Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,13 +13,17 @@ from functools import lru_cache
|
|
13 |
import asyncio
|
14 |
import threading
|
15 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# --- Configuration ---
|
18 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
19 |
MAX_SEARCH_RESULTS = 5
|
20 |
TTS_SAMPLE_RATE = 24000
|
21 |
-
MAX_TTS_CHARS = 1000
|
22 |
-
GPU_DURATION =
|
23 |
MAX_NEW_TOKENS = 256
|
24 |
TEMPERATURE = 0.7
|
25 |
TOP_P = 0.95
|
@@ -30,18 +34,25 @@ try:
|
|
30 |
print("Loading tokenizer...")
|
31 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
32 |
tokenizer.pad_token = tokenizer.eos_token
|
33 |
-
|
34 |
print("Loading model...")
|
|
|
|
|
|
|
|
|
35 |
model = AutoModelForCausalLM.from_pretrained(
|
36 |
MODEL_NAME,
|
37 |
-
device_map=
|
38 |
-
offload_folder="offload",
|
39 |
low_cpu_mem_usage=True,
|
40 |
-
torch_dtype=
|
41 |
)
|
|
|
42 |
print("Model and tokenizer loaded successfully")
|
43 |
except Exception as e:
|
44 |
print(f"Error initializing model: {str(e)}")
|
|
|
|
|
45 |
raise
|
46 |
|
47 |
# --- TTS Setup ---
|
@@ -54,82 +65,149 @@ VOICE_CHOICES = {
|
|
54 |
TTS_ENABLED = False
|
55 |
TTS_MODEL = None
|
56 |
VOICEPACKS = {} # Cache voice packs
|
|
|
57 |
|
58 |
# Initialize Kokoro TTS in a separate thread to avoid blocking startup
|
59 |
def setup_tts():
|
60 |
global TTS_ENABLED, TTS_MODEL, VOICEPACKS
|
61 |
-
|
62 |
try:
|
63 |
-
#
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
try:
|
70 |
-
|
71 |
-
subprocess.run(['
|
72 |
-
|
|
|
|
|
|
|
73 |
try:
|
74 |
-
|
75 |
-
|
76 |
-
print("
|
77 |
-
|
|
|
|
|
|
|
78 |
# Set up Kokoro TTS
|
79 |
-
if os.path.exists(
|
80 |
import sys
|
81 |
-
sys.path
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
else:
|
112 |
-
print("Warning:
|
|
|
|
|
|
|
|
|
|
|
113 |
except Exception as e:
|
114 |
-
print(f"Warning:
|
115 |
TTS_ENABLED = False
|
116 |
|
117 |
# Start TTS setup in a separate thread
|
118 |
-
|
|
|
|
|
119 |
|
120 |
# --- Search and Generation Functions ---
|
121 |
@lru_cache(maxsize=128)
|
122 |
def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]:
|
123 |
"""Get web search results using DuckDuckGo with caching for improved performance"""
|
|
|
124 |
try:
|
125 |
with DDGS() as ddgs:
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
except Exception as e:
|
134 |
print(f"Error in web search: {e}")
|
135 |
return []
|
@@ -137,32 +215,38 @@ def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[D
|
|
137 |
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
|
138 |
"""Format the prompt with web context"""
|
139 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
140 |
-
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context])
|
141 |
-
|
|
|
|
|
|
|
142 |
Current Time: {current_time}
|
143 |
-
|
144 |
-
Query: {query}
|
145 |
Web Context:
|
146 |
-
{context_lines}
|
147 |
-
|
|
|
|
|
148 |
Answer:"""
|
|
|
|
|
149 |
|
150 |
def format_sources(web_results: List[Dict[str, str]]) -> str:
|
151 |
"""Format sources with more details"""
|
152 |
if not web_results:
|
153 |
-
return "<div class='no-sources'>No sources
|
154 |
|
155 |
sources_html = "<div class='sources-container'>"
|
156 |
for i, res in enumerate(web_results, 1):
|
157 |
-
title = res
|
158 |
-
|
159 |
-
|
|
|
160 |
sources_html += f"""
|
161 |
<div class='source-item'>
|
162 |
<div class='source-number'>[{i}]</div>
|
163 |
<div class='source-content'>
|
164 |
-
<a href="{
|
165 |
-
{date}
|
166 |
<div class='source-snippet'>{snippet}</div>
|
167 |
</div>
|
168 |
</div>
|
@@ -170,566 +254,450 @@ def format_sources(web_results: List[Dict[str, str]]) -> str:
|
|
170 |
sources_html += "</div>"
|
171 |
return sources_html
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
@spaces.GPU(duration=GPU_DURATION)
|
199 |
-
def generate_speech(text: str, voice_name: str = 'af') -> Tuple[int, np.ndarray] | None:
|
200 |
-
"""Generate speech from text using Kokoro TTS model with improved error handling and caching."""
