEEDED (alternative: pass them around)
                globals()['build_model'] = build_model
                globals()['generate_tts_internal'] = generate_tts_internal

                model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth')
                if not os.path.exists(model_file):
                    print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.")
                    return

                print(f"[TTS Setup] Loading TTS model from {model_file} onto {tts_device}...")
                tts_model = build_model(model_file, tts_device)
                tts_model.eval()
                print("[TTS Setup] TTS model loaded.")

                # Load voices
                loaded_voices = 0
                for voice_name, voice_id in VOICE_CHOICES.items():
                    voice_file_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt')
                    if os.path.exists(voice_file_path):
                        try:
                            print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name})")
                            voicepacks[voice_id] = torch.load(voice_file_path, map_location=tts_device)
                            loaded_voices += 1
                        except Exception as e:
                            print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
                    else:
                        print(f"[TTS Setup] Info: Voice file {voice_file_path} not found.")

                if loaded_voices == 0:
                    print("[TTS Setup] ERROR: No voicepacks could be loaded. TTS disabled.")
                    tts_model = None # Free memory if no voices
                    return

                TTS_ENABLED = True
                print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")

            # Catch the specific import error
            except ImportError as ie:
                print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}.")
                print(f"  Please ensure '{absolute_kokoro_path}' contains 'models.py' and 'kokoro.py'.")
                print(traceback.format_exc())
            except Exception as load_err:
                print(f"[TTS Setup] ERROR: Exception during TTS model/voice loading: {load_err}. TTS disabled.")
                print(traceback.format_exc())
            finally:
                 # *** Crucial: Clean up sys.path ***
                 if sys_path_updated:
                     try:
                         if sys.path[0] == absolute_kokoro_path:
                             sys.path.pop(0)
                             print(f"[TTS Setup] Removed {absolute_kokoro_path} from sys.path.")
                         else:
                              # It might have been removed elsewhere, or wasn't at index 0
                              if absolute_kokoro_path in sys.path:
                                   sys.path.remove(absolute_kokoro_path)
                                   print(f"[TTS Setup] Removed {absolute_kokoro_path} from sys.path (was not index 0).")
                     except Exception as cleanup_err:
                          print(f"[TTS Setup] Warning: Error removing path from sys.path: {cleanup_err}")
        else:
            print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")

    except Exception as e:
        print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
        print(traceback.format_exc())
        TTS_ENABLED = False # Ensure disabled on any top-level error
        tts_model = None
        voicepacks.clear()

# Start TTS setup in background
print("Starting TTS setup thread...")
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
tts_setup_thread.start()


# --- Core Logic Functions ---

@lru_cache(maxsize=128)
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
    """Synchronous web search function with caching."""
    print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
    try:
        with DDGS() as ddgs:
            results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
            print(f"[Web Search] Found {len(results)} results.")
            formatted = [{
                "id": i + 1,
                "title": res.get("title", "No Title"),
                "snippet": res.get("body", "No Snippet"),
                "url": res.get("href", "#"),
            } for i, res in enumerate(results)]
            return formatted
    except Exception as e:
        print(f"[Web Search] Error: {e}")
        # Avoid printing full traceback repeatedly for common network errors maybe
        return []

def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
    """Formats the prompt for the LLM, including context and instructions."""
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    context_str = "\n\n".join(
        [f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]
    ) if context else "No relevant web context found."

    # Using a clear, structured prompt
    return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}

CONTEXT:
---
{context_str}
---

USER: {html.escape(query)}

ASSISTANT:""" # Using ASSISTANT: marker might help some models

def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
    """Formats search results into HTML for display."""
    if not web_results:
        return "<div class='no-sources'>No sources found for this query.</div>"
    items_html = ""
    for res in web_results:
        title_safe = html.escape(res.get("title", "Source"))
        snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
        url = html.escape(res.get("url", "#")) # Escape URL too
        items_html += f"""
        <div class='source-item'>
            <div class='source-number'>[{res['id']}]</div>
            <div class='source-content'>
                <a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a>
                <div class='source-snippet'>{snippet_safe}</div>
            </div>
        </div>
        """
    return f"<div class='sources-container'>{items_html}</div>"

async def generate_llm_answer(prompt: str) -> str:
    """Generates answer using the loaded LLM (Async Wrapper)."""
    if not llm_model or not llm_tokenizer:
        print("[LLM Generate] LLM model or tokenizer not available.")
        return "Error: Language Model is not available."

