Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
# import spaces # Removed as @spaces.GPU is not used with async
|
4 |
from duckduckgo_search import DDGS
|
5 |
import time
|
6 |
import torch
|
@@ -16,8 +16,9 @@ from concurrent.futures import ThreadPoolExecutor
|
|
16 |
import warnings
|
17 |
import traceback # For detailed error logging
|
18 |
import re # For text cleaning
|
19 |
-
import shutil # For checking sudo
|
20 |
import html # For escaping HTML
|
|
|
21 |
|
22 |
# --- Configuration ---
|
23 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
@@ -27,11 +28,11 @@ MAX_TTS_CHARS = 1000 # Max characters for a single TTS chunk
|
|
27 |
MAX_NEW_TOKENS = 300
|
28 |
TEMPERATURE = 0.7
|
29 |
TOP_P = 0.95
|
30 |
-
KOKORO_PATH = 'Kokoro-82M' #
|
31 |
|
32 |
# --- Initialization ---
|
33 |
-
#
|
34 |
-
executor = ThreadPoolExecutor(max_workers=os.cpu_count() or 4)
|
35 |
|
36 |
# Suppress specific warnings
|
37 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
@@ -40,41 +41,42 @@ warnings.filterwarnings("ignore", message="Backend 'inductor' is not available."
|
|
40 |
# --- LLM Initialization ---
|
41 |
llm_model: Optional[AutoModelForCausalLM] = None
|
42 |
llm_tokenizer: Optional[AutoTokenizer] = None
|
43 |
-
llm_device = "cpu"
|
44 |
|
45 |
try:
|
46 |
-
print("Initializing
|
47 |
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
48 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
49 |
|
50 |
if torch.cuda.is_available():
|
51 |
llm_device = "cuda"
|
52 |
torch_dtype = torch.float16
|
53 |
-
device_map = "auto"
|
54 |
-
print(f"CUDA detected. Loading model with device_map='{device_map}', dtype={torch_dtype}")
|
55 |
else:
|
56 |
llm_device = "cpu"
|
57 |
-
torch_dtype = torch.float32
|
58 |
device_map = {"": "cpu"}
|
59 |
-
print(f"CUDA not found. Loading model on CPU with dtype={torch_dtype}")
|
60 |
|
61 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
62 |
MODEL_NAME,
|
63 |
device_map=device_map,
|
64 |
low_cpu_mem_usage=True,
|
65 |
torch_dtype=torch_dtype,
|
66 |
-
# attn_implementation="flash_attention_2" # Optional
|
67 |
)
|
68 |
-
|
69 |
-
llm_model.
|
|
|
|
|
70 |
|
71 |
except Exception as e:
|
72 |
-
print(f"FATAL: Error initializing LLM model: {str(e)}")
|
73 |
print(traceback.format_exc())
|
74 |
-
# Depending on environment, you might exit or just disable LLM features
|
75 |
llm_model = None
|
76 |
llm_tokenizer = None
|
77 |
-
print("LLM features will be unavailable.")
|
78 |
|
79 |
|
80 |
# --- TTS Initialization ---
|
@@ -85,147 +87,189 @@ VOICE_CHOICES = {
|
|
85 |
'🇺🇸 Nicole': 'af_nicole'
|
86 |
}
|
87 |
TTS_ENABLED = False
|
88 |
-
tts_model: Optional[Any] = None
|
89 |
-
voicepacks: Dict[str, Any] = {}
|
90 |
-
tts_device = "cpu"
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
95 |
-
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None) -> subprocess.CompletedProcess:
|
96 |
-
"""Helper to run subprocess and capture output."""
|
97 |
print(f"Running command: {' '.join(cmd)}")
|
98 |
try:
|
99 |
-
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd)
|
100 |
-
|
101 |
-
if result.