|
201 |
-
global VOICEPACKS, TTS_MODEL, TTS_ENABLED
|
202 |
-
|
203 |
if not TTS_ENABLED or TTS_MODEL is None:
|
|
|
|
|
|
|
|
|
204 |
return None
|
205 |
|
206 |
try:
|
207 |
-
from
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
if
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
226 |
else:
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
else:
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
if chunk.strip():
|
254 |
-
chunk_audio, _ = generate_tts(TTS_MODEL, chunk, VOICEPACKS[voice_name], lang='a')
|
255 |
-
if isinstance(chunk_audio, torch.Tensor):
|
256 |
-
chunk_audio = chunk_audio.cpu().numpy()
|
257 |
-
audio_chunks.append(chunk_audio)
|
258 |
-
|
259 |
-
# Concatenate chunks
|
260 |
-
if audio_chunks:
|
261 |
-
final_audio = np.concatenate(audio_chunks) if len(audio_chunks) > 1 else audio_chunks[0]
|
262 |
-
return (TTS_SAMPLE_RATE, final_audio)
|
263 |
-
|
264 |
-
return None
|
265 |
|
266 |
except Exception as e:
|
|
|
267 |
print(f"Error generating speech: {str(e)}")
|
|
|
268 |
return None
|
269 |
|
270 |
-
#
|
271 |
-
|
272 |
-
"""
|
273 |
-
|
274 |
-
return await loop.run_in_executor(None, get_web_results, query)
|
275 |
-
|
276 |
-
async def async_answer_generation(prompt: str) -> str:
|
277 |
-
"""Run answer generation in a non-blocking way"""
|
278 |
-
loop = asyncio.get_event_loop()
|
279 |
-
return await loop.run_in_executor(None, generate_answer, prompt)
|
280 |
-
|
281 |
-
async def async_speech_generation(text: str, voice_name: str) -> Tuple[int, np.ndarray] | None:
|
282 |
-
"""Run speech generation in a non-blocking way"""
|
283 |
-
loop = asyncio.get_event_loop()
|
284 |
-
return await loop.run_in_executor(None, generate_speech, text, voice_name)
|
285 |
-
|
286 |
-
def process_query(query: str, history: List[List[str]], selected_voice: str = 'af'):
|
287 |
-
"""Process user query with streaming effect and non-blocking operations"""
|
288 |
-
try:
|
289 |
-
if history is None:
|
290 |
-
history = []
|
291 |
-
|
292 |
-
# Start the search task
|
293 |
-
current_history = history + [[query, "*Searching...*"]]
|
294 |
-
|
295 |
-
# Yield initial searching state
|
296 |
-
yield (
|
297 |
-
"*Searching & Thinking...*", # answer_output (Markdown)
|
298 |
-
"<div class='searching'>Searching for results...</div>", # sources_output (HTML)
|
299 |
-
"Searching...", # search_btn (Button)
|
300 |
-
current_history, # chat_history_display (Chatbot)
|
301 |
-
None # audio_output (Audio)
|
302 |
-
)
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
# Update with the search results obtained
|
309 |
yield (
|
310 |
-
"
|
311 |
-
sources_html, # sources_output
|
312 |
-
"Generating answer...", # search_btn
|
313 |
-
current_history, # chat_history_display
|
314 |
-
None # audio_output
|
315 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
None # audio_output
|
332 |
-
)
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
|
|
|
|
345 |
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
|
355 |
-
except Exception as e:
|
356 |
-
error_message = str(e)
|
357 |
-
if "GPU quota" in error_message:
|
358 |
-
error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
|
359 |
-
yield (
|
360 |
-
f"Error: {error_message}", # answer_output
|
361 |
-
"<div class='error'>An error occurred during search</div>", # sources_output
|
362 |
-
"Search", # search_btn
|
363 |
-
history + [[query, f"*Error: {error_message}*"]], # chat_history_display
|
364 |
-
None # audio_output
|
365 |
-
)
|
366 |
|
367 |
-
# ---
|
368 |
css = """
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
}
|
373 |
-
#header {
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
}
|
382 |
-
#
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
}
|
388 |
-
#
|
389 |
-
|
390 |
-
}
|
391 |
-
.
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
}
|
398 |
-
.
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
}
|
405 |
-
.
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
}
|
412 |
-
.
|
413 |
-
|
414 |
-
|
415 |
-
}
|
416 |
-
.
|
417 |
-
|
418 |
-
}
|
419 |
-
.
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
}
|
425 |
-
.
|
426 |
-
|
427 |
-
|
428 |
-
}
|
429 |
-
.
|
430 |
-
|
431 |
-
}
|
432 |
-
.
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
}
|
439 |
-
.
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
}
|
448 |
-
.answer-box:
|
449 |
-
|
450 |
-
}
|
451 |
-
.
|
452 |
-
|
453 |
-
|
454 |
-
}
|
455 |
-
.
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
}
|
460 |
-
.
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
}
|
466 |
-
.
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
}
|
475 |
-
.
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
}
|
480 |
-
.
|
481 |
-
|
482 |
-
margin-right: 12px;
|
483 |
-
color: #60a5fa;
|
484 |
-
}
|
485 |
-
.source-content {
|
486 |
-
flex: 1;
|
487 |
-
}
|
488 |
-
.source-title {
|
489 |
-
color: #60a5fa;
|
490 |
-
font-weight: 500;
|
491 |
-
text-decoration: none;
|
492 |
-
display: block;
|
493 |
-
margin-bottom: 6px;
|
494 |
-
transition: all 0.2s;
|
495 |
-
}
|
496 |
-
.source-title:hover {
|
497 |
-
color: #93c5fd;
|
498 |
-
text-decoration: underline;
|
499 |
-
}
|
500 |
-
.source-date {
|
501 |
-
color: #a8a9ab;
|
502 |
-
font-size: 0.9em;
|
503 |
-
margin-left: 8px;
|
504 |
-
}
|
505 |
-
.source-snippet {
|
506 |
-
color: #e5e7eb;
|
507 |
-
font-size: 0.9em;
|
508 |
-
line-height: 1.5;
|
509 |
-
}
|
510 |
-
.chat-history {
|
511 |
-
max-height: 400px;
|
512 |
-
overflow-y: auto;
|
513 |
-
padding: 1rem;
|
514 |
-
background: #2c2d30;
|
515 |
-
border-radius: 8px;
|
516 |
-
margin-top: 1rem;
|
517 |
-
scrollbar-width: thin;
|
518 |
-
scrollbar-color: #4a4b4e #2c2d30;
|
519 |
-
}
|
520 |
-
.chat-history::-webkit-scrollbar {
|
521 |
-
width: 8px;
|
522 |
-
}
|
523 |
-
.chat-history::-webkit-scrollbar-track {
|
524 |
-
background: #2c2d30;
|
525 |
-
}
|
526 |
-
.chat-history::-webkit-scrollbar-thumb {
|
527 |
-
background-color: #4a4b4e;
|
528 |
-
border-radius: 20px;
|
529 |
-
}
|
530 |