    print(f"[LLM Generate] Requesting generation (prompt length {len(prompt)})...")
    start_time = time.time()
    try:
        inputs = llm_tokenizer(
            prompt,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=1024, # Adjust based on model limits
            return_attention_mask=True
        ).to(llm_model.device)

        with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
            outputs = await asyncio.get_event_loop().run_in_executor(
                executor,
                llm_model.generate,
                inputs.input_ids,
                attention_mask=inputs.attention_mask,
                max_new_tokens=MAX_NEW_TOKENS,
                temperature=TEMPERATURE,
                top_p=TOP_P,
                pad_token_id=llm_tokenizer.eos_token_id,
                eos_token_id=llm_tokenizer.eos_token_id,
                do_sample=True,
                num_return_sequences=1
            )

        # Decode only newly generated tokens
        output_ids = outputs[0][inputs.input_ids.shape[1]:]
        answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()

        if not answer_part:
             answer_part = "*Model generated an empty response.*"

        end_time = time.time()
        print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
        return answer_part

    except Exception as e:
        print(f"[LLM Generate] Error: {e}")
        print(traceback.format_exc())
        return f"Error during answer generation: Check logs for details." # User-friendly error

async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
    """Generates speech using the loaded TTS model (Async Wrapper)."""
    if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals():
        print("[TTS Generate] Skipping: TTS not ready.")
        return None
    if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model generated"):
        print("[TTS Generate] Skipping: Invalid or empty text.")
        return None

    print(f"[TTS Generate] Requesting speech (length {len(text)}, voice '{voice_id}')...")
    start_time = time.time()

    try:
        actual_voice_id = voice_id
        if voice_id not in voicepacks:
            print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying default 'af'.")
            actual_voice_id = 'af'
            if 'af' not in voicepacks:
                print("[TTS Generate] Error: Default voice 'af' also not available.")
                return None

        # Clean text more thoroughly for TTS
        clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text)    # Remove citations [1], [2][3]
        clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL) # Remove code blocks
        clean_text = re.sub(r'`[^`]*`', '', clean_text)       # Remove inline code
        clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE) # Remove list markers/blockquotes at line start
        clean_text = re.sub(r'[\*#_]', '', clean_text)        # Remove remaining markdown emphasis/headers
        clean_text = html.unescape(clean_text)                # Decode HTML entities
        clean_text = ' '.join(clean_text.split())             # Normalize whitespace

        if not clean_text:
            print("[TTS Generate] Skipping: Text empty after cleaning.")
            return None

        if len(clean_text) > MAX_TTS_CHARS:
            print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
            clean_text = clean_text[:MAX_TTS_CHARS]
            last_punct = max(clean_text.rfind(p) for p in '.?!; ') # Find reasonable cut-off
            if last_punct != -1: clean_text = clean_text[:last_punct+1]
            clean_text += "..."

        print(f"[TTS Generate] Generating audio for: '{clean_text[:100]}...'")
        gen_func = globals()['generate_tts_internal']
        voice_pack_data = voicepacks[actual_voice_id]

        # Execute in thread pool
        # Verify the expected language code ('afr', 'eng', etc.) for Kokoro
        audio_data, _ = await asyncio.get_event_loop().run_in_executor(
            executor, gen_func, tts_model, clean_text, voice_pack_data, 'afr'
        )