|
|
|
|
|
|
|
|
|
102 |
return result
|
103 |
except FileNotFoundError:
|
104 |
-
print(f"Error: Command not found - {cmd[0]}")
|
|
|
|
|
|
|
105 |
raise
|
106 |
except subprocess.CalledProcessError as e:
|
107 |
-
print(f"Error running command: {' '.join(e.cmd)}")
|
108 |
-
if e.stdout: print(f"Stdout: {e.stdout.strip()}")
|
109 |
-
if e.stderr: print(f"Stderr: {e.stderr.strip()}")
|
110 |
raise
|
111 |
|
|
|
112 |
def setup_tts_task():
|
113 |
"""Initializes Kokoro TTS model and dependencies."""
|
114 |
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
115 |
print("[TTS Setup] Starting background initialization...")
|
116 |
|
117 |
-
# Determine TTS device
|
118 |
tts_device = "cuda" if torch.cuda.is_available() else "cpu"
|
119 |
print(f"[TTS Setup] Target device: {tts_device}")
|
120 |
|
121 |
can_sudo = shutil.which('sudo') is not None
|
122 |
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
|
|
123 |
|
124 |
try:
|
125 |
# 1. Clone Kokoro Repo if needed
|
126 |
-
if not os.path.exists(
|
127 |
-
print(f"[TTS Setup] Cloning repository to {
|
128 |
try:
|
129 |
_run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
|
130 |
except Exception as lfs_err:
|
131 |
-
print(f"[TTS Setup] Warning: git lfs install
|
132 |
-
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M',
|
133 |
try:
|
134 |
print("[TTS Setup] Running git lfs pull...")
|
135 |
-
_run_subprocess(['git', 'lfs', 'pull'], cwd=
|
136 |
except Exception as lfs_pull_err:
|
137 |
print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
|
138 |
else:
|
139 |
-
print(f"[TTS Setup] Directory {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
# 2. Install espeak dependency
|
142 |
print("[TTS Setup] Checking/Installing espeak...")
|
143 |
try:
|
|
|
144 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
|
|
|
145 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
|
146 |
print("[TTS Setup] espeak-ng installed or already present.")
|
147 |
except Exception:
|
148 |
-
print("[TTS Setup] espeak-ng failed, trying espeak...")
|
149 |
try:
|
|
|
150 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak'])
|
151 |
print("[TTS Setup] espeak installed or already present.")
|
152 |
except Exception as espeak_err:
|
153 |
print(f"[TTS Setup] ERROR: Failed to install both espeak-ng and espeak: {espeak_err}. TTS disabled.")
|
154 |
-
return #
|
155 |
|
156 |
# 3. Load Kokoro Model and Voices
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
sys_path_updated = True
|
|
|
|
|
162 |
try:
|
|
|
163 |
from models import build_model
|
164 |
from kokoro import generate as generate_tts_internal
|
|
|
165 |
|
166 |
-
|
|
|
167 |
globals()['generate_tts_internal'] = generate_tts_internal
|
168 |
|
169 |
-
model_file = os.path.join(
|
170 |
if not os.path.exists(model_file):
|
171 |
print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.")
|
172 |
return
|
173 |
|
174 |
print(f"[TTS Setup] Loading TTS model from {model_file} onto {tts_device}...")
|
175 |
tts_model = build_model(model_file, tts_device)
|
176 |
-
tts_model.eval()
|
177 |
print("[TTS Setup] TTS model loaded.")
|
178 |
|
179 |
# Load voices
|
180 |
loaded_voices = 0
|
181 |
for voice_name, voice_id in VOICE_CHOICES.items():
|
182 |
-
voice_file_path = os.path.join(
|
183 |
if os.path.exists(voice_file_path):
|
184 |
try:
|
185 |
print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name})")
|
186 |
-
# map_location ensures it loads to the correct device
|
187 |
voicepacks[voice_id] = torch.load(voice_file_path, map_location=tts_device)
|
188 |
loaded_voices += 1
|
189 |
except Exception as e:
|
190 |
print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
|
191 |
else:
|
192 |
-
print(f"[TTS Setup] Info: Voice file {voice_file_path} not found
|
193 |
|
194 |
if loaded_voices == 0:
|
195 |
print("[TTS Setup] ERROR: No voicepacks could be loaded. TTS disabled.")