-
.examples-container {
|
531 |
-
background: #2c2d30;
|
532 |
-
border-radius: 8px;
|
533 |
-
padding: 1rem;
|
534 |
-
margin-top: 1rem;
|
535 |
-
}
|
536 |
-
.examples-container button {
|
537 |
-
background: #3a3b3e !important;
|
538 |
-
border: 1px solid #4a4b4e !important;
|
539 |
-
color: #e5e7eb !important;
|
540 |
-
transition: all 0.2s;
|
541 |
-
margin: 4px !important;
|
542 |
-
}
|
543 |
-
.examples-container button:hover {
|
544 |
-
background: #4a4b4e !important;
|
545 |
-
transform: translateY(-1px);
|
546 |
-
}
|
547 |
-
.markdown-content {
|
548 |
-
color: #e5e7eb !important;
|
549 |
-
}
|
550 |
-
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
|
551 |
-
color: white !important;
|
552 |
-
margin-top: 1.2em !important;
|
553 |
-
margin-bottom: 0.8em !important;
|
554 |
-
}
|
555 |
-
.markdown-content h1 {
|
556 |
-
font-size: 1.7em !important;
|
557 |
-
}
|
558 |
-
.markdown-content h2 {
|
559 |
-
font-size: 1.5em !important;
|
560 |
-
}
|
561 |
-
.markdown-content h3 {
|
562 |
-
font-size: 1.3em !important;
|
563 |
-
}
|
564 |
-
.markdown-content a {
|
565 |
-
color: #60a5fa !important;
|
566 |
-
text-decoration: none !important;
|
567 |
-
transition: all 0.2s;
|
568 |
-
}
|
569 |
-
.markdown-content a:hover {
|
570 |
-
color: #93c5fd !important;
|
571 |
-
text-decoration: underline !important;
|
572 |
-
}
|
573 |
-
.markdown-content code {
|
574 |
-
background: #2c2d30 !important;
|
575 |
-
padding: 2px 6px !important;
|
576 |
-
border-radius: 4px !important;
|
577 |
-
font-family: monospace !important;
|
578 |
-
}
|
579 |
-
.markdown-content pre {
|
580 |
-
background: #2c2d30 !important;
|
581 |
-
padding: 12px !important;
|
582 |
-
border-radius: 8px !important;
|
583 |
-
overflow-x: auto !important;
|
584 |
-
}
|
585 |
-
.markdown-content blockquote {
|
586 |
-
border-left: 4px solid #60a5fa !important;
|
587 |
-
padding-left: 1em !important;
|
588 |
-
margin-left: 0 !important;
|
589 |
-
color: #a8a9ab !important;
|
590 |
-
}
|
591 |
-
.markdown-content table {
|
592 |
-
border-collapse: collapse !important;
|
593 |
-
width: 100% !important;
|
594 |
-
}
|
595 |
-
.markdown-content th, .markdown-content td {
|
596 |
-
padding: 8px 12px !important;
|
597 |
-
border: 1px solid #4a4b4e !important;
|
598 |
-
}
|
599 |
-
.markdown-content th {
|
600 |
-
background: #2c2d30 !important;
|
601 |
-
}
|
602 |
-
.accordion {
|
603 |
-
background: #2c2d30 !important;
|
604 |
-
border-radius: 8px !important;
|
605 |
-
margin-top: 1rem !important;
|
606 |
-
box-shadow: 0 2px 8px rgba(0,0,0,0.1) !important;
|
607 |
-
}
|
608 |
-
.voice-selector {
|
609 |
-
margin-top: 1rem;
|
610 |
-
background: #2c2d30;
|
611 |
-
border-radius: 8px;
|
612 |
-
padding: 0.5rem;
|
613 |
-
}
|
614 |
-
.voice-selector select {
|
615 |
-
background: #3a3b3e !important;
|
616 |
-
color: white !important;
|
617 |
-
border: 1px solid #4a4b4e !important;
|
618 |
-
border-radius: 4px !important;
|
619 |
-
padding: 8px !important;
|
620 |
-
transition: all 0.2s;
|
621 |
-
}
|
622 |
-
.voice-selector select:focus {
|
623 |
-
border-color: #60a5fa !important;
|
624 |
-
}
|
625 |
-
.audio-player {
|
626 |
-
margin-top: 1rem;
|
627 |
-
background: #2c2d30 !important;
|
628 |
-
border-radius: 8px !important;
|
629 |
-
padding: 0.5rem !important;
|
630 |
-
}
|
631 |
-
.audio-player audio {
|
632 |
-
width: 100% !important;
|
633 |
-
}
|
634 |
-
.searching, .error {
|
635 |
-
padding: 1rem;
|
636 |
-
border-radius: 8px;
|
637 |
-
text-align: center;
|
638 |
-
margin: 1rem 0;
|
639 |
-
}
|
640 |
-
.searching {
|
641 |
-
background: rgba(96, 165, 250, 0.1);
|
642 |
-
color: #60a5fa;
|
643 |
-
}
|
644 |
-
.error {
|
645 |
-
background: rgba(239, 68, 68, 0.1);
|
646 |
-
color: #ef4444;
|
647 |
-
}
|
648 |
-
.no-sources {
|
649 |
-
padding: 1rem;
|
650 |
-
text-align: center;
|
651 |
-
color: #a8a9ab;
|
652 |
-
background: #2c2d30;
|
653 |
-
border-radius: 8px;
|
654 |
-
}
|
655 |
-
@keyframes pulse {
|
656 |
-
0% { opacity: 0.6; }
|
657 |
-
50% { opacity: 1; }
|
658 |
-
100% { opacity: 0.6; }
|
659 |
-
}
|
660 |
-
.searching {
|
661 |
-
animation: pulse 1.5s infinite;
|
662 |
-
}
|
663 |
"""
|
664 |
|
665 |
-
|
666 |
-
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
667 |
chat_history = gr.State([])
|
668 |
-
|
669 |
-
with gr.Column(
|
670 |
-
gr.
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
with gr.
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
with gr.
|
699 |
-
with gr.Column(
|
700 |
-
gr.
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
713 |
)
|
714 |
|
715 |
-
# Handle voice selection mapping
|
716 |
-
def get_voice_id(voice_name):
|
717 |
-
return VOICE_CHOICES.get(voice_name, 'af')
|
718 |
|
719 |
-
#
|
720 |
search_btn.click(
|
721 |
-
fn=
|
722 |
-
inputs=[search_input, chat_history,
|
723 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
724 |
)
|
725 |
-
|
726 |
-
# Also trigger search on Enter key
|
727 |
search_input.submit(
|
728 |
-
fn=
|
729 |
-
inputs=[search_input, chat_history,
|
730 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
731 |
)
|
732 |
|
733 |
if __name__ == "__main__":
|
734 |
-
#
|
735 |
-
demo.queue(
|
|
|
13 |
import asyncio
|
14 |
import threading
|
15 |
from concurrent.futures import ThreadPoolExecutor
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
# Suppress specific warnings if needed (optional)
|
19 |
+
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
20 |
|
21 |
# --- Configuration ---
|
22 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
23 |
MAX_SEARCH_RESULTS = 5
|
24 |
TTS_SAMPLE_RATE = 24000
|
25 |
+
MAX_TTS_CHARS = 1000 # Reduced for faster testing, adjust as needed
|
26 |
+
GPU_DURATION = 60 # Increased duration for longer tasks like TTS
|
27 |
MAX_NEW_TOKENS = 256
|
28 |
TEMPERATURE = 0.7
|
29 |
TOP_P = 0.95
|
|
|
34 |
print("Loading tokenizer...")
|
35 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
36 |
tokenizer.pad_token = tokenizer.eos_token
|
37 |
+
|
38 |
print("Loading model...")
