Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
import spaces
|
4 |
from duckduckgo_search import DDGS
|
5 |
import time
|
6 |
import torch
|
@@ -14,21 +14,28 @@ import asyncio
|
|
14 |
import threading
|
15 |
from concurrent.futures import ThreadPoolExecutor
|
16 |
import warnings
|
|
|
17 |
|
18 |
# Suppress specific warnings if needed (optional)
|
19 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
|
|
|
|
20 |
|
21 |
# --- Configuration ---
|
22 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
23 |
MAX_SEARCH_RESULTS = 5
|
24 |
TTS_SAMPLE_RATE = 24000
|
25 |
-
MAX_TTS_CHARS = 1000 #
|
26 |
-
GPU_DURATION = 60 #
|
27 |
-
MAX_NEW_TOKENS =
|
28 |
TEMPERATURE = 0.7
|
29 |
TOP_P = 0.95
|
|
|
30 |
|
31 |
# --- Initialization ---
|
|
|
|
|
|
|
32 |
# Initialize model and tokenizer with better error handling
|
33 |
try:
|
34 |
print("Loading tokenizer...")
|
@@ -39,21 +46,24 @@ try:
|
|
39 |
# Determine device map based on CUDA availability
|
40 |
device_map = "auto" if torch.cuda.is_available() else {"": "cpu"}
|
41 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float32 on CPU
|
|
|
42 |
|
43 |
model = AutoModelForCausalLM.from_pretrained(
|
44 |
MODEL_NAME,
|
45 |
device_map=device_map,
|
46 |
-
# offload_folder="offload", #
|
47 |
-
low_cpu_mem_usage=True,
|
48 |
-
torch_dtype=torch_dtype
|
|
|
49 |
)
|
50 |
-
print(f"Model loaded
|
51 |
-
|
|
|
|
|
52 |
except Exception as e:
|
53 |
-
print(f"Error initializing model: {str(e)}")
|
54 |
-
|
55 |
-
#
|
56 |
-
raise
|
57 |
|
58 |
# --- TTS Setup ---
|
59 |
VOICE_CHOICES = {
|
@@ -65,47 +75,66 @@ VOICE_CHOICES = {
|
|
65 |
TTS_ENABLED = False
|
66 |
TTS_MODEL = None
|
67 |
VOICEPACKS = {} # Cache voice packs
|
68 |
-
KOKORO_PATH = 'Kokoro-82M'
|
69 |
|
70 |
# Initialize Kokoro TTS in a separate thread to avoid blocking startup
|
71 |
def setup_tts():
|
72 |
global TTS_ENABLED, TTS_MODEL, VOICEPACKS
|
73 |
|
|
|
|
|
|
|
74 |
try:
|
75 |
# Check if Kokoro already exists
|
76 |
if not os.path.exists(KOKORO_PATH):
|
77 |
print("Cloning Kokoro-82M repository...")
|
78 |
# Install git-lfs if not present (might need sudo/apt)
|
79 |
try:
|
80 |
-
|
|
|
81 |
except (FileNotFoundError, subprocess.CalledProcessError) as lfs_err:
|
82 |
-
print(f"Warning: git-lfs
|
83 |
|
84 |
-
clone_cmd = ['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M']
|
85 |
result = subprocess.run(clone_cmd, check=True, capture_output=True, text=True)
|
86 |
print("Kokoro cloned successfully.")
|
87 |
-
print(result.stdout)
|
88 |
-
# Optionally pull LFS files
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
else:
|
92 |
-
print("
|
93 |
|
94 |
# Install espeak (essential for phonemization)
|
95 |
print("Attempting to install espeak-ng or espeak...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
try:
|
97 |
-
|
98 |
-
subprocess.run(
|
99 |
-
|
|
|
100 |
print("espeak-ng installed successfully.")
|
101 |
-
except (FileNotFoundError, subprocess.CalledProcessError):
|
102 |
-
print("espeak-ng installation failed, trying espeak...")
|
103 |
try:
|
104 |
-
|
105 |
-
subprocess.run(
|
106 |
print("espeak installed successfully.")
|
107 |
-
except (FileNotFoundError, subprocess.CalledProcessError) as
|
108 |
-
print(f"
|
109 |
return # Cannot proceed without espeak
|
110 |
|
111 |
# Set up Kokoro TTS
|
@@ -117,293 +146,321 @@ def setup_tts():
|
|
117 |
from models import build_model
|
118 |
from kokoro import generate as generate_tts_internal # Avoid name clash
|
119 |
|
120 |
-
# Make these functions accessible globally if needed
|
121 |
globals()['build_model'] = build_model
|
122 |
globals()['generate_tts_internal'] = generate_tts_internal
|
123 |
|
124 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
125 |
print(f"Loading TTS model onto device: {device}")
|
126 |
-
# Ensure model path is correct
|
127 |
model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth')
|
|
|
128 |
if not os.path.exists(model_file):
|
129 |
-
print(f"Error: TTS model file not found at {model_file}")
|
130 |
-
# Attempt to pull LFS files again
|
131 |
try:
|
132 |
-
|
133 |
-
subprocess.run(
|
134 |
if not os.path.exists(model_file):
|
135 |
-
print(f"
|
136 |
return
|
137 |
except Exception as lfs_pull_err:
|
138 |
-
print(f"Error during git lfs pull: {lfs_pull_err}")
|
139 |
return
|
140 |
|
141 |
TTS_MODEL = build_model(model_file, device)
|
|
|
142 |
|
143 |
-
# Preload
|
144 |
-
default_voice_id = 'af'
|
145 |
-
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{default_voice_id}.pt')
|
146 |
-
if os.path.exists(voice_file_path):
|
147 |
-
print(f"Loading default voice: {default_voice_id}")
|
148 |
-
VOICEPACKS[default_voice_id] = torch.load(voice_file_path,
|
149 |
-
map_location=device) # Removed weights_only=True
|
150 |
-
else:
|
151 |
-
print(f"Warning: Default voice file {voice_file_path} not found.")
|
152 |
-
|
153 |
-
|
154 |
-
# Preload other common voices to reduce latency
|
155 |
for voice_name, voice_id in VOICE_CHOICES.items():
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
TTS_ENABLED = True
|
169 |
-
print("TTS setup completed successfully")
|
|
|
170 |
except ImportError as ie:
|
171 |
-
print(f"
|
172 |
except Exception as model_load_err:
|
173 |
-
print(f"
|
|
|
174 |
|
175 |
else:
|
176 |
-
print(f"
|
177 |
except subprocess.CalledProcessError as spe:
|
178 |
-
print(f"
|
179 |
print(f"Command: {' '.join(spe.cmd)}")
|
180 |
-
print(f"Stderr: {spe.stderr}")
|
181 |
-
print("TTS
|
182 |
except Exception as e:
|
183 |
-
print(f"
|
|
|
184 |
TTS_ENABLED = False
|
185 |
|
186 |
# Start TTS setup in a separate thread
|
|
|
187 |
print("Starting TTS setup in background thread...")
|
188 |
tts_thread = threading.Thread(target=setup_tts, daemon=True)
|
189 |
tts_thread.start()
|
190 |
|
191 |
# --- Search and Generation Functions ---
|
|
|
192 |
@lru_cache(maxsize=128)
|
193 |
def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]:
|
194 |
-
"""Get web search results using DuckDuckGo with caching
|
195 |
-
print(f"
|
196 |
try:
|
|
|
197 |
with DDGS() as ddgs:
|
198 |
-
#
|
199 |
-
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate'))
|
200 |
-
print(f"Found {len(results)} results.")
|
201 |
formatted_results = []
|
202 |
-
for result in results:
|
203 |
formatted_results.append({
|
204 |
-
"
|
|
|
205 |
"snippet": result.get("body", "No Snippet Available"),
|
206 |
"url": result.get("href", "#"),
|
207 |
-
# Attempt to extract date - DDGS doesn't reliably provide it
|
208 |
-
# "date": result.get("published", "") # Placeholder
|
209 |
})
|
210 |
return formatted_results
|
211 |
except Exception as e:
|
212 |
-
print(f"
|
|
|
213 |
return []
|
214 |
|
215 |
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
|
216 |
-
"""Format the prompt with web context"""
|
217 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
prompt = f"""You are a helpful AI assistant. Your task is to answer the user's query based *only* on the provided web search context.