|
196 |
-
tts_model = None #
|
197 |
return
|
198 |
|
199 |
TTS_ENABLED = True
|
200 |
print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
|
201 |
|
|
|
202 |
except ImportError as ie:
|
203 |
-
print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}.
|
|
|
|
|
204 |
except Exception as load_err:
|
205 |
-
print(f"[TTS Setup] ERROR:
|
206 |
print(traceback.format_exc())
|
207 |
finally:
|
208 |
-
# Clean up sys.path
|
209 |
-
if sys_path_updated
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
else:
|
212 |
-
print(f"[TTS Setup] ERROR: {
|
213 |
|
214 |
except Exception as e:
|
215 |
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
|
216 |
print(traceback.format_exc())
|
217 |
-
# Ensure
|
218 |
-
TTS_ENABLED = False
|
219 |
tts_model = None
|
220 |
voicepacks.clear()
|
221 |
|
222 |
-
# Start TTS setup in
|
223 |
print("Starting TTS setup thread...")
|
224 |
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
225 |
tts_setup_thread.start()
|
226 |
|
227 |
|
228 |
-
# --- Core Functions ---
|
229 |
|
230 |
@lru_cache(maxsize=128)
|
231 |
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
@@ -244,33 +288,27 @@ def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> L
|
|
244 |
return formatted
|
245 |
except Exception as e:
|
246 |
print(f"[Web Search] Error: {e}")
|
247 |
-
|
248 |
return []
|
249 |
|
250 |
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
251 |
"""Formats the prompt for the LLM, including context and instructions."""
|
252 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
253 |
context_str = "\n\n".join(
|
254 |
-
[f"[{res['id']}] {res['title']}\n{res['snippet']}" for res in context]
|
255 |
) if context else "No relevant web context found."
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
- Synthesize information from the context to answer concisely.
|
260 |
-
- Cite sources using bracket notation like [1], [2], etc., corresponding to the context IDs.
|
261 |
-
- If the context is insufficient, state that clearly. Do not add external information.
|
262 |
-
- Use markdown for formatting.
|
263 |
-
|
264 |
-
Current Time: {current_time}
|
265 |
|
266 |
-
|
267 |
---
|
268 |
{context_str}
|
269 |
---
|
270 |
|
271 |
-
|
272 |
|
273 |
-
|
274 |
|
275 |
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
276 |
"""Formats search results into HTML for display."""
|
@@ -280,7 +318,7 @@ def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
|
280 |
for res in web_results:
|
281 |
title_safe = html.escape(res.get("title", "Source"))
|
282 |
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
|
283 |
-
url = res.get("url", "#")
|
284 |
items_html += f"""
|
285 |
<div class='source-item'>
|
286 |
<div class='source-number'>[{res['id']}]</div>
|
@@ -295,7 +333,8 @@ def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
|
295 |
async def generate_llm_answer(prompt: str) -> str:
|
296 |
"""Generates answer using the loaded LLM (Async Wrapper)."""
|
297 |
if not llm_model or not llm_tokenizer:
|
298 |
-
|
|
|
299 |
|
300 |
print(f"[LLM Generate] Requesting generation (prompt length {len(prompt)})...")