|
39 |
+
# Determine device map based on CUDA availability
|
40 |
+
device_map = "auto" if torch.cuda.is_available() else {"": "cpu"}
|
41 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float32 on CPU
|
42 |
+
|
43 |
model = AutoModelForCausalLM.from_pretrained(
|
44 |
MODEL_NAME,
|
45 |
+
device_map=device_map,
|
46 |
+
# offload_folder="offload", # Only use offload if really needed and configured
|
47 |
low_cpu_mem_usage=True,
|
48 |
+
torch_dtype=torch_dtype
|
49 |
)
|
50 |
+
print(f"Model loaded on device map: {model.hf_device_map}")
|
51 |
print("Model and tokenizer loaded successfully")
|
52 |
except Exception as e:
|
53 |
print(f"Error initializing model: {str(e)}")
|
54 |
+
# If running in Spaces, maybe try loading to CPU as fallback?
|
55 |
+
# For now, just raise the error.
|
56 |
raise
|
57 |
|
58 |
# --- TTS Setup ---
|
|
|
65 |
TTS_ENABLED = False
|
66 |
TTS_MODEL = None
|
67 |
VOICEPACKS = {} # Cache voice packs
|
68 |
+
KOKORO_PATH = 'Kokoro-82M'
|
69 |
|
70 |
# Initialize Kokoro TTS in a separate thread to avoid blocking startup
|
71 |
def setup_tts():
|
72 |
global TTS_ENABLED, TTS_MODEL, VOICEPACKS
|
73 |
+
|
74 |
try:
|
75 |
+
# Check if Kokoro already exists
|
76 |
+
if not os.path.exists(KOKORO_PATH):
|
77 |
+
print("Cloning Kokoro-82M repository...")
|
78 |
+
# Install git-lfs if not present (might need sudo/apt)
|
79 |
+
try:
|
80 |
+
subprocess.run(['git', 'lfs', 'install'], check=True, capture_output=True)
|
81 |
+
except (FileNotFoundError, subprocess.CalledProcessError) as lfs_err:
|
82 |
+
print(f"Warning: git-lfs might not be installed or failed: {lfs_err}. Cloning might be slow or incomplete.")
|
83 |
+
|
84 |
+
clone_cmd = ['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M']
|
85 |
+
result = subprocess.run(clone_cmd, check=True, capture_output=True, text=True)
|
86 |
+
print("Kokoro cloned successfully.")
|
87 |
+
print(result.stdout)
|
88 |
+
# Optionally pull LFS files if needed (sometimes clone doesn't get them all)
|
89 |
+
# subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True)
|
90 |
+
|
91 |
+
else:
|
92 |
+
print("Kokoro-82M directory already exists.")
|
93 |
+
|
94 |
+
# Install espeak (essential for phonemization)
|
95 |
+
print("Attempting to install espeak-ng or espeak...")
|
96 |
try:
|
97 |
+
# Try installing espeak-ng first (often preferred)
|
98 |
+
subprocess.run(['sudo', 'apt-get', 'update'], check=True, capture_output=True)
|
99 |
+
subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak-ng'], check=True, capture_output=True)
|
100 |
+
print("espeak-ng installed successfully.")
|
101 |
+
except (FileNotFoundError, subprocess.CalledProcessError):
|
102 |
+
print("espeak-ng installation failed, trying espeak...")
|
103 |
try:
|
104 |
+
# Fallback to espeak
|
105 |
+
subprocess.run(['sudo', 'apt-get', 'install', '-y', 'espeak'], check=True, capture_output=True)
|
106 |
+
print("espeak installed successfully.")
|
107 |
+
except (FileNotFoundError, subprocess.CalledProcessError) as espeak_err:
|
108 |
+
print(f"Warning: Could not install espeak-ng or espeak: {espeak_err}. TTS functionality will be disabled.")
|
109 |
+
return # Cannot proceed without espeak
|
110 |
+
|
111 |
# Set up Kokoro TTS
|
112 |
+
if os.path.exists(KOKORO_PATH):
|
113 |
import sys
|
114 |
+
if KOKORO_PATH not in sys.path:
|
115 |
+
sys.path.append(KOKORO_PATH)
|
116 |
+
try:
|
117 |
+
from models import build_model
|
118 |
+
from kokoro import generate as generate_tts_internal # Avoid name clash
|
119 |
+
|
120 |
+
# Make these functions accessible globally if needed, but better to keep scoped
|
121 |
+
globals()['build_model'] = build_model
|
122 |
+
globals()['generate_tts_internal'] = generate_tts_internal
|
123 |
+
|
124 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
125 |
+
print(f"Loading TTS model onto device: {device}")
|
126 |
+
# Ensure model path is correct
|
127 |
+
model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth')
|
128 |
+
if not os.path.exists(model_file):
|
129 |
+
print(f"Error: TTS model file not found at {model_file}")
|
130 |
+
# Attempt to pull LFS files again
|
131 |
+
try:
|
132 |
+
print("Attempting git lfs pull...")
|
133 |
+
subprocess.run(['git', 'lfs', 'pull'], cwd=KOKORO_PATH, check=True, capture_output=True)
|
134 |
+
if not os.path.exists(model_file):
|
135 |
+
print(f"Error: TTS model file STILL not found at {model_file} after lfs pull.")
|
136 |
+
return
|
137 |
+
except Exception as lfs_pull_err:
|
138 |
+
print(f"Error during git lfs pull: {lfs_pull_err}")
|
139 |
+
return
|
140 |
+
|
141 |
+
TTS_MODEL = build_model(model_file, device)
|
142 |
+
|
143 |
+
# Preload default voice
|
144 |
+
default_voice_id = 'af'
|
145 |
+
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{default_voice_id}.pt')
|
146 |
+
if os.path.exists(voice_file_path):
|
147 |
+
print(f"Loading default voice: {default_voice_id}")
|
148 |
+
VOICEPACKS[default_voice_id] = torch.load(voice_file_path,
|
149 |
+
map_location=device) # Removed weights_only=True
|
150 |
+
else:
|
151 |
+
print(f"Warning: Default voice file {voice_file_path} not found.")
|
152 |
+
|
153 |
+
|
154 |
+
# Preload other common voices to reduce latency
|
155 |
+
for voice_name, voice_id in VOICE_CHOICES.items():
|
156 |
+
if voice_id != default_voice_id: # Avoid reloading default
|
157 |
+
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
|
158 |
+
if os.path.exists(voice_file_path):
|
159 |
+
try:
|
160 |
+
print(f"Preloading voice: {voice_id}")
|
161 |
+
VOICEPACKS[voice_id] = torch.load(voice_file_path,
|
162 |
+
map_location=device) # Removed weights_only=True
|
163 |
+
except Exception as e:
|
164 |
+
print(f"Warning: Could not preload voice {voice_id}: {str(e)}")
|
165 |
+
else:
|
166 |
+
print(f"Info: Voice file {voice_file_path} for '{voice_name}' not found, will skip preloading.")
|
167 |
+
|
168 |
+
TTS_ENABLED = True
|
169 |
+
print("TTS setup completed successfully")
|
170 |
+
except ImportError as ie:
|
171 |
+
print(f"Error importing Kokoro modules: {ie}. Check if Kokoro-82M is correctly cloned and in sys.path.")
|
172 |
+
except Exception as model_load_err:
|
173 |
+
print(f"Error loading TTS model or voices: {model_load_err}")
|
174 |
+
|
175 |
else:
|
176 |
+
print(f"Warning: {KOKORO_PATH} directory not found after clone attempt. TTS disabled.")