        # Process output
        if isinstance(audio_data, torch.Tensor):
            audio_np = audio_data.detach().cpu().numpy()
        elif isinstance(audio_data, np.ndarray):
            audio_np = audio_data
        else:
            print("[TTS Generate] Warning: Unexpected audio data type.")
            return None

        audio_np = audio_np.flatten().astype(np.float32) # Ensure 1D float32

        end_time = time.time()
        print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
        return (TTS_SAMPLE_RATE, audio_np)

    except Exception as e:
        print(f"[TTS Generate] Error: {str(e)}")
        print(traceback.format_exc())
        return None

def get_voice_id_from_display(voice_display_name: str) -> str:
    """Maps the user-friendly voice name to the internal voice ID."""
    return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af'


# --- Gradio Interaction Logic ---
ChatHistoryType = List[Dict[str, Optional[str]]] # Allow None for content during streaming

async def handle_interaction(
    query: str,
    history: ChatHistoryType,
    selected_voice_display_name: str
):
    """Main async generator function to handle user queries and update Gradio UI."""
    print(f"\n--- Handling Query ---")
    query = query.strip() # Clean input query
    print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")

    if not query:
        print("Empty query received.")
        yield history, "*Please enter a non-empty query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
        return

    # Use 'messages' format: List of {'role': 'user'/'assistant', 'content': '...'}
    current_history: ChatHistoryType = history + [{"role": "user", "content": query}]
    # Add placeholder for assistant response
    current_history.append({"role": "assistant", "content": None}) # Content starts as None

    # Define states to yield
    chatbot_state = current_history
    status_state = "*Searching...*"
    sources_state = "<div class='searching'><span>Searching the web...</span></div>"
    audio_state = None
    button_state = gr.Button(value="Searching...", interactive=False)

    # 1. Initial State: Searching
    current_history[-1]["content"] = status_state # Update placeholder
    yield chatbot_state, status_state, sources_state, audio_state, button_state

    # 2. Perform Web Search (in executor)
    web_results = await asyncio.get_event_loop().run_in_executor(
        executor, get_web_results_sync, query
    )
    sources_state = format_sources_html(web_results)

    # Update state: Generating Answer
    status_state = "*Generating answer...*"
    button_state = gr.Button(value="Generating...", interactive=False)
    current_history[-1]["content"] = status_state # Update placeholder
    yield chatbot_state, status_state, sources_state, audio_state, button_state

    # 3. Generate LLM Answer (async)
    llm_prompt = format_llm_prompt(query, web_results)
    final_answer = await generate_llm_answer(llm_prompt)
    status_state = final_answer # Now status holds the actual answer

    # Update assistant message in history fully
    current_history[-1]["content"] = final_answer

    # Update state: Generating Audio (if applicable)
    button_state = gr.Button(value="Audio...", interactive=False) if TTS_ENABLED else gr.Button(value="Search", interactive=True)
    yield chatbot_state, status_state, sources_state, audio_state, button_state

    # 4. Generate TTS Speech (async)
    tts_status_message = ""
    if not TTS_ENABLED:
        if tts_setup_thread.is_alive():
             tts_status_message = "\n\n*(TTS initializing...)*"
        else:
             # Check if setup failed vs just disabled
             # This info isn't easily available here, assume failed/disabled
             tts_status_message = "\n\n*(TTS unavailable)*"
    else:
        voice_id = get_voice_id_from_display(selected_voice_display_name)
        audio_state = await generate_tts_speech(final_answer, voice_id) # Returns (rate, data) or None
        if audio_state is None and not final_answer.startswith("Error"): # Don't show TTS fail if LLM failed
            tts_status_message = "\n\n*(Audio generation failed)*"

    # 5. Final State: Show all results
    final_answer_with_status = final_answer + tts_status_message
    status_state = final_answer_with_status # Update status display
    current_history[-1]["content"] = final_answer_with_status # Update history *again* with status msg

    button_state = gr.Button(value="Search", interactive=True) # Re-enable button

    print("--- Query Handling Complete ---")
    yield chatbot_state, status_state, sources_state, audio_state, button_state