|
301 |
start_time = time.time()
|
@@ -305,12 +344,11 @@ async def generate_llm_answer(prompt: str) -> str:
|
|
305 |
return_tensors="pt",
|
306 |
padding=True,
|
307 |
truncation=True,
|
308 |
-
max_length=1024, #
|
309 |
return_attention_mask=True
|
310 |
-
).to(llm_model.device)
|
311 |
|
312 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
313 |
-
# Run blocking model.generate in the executor thread pool
|
314 |
outputs = await asyncio.get_event_loop().run_in_executor(
|
315 |
executor,
|
316 |
llm_model.generate,
|
@@ -325,20 +363,12 @@ async def generate_llm_answer(prompt: str) -> str:
|
|
325 |
num_return_sequences=1
|
326 |
)
|
327 |
|
328 |
-
# Decode only newly generated tokens
|
329 |
output_ids = outputs[0][inputs.input_ids.shape[1]:]
|
330 |
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
331 |
|
332 |
-
# Handle potential empty generation
|
333 |
if not answer_part:
|
334 |
-
|
335 |
-
full_output = llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
336 |
-
answer_marker = "Answer:"
|
337 |
-
marker_index = full_output.rfind(answer_marker)
|
338 |
-
if marker_index != -1:
|
339 |
-
answer_part = full_output[marker_index + len(answer_marker):].strip()
|
340 |
-
else:
|
341 |
-
answer_part = "*Model generated an empty response.*" # Fallback message
|
342 |
|
343 |
end_time = time.time()
|
344 |
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
|
@@ -347,22 +377,21 @@ async def generate_llm_answer(prompt: str) -> str:
|
|
347 |
except Exception as e:
|
348 |
print(f"[LLM Generate] Error: {e}")
|
349 |
print(traceback.format_exc())
|
350 |
-
return f"Error during answer generation:
|
351 |
|
352 |
async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
|
353 |
"""Generates speech using the loaded TTS model (Async Wrapper)."""
|
354 |
if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals():
|
355 |
print("[TTS Generate] Skipping: TTS not ready.")
|
356 |
return None
|
357 |
-
if not text or not text.strip():
|
358 |
-
print("[TTS Generate] Skipping:
|
359 |
return None
|
360 |
|
361 |
print(f"[TTS Generate] Requesting speech (length {len(text)}, voice '{voice_id}')...")
|
362 |
start_time = time.time()
|
363 |
|
364 |
try:
|
365 |
-
# Verify voicepack availability
|
366 |
actual_voice_id = voice_id
|
367 |
if voice_id not in voicepacks:
|
368 |
print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying default 'af'.")
|
@@ -371,18 +400,23 @@ async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple
|
|
371 |
print("[TTS Generate] Error: Default voice 'af' also not available.")
|
372 |
return None
|
373 |
|
374 |
-
# Clean text for TTS
|
375 |
-
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text)
|
376 |
-
clean_text = re.sub(r'
|
|
|
|
|
|
|
|
|
377 |
clean_text = ' '.join(clean_text.split()) # Normalize whitespace
|
378 |
|
379 |
-
if not clean_text:
|
|
|
|
|
380 |
|
381 |
-
# Truncate if necessary
|
382 |
if len(clean_text) > MAX_TTS_CHARS:
|
383 |
-
print(f"[TTS Generate] Truncating text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
384 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
385 |
-
last_punct = max(clean_text.rfind(p) for p in '
|
386 |
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
387 |
clean_text += "..."
|
388 |
|
@@ -390,17 +424,13 @@ async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple
|
|
390 |
gen_func = globals()['generate_tts_internal']
|
391 |
voice_pack_data = voicepacks[actual_voice_id]
|
392 |
|
393 |
-
#
|
394 |
-
#
|
395 |
audio_data, _ = await asyncio.get_event_loop().run_in_executor(
|
396 |
-
executor,
|
397 |
-
gen_func,
|
398 |
-
tts_model, # The loaded model object
|
399 |
-
clean_text, # The cleaned text string
|
400 |
-
voice_pack_data,# The loaded voice pack tensor/dict
|
401 |
-
'afr' # Language code (verify this is correct)
|
402 |
)
|
403 |
|
|
|
404 |
if isinstance(audio_data, torch.Tensor):
|
405 |
audio_np = audio_data.detach().cpu().numpy()
|
406 |
elif isinstance(audio_data, np.ndarray):
|
@@ -409,8 +439,7 @@ async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple
|
|
409 |
print("[TTS Generate] Warning: Unexpected audio data type.")
|
410 |
return None
|
411 |
|
412 |
-
# Ensure
|
413 |
-
audio_np = audio_np.flatten().astype(np.float32)
|
414 |
|
415 |
end_time = time.time()
|
416 |
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
|
@@ -427,9 +456,7 @@ def get_voice_id_from_display(voice_display_name: str) -> str:
|
|
427 |
|
428 |
|
429 |
# --- Gradio Interaction Logic ---
|
430 |
-
|
431 |
-
# Define type for chat history using the 'messages' format
|
432 |
-
ChatHistoryType = List[Dict[str, str]]
|
433 |
|
434 |
async def handle_interaction(
|
435 |
query: str,
|
@@ -438,94 +465,84 @@ async def handle_interaction(
|
|
438 |
):
|
439 |
"""Main async generator function to handle user queries and update Gradio UI."""