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
223 |
Current Time: {current_time}
|
224 |
|
225 |
Web Context:
|
226 |
-
|
|
|
|
|
227 |
|
228 |
User Query: {query}
|
229 |
|
230 |
Answer:"""
|
231 |
-
# print(f"Formatted Prompt
|
232 |
return prompt
|
233 |
|
234 |
def format_sources(web_results: List[Dict[str, str]]) -> str:
|
235 |
-
"""Format sources
|
236 |
if not web_results:
|
237 |
-
return "<div class='no-sources'>No sources found for
|
238 |
|
239 |
sources_html = "<div class='sources-container'>"
|
240 |
-
for
|
241 |
title = res.get("title", "Source")
|
242 |
url = res.get("url", "#")
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
245 |
sources_html += f"""
|
246 |
<div class='source-item'>
|
247 |
-
<div class='source-number'>[{
|
248 |
<div class='source-content'>
|
249 |
-
<a href="{url}" target="_blank" class='source-title' title="{url}">{
|
250 |
-
<div class='source-snippet'>{
|
251 |
</div>
|
252 |
</div>
|
253 |
"""
|
254 |
sources_html += "</div>"
|
255 |
return sources_html
|
256 |
|
257 |
-
#
|
258 |
-
# Keep GPU tasks separate if possible, or ensure thread safety if sharing GPU resources
|
259 |
-
executor = ThreadPoolExecutor(max_workers=4)
|
260 |
|
261 |
-
@spaces.GPU
|
262 |
async def generate_answer(prompt: str) -> str:
|
263 |
-
"""Generate answer using the DeepSeek model
|
264 |
-
print("Generating answer...")
|
|
|
265 |
try:
|
|
|
266 |
inputs = tokenizer(
|
267 |
prompt,
|
268 |
return_tensors="pt",
|
269 |
padding=True,
|
270 |
truncation=True,
|
271 |
-
max_length=1024, #
|
272 |
return_attention_mask=True
|
273 |
).to(model.device)
|
274 |
|
275 |
-
#
|
276 |
-
with torch.
|
277 |
-
|
|
|
278 |
model.generate,
|
279 |
-
inputs.input_ids,
|
280 |
attention_mask=inputs.attention_mask,
|
281 |
max_new_tokens=MAX_NEW_TOKENS,
|
282 |
temperature=TEMPERATURE,
|
283 |
top_p=TOP_P,
|
284 |
pad_token_id=tokenizer.eos_token_id,
|
|
|
285 |
do_sample=True,
|
286 |
-
early_stopping=True,
|
287 |
num_return_sequences=1
|
288 |
)
|
289 |
|
290 |
-
# Decode
|
|
|
|
|
|
|
|
|
291 |
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
except Exception as e:
|
300 |
-
print(f"
|
301 |
-
|
302 |
return f"Error generating answer: {str(e)}"
|
303 |
|
304 |
-
#
|
305 |
-
# @spaces.GPU(duration=GPU_DURATION, cancellable=True) # Keep GPU decorator if TTS uses GPU heavily
|
306 |
async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndarray] | None:
|
307 |
"""Generate speech from text using Kokoro TTS model (Async Wrapper)."""
|
308 |
global TTS_MODEL, TTS_ENABLED, VOICEPACKS
|
309 |
-
print(f"Attempting to generate speech for text (length {len(text)}) with voice '{voice_id}'")
|
310 |
|
311 |
if not TTS_ENABLED or TTS_MODEL is None:
|
312 |
-
print("TTS
|
313 |
return None
|
314 |
if 'generate_tts_internal' not in globals():
|
315 |
-
print("TTS generation function
|
|
|
|
|
|
|
316 |
return None
|
317 |
|
318 |
-
|
319 |
-
|
320 |
|
321 |
-
|
322 |
-
|
323 |
-
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
|
324 |
-
if os.path.exists(voice_file_path):
|
325 |
-
print(f"Loading voice '{voice_id}' on demand...")
|
326 |
-
try:
|
327 |
-
VOICEPACKS[voice_id] = await asyncio.to_thread(
|
328 |
-
torch.load, voice_file_path, map_location=device # Removed weights_only=True
|
329 |
-
)
|
330 |
-
except Exception as load_err:
|
331 |
-
print(f"Error loading voicepack {voice_id}: {load_err}. Falling back to default 'af'.")
|
332 |
-
voice_id = 'af' # Fallback to default
|
333 |
-
# Ensure default is loaded if fallback occurs
|
334 |
-
if 'af' not in VOICEPACKS:
|
335 |
-
default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
|
336 |
-
if os.path.exists(default_voice_file):
|
337 |
-
VOICEPACKS['af'] = await asyncio.to_thread(
|
338 |
-
torch.load, default_voice_file, map_location=device
|
339 |
-
)
|
340 |
-
else:
|
341 |
-
print("Default voice 'af' also not found. Cannot generate audio.")
|
342 |
-
return None
|
343 |
-
else:
|
344 |
-
print(f"Voicepack {voice_id}.pt not found. Falling back to default 'af'.")
|
345 |
-
voice_id = 'af' # Fallback to default
|
346 |
-
if 'af' not in VOICEPACKS: # Check again if default is needed now
|
347 |
-
default_voice_file = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
|
348 |
-
if os.path.exists(default_voice_file):
|
349 |
-
VOICEPACKS['af'] = await asyncio.to_thread(
|
350 |
-
torch.load, default_voice_file, map_location=device
|
351 |
-
)
|
352 |
-
else:
|
353 |
-
print("Default voice 'af' also not found. Cannot generate audio.")
|
354 |
-
return None
|
355 |
|
|
|
356 |
if voice_id not in VOICEPACKS:
|
357 |
-
print(f"
|
358 |
-
|
|
|
|
|
|
|
|
|
|
|
359 |
|
360 |
# Clean the text (simple cleaning)
|
361 |
-
|
362 |
-
clean_text =
|
|
|
|
|
|
|
|
|
363 |
|
364 |
-
# Ensure text isn't empty
|
365 |
if not clean_text.strip():
|
366 |
-
print("
|
367 |
return None
|
368 |
|
369 |
-
#
|
370 |
if len(clean_text) > MAX_TTS_CHARS:
|
371 |
-
print(f"Warning: Text too long ({len(clean_text)} chars), truncating to {MAX_TTS_CHARS}.")
|
372 |
-
# Simple truncation, could be smarter (split by sentence)
|
373 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
374 |
-
|
375 |
-
|
376 |
-
|
|
|
|
|
377 |
|
378 |
-
|
379 |
-
print(f"Generating audio for: '{clean_text[:100]}...'")
|
380 |
gen_func = globals()['generate_tts_internal']
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
384 |
gen_func,
|
385 |
TTS_MODEL,
|
386 |
clean_text,
|
387 |
VOICEPACKS[voice_id],
|
388 |
-
'
|
389 |
)
|
390 |
|
391 |
if isinstance(audio_data, torch.Tensor):
|
392 |
# Move tensor to CPU before converting to numpy if it's not already
|
393 |
-
audio_np = audio_data.cpu().numpy()
|
394 |
elif isinstance(audio_data, np.ndarray):
|
395 |
audio_np = audio_data
|
396 |
else:
|
397 |
-
print("Warning: Unexpected audio data type
|
398 |
return None
|
399 |
|
400 |
-
|
|
|
|
|
|
|
|
|
401 |
return (TTS_SAMPLE_RATE, audio_np)
|
402 |
|
403 |
except Exception as e:
|
404 |
-
|
405 |
-
print(
|
406 |
-
print(traceback.format_exc()) # Print full traceback for debugging
|
407 |
return None
|
408 |
|
409 |
# Helper to get voice ID from display name
|
@@ -411,22 +468,29 @@ def get_voice_id(voice_display_name: str) -> str:
|
|
411 |
"""Maps the user-friendly voice name to the internal voice ID."""