|
177 |
+
except subprocess.CalledProcessError as spe:
|
178 |
+
print(f"Warning: A subprocess command failed during TTS setup: {spe}")
|
179 |
+
print(f"Command: {' '.join(spe.cmd)}")
|
180 |
+
print(f"Stderr: {spe.stderr}")
|
181 |
+
print("TTS may be disabled.")
|
182 |
except Exception as e:
|
183 |
+
print(f"Warning: An unexpected error occurred during TTS setup: {str(e)}")
|
184 |
TTS_ENABLED = False
|
185 |
|
186 |
# Start TTS setup in a separate thread
|
187 |
+
print("Starting TTS setup in background thread...")
|
188 |
+
tts_thread = threading.Thread(target=setup_tts, daemon=True)
|
189 |
+
tts_thread.start()
|
190 |
|
191 |
# --- Search and Generation Functions ---
|
192 |
@lru_cache(maxsize=128)
|
193 |
def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]:
|
194 |
"""Get web search results using DuckDuckGo with caching for improved performance"""
|
195 |
+
print(f"Performing web search for: '{query}'")
|
196 |
try:
|
197 |
with DDGS() as ddgs:
|
198 |
+
# Using safe='off' potentially gives more results but use cautiously
|
199 |
+
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate'))
|
200 |
+
print(f"Found {len(results)} results.")
|
201 |
+
formatted_results = []
|
202 |
+
for result in results:
|
203 |
+
formatted_results.append({
|
204 |
+
"title": result.get("title", "No Title"),
|
205 |
+
"snippet": result.get("body", "No Snippet Available"),
|
206 |
+
"url": result.get("href", "#"),
|
207 |
+
# Attempt to extract date - DDGS doesn't reliably provide it
|
208 |
+
# "date": result.get("published", "") # Placeholder
|
209 |
+
})
|
210 |
+
return formatted_results
|
211 |
except Exception as e:
|
212 |
print(f"Error in web search: {e}")
|
213 |
return []
|
|
|
215 |
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
|
216 |
"""Format the prompt with web context"""
|
217 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
218 |
+
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for i, res in enumerate(context)]) # No need for index here
|
219 |
+
prompt = f"""You are a helpful AI assistant. Your task is to answer the user's query based *only* on the provided web search context.
|
220 |
+
Do not add information not present in the context.
|
221 |
+
Cite the sources used in your answer using bracket notation, e.g., [Source Title]. Use the titles from the context.
|
222 |
+
If the context does not contain relevant information to answer the query, state that clearly.
|
223 |
Current Time: {current_time}
|
224 |
+
|
|
|
225 |
Web Context:
|
226 |
+
{context_lines if context else "No web context available."}
|
227 |
+
|
228 |
+
User Query: {query}
|
229 |
+
|
230 |
Answer:"""
|
231 |
+
# print(f"Formatted Prompt:\n{prompt}") # Debugging
|
232 |
+
return prompt
|
233 |
|
234 |
def format_sources(web_results: List[Dict[str, str]]) -> str:
|
235 |
"""Format sources with more details"""
|
236 |
if not web_results:
|
237 |
+
return "<div class='no-sources'>No sources found for the query.</div>"
|
238 |
|
239 |
sources_html = "<div class='sources-container'>"
|
240 |
for i, res in enumerate(web_results, 1):
|
241 |
+
title = res.get("title", "Source")
|
242 |
+
url = res.get("url", "#")
|
243 |
+
# date = f"<span class='source-date'>{res['date']}</span>" if res.get('date') else "" # DDG date is unreliable
|
244 |
+
snippet = res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "")
|
245 |
sources_html += f"""
|
246 |
<div class='source-item'>
|
247 |
<div class='source-number'>[{i}]</div>
|
248 |
<div class='source-content'>
|
249 |
+
<a href="{url}" target="_blank" class='source-title' title="{url}">{title}</a>
|
|
|
250 |
<div class='source-snippet'>{snippet}</div>
|
251 |
</div>
|
252 |
</div>
|
|
|
254 |
sources_html += "</div>"
|
255 |
return sources_html
|
256 |
|
257 |
+
# Use a ThreadPoolExecutor for potentially blocking I/O or CPU-bound tasks
|
258 |
+
# Keep GPU tasks separate if possible, or ensure thread safety if sharing GPU resources
|
259 |
+
executor = ThreadPoolExecutor(max_workers=4)
|
260 |
+
|
261 |
+
@spaces.GPU(duration=GPU_DURATION, cancellable=True)
|
262 |
+
async def generate_answer(prompt: str) -> str:
|
263 |
+
"""Generate answer using the DeepSeek model with optimized settings (Async Wrapper)"""
|
264 |
+
print("Generating answer...")
|
265 |
+
try:
|
266 |
+
inputs = tokenizer(
|
267 |
+
prompt,
|
268 |
+
return_tensors="pt",
|
269 |
+
padding=True,
|
270 |
+
truncation=True,
|
271 |
+
max_length=1024, # Increased context length
|
272 |
+
return_attention_mask=True
|
273 |
+
).to(model.device)
|
274 |
+
|
275 |
+
# Ensure generation runs on the correct device
|
276 |
+
with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available() and torch_dtype == torch.float16):
|
277 |
+
outputs = await asyncio.to_thread( # Use asyncio.to_thread for potentially blocking calls
|
278 |
+
model.generate,
|
279 |
+
inputs.input_ids,
|
280 |
+
attention_mask=inputs.attention_mask,
|
281 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
282 |
+
temperature=TEMPERATURE,
|
283 |
+
top_p=TOP_P,
|
284 |
+
pad_token_id=tokenizer.eos_token_id,
|
285 |
+
do_sample=True,
|
286 |
+
early_stopping=True,
|
287 |
+
num_return_sequences=1
|
288 |
+
)
|
289 |
+
|
290 |
+
# Decode output
|
291 |
+
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
292 |
+
# Extract only the generated part after "Answer:"
|
293 |
+
answer_part = full_output.split("Answer:")[-1].strip()
|
294 |
+
print(f"Generated Answer Raw Length: {len(outputs[0])}, Decoded Answer Part Length: {len(answer_part)}")
|
295 |
+
if not answer_part: # Handle cases where split might fail or answer is empty
|
296 |
+
print("Warning: Could not extract answer after 'Answer:'. Returning full output.")
|
297 |
+
return full_output # Fallback
|
298 |
+
return answer_part
|
299 |
+
except Exception as e:
|
300 |
+
print(f"Error during answer generation: {e}")
|
301 |
+
# You might want to return a specific error message here
|
302 |
+
return f"Error generating answer: {str(e)}"
|
303 |
+
|
304 |
+
# Ensure this function runs potentially long tasks in a thread using the executor
|
305 |
+
# @spaces.GPU(duration=GPU_DURATION, cancellable=True) # Keep GPU decorator if TTS uses GPU heavily
|
306 |
+
async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndarray] | None:
|
307 |
+
"""Generate speech from text using Kokoro TTS model (Async Wrapper)."""