# --- Gradio UI Definition ---
# (CSS from previous response)
css = """
/* ... [Your existing refined CSS] ... */
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
#header h3 { color: #a8a9ab; }
.search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; }
.search-box { padding: 0; margin-bottom: 1rem; display: flex; align-items: center; }
.search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; height: 44px !important; flex-grow: 1; }
.search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px; height: 44px !important; width: 180px; flex-shrink: 0; }
.search-box .gradio-button { border-radius: 0 8px 8px 0 !important; height: 44px !important; flex-shrink: 0; }
.search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 100% !important; padding: 0 12px !important;}
.search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; z-index: 1; }
.search-box input[type="text"]::placeholder { color: #9ca3af !important; }
.search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 100% !important; }
.search-box button:hover { background: #1d4ed8 !important; }
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
.answer-box { /* Now used for status/interim text */ background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;}
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
.sources-container { margin-top: 0; }
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; }
.source-item:last-child { border-bottom: none; }
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
.source-content { flex: 1; min-width: 0;} /* Allow content to shrink */
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
.chat-history { /* Style the chatbot container */ max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; /* margin-top: 1rem; */ scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
.chat-history > div { padding: 1rem; } /* Add padding inside the chatbot display area */
.chat-history::-webkit-scrollbar { width: 6px; }
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; }
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
.markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; }
.markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; }
.markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;}
.markdown-content h3 { font-size: 1.2em !important; }
.markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; }
.markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; }
.markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; }
.markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;}
.markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;}
.markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; }
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
/* .accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; } */
/* .accordion > .label-wrap { padding: 10px 15px !important; } */
.voice-selector { margin: 0; padding: 0; height: 100%; }
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;}
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
.audio-player audio { width: 100% !important; }
.searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; }
.searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; }
.error { background: #fef2f2; color: #ef4444; border-color: #fecaca; }
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
/* Dark Mode Styles */
.dark .gradio-container { background-color: #111827 !important; }
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
.dark #header h3 { color: #9ca3af; }
.dark .search-container { background: #1f2937; border-color: #374151; }
.dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; }
.dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; }
.dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; }
.dark .search-box button { background: #3b82f6 !important; }
.dark .search-box button:hover { background: #2563eb !important; }
.dark .search-box button:disabled { background: #4b5563 !important; }
.dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; }
.dark .answer-box p { color: #d1d5db; }
.dark .answer-box code { background: #374151; color: #9ca3af; }
.dark .sources-box { background: #1f2937; border-color: #374151; }
.dark .sources-box h3 { color: #f9fafb; }
.dark .source-item { border-bottom-color: #374151; }
.dark .source-item:hover { background-color: #374151; }
.dark .source-number { color: #9ca3af; }
.dark .source-title { color: #60a5fa; }
.dark .source-title:hover { color: #93c5fd; }
.dark .source-snippet { color: #d1d5db; }
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;}
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
.dark .examples-container { background: #374151; border-color: #4b5563; }
.dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; }
.dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; }
.dark .markdown-content { color: #d1d5db !important; }
.dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; }
.dark .markdown-content a { color: #60a5fa !important; }
.dark .markdown-content a:hover { color: #93c5fd !important; }
.dark .markdown-content code { background: #374151 !important; color: #9ca3af; }
.dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;}
.dark .markdown-content pre code { background: transparent !important; }
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
.dark .markdown-content th { background: #374151 !important; }
/* .dark .accordion { background: #374151 !important; border-color: #4b5563 !important; } */
/* .dark .accordion > .label-wrap { color: #d1d5db !important; } */
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
.dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; }
.dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; }
.dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; }
.dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; }
.dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; }
.dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; }
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
"""

with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
    # Use gr.State for chat history in 'messages' format
    chat_history_state = gr.State([])

    with gr.Column():
        # Header
        with gr.Column(elem_id="header"):
            gr.Markdown("# πŸ” AI Search Assistant")
            gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")

        # Search Area
        with gr.Column(elem_classes="search-container"):
            with gr.Row(elem_classes="search-box"):
                search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
                voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
                search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)