|
412 |
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af' if not found
|
413 |
|
414 |
-
# --- Main Processing Logic (Async) ---
|
|
|
|
|
415 |
async def process_query_async(query: str, history: List[List[str]], selected_voice_display_name: str):
|
416 |
"""Asynchronously process user query: search -> generate answer -> generate speech"""
|
417 |
-
|
|
|
|
|
|
|
|
|
418 |
yield (
|
419 |
-
"Please enter a query.", "", "Search", history, None
|
420 |
)
|
421 |
return
|
422 |
|
423 |
if history is None: history = []
|
424 |
-
|
|
|
425 |
|
426 |
# 1. Initial state: Searching
|
427 |
yield (
|
428 |
-
"*Searching
|
429 |
-
"<div class='searching'>Searching the web...</div>",
|
430 |
gr.Button(value="Searching...", interactive=False), # Disable button
|
431 |
current_history,
|
432 |
None
|
@@ -438,26 +502,27 @@ async def process_query_async(query: str, history: List[List[str]], selected_voi
|
|
438 |
sources_html = format_sources(web_results)
|
439 |
|
440 |
# Update state: Analyzing results
|
441 |
-
current_history[-1][1] = "*Analyzing search results...*"
|
442 |
yield (
|
443 |
-
"*Analyzing search results...*",
|
444 |
sources_html,
|
445 |
gr.Button(value="Generating...", interactive=False),
|
446 |
-
current_history,
|
447 |
None
|
448 |
)
|
449 |
|
450 |
# 3. Generate Answer (non-blocking, potentially on GPU)
|
451 |
prompt = format_prompt(query, web_results)
|
452 |
-
final_answer = await generate_answer(prompt) #
|
453 |
|
454 |
-
# Update
|
455 |
current_history[-1][1] = final_answer
|
|
|
|
|
456 |
yield (
|
457 |
final_answer,
|
458 |
sources_html,
|
459 |
gr.Button(value="Audio...", interactive=False),
|
460 |
-
current_history,
|
461 |
None
|
462 |
)
|
463 |
|
@@ -465,41 +530,54 @@ async def process_query_async(query: str, history: List[List[str]], selected_voi
|
|
465 |
audio = None
|
466 |
tts_message = ""
|
467 |
if not tts_thread.is_alive() and not TTS_ENABLED:
|
468 |
-
|
|
|
469 |
elif tts_thread.is_alive():
|
470 |
-
|
|
|
471 |
elif TTS_ENABLED:
|
472 |
voice_id = get_voice_id(selected_voice_display_name)
|
473 |
-
audio
|
474 |
-
if
|
475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
|
477 |
# 5. Final state: Show everything
|
|
|
478 |
yield (
|
479 |
final_answer + tts_message,
|
480 |
sources_html,
|
481 |
gr.Button(value="Search", interactive=True), # Re-enable button
|
482 |
-
current_history,
|
483 |
audio
|
484 |
)
|
485 |
|
486 |
|
487 |
# --- Gradio Interface ---
|
|
|
488 |
css = """
|
489 |
-
/* ... [Your existing CSS
|
490 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
491 |
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
492 |
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
493 |
#header h3 { color: #a8a9ab; }
|
494 |
.search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; }
|
495 |
-
.search-box { padding: 0; margin-bottom: 1rem; }
|
496 |
-
.search-box .gradio-textbox { border-radius: 8px 0 0 8px !important;
|
497 |
-
.search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px;
|
498 |
-
.search-box .gradio-button { border-radius: 0 8px 8px 0 !important;
|
499 |
-
.search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height:
|
500 |
-
.search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; }
|
501 |
.search-box input[type="text"]::placeholder { color: #9ca3af !important; }
|
502 |
-
.search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height:
|
503 |
.search-box button:hover { background: #1d4ed8 !important; }
|
504 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
505 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
@@ -513,8 +591,8 @@ css = """
|
|
513 |
.source-item:last-child { border-bottom: none; }
|
514 |
/* .source-item:hover { background-color: #f9fafb; } */
|
515 |
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
516 |
-
.source-content { flex: 1; }
|
517 |
-
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; }
|
518 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
519 |
.source-date { color: #6b7280; font-size: 0.8em; margin-left: 8px; }
|
520 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
@@ -542,10 +620,10 @@ css = """
|
|
542 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
543 |
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
|
544 |
.accordion > .label-wrap { padding: 10px 15px !important; } /* Style accordion header */
|
545 |
-
.voice-selector { margin: 0; padding: 0; }
|
546 |
-
.voice-selector div[data-testid="dropdown"] {
|
547 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
548 |
-
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; }
|
549 |
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
|
550 |
.audio-player audio { width: 100% !important; }
|
551 |
.searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; }
|
@@ -553,7 +631,8 @@ css = """
|
|
553 |
.error { background: #fef2f2; color: #ef4444; border-color: #fecaca; }
|
554 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
555 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
556 |
-
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
|
|
557 |
.dark .gradio-container { background-color: #111827 !important; }
|
558 |
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
559 |
.dark #header h3 { color: #9ca3af; }
|
@@ -575,7 +654,7 @@ css = """
|
|
575 |
.dark .source-title { color: #60a5fa; }
|
576 |
.dark .source-title:hover { color: #93c5fd; }
|
577 |
.dark .source-snippet { color: #d1d5db; }
|
578 |
-
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; }
|
579 |
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
|
580 |
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
|
581 |
.dark .examples-container { background: #374151; border-color: #4b5563; }
|
@@ -592,112 +671,159 @@ css = """
|
|
592 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
593 |
.dark .markdown-content th { background: #374151 !important; }
|
594 |
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
|
|
|
595 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
596 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
597 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
|
|
|
|
|
|
|
|
598 |
.dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; }
|
599 |
.dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; }
|
600 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
601 |
-
|
602 |
"""
|
603 |
|
604 |
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
|
|
605 |
chat_history = gr.State([])
|
606 |
|
607 |
-
with gr.Column(): # Main container
|
|
|
608 |
with gr.Column(elem_id="header"):
|
609 |
gr.Markdown("# 🔍 AI Search Assistant")
|
610 |
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
611 |
|
|
|
612 |
with gr.Column(elem_classes="search-container"):
|
613 |
-
with gr.Row(elem_classes="search-box", equal_height=
|
614 |
search_input = gr.Textbox(
|
615 |
label="",
|
616 |
placeholder="Ask anything...",
|
617 |
-
scale=5,
|
618 |
-
container=False, # Important for direct styling
|
619 |
elem_classes="gradio-textbox"
|
620 |
)
|
621 |
voice_select = gr.Dropdown(
|
622 |
choices=list(VOICE_CHOICES.keys()),
|
623 |
-
value=list(VOICE_CHOICES.keys())[0],
|
624 |
-
label="", #
|
625 |
-
scale=
|
|
|
626 |
container=False, # Important
|
627 |
elem_classes="voice-selector gradio-dropdown"
|
628 |
)
|
629 |
search_btn = gr.Button(
|
630 |
"Search",
|
631 |
variant="primary",
|
632 |
-
scale=
|
|
|
633 |
elem_classes="gradio-button"
|
634 |
)
|
635 |
|
|
|
636 |
with gr.Row(elem_classes="results-container", equal_height=False):
|
637 |
-
|
|