|
440 |
print(f"\n--- Handling Query ---")
|
|
|
441 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
442 |
|
443 |
-
if not query
|
444 |
print("Empty query received.")
|
445 |
-
|
446 |
-
yield history, "*Please enter a query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
|
447 |
return
|
448 |
|
449 |
-
#
|
450 |
-
current_history = history + [{"role": "user", "content": query}]
|
451 |
# Add placeholder for assistant response
|
452 |
-
current_history.append({"role": "assistant", "content":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
|
454 |
# 1. Initial State: Searching
|
455 |
-
|
456 |
-
|
457 |
-
"*Searching the web...*", # Update answer area
|
458 |
-
"<div class='searching'><span>Searching the web...</span></div>", # Update sources area
|
459 |
-
None, # No audio yet
|
460 |
-
gr.Button(value="Searching...", interactive=False) # Update button state
|
461 |
-
)
|
462 |
|
463 |
# 2. Perform Web Search (in executor)
|
464 |
web_results = await asyncio.get_event_loop().run_in_executor(
|
465 |
executor, get_web_results_sync, query
|
466 |
)
|
467 |
-
|
468 |
|
469 |
# Update state: Generating Answer
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
sources_html, # Show sources
|
475 |
-
None,
|
476 |
-
gr.Button(value="Generating...", interactive=False)
|
477 |
-
)
|
478 |
|
479 |
# 3. Generate LLM Answer (async)
|
480 |
llm_prompt = format_llm_prompt(query, web_results)
|
481 |
final_answer = await generate_llm_answer(llm_prompt)
|
|
|
482 |
|
483 |
-
# Update assistant message in history
|
484 |
current_history[-1]["content"] = final_answer
|
485 |
|
486 |
# Update state: Generating Audio (if applicable)
|
487 |
-
|
488 |
-
|
489 |
-
final_answer, # Show final answer
|
490 |
-
sources_html,
|
491 |
-
None,
|
492 |
-
gr.Button(value="Audio...", interactive=False) if TTS_ENABLED else gr.Button(value="Search", interactive=True) # Enable search if TTS disabled
|
493 |
-
)
|
494 |
|
495 |
# 4. Generate TTS Speech (async)
|
496 |
-
audio_output_data = None
|
497 |
tts_status_message = ""
|
498 |
if not TTS_ENABLED:
|
499 |
if tts_setup_thread.is_alive():
|
500 |
tts_status_message = "\n\n*(TTS initializing...)*"
|
501 |
else:
|
502 |
-
|
503 |
-
|
|
|
|
|
504 |
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
505 |
-
|
506 |
-
if
|
507 |
tts_status_message = "\n\n*(Audio generation failed)*"
|
508 |
|
509 |
# 5. Final State: Show all results
|
510 |
final_answer_with_status = final_answer + tts_status_message
|
511 |
-
|
|
|
|
|
|
|
512 |
|
513 |
print("--- Query Handling Complete ---")
|
514 |
-
yield
|
515 |
-
current_history,
|
516 |
-
final_answer_with_status, # Show answer + TTS status
|
517 |
-
sources_html,
|
518 |
-
audio_output_data, # Output audio data (or None)
|
519 |
-
gr.Button(value="Search", interactive=True) # Re-enable button
|
520 |
-
)
|
521 |
|
522 |
|
523 |
# --- Gradio UI Definition ---
|
524 |
-
# (CSS
|
525 |
css = """
|
526 |
-
/* ... [Your existing refined CSS
|
527 |
-
/* Example: Style examples container via its parent or default class if needed */
|
528 |
-
/* .examples-container .gradio-examples { ... } */ /* This might still work depending on structure */
|
529 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
530 |
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
531 |
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
@@ -542,8 +559,8 @@ css = """
|
|
542 |
.search-box button:hover { background: #1d4ed8 !important; }
|
543 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
544 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
545 |
-
.answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding:
|
546 |
-
.answer-box p { color: #374151; line-height: 1.7; }
|
547 |
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
548 |
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
549 |
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
|
@@ -555,13 +572,12 @@ css = """
|
|
555 |
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
556 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
557 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
558 |
-
.chat-history { /* Style the chatbot container */ max-height:
|
559 |
.chat-history > div { padding: 1rem; } /* Add padding inside the chatbot display area */