            # Results Area
            with gr.Row(elem_classes="results-container"):
                # Left Column: Chatbot, Status, Audio
                with gr.Column(scale=3):
                    chatbot_display = gr.Chatbot(
                        label="Conversation",
                        bubble_full_width=True,
                        height=500, # Adjusted height
                        elem_classes="chat-history",
                        type="messages", # IMPORTANT: Use 'messages' format
                        show_label=False,
                         avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png") # User/Assistant avatars
                    )
                    answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
                    audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")

                # Right Column: Sources
                with gr.Column(scale=2):
                    with gr.Column(elem_classes="sources-box"):
                        gr.Markdown("### Sources")
                        sources_output_html = gr.HTML(value="<div class='no-sources'>Sources will appear here.</div>")

            # Examples Area
            with gr.Row(elem_classes="examples-container"):
                 gr.Examples(
                    examples=[
                        "Latest news about renewable energy",
                        "Explain Large Language Models (LLMs)",
                        "Symptoms and prevention tips for the flu",
                        "Compare Python and JavaScript for web development",
                        "Summarize the main points of the Paris Agreement",
                    ],
                    inputs=search_input,
                    label="Try these examples:",
                    # elem_classes removed
                )

    # --- Event Handling Setup ---
    event_inputs = [search_input, chat_history_state, voice_select]
    event_outputs = [
        chatbot_display,        # Output 1: Updated chat history
        answer_status_output,   # Output 2: Status/final text
        sources_output_html,    # Output 3: Sources HTML
        audio_player,           # Output 4: Audio data
        search_btn              # Output 5: Button state
    ]

    async def stream_interaction_updates(query, history, voice_display_name):
         """Wraps the async generator to handle streaming updates and errors."""
         print("[Gradio Stream] Starting interaction...")
         final_state_tuple = None # To store the last successful state
         try:
             async for state_update_tuple in handle_interaction(query, history, voice_display_name):
                 yield state_update_tuple # Yield the tuple for Gradio to update outputs
                 final_state_tuple = state_update_tuple # Keep track of the last state
             print("[Gradio Stream] Interaction completed successfully.")

         except Exception as e:
            print(f"[Gradio Stream] Error during interaction: {e}")
            print(traceback.format_exc())
            # Construct error state to yield
            error_history = history + [{"role":"user", "content":query}, {"role":"assistant", "content":f"*An error occurred. Please check logs.*"}]
            error_state_tuple = (
                error_history,
                f"An error occurred: {e}",
                "<div class='error'>Request failed.</div>",
                None,
                gr.Button(value="Search", interactive=True) # Ensure button is re-enabled
            )
            yield error_state_tuple # Yield the error state to UI
            final_state_tuple = error_state_tuple # Store error state as last state

         # Optionally clear input ONLY if the interaction finished (success or error)
         # Requires adding search_input to event_outputs and handling the update dict
         # Example (if search_input is the 6th output):
         # if final_state_tuple:
         #    yield (*final_state_tuple, gr.Textbox(value=""))
         # else: # Handle case where no state was ever yielded (e.g., immediate empty query return)
         #    yield (history, "*Please enter a query.*", "...", None, gr.Button(value="Search", interactive=True), gr.Textbox(value=""))


    # Connect the streaming function
    search_btn.click(
        fn=stream_interaction_updates,
        inputs=event_inputs,
        outputs=event_outputs
    )
    search_input.submit(
        fn=stream_interaction_updates,
        inputs=event_inputs,
        outputs=event_outputs
    )

# --- Main Execution ---
if __name__ == "__main__":
    print("Starting Gradio application...")
    # Optional: Wait a moment for TTS setup thread to start and potentially print messages
    # time.sleep(1)
    demo.queue(max_size=20).launch(
        debug=True,
        share=True, # Set to False if not running on Spaces or don't need public link
        # server_name="0.0.0.0", # Uncomment to bind to all network interfaces
        # server_port=7860 # Optional: Specify port
    )
    print("Gradio application stopped.")