|
638 |
with gr.Column(elem_classes="answer-box"):
|
639 |
-
answer_output = gr.Markdown(
|
640 |
-
# Audio player below the answer
|
641 |
-
audio_output = gr.Audio(
|
|
|
|
|
|
|
|
|
|
|
|
|
642 |
|
643 |
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
|
644 |
-
chat_history_display = gr.Chatbot(
|
645 |
-
|
646 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
647 |
with gr.Column(elem_classes="sources-box"):
|
648 |
gr.Markdown("### Sources")
|
649 |
sources_output = gr.HTML(value="<div class='no-sources'>Sources will appear here after searching.</div>")
|
650 |
|
|
|
651 |
with gr.Row(elem_classes="examples-container"):
|
652 |
gr.Examples(
|
653 |
examples=[
|
654 |
"Latest news about renewable energy",
|
655 |
"Explain the concept of Large Language Models (LLMs)",
|
656 |
"What are the symptoms and prevention tips for the flu?",
|
657 |
-
"Compare Python and JavaScript for web development"
|
|
|
658 |
],
|
659 |
-
inputs=search_input,
|
660 |
label="Try these examples:",
|
661 |
elem_classes="gradio-examples" # Add class for potential styling
|
662 |
)
|
663 |
|
664 |
# --- Event Handling ---
|
665 |
-
# Use the async function for processing
|
666 |
async def handle_interaction(query, history, voice_display_name):
|
667 |
-
"""Wrapper to handle the async generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
668 |
try:
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
673 |
except Exception as e:
|
674 |
-
print(f"Error
|
675 |
-
|
676 |
-
traceback.print_exc()
|
677 |
error_message = f"An unexpected error occurred: {e}"
|
678 |
# Provide a final error state update
|
|
|
679 |
yield (
|
680 |
error_message,
|
681 |
-
"<div class='error'>Error processing request.</div>",
|
682 |
gr.Button(value="Search", interactive=True), # Re-enable button on error
|
683 |
-
|
684 |
None
|
685 |
)
|
686 |
|
|
|
|
|
|
|
687 |
|
688 |
-
# Corrected event listeners: Pass the voice_select component directly
|
689 |
search_btn.click(
|
690 |
fn=handle_interaction,
|
691 |
-
inputs=
|
692 |
-
outputs=
|
693 |
)
|
694 |
|
695 |
search_input.submit(
|
696 |
fn=handle_interaction,
|
697 |
-
inputs=
|
698 |
-
outputs=
|
699 |
)
|
700 |
|
701 |
if __name__ == "__main__":
|
702 |
-
|
703 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import spaces # Keep for potential future use or other decorators
|
4 |
from duckduckgo_search import DDGS
|
5 |
import time
|
6 |
import torch
|
|
|
14 |
import threading
|
15 |
from concurrent.futures import ThreadPoolExecutor
|
16 |
import warnings
|
17 |
+
import traceback # For detailed error logging
|
18 |
|
19 |
# Suppress specific warnings if needed (optional)
|
20 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
21 |
+
# Suppress another common warning with torch.compile backend
|
22 |
+
# warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
|
23 |
|
24 |
# --- Configuration ---
|
25 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
26 |
MAX_SEARCH_RESULTS = 5
|
27 |
TTS_SAMPLE_RATE = 24000
|
28 |
+
MAX_TTS_CHARS = 1000 # Max characters for a single TTS chunk
|
29 |
+
# GPU_DURATION = 60 # Informational only now, decorator is removed
|
30 |
+
MAX_NEW_TOKENS = 300 # Increased slightly
|
31 |
TEMPERATURE = 0.7
|
32 |
TOP_P = 0.95
|
33 |
+
KOKORO_PATH = 'Kokoro-82M' # Path to TTS model directory
|
34 |
|
35 |
# --- Initialization ---
|
36 |
+
# Use a ThreadPoolExecutor for potentially blocking I/O or CPU-bound tasks
|
37 |
+
executor = ThreadPoolExecutor(max_workers=4)
|
38 |
+
|
39 |
# Initialize model and tokenizer with better error handling
|
40 |
try:
|
41 |
print("Loading tokenizer...")
|
|
|
46 |
# Determine device map based on CUDA availability
|
47 |
device_map = "auto" if torch.cuda.is_available() else {"": "cpu"}
|
48 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Use float32 on CPU
|
49 |
+
print(f"Attempting to load model with device_map='{device_map}' and dtype={torch_dtype}")
|
50 |
|
51 |
model = AutoModelForCausalLM.from_pretrained(
|
52 |
MODEL_NAME,
|
53 |
device_map=device_map,
|
54 |
+
# offload_folder="offload", # Enable if needed for large models and disk space is available
|
55 |
+
low_cpu_mem_usage=True, # Important for faster loading
|
56 |
+
torch_dtype=torch_dtype,
|
57 |
+
# attn_implementation="flash_attention_2" # Optional: requires flash-attn installed, use if available for speedup on compatible GPUs
|
58 |
)
|
59 |
+
print(f"Model loaded successfully. Device map: {model.hf_device_map}")
|
60 |
+
# Ensure model is in evaluation mode
|
61 |
+
model.eval()
|
62 |
+
|
63 |
except Exception as e:
|
64 |
+
print(f"FATAL: Error initializing LLM model: {str(e)}")
|
65 |
+
print(traceback.format_exc())
|
66 |
+
raise # Stop execution if model loading fails
|
|
|
67 |
|
68 |
# --- TTS Setup ---
|
69 |
VOICE_CHOICES = {
|
|
|
75 |
TTS_ENABLED = False
|
76 |
TTS_MODEL = None
|
77 |
VOICEPACKS = {} # Cache voice packs
|
|
|
78 |
|
79 |
# Initialize Kokoro TTS in a separate thread to avoid blocking startup
|
80 |
def setup_tts():
|
81 |
global TTS_ENABLED, TTS_MODEL, VOICEPACKS
|
82 |
|
83 |
+
# Check privileges for apt-get
|
84 |
+
can_sudo = shutil.which('sudo') is not None
|
85 |
+
|
86 |
try:
|
87 |
# Check if Kokoro already exists
|
88 |
if not os.path.exists(KOKORO_PATH):
|
89 |
print("Cloning Kokoro-82M repository...")
|
90 |
# Install git-lfs if not present (might need sudo/apt)
|
91 |
try:
|
92 |
+
lfs_install_cmd = ['git', 'lfs', 'install']
|
93 |
+
subprocess.run(lfs_install_cmd, check=True, capture_output=True, text=True)
|
94 |
except (FileNotFoundError, subprocess.CalledProcessError) as lfs_err:
|
95 |
+
print(f"Warning: git-lfs command failed: {lfs_err}. Cloning might be slow or incomplete.")
|
96 |
|
97 |
+
clone_cmd = ['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', KOKORO_PATH]
|
98 |
result = subprocess.run(clone_cmd, check=True, capture_output=True, text=True)
|
99 |
print("Kokoro cloned successfully.")
|
100 |
+
# print(result.stdout) # Can be verbose
|
101 |
+
# Optionally pull LFS files again (sometimes clone doesn't get them all)
|
102 |
+
try:
|
103 |
+
print("Running git lfs pull...")
|
104 |
+
lfs_pull_cmd = ['git', 'lfs', 'pull']
|
105 |
+
subprocess.run(lfs_pull_cmd, cwd=KOKORO_PATH, check=True, capture_output=True, text=True)
|
106 |
+
print("git lfs pull completed.")
|
107 |
+
except (FileNotFoundError, subprocess.CalledProcessError) as lfs_pull_err:
|
108 |
+
print(f"Warning: git lfs pull failed: {lfs_pull_err}")
|
109 |
|
110 |
else:
|
111 |
+
print(f"{KOKORO_PATH} directory already exists.")
|
112 |
|
113 |
# Install espeak (essential for phonemization)
|
114 |
print("Attempting to install espeak-ng or espeak...")
|
115 |
+
apt_update_cmd = ['apt-get', 'update', '-qq']
|
116 |
+
install_cmd_ng = ['apt-get', 'install', '-y', '-qq', 'espeak-ng']
|
117 |
+
install_cmd_legacy = ['apt-get', 'install', '-y', '-qq', 'espeak']
|
118 |
+
|
119 |
+
if can_sudo:
|
120 |
+
apt_update_cmd.insert(0, 'sudo')
|
121 |
+
install_cmd_ng.insert(0, 'sudo')
|
122 |
+
install_cmd_legacy.insert(0, 'sudo')
|
123 |
+
|
124 |
try:
|
125 |
+
print(f"Running: {' '.join(apt_update_cmd)}")
|
126 |
+
subprocess.run(apt_update_cmd, check=True, capture_output=True)
|
127 |
+
print(f"Running: {' '.join(install_cmd_ng)}")
|
128 |
+
subprocess.run(install_cmd_ng, check=True, capture_output=True)
|
129 |
print("espeak-ng installed successfully.")
|
130 |
+
except (FileNotFoundError, subprocess.CalledProcessError) as ng_err:
|
131 |
+
print(f"espeak-ng installation failed ({ng_err}), trying espeak...")