|
308 |
+
global TTS_MODEL, TTS_ENABLED, VOICEPACKS
|
309 |
+
print(f"Attempting to generate speech for text (length {len(text)}) with voice '{voice_id}'")
|
310 |
|
|
|
|
|
|
|
|
|
|
|
311 |
if not TTS_ENABLED or TTS_MODEL is None:
|
312 |
+
print("TTS is not enabled or model not loaded.")
|
313 |
+
return None
|
314 |
+
if 'generate_tts_internal' not in globals():
|
315 |
+
print("TTS generation function 'generate_tts_internal' not found.")
|
316 |
return None
|
317 |
|
318 |
try:
|
319 |
+
device = TTS_MODEL.device # Get device from the loaded TTS model
|
320 |
+
|
321 |
+
# Load voicepack if needed (handle potential errors)
|
322 |
+
if voice_id not in VOICEPACKS:
|
323 |
+
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
|
324 |
+
if os.path.exists(voice_file_path):
|
325 |
+
print(f"Loading voice '{voice_id}' on demand...")
|
326 |
+
try:
|
327 |
+
VOICEPACKS[voice_id] = await asyncio.to_thread(
|
328 |
+
torch.load, voice_file_path, map_location=device # Removed weights_only=True
|
329 |
+
)
|
330 |
+
except Exception as load_err:
|
331 |
+
print(f"Error loading voicepack {voice_id}: {load_err}. Falling back to default 'af'.")
|
332 |
+
voice_id = 'af' # Fallback to default
|
333 |
+
# Ensure default is loaded if fallback occurs
|
334 |
+
if 'af' not in VOICEPACKS:
|
335 |
+
default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
|
336 |
+
if os.path.exists(default_voice_file):
|
337 |
+
VOICEPACKS['af'] = await asyncio.to_thread(
|
338 |
+
torch.load, default_voice_file, map_location=device
|
339 |
+
)
|
340 |
+
else:
|
341 |
+
print("Default voice 'af' also not found. Cannot generate audio.")
|
342 |
+
return None
|
343 |
else:
|
344 |
+
print(f"Voicepack {voice_id}.pt not found. Falling back to default 'af'.")
|
345 |
+
voice_id = 'af' # Fallback to default
|
346 |
+
if 'af' not in VOICEPACKS: # Check again if default is needed now
|
347 |
+
default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
|
348 |
+
if os.path.exists(default_voice_file):
|
349 |
+
VOICEPACKS['af'] = await asyncio.to_thread(
|
350 |
+
torch.load, default_voice_file, map_location=device
|
351 |
+
)
|
352 |
+
else:
|
353 |
+
print("Default voice 'af' also not found. Cannot generate audio.")
|
354 |
+
return None
|
355 |
+
|
356 |
+
if voice_id not in VOICEPACKS:
|
357 |
+
print(f"Error: Voice '{voice_id}' could not be loaded.")
|
358 |
+
return None
|
359 |
+
|
360 |
+
# Clean the text (simple cleaning)
|
361 |
+
clean_text = ' '.join(text.split()) # Remove extra whitespace
|
362 |
+
clean_text = clean_text.replace('*', '').replace('[', '').replace(']', '') # Remove markdown chars
|
363 |
+
|
364 |
+
# Ensure text isn't empty
|
365 |
+
if not clean_text.strip():
|
366 |
+
print("Warning: Empty text provided for TTS.")
|
367 |
+
return None
|
368 |
+
|
369 |
+
# Limit text length
|
370 |
+
if len(clean_text) > MAX_TTS_CHARS:
|
371 |
+
print(f"Warning: Text too long ({len(clean_text)} chars), truncating to {MAX_TTS_CHARS}.")
|
372 |
+
# Simple truncation, could be smarter (split by sentence)
|
373 |
+
clean_text = clean_text[:MAX_TTS_CHARS]
|
374 |
+
last_space = clean_text.rfind(' ')
|
375 |
+
if last_space != -1:
|
376 |
+
clean_text = clean_text[:last_space] + "..." # Truncate at last space
|
377 |
+
|
378 |
+
# Run the potentially blocking TTS generation in a thread
|
379 |
+
print(f"Generating audio for: '{clean_text[:100]}...'")
|
380 |
+
gen_func = globals()['generate_tts_internal']
|
381 |
+
loop = asyncio.get_event_loop()
|
382 |
+
audio_data, _ = await loop.run_in_executor(
|
383 |
+
executor, # Use the thread pool executor
|
384 |
+
gen_func,
|
385 |
+
TTS_MODEL,
|
386 |
+
clean_text,
|
387 |
+
VOICEPACKS[voice_id],
|
388 |
+
'a' # Language code (assuming 'a' is appropriate)
|
389 |
+
)
|
390 |
+
|
391 |
+
if isinstance(audio_data, torch.Tensor):
|
392 |
+
# Move tensor to CPU before converting to numpy if it's not already
|
393 |
+
audio_np = audio_data.cpu().numpy()
|
394 |
+
elif isinstance(audio_data, np.ndarray):
|
395 |
+
audio_np = audio_data
|
396 |
else:
|
397 |
+
print("Warning: Unexpected audio data type from TTS.")
|
398 |
+
return None
|
399 |
+
|
400 |
+
print(f"Audio generated successfully, shape: {audio_np.shape}")
|
401 |
+
return (TTS_SAMPLE_RATE, audio_np)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
except Exception as e:
|
404 |
+
import traceback
|
405 |
print(f"Error generating speech: {str(e)}")
|
406 |
+
print(traceback.format_exc()) # Print full traceback for debugging
|
407 |
return None
|
408 |
|
409 |
+
# Helper to get voice ID from display name
|
410 |
+
def get_voice_id(voice_display_name: str) -> str:
|
411 |
+
"""Maps the user-friendly voice name to the internal voice ID."""