|
560 |
.chat-history::-webkit-scrollbar { width: 6px; }
|
561 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
562 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
563 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
564 |
-
/* Default styling for example buttons (since elem_classes might not work) */
|
565 |
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; }
|
566 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
567 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
@@ -578,8 +594,8 @@ css = """
|
|
578 |
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
|
579 |
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
580 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
581 |
-
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
|
582 |
-
.accordion > .label-wrap { padding: 10px 15px !important; }
|
583 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
584 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
585 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
@@ -592,7 +608,7 @@ css = """
|
|
592 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
593 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
594 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
595 |
-
/* Dark Mode Styles
|
596 |
.dark .gradio-container { background-color: #111827 !important; }
|
597 |
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
598 |
.dark #header h3 { color: #9ca3af; }
|
@@ -630,8 +646,8 @@ css = """
|
|
630 |
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
|
631 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
632 |
.dark .markdown-content th { background: #374151 !important; }
|
633 |
-
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
|
634 |
-
.dark .accordion > .label-wrap { color: #d1d5db !important; }
|
635 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
636 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
637 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
@@ -644,13 +660,11 @@ css = """
|
|
644 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
645 |
"""
|
646 |
|
647 |
-
import sys # Needed for sys.path manipulation in TTS setup
|
648 |
-
|
649 |
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
650 |
-
# Use gr.State
|
651 |
chat_history_state = gr.State([])
|
652 |
|
653 |
-
with gr.Column():
|
654 |
# Header
|
655 |
with gr.Column(elem_id="header"):
|
656 |
gr.Markdown("# 🔍 AI Search Assistant")
|
@@ -658,27 +672,25 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(pri
|
|
658 |
|
659 |
# Search Area
|
660 |
with gr.Column(elem_classes="search-container"):
|
661 |
-
with gr.Row(elem_classes="search-box"
|
662 |
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
663 |
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
664 |
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
665 |
|
666 |
# Results Area
|
667 |
-
with gr.Row(elem_classes="results-container"
|
668 |
-
# Left Column:
|
669 |
with gr.Column(scale=3):
|
670 |
-
# Chatbot display (uses 'messages' format now)
|
671 |
chatbot_display = gr.Chatbot(
|
672 |
label="Conversation",
|
673 |
bubble_full_width=True,
|
674 |
-
height=500,
|
675 |
elem_classes="chat-history",
|
676 |
-
type="messages", # Use
|
677 |
-
|
|
|
678 |
)
|
679 |
-
# Separate Markdown for status/intermediate answer
|
680 |
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
|
681 |
-
# Audio Output
|
682 |
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
683 |
|
684 |
# Right Column: Sources
|
@@ -689,7 +701,6 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(pri
|
|
689 |
|
690 |
# Examples Area
|
691 |
with gr.Row(elem_classes="examples-container"):
|
692 |
-
# REMOVED elem_classes from gr.Examples
|
693 |
gr.Examples(
|
694 |
examples=[
|
695 |
"Latest news about renewable energy",
|
@@ -700,47 +711,54 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(pri
|
|
700 |
],
|
701 |
inputs=search_input,
|
702 |
label="Try these examples:",
|
|
|
703 |
)
|
704 |
|
705 |
# --- Event Handling Setup ---
|
706 |
-
# Define the inputs and outputs for the Gradio event triggers
|
707 |
event_inputs = [search_input, chat_history_state, voice_select]
|
708 |
event_outputs = [
|
709 |
-
chatbot_display, # Updated chat history
|
710 |
-
answer_status