|
132 |
try:
|
133 |
+
print(f"Running: {' '.join(install_cmd_legacy)}")
|
134 |
+
subprocess.run(install_cmd_legacy, check=True, capture_output=True)
|
135 |
print("espeak installed successfully.")
|
136 |
+
except (FileNotFoundError, subprocess.CalledProcessError) as legacy_err:
|
137 |
+
print(f"ERROR: Could not install espeak-ng or espeak: {legacy_err}. TTS functionality will be disabled.")
|
138 |
return # Cannot proceed without espeak
|
139 |
|
140 |
# Set up Kokoro TTS
|
|
|
146 |
from models import build_model
|
147 |
from kokoro import generate as generate_tts_internal # Avoid name clash
|
148 |
|
149 |
+
# Make these functions accessible globally if needed
|
150 |
globals()['build_model'] = build_model
|
151 |
globals()['generate_tts_internal'] = generate_tts_internal
|
152 |
|
153 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
154 |
print(f"Loading TTS model onto device: {device}")
|
|
|
155 |
model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth')
|
156 |
+
|
157 |
if not os.path.exists(model_file):
|
158 |
+
print(f"Error: TTS model file not found at {model_file}. Attempting git lfs pull again...")
|
|
|
159 |
try:
|
160 |
+
lfs_pull_cmd = ['git', 'lfs', 'pull']
|
161 |
+
subprocess.run(lfs_pull_cmd, cwd=KOKORO_PATH, check=True, capture_output=True, text=True)
|
162 |
if not os.path.exists(model_file):
|
163 |
+
print(f"ERROR: TTS model file STILL not found at {model_file} after lfs pull. TTS disabled.")
|
164 |
return
|
165 |
except Exception as lfs_pull_err:
|
166 |
+
print(f"Error during git lfs pull: {lfs_pull_err}. TTS disabled.")
|
167 |
return
|
168 |
|
169 |
TTS_MODEL = build_model(model_file, device)
|
170 |
+
print("TTS model loaded.")
|
171 |
|
172 |
+
# Preload voices
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
for voice_name, voice_id in VOICE_CHOICES.items():
|
174 |
+
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
|
175 |
+
if os.path.exists(voice_file_path):
|
176 |
+
try:
|
177 |
+
print(f"Loading voice: {voice_id} ({voice_name})")
|
178 |
+
# Load using torch.load, map_location handles device placement
|
179 |
+
VOICEPACKS[voice_id] = torch.load(voice_file_path, map_location=device)
|
180 |
+
except Exception as e:
|
181 |
+
print(f"Warning: Could not load voice {voice_id}: {str(e)}")
|
182 |
+
else:
|
183 |
+
print(f"Info: Voice file {voice_file_path} for '{voice_name}' not found, skipping.")
|
184 |
+
|
185 |
+
if not VOICEPACKS:
|
186 |
+
print("ERROR: No voicepacks could be loaded. TTS disabled.")
|
187 |
+
return
|
188 |
+
|
189 |
+
# Ensure default 'af' is loaded if possible, even if not explicitly in choices sometimes
|
190 |
+
if 'af' not in VOICEPACKS:
|
191 |
+
voice_file_path = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
|
192 |
+
if os.path.exists(voice_file_path):
|
193 |
+
try:
|
194 |
+
print(f"Loading fallback default voice: af")
|
195 |
+
VOICEPACKS['af'] = torch.load(voice_file_path, map_location=device)
|
196 |
+
except Exception as e:
|
197 |
+
print(f"Warning: Could not load fallback default voice 'af': {str(e)}")
|
198 |
|
199 |
TTS_ENABLED = True
|
200 |
+
print("TTS setup completed successfully.")
|
201 |
+
|
202 |
except ImportError as ie:
|
203 |
+
print(f"ERROR: Importing Kokoro modules failed: {ie}. Check if {KOKORO_PATH} exists and dependencies are met.")
|
204 |
except Exception as model_load_err:
|
205 |
+
print(f"ERROR: Loading TTS model or voices failed: {model_load_err}")
|
206 |
+
print(traceback.format_exc())
|
207 |
|
208 |
else:
|
209 |
+
print(f"ERROR: {KOKORO_PATH} directory not found. TTS disabled.")
|
210 |
except subprocess.CalledProcessError as spe:
|
211 |
+
print(f"ERROR: A subprocess command failed during TTS setup: {spe}")
|
212 |
print(f"Command: {' '.join(spe.cmd)}")
|
213 |
+
if spe.stderr: print(f"Stderr: {spe.stderr.strip()}")
|
214 |
+
print("TTS setup failed.")
|
215 |
except Exception as e:
|
216 |
+
print(f"ERROR: An unexpected error occurred during TTS setup: {str(e)}")
|
217 |
+
print(traceback.format_exc())
|
218 |
TTS_ENABLED = False
|
219 |
|
220 |
# Start TTS setup in a separate thread
|
221 |
+
import shutil
|
222 |
print("Starting TTS setup in background thread...")
|
223 |
tts_thread = threading.Thread(target=setup_tts, daemon=True)
|
224 |
tts_thread.start()
|
225 |
|
226 |
# --- Search and Generation Functions ---
|
227 |
+
|
228 |
@lru_cache(maxsize=128)
|
229 |
def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]:
|
230 |
+
"""Get web search results using DuckDuckGo with caching."""
|
231 |
+
print(f"[Web Search] Searching for: '{query}' (max_results={max_results})")
|
232 |
try:
|
233 |
+
# Use DDGS context manager for cleanup
|
234 |
with DDGS() as ddgs:
|
235 |
+
# Fetch results using ddgs.text()
|
236 |
+
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y')) # Limit to past year
|
237 |
+
print(f"[Web Search] Found {len(results)} results.")
|
238 |
formatted_results = []
|
239 |
+
for i, result in enumerate(results):
|
240 |
formatted_results.append({
|
241 |
+
"id": i + 1, # Add simple ID for citation
|
242 |
+
"title": result.get("title", "No Title Available"),
|
243 |
"snippet": result.get("body", "No Snippet Available"),
|
244 |
"url": result.get("href", "#"),
|
|
|
|
|
245 |
})
|
246 |
return formatted_results
|
247 |
except Exception as e:
|
248 |
+
print(f"[Web Search] Error: {e}")
|
249 |
+
print(traceback.format_exc())
|
250 |
return []
|
251 |
|
252 |
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
|
253 |
+
"""Format the prompt with web context for the LLM."""
|
254 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
255 |
+
|
256 |
+
# Format context with IDs for citation
|
257 |
+
context_lines = []
|
258 |
+
if context:
|
259 |
+
for res in context:
|
260 |
+
context_lines.append(f"[{res['id']}] {res['title']}\n{res['snippet']}")
|
261 |
+
context_str = "\n\n".join(context_lines)
|
262 |
+
else:
|
263 |
+
context_str = "No web context available."
|
264 |
+
|
265 |
+
# Clear instructions for the model
|
266 |
prompt = f"""You are a helpful AI assistant. Your task is to answer the user's query based *only* on the provided web search context.
|
267 |
+
Follow these instructions carefully:
|
268 |
+
1. Synthesize the information from the context to provide a comprehensive answer.
|
269 |
+
2. Cite the sources used in your answer using bracket notation with the source ID, like [1], [2], etc.
|
270 |
+
3. If multiple sources support a point, you can cite them together, e.g., [1][3].
|
271 |
+
4. Do *not* add information that is not present in the context.
|
272 |
+
5. If the context does not contain relevant information to answer the query, clearly state that you cannot answer based on the provided context.
|
273 |
+
6. Format the answer clearly using markdown.
|
274 |
+
|
275 |
Current Time: {current_time}
|
276 |
|
277 |
Web Context:
|
278 |
+
---
|
279 |
+
{context_str}
|
280 |
+
---
|
281 |
|
282 |
User Query: {query}
|
283 |
|
284 |
Answer:"""
|
285 |
+
# print(f"--- Formatted Prompt ---\n{prompt[:1000]}...\n--- End Prompt ---") # Debugging: Print start of prompt
|
286 |
return prompt
|
287 |
|
288 |
def format_sources(web_results: List[Dict[str, str]]) -> str:
|
289 |
+
"""Format sources into HTML for display."""