|
412 |
+
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af' if not found
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
|
414 |
+
# --- Main Processing Logic (Async) ---
|
415 |
+
async def process_query_async(query: str, history: List[List[str]], selected_voice_display_name: str):
|
416 |
+
"""Asynchronously process user query: search -> generate answer -> generate speech"""
|
417 |
+
if not query:
|
|
|
418 |
yield (
|
419 |
+
"Please enter a query.", "", "Search", history, None
|
|
|
|
|
|
|
|
|
420 |
)
|
421 |
+
return
|
422 |
+
|
423 |
+
if history is None: history = []
|
424 |
+
current_history = history + [[query, "*Searching...*"]]
|
425 |
+
|
426 |
+
# 1. Initial state: Searching
|
427 |
+
yield (
|
428 |
+
"*Searching & Thinking...*",
|
429 |
+
"<div class='searching'>Searching the web...</div>",
|
430 |
+
gr.Button(value="Searching...", interactive=False), # Disable button
|
431 |
+
current_history,
|
432 |
+
None
|
433 |
+
)
|
434 |
|
435 |
+
# 2. Perform Web Search (non-blocking)
|
436 |
+
loop = asyncio.get_event_loop()
|
437 |
+
web_results = await loop.run_in_executor(executor, get_web_results, query)
|
438 |
+
sources_html = format_sources(web_results)
|
439 |
+
|
440 |
+
# Update state: Analyzing results
|
441 |
+
current_history[-1][1] = "*Analyzing search results...*"
|
442 |
+
yield (
|
443 |
+
"*Analyzing search results...*",
|
444 |
+
sources_html,
|
445 |
+
gr.Button(value="Generating...", interactive=False),
|
446 |
+
current_history,
|
447 |
+
None
|
448 |
+
)
|
|
|
|
|
449 |
|
450 |
+
# 3. Generate Answer (non-blocking, potentially on GPU)
|
451 |
+
prompt = format_prompt(query, web_results)
|
452 |
+
final_answer = await generate_answer(prompt) # Already async
|
453 |
+
|
454 |
+
# Update state: Answer generated
|
455 |
+
current_history[-1][1] = final_answer
|
456 |
+
yield (
|
457 |
+
final_answer,
|
458 |
+
sources_html,
|
459 |
+
gr.Button(value="Audio...", interactive=False),
|
460 |
+
current_history,
|
461 |
+
None
|
462 |
+
)
|
463 |
|
464 |
+
# 4. Generate Speech (non-blocking, potentially on GPU)
|
465 |
+
audio = None
|
466 |
+
tts_message = ""
|
467 |
+
if not tts_thread.is_alive() and not TTS_ENABLED:
|
468 |
+
tts_message = "\n\n*(TTS setup failed or is disabled)*"
|
469 |
+
elif tts_thread.is_alive():
|
470 |
+
tts_message = "\n\n*(TTS is still initializing, audio may be delayed)*"
|
471 |
+
elif TTS_ENABLED:
|
472 |
+
voice_id = get_voice_id(selected_voice_display_name)
|
473 |
+
audio = await generate_speech(final_answer, voice_id) # Already async
|
474 |
+
if audio is None:
|
475 |
+
tts_message = f"\n\n*(Audio generation failed for voice '{voice_id}')*"
|
476 |
+
|
477 |
+
# 5. Final state: Show everything
|
478 |
+
yield (
|
479 |
+
final_answer + tts_message,
|
480 |
+
sources_html,
|
481 |
+
gr.Button(value="Search", interactive=True), # Re-enable button
|
482 |
+
current_history,
|
483 |
+
audio
|
484 |
+
)
|
485 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
|
487 |
+
# --- Gradio Interface ---
|
488 |
css = """
|
489 |
+
/* ... [Your existing CSS remains unchanged] ... */
|
490 |
+
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
491 |
+
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
492 |
+
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
493 |
+
#header h3 { color: #a8a9ab; }
|
494 |
+
.search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; }
|
495 |
+
.search-box { padding: 0; margin-bottom: 1rem; }
|
496 |
+
.search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; } /* Style textbox specifically */
|
497 |
+
.search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px;} /* Style dropdown */
|
498 |
+
.search-box .gradio-button { border-radius: 0 8px 8px 0 !important; } /* Style button */
|
499 |
+
.search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 42px !important; }
|
500 |
+
.search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; }
|
501 |
+
.search-box input[type="text"]::placeholder { color: #9ca3af !important; }
|
502 |
+
.search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 44px !important; }
|
503 |
+
.search-box button:hover { background: #1d4ed8 !important; }
|
504 |
+
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
505 |
+
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
506 |
+
.answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; color: #1f2937; margin-bottom: 1.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); }
|
507 |
+
.answer-box p { color: #374151; line-height: 1.7; }
|
508 |
+
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
509 |
+
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
510 |
+
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
|
511 |
+
.sources-container { margin-top: 0; }
|
512 |
+
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; }
|
513 |
+
.source-item:last-child { border-bottom: none; }
|
514 |
+
/* .source-item:hover { background-color: #f9fafb; } */
|
515 |
+
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
516 |
+
.source-content { flex: 1; }
|
517 |
+
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; }
|
518 |
+
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
519 |
+
.source-date { color: #6b7280; font-size: 0.8em; margin-left: 8px; }
|
520 |
+
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
521 |
+
.chat-history { max-height: 400px; overflow-y: auto; padding: 1rem; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; margin-top: 1rem; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
|
522 |
+
.chat-history::-webkit-scrollbar { width: 6px; }
|
523 |
+
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
524 |
+
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
525 |
+
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
526 |
+
.examples-container .gradio-examples { gap: 8px !important; } /* Target examples component */
|
527 |
+
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 0 !important; font-size: 0.9em !important; padding: 6px 12px !important; }
|
528 |
+
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
529 |
+
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
530 |
+
.markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; }
|
531 |
+
.markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; }
|
532 |
+
.markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;}
|
533 |
+
.markdown-content h3 { font-size: 1.2em !important; }
|
534 |
+
.markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; }
|
535 |
+
.markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; }
|
536 |
+
.markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; }
|
537 |
+
.markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;}
|
538 |
+
.markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;}
|
539 |
+
.markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; }
|
540 |
+
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
|
541 |
+
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
542 |
+
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
543 |
+
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
|
544 |
+
.accordion > .label-wrap { padding: 10px 15px !important; } /* Style accordion header */
|
545 |
+
.voice-selector { margin: 0; padding: 0; }
|
546 |
+
.voice-selector div[data-testid="dropdown"] { /* Target the specific dropdown container */ height: 44px !important; }
|
547 |
+
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
548 |
+
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; }
|
549 |
+
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
|
550 |
+
.audio-player audio { width: 100% !important; }
|
551 |
+
.searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; }
|
552 |
+
.searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; }