|
290 |
if not web_results:
|
291 |
+
return "<div class='no-sources'>No sources found for this query.</div>"
|
292 |
|
293 |
sources_html = "<div class='sources-container'>"
|
294 |
+
for res in web_results:
|
295 |
title = res.get("title", "Source")
|
296 |
url = res.get("url", "#")
|
297 |
+
snippet = res.get("snippet", "")
|
298 |
+
# Basic HTML escaping for snippet and title
|
299 |
+
title_safe = gr. gradio.utils.escape_html(title)
|
300 |
+
snippet_safe = gr. gradio.utils.escape_html(snippet[:150] + ("..." if len(snippet) > 150 else ""))
|
301 |
+
|
302 |
sources_html += f"""
|
303 |
<div class='source-item'>
|
304 |
+
<div class='source-number'>[{res['id']}]</div>
|
305 |
<div class='source-content'>
|
306 |
+
<a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a>
|
307 |
+
<div class='source-snippet'>{snippet_safe}</div>
|
308 |
</div>
|
309 |
</div>
|
310 |
"""
|
311 |
sources_html += "</div>"
|
312 |
return sources_html
|
313 |
|
314 |
+
# --- Core Async Logic ---
|
|
|
|
|
315 |
|
316 |
+
# NOTE: @spaces.GPU decorator is REMOVED because it's incompatible with async def
|
317 |
async def generate_answer(prompt: str) -> str:
|
318 |
+
"""Generate answer using the DeepSeek model (Async Wrapper)."""
|
319 |
+
print(f"[LLM Generate] Generating answer for prompt (length {len(prompt)})...")
|
320 |
+
start_time = time.time()
|
321 |
try:
|
322 |
+
# Tokenize input - ensure it runs on the correct device implicitly via model.device
|
323 |
inputs = tokenizer(
|
324 |
prompt,
|
325 |
return_tensors="pt",
|
326 |
padding=True,
|
327 |
truncation=True,
|
328 |
+
max_length=1024, # Model's context window might be larger, adjust if known
|
329 |
return_attention_mask=True
|
330 |
).to(model.device)
|
331 |
|
332 |
+
# Use torch.inference_mode() for efficiency
|
333 |
+
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(model.dtype == torch.float16)):
|
334 |
+
# Run model.generate in a separate thread to avoid blocking asyncio event loop
|
335 |
+
outputs = await asyncio.to_thread(
|
336 |
model.generate,
|
337 |
+
input_ids=inputs.input_ids,
|
338 |
attention_mask=inputs.attention_mask,
|
339 |
max_new_tokens=MAX_NEW_TOKENS,
|
340 |
temperature=TEMPERATURE,
|
341 |
top_p=TOP_P,
|
342 |
pad_token_id=tokenizer.eos_token_id,
|
343 |
+
eos_token_id=tokenizer.eos_token_id, # Explicitly set EOS token
|
344 |
do_sample=True,
|
|
|
345 |
num_return_sequences=1
|
346 |
)
|
347 |
|
348 |
+
# Decode only the newly generated tokens
|
349 |
+
# output_ids = outputs[0][inputs.input_ids.shape[1]:] # Slice generated part
|
350 |
+
# answer_part = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
351 |
+
|
352 |
+
# Alternative: Decode full output and split (can be less reliable if prompt has "Answer:")
|
353 |
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
354 |
+
answer_marker = "Answer:"
|
355 |
+
marker_index = full_output.rfind(answer_marker) # Use rfind to find the last occurrence
|
356 |
+
if marker_index != -1:
|
357 |
+
answer_part = full_output[marker_index + len(answer_marker):].strip()
|
358 |
+
else:
|
359 |
+
# Fallback: try to remove the prompt text (less reliable)
|
360 |
+
prompt_decoded = tokenizer.decode(inputs.input_ids[0], skip_special_tokens=True)
|
361 |
+
if full_output.startswith(prompt_decoded):
|
362 |
+
answer_part = full_output[len(prompt_decoded):].strip()
|
363 |
+
# Check if the marker is now at the beginning
|
364 |
+
if answer_part.startswith(answer_marker):
|
365 |
+
answer_part = answer_part[len(answer_marker):].strip()
|
366 |
+
else:
|
367 |
+
print("[LLM Generate] Warning: 'Answer:' marker not found and prompt prefix mismatch. Using full output.")
|
368 |
+
answer_part = full_output # Use full output as last resort
|
369 |
+
|
370 |
+
end_time = time.time()
|
371 |
+
print(f"[LLM Generate] Answer generated successfully in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
|
372 |
+
return answer_part if answer_part else "*Model did not generate a response.*"
|
373 |
+
|
374 |
except Exception as e:
|
375 |
+
print(f"[LLM Generate] Error: {e}")
|
376 |
+
print(traceback.format_exc())
|
377 |
return f"Error generating answer: {str(e)}"
|
378 |
|
379 |
+
# NOTE: @spaces.GPU decorator is REMOVED because it's incompatible with async def
|
|
|
380 |
async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndarray] | None:
|
381 |
"""Generate speech from text using Kokoro TTS model (Async Wrapper)."""
|
382 |
global TTS_MODEL, TTS_ENABLED, VOICEPACKS
|
|
|
383 |
|
384 |
if not TTS_ENABLED or TTS_MODEL is None:
|
385 |
+
print("[TTS Generate] Skipping: TTS not enabled or model not loaded.")
|
386 |
return None
|
387 |
if 'generate_tts_internal' not in globals():
|
388 |
+
print("[TTS Generate] Skipping: TTS generation function not found.")
|
389 |
+
return None
|
390 |
+
if not text or not text.strip():
|
391 |
+
print("[TTS Generate] Skipping: Empty text provided.")
|
392 |
return None
|
393 |
|
394 |
+
print(f"[TTS Generate] Requesting speech for text (length {len(text)}) with voice '{voice_id}'")
|
395 |
+
start_time = time.time()
|
396 |
|
397 |
+
try:
|
398 |
+
device = TTS_MODEL.device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
+
# Ensure voicepack is loaded
|
401 |
if voice_id not in VOICEPACKS:
|
402 |
+
print(f"[TTS Generate] Warning: Voice '{voice_id}' not preloaded. Attempting fallback.")
|
403 |
+
# Attempt fallback to default 'af' if available
|
404 |
+
voice_id = 'af'
|
405 |
+
if 'af' not in VOICEPACKS:
|
406 |
+
print("[TTS Generate] Error: Default voice 'af' also not available. Cannot generate audio.")
|
407 |
+
return None
|
408 |
+
print("[TTS Generate] Using default voice 'af'.")
|
409 |
|
410 |
# Clean the text (simple cleaning)
|
411 |
+
# Remove markdown citations like [1], [2][3] etc.
|
412 |
+
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text)
|
413 |
+
# Remove other common markdown artifacts
|
414 |
+
clean_text = clean_text.replace('*', '').replace('#', '').replace('`', '')
|
415 |
+
# Remove excessive whitespace
|
416 |
+
clean_text = ' '.join(clean_text.split())
|
417 |
|
|
|
418 |
if not clean_text.strip():
|
419 |
+
print("[TTS Generate] Skipping: Text is empty after cleaning.")
|
420 |
return None
|
421 |
|
422 |
+
# Truncate if too long
|
423 |
if len(clean_text) > MAX_TTS_CHARS:
|
424 |
+
print(f"[TTS Generate] Warning: Text too long ({len(clean_text)} chars), truncating to {MAX_TTS_CHARS}.")
|
|
|
425 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
426 |
+
# Find last punctuation or space for cleaner cut
|
427 |
+
cut_off = max(clean_text.rfind('.'), clean_text.rfind('?'), clean_text.rfind('!'), clean_text.rfind(' '))
|
428 |
+
if cut_off != -1:
|
429 |
+
clean_text = clean_text[:cut_off+1]
|
430 |
+
clean_text += "..." # Indicate truncation
|
431 |
|
432 |
+
print(f"[TTS Generate] Generating audio for: '{clean_text[:100]}...'")
|
|
|
433 |
gen_func = globals()['generate_tts_internal']
|
434 |
+
|
435 |
+
# Run the blocking TTS generation in the thread pool executor
|
436 |
+
audio_data, _ = await asyncio.get_event_loop().run_in_executor(
|
437 |
+
executor,
|
438 |
gen_func,
|
439 |
TTS_MODEL,
|
440 |
clean_text,
|
441 |
VOICEPACKS[voice_id],
|
442 |
+
'afr' # Language code for Kokoro (check if 'afr' or 'eng' or other is correct for your voices)
|
443 |
)
|
444 |
|
445 |
if isinstance(audio_data, torch.Tensor):
|
446 |
# Move tensor to CPU before converting to numpy if it's not already
|
447 |
+
audio_np = audio_data.detach().cpu().numpy()
|
448 |
elif isinstance(audio_data, np.ndarray):
|
449 |
audio_np = audio_data
|
450 |
else:
|
451 |
+
print("[TTS Generate] Warning: Unexpected audio data type received.")
|
452 |
return None
|
453 |
|
454 |
+
end_time = time.time()
|
455 |
+
print(f"[TTS Generate] Audio generated successfully in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
|
456 |
+
# Ensure it's 1D array
|
457 |
+
if audio_np.ndim > 1:
|
458 |
+
audio_np = audio_np.flatten()
|
459 |
return (TTS_SAMPLE_RATE, audio_np)
|
460 |
|
461 |
except Exception as e:
|
462 |
+
print(f"[TTS Generate] Error: {str(e)}")
|
463 |
+
print(traceback.format_exc())
|
|
|
464 |
return None
|
465 |
|
466 |
# Helper to get voice ID from display name
|
|
|
468 |
"""Maps the user-friendly voice name to the internal voice ID."""
|
469 |
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af' if not found
|
470 |
|
471 |
+
# --- Main Processing Logic (Async Generator) ---
|
472 |
+
import re # Import regex for cleaning
|
473 |
+
|
474 |
async def process_query_async(query: str, history: List[List[str]], selected_voice_display_name: str):
|
475 |
"""Asynchronously process user query: search -> generate answer -> generate speech"""
|
476 |
+
print(f"\n--- New Query Processing ---")
|
477 |
+
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
478 |
+
|
479 |
+
if not query or not query.strip():
|
480 |
+
print("Empty query received.")
|
481 |
yield (
|
482 |
+
"Please enter a query.", "", gr.Button(value="Search", interactive=True), history, None
|
483 |
)
|
484 |
return
|
485 |
|
486 |
if history is None: history = []
|
487 |
+
# Append user query to history immediately for display
|
488 |
+
current_history = history + [[query, None]] # Placeholder for assistant response
|
489 |
|
490 |
# 1. Initial state: Searching
|
491 |
yield (
|
492 |
+
"*Searching the web...*",
|
493 |
+
"<div class='searching'><span>Searching the web...</span></div>", # Added span for CSS animation
|
494 |
gr.Button(value="Searching...", interactive=False), # Disable button
|
495 |
current_history,
|
496 |
None
|
|
|
502 |
sources_html = format_sources(web_results)
|
503 |
|
504 |
# Update state: Analyzing results
|
|
|
505 |
yield (
|
506 |
+
"*Analyzing search results and generating answer...*",
|
507 |
sources_html,
|
508 |
gr.Button(value="Generating...", interactive=False),
|
509 |
+
current_history, # History still shows user query, assistant response is pending
|
510 |
None
|
511 |
)
|
512 |
|
513 |
# 3. Generate Answer (non-blocking, potentially on GPU)
|
514 |
prompt = format_prompt(query, web_results)
|
515 |
+
final_answer = await generate_answer(prompt) # This is already async
|
516 |
|
517 |
+
# Update history with the final answer BEFORE generating audio
|
518 |
current_history[-1][1] = final_answer
|
519 |
+
|
520 |
+
# Update state: Answer generated, preparing audio
|
521 |
yield (
|
522 |
final_answer,
|
523 |
sources_html,
|
524 |
gr.Button(value="Audio...", interactive=False),
|
525 |
+
current_history, # Now history includes the answer
|
526 |
None
|
527 |
)
|
528 |
|
|
|
530 |
audio = None
|
531 |
tts_message = ""
|
532 |
if not tts_thread.is_alive() and not TTS_ENABLED:
|
533 |
+
print("[TTS Status] TTS setup failed or is disabled.")
|
534 |
+
tts_message = "\n\n*(TTS is disabled or failed to initialize)*"
|
535 |
elif tts_thread.is_alive():
|
536 |
+
print("[TTS Status] TTS is still initializing in the background.")
|
537 |
+
tts_message = "\n\n*(TTS is still initializing, audio may be delayed or unavailable)*"
|
538 |
elif TTS_ENABLED:
|
539 |
voice_id = get_voice_id(selected_voice_display_name)
|
540 |
+
# Only generate audio if the answer generation was successful
|
541 |
+
if not final_answer.startswith("Error"):
|
542 |
+
audio = await generate_speech(final_answer, voice_id) # This is already async
|
543 |
+
if audio is None:
|
544 |
+
print(f"[TTS Status] Audio generation failed for voice '{voice_id}'.")
|
545 |
+
tts_message = f"\n\n*(Audio generation failed)*"
|
546 |
+
else:
|
547 |
+
print("[TTS Status] Audio generated successfully.")
|
548 |
+
else:
|
549 |
+
print("[TTS Status] Skipping audio generation due to answer error.")
|
550 |
+
tts_message = "\n\n*(Audio skipped due to answer generation error)*"
|
551 |
+
|
552 |
|
553 |
# 5. Final state: Show everything
|
554 |
+
print("--- Query Processing Complete ---")
|
555 |
yield (
|
556 |
final_answer + tts_message,
|
557 |
sources_html,
|
558 |
gr.Button(value="Search", interactive=True), # Re-enable button
|
559 |
+
current_history, # Final history state
|
560 |
audio
|
561 |
)
|
562 |
|
563 |
|
564 |
# --- Gradio Interface ---
|
565 |
+
# (CSS remains the same as your previous version)
|
566 |
css = """
|
567 |
+
/* ... [Your existing refined CSS] ... */
|
568 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
569 |
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
570 |
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
571 |
#header h3 { color: #a8a9ab; }
|
572 |
.search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; }
|
573 |
+
.search-box { padding: 0; margin-bottom: 1rem; display: flex; align-items: center; }
|
574 |
+
.search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; height: 44px !important; flex-grow: 1; }
|
575 |
+
.search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px; height: 44px !important; width: 180px; flex-shrink: 0; }
|
576 |
+
.search-box .gradio-button { border-radius: 0 8px 8px 0 !important; height: 44px !important; flex-shrink: 0; }
|
577 |
+
.search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 100% !important; padding: 0 12px !important;}
|
578 |
+
.search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; z-index: 1; }
|
579 |
.search-box input[type="text"]::placeholder { color: #9ca3af !important; }
|
580 |
+
.search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 100% !important; }
|
581 |
.search-box button:hover { background: #1d4ed8 !important; }
|
582 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
583 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
|
|
591 |
.source-item:last-child { border-bottom: none; }
|
592 |
/* .source-item:hover { background-color: #f9fafb; } */
|
593 |
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
594 |
+
.source-content { flex: 1; min-width: 0;} /* Allow content to shrink */
|
595 |
+
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
596 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
597 |
.source-date { color: #6b7280; font-size: 0.8em; margin-left: 8px; }
|
598 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
|
|
620 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
621 |
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
|
622 |
.accordion > .label-wrap { padding: 10px 15px !important; } /* Style accordion header */
|
623 |
+
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
624 |
+
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
625 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
626 |
+
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;}
|
627 |
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
|
628 |
.audio-player audio { width: 100% !important; }
|
629 |
.searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; }
|
|
|
631 |
.error { background: #fef2f2; color: #ef4444; border-color: #fecaca; }
|
632 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
633 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
634 |
+