|
553 |
+
.error { background: #fef2f2; color: #ef4444; border-color: #fecaca; }
|
554 |
+
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
555 |
+
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
556 |
+
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; } /* Add span for animation */
|
557 |
+
.dark .gradio-container { background-color: #111827 !important; }
|
558 |
+
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
559 |
+
.dark #header h3 { color: #9ca3af; }
|
560 |
+
.dark .search-container { background: #1f2937; border-color: #374151; }
|
561 |
+
.dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; }
|
562 |
+
.dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; }
|
563 |
+
.dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; }
|
564 |
+
.dark .search-box button { background: #3b82f6 !important; }
|
565 |
+
.dark .search-box button:hover { background: #2563eb !important; }
|
566 |
+
.dark .search-box button:disabled { background: #4b5563 !important; }
|
567 |
+
.dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; }
|
568 |
+
.dark .answer-box p { color: #d1d5db; }
|
569 |
+
.dark .answer-box code { background: #374151; color: #9ca3af; }
|
570 |
+
.dark .sources-box { background: #1f2937; border-color: #374151; }
|
571 |
+
.dark .sources-box h3 { color: #f9fafb; }
|
572 |
+
.dark .source-item { border-bottom-color: #374151; }
|
573 |
+
.dark .source-item:hover { background-color: #374151; }
|
574 |
+
.dark .source-number { color: #9ca3af; }
|
575 |
+
.dark .source-title { color: #60a5fa; }
|
576 |
+
.dark .source-title:hover { color: #93c5fd; }
|
577 |
+
.dark .source-snippet { color: #d1d5db; }
|
578 |
+
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; }
|
579 |
+
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
|
580 |
+
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
|
581 |
+
.dark .examples-container { background: #374151; border-color: #4b5563; }
|
582 |
+
.dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; }
|
583 |
+
.dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; }
|
584 |
+
.dark .markdown-content { color: #d1d5db !important; }
|
585 |
+
.dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; }
|
586 |
+
.dark .markdown-content a { color: #60a5fa !important; }
|
587 |
+
.dark .markdown-content a:hover { color: #93c5fd !important; }
|
588 |
+
.dark .markdown-content code { background: #374151 !important; color: #9ca3af; }
|
589 |
+
.dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;}
|
590 |
+
.dark .markdown-content pre code { background: transparent !important; }
|
591 |
+
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
|
592 |
+
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
593 |
+
.dark .markdown-content th { background: #374151 !important; }
|
594 |
+
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
|
595 |
+
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
596 |
+
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
597 |
+
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
598 |
+
.dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; }
|
599 |
+
.dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; }
|
600 |
+
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
601 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
602 |
"""
|
603 |
|
604 |
+
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
|
|
605 |
chat_history = gr.State([])
|
606 |
+
|
607 |
+
with gr.Column(): # Main container
|
608 |
+
with gr.Column(elem_id="header"):
|
609 |
+
gr.Markdown("# 🔍 AI Search Assistant")
|
610 |
+
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
611 |
+
|
612 |
+
with gr.Column(elem_classes="search-container"):
|
613 |
+
with gr.Row(elem_classes="search-box", equal_height=True):
|
614 |
+
search_input = gr.Textbox(
|
615 |
+
label="",
|
616 |
+
placeholder="Ask anything...",
|
617 |
+
scale=5,
|
618 |
+
container=False, # Important for direct styling
|
619 |
+
elem_classes="gradio-textbox"
|
620 |
+
)
|
621 |
+
voice_select = gr.Dropdown(
|
622 |
+
choices=list(VOICE_CHOICES.keys()),
|
623 |
+
value=list(VOICE_CHOICES.keys())[0],
|
624 |
+
label="", # No label needed here
|
625 |
+
scale=2,
|
626 |
+
container=False, # Important
|
627 |
+
elem_classes="voice-selector gradio-dropdown"
|
628 |
+
)
|
629 |
+
search_btn = gr.Button(
|
630 |
+
"Search",
|
631 |
+
variant="primary",
|
632 |
+
scale=1,
|
633 |
+
elem_classes="gradio-button"
|
634 |
+
)
|
635 |
+
|
636 |
+
with gr.Row(elem_classes="results-container", equal_height=False):
|
637 |
+
with gr.Column(scale=3): # Wider column for answer + history
|
638 |
+
with gr.Column(elem_classes="answer-box"):
|
639 |
+
answer_output = gr.Markdown(elem_classes="markdown-content", value="*Your answer will appear here...*")
|
640 |
+
# Audio player below the answer
|
641 |
+
audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player", type="numpy") # Expect numpy array
|
642 |
+
|
643 |
+
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
|
644 |
+
chat_history_display = gr.Chatbot(elem_classes="chat-history", label="History", height=300)
|
645 |
+
|
646 |
+
with gr.Column(scale=2): # Narrower column for sources
|
647 |
+
with gr.Column(elem_classes="sources-box"):
|
648 |
+
gr.Markdown("### Sources")
|
649 |
+
sources_output = gr.HTML(value="<div class='no-sources'>Sources will appear here after searching.</div>")
|
650 |
+
|
651 |
+
with gr.Row(elem_classes="examples-container"):
|
652 |
+
gr.Examples(
|
653 |
+
examples=[
|
654 |
+
"Latest news about renewable energy",
|
655 |
+
"Explain the concept of Large Language Models (LLMs)",
|
656 |
+
"What are the symptoms and prevention tips for the flu?",
|
657 |
+
"Compare Python and JavaScript for web development"
|
658 |
+
],
|
659 |
+
inputs=search_input,
|
660 |
+
label="Try these examples:",
|
661 |
+
elem_classes="gradio-examples" # Add class for potential styling
|
662 |
+
)
|
663 |
+
|
664 |
+
# --- Event Handling ---
|
665 |
+
# Use the async function for processing
|
666 |
+
async def handle_interaction(query, history, voice_display_name):
|
667 |
+
"""Wrapper to handle the async generator from process_query_async"""
|
668 |
+
try:
|
669 |
+
async for update in process_query_async(query, history, voice_display_name):
|
670 |
+
# Ensure the button state is updated correctly
|
671 |
+
ans_out, src_out, btn_state, hist_display, aud_out = update
|
672 |
+
yield ans_out, src_out, btn_state, hist_display, aud_out
|
673 |
+
except Exception as e:
|
674 |
+
print(f"Error in handle_interaction: {e}")
|
675 |
+
import traceback
|
676 |
+
traceback.print_exc()
|
677 |
+
error_message = f"An unexpected error occurred: {e}"
|
678 |
+
# Provide a final error state update
|
679 |
+
yield (
|
680 |
+
error_message,
|
681 |
+
"<div class='error'>Error processing request.</div>",
|
682 |
+
gr.Button(value="Search", interactive=True), # Re-enable button on error
|
683 |
+
history + [[query, f"*Error: {error_message}*"]],
|
684 |
+
None
|
685 |
)
|
686 |
|
|
|
|
|
|
|
687 |
|
688 |
+
# Corrected event listeners: Pass the voice_select component directly
|
689 |
search_btn.click(
|
690 |
+
fn=handle_interaction,
|
691 |
+
inputs=[search_input, chat_history, voice_select], # Pass voice_select component
|
692 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
693 |
)
|
694 |
+
|
|
|
695 |
search_input.submit(
|
696 |
+
fn=handle_interaction,
|
697 |
+
inputs=[search_input, chat_history, voice_select], # Pass voice_select component
|
698 |
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
699 |
)
|
700 |
|
701 |
if __name__ == "__main__":
|
702 |
+
# Launch the app
|
703 |
+
demo.queue(max_size=20).launch(debug=True, share=True) # Enable debug for more logs
|