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
635 |
+
/* Dark Mode Styles */
|
636 |
.dark .gradio-container { background-color: #111827 !important; }
|
637 |
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
638 |
.dark #header h3 { color: #9ca3af; }
|
|
|
654 |
.dark .source-title { color: #60a5fa; }
|
655 |
.dark .source-title:hover { color: #93c5fd; }
|
656 |
.dark .source-snippet { color: #d1d5db; }
|
657 |
+
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;} /* Ensure chat text is visible */
|
658 |
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
|
659 |
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
|
660 |
.dark .examples-container { background: #374151; border-color: #4b5563; }
|
|
|
671 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
672 |
.dark .markdown-content th { background: #374151 !important; }
|
673 |
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
|
674 |
+
.dark .accordion > .label-wrap { color: #d1d5db !important; } /* Accordion label color */
|
675 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
676 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
677 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
678 |
+
.dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; } /* Style audio player controls */
|
679 |
+
.dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; }
|
680 |
+
.dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; }
|
681 |
+
.dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; }
|
682 |
.dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; }
|
683 |
.dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; }
|
684 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
|
|
685 |
"""
|
686 |
|
687 |
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
688 |
+
# chat_history state persists across interactions for a single user session
|
689 |
chat_history = gr.State([])
|
690 |
|
691 |
+
with gr.Column(): # Main container for vertical layout
|
692 |
+
# Header Section
|
693 |
with gr.Column(elem_id="header"):
|
694 |
gr.Markdown("# 🔍 AI Search Assistant")
|
695 |
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
696 |
|
697 |
+
# Search Input and Controls Section
|
698 |
with gr.Column(elem_classes="search-container"):
|
699 |
+
with gr.Row(elem_classes="search-box", equal_height=False): # Use Row for horizontal elements
|
700 |
search_input = gr.Textbox(
|
701 |
label="",
|
702 |
placeholder="Ask anything...",
|
703 |
+
scale=5, # Takes more horizontal space
|
704 |
+
container=False, # Important for direct styling within Row
|
705 |
elem_classes="gradio-textbox"
|
706 |
)
|
707 |
voice_select = gr.Dropdown(
|
708 |
choices=list(VOICE_CHOICES.keys()),
|
709 |
+
value=list(VOICE_CHOICES.keys())[0], # Default voice display name
|
710 |
+
label="", # Visually hidden label
|
711 |
+
scale=1, # Takes less space
|
712 |
+
min_width=180, # Fixed width for dropdown
|
713 |
container=False, # Important
|
714 |
elem_classes="voice-selector gradio-dropdown"
|
715 |
)
|
716 |
search_btn = gr.Button(
|
717 |
"Search",
|
718 |
variant="primary",
|
719 |
+
scale=0, # Minimal width needed for text
|
720 |
+
min_width=100,
|
721 |
elem_classes="gradio-button"
|
722 |
)
|
723 |
|
724 |
+
# Results Display Section (using Columns for side-by-side layout)
|
725 |
with gr.Row(elem_classes="results-container", equal_height=False):
|
726 |
+
# Left Column: Answer and Chat History
|
727 |
+
with gr.Column(scale=3): # Takes 3 parts of the width
|
728 |
with gr.Column(elem_classes="answer-box"):
|
729 |
+
answer_output = gr.Markdown(value="*Your answer will appear here...*", elem_classes="markdown-content")
|
730 |
+
# Audio player below the answer text
|
731 |
+
audio_output = gr.Audio(
|
732 |
+
label="Voice Response",
|
733 |
+
type="numpy", # Expects (rate, numpy_array) tuple
|
734 |
+
autoplay=False, # Don't autoplay by default
|
735 |
+
show_label=False, # Hide the "Voice Response" label visually
|
736 |
+
elem_classes="audio-player"
|
737 |
+
)
|
738 |
|
739 |
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
|
740 |
+
chat_history_display = gr.Chatbot(
|
741 |
+
label="Conversation",
|
742 |
+
bubble_full_width=True, # Bubbles take full width
|
743 |
+
height=400,
|
744 |
+
elem_classes="chat-history"
|
745 |
+
)
|
746 |
+
|
747 |
+
# Right Column: Sources
|
748 |
+
with gr.Column(scale=2): # Takes 2 parts of the width
|
749 |
with gr.Column(elem_classes="sources-box"):
|
750 |
gr.Markdown("### Sources")
|
751 |
sources_output = gr.HTML(value="<div class='no-sources'>Sources will appear here after searching.</div>")
|
752 |
|
753 |
+
# Example Prompts Section
|
754 |
with gr.Row(elem_classes="examples-container"):
|
755 |
gr.Examples(
|
756 |
examples=[
|
757 |
"Latest news about renewable energy",
|
758 |
"Explain the concept of Large Language Models (LLMs)",
|
759 |
"What are the symptoms and prevention tips for the flu?",
|
760 |
+
"Compare Python and JavaScript for web development",
|
761 |
+
"Summarize the main points of the Paris Agreement on climate change",
|
762 |
],
|
763 |
+
inputs=search_input, # Clicking example populates this input
|
764 |
label="Try these examples:",
|
765 |
elem_classes="gradio-examples" # Add class for potential styling
|
766 |
)
|
767 |
|
768 |
# --- Event Handling ---
|
|
|
769 |
async def handle_interaction(query, history, voice_display_name):
|
770 |
+
"""Wrapper to handle the async generator and update outputs."""
|
771 |
+
print(f"[Interaction] Handling query: '{query}'")
|
772 |
+
outputs = { # Dictionary to hold the latest state of outputs
|
773 |
+
"answer": "...",
|
774 |
+
"sources": "...",
|
775 |
+
"button": gr.Button(value="Search", interactive=True),
|
776 |
+
"history": history,
|
777 |
+
"audio": None
|
778 |
+
}
|
779 |
try:
|
780 |
+
# Iterate through the updates yielded by the async generator
|
781 |
+
async for update_tuple in process_query_async(query, history, voice_display_name):
|
782 |
+
# Unpack the tuple
|
783 |
+
ans_out, src_out, btn_state, hist_display, aud_out = update_tuple
|
784 |
+
# Update the outputs dictionary
|
785 |
+
outputs["answer"] = ans_out
|
786 |
+
outputs["sources"] = src_out
|
787 |
+
outputs["button"] = btn_state # Can be a gr.Button update dict or object
|
788 |
+
outputs["history"] = hist_display
|
789 |
+
outputs["audio"] = aud_out
|
790 |
+
# Yield the current state of all outputs
|
791 |
+
yield outputs["answer"], outputs["sources"], outputs["button"], outputs["history"], outputs["audio"]
|
792 |
except Exception as e:
|
793 |
+
print(f"[Interaction] Error: {e}")
|
794 |
+
print(traceback.format_exc())
|
|
|
795 |
error_message = f"An unexpected error occurred: {e}"
|
796 |
# Provide a final error state update
|
797 |
+
final_error_history = history + [[query, f"*Error: {error_message}*"]] if query else history
|
798 |
yield (
|
799 |
error_message,
|
800 |
+
"<div class='error'>Error processing request. Please check logs or try again.</div>",
|
801 |
gr.Button(value="Search", interactive=True), # Re-enable button on error
|
802 |
+
final_error_history,
|
803 |
None
|
804 |
)
|
805 |
|
806 |
+
# Connect the handle_interaction function to the button click and input submit events
|
807 |
+
outputs_list = [answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
808 |
+
inputs_list = [search_input, chat_history, voice_select] # Pass the dropdown component itself
|
809 |
|
|
|
810 |
search_btn.click(
|
811 |
fn=handle_interaction,
|
812 |
+
inputs=inputs_list,
|
813 |
+
outputs=outputs_list
|
814 |
)
|
815 |
|
816 |
search_input.submit(
|
817 |
fn=handle_interaction,
|
818 |
+
inputs=inputs_list,
|
819 |
+
outputs=outputs_list
|
820 |
)
|
821 |
|
822 |
if __name__ == "__main__":
|
823 |
+
print("Starting Gradio application...")
|
824 |
+
# Launch the app with queuing enabled for handling multiple users
|
825 |
+
demo.queue(max_size=20).launch(
|
826 |
+
debug=True, # Enable Gradio debug mode for more logs
|
827 |
+
share=True, # Create a public link (useful for Spaces)
|
828 |
+
# server_name="0.0.0.0" # Bind to all interfaces if running locally and need external access
|
829 |
+
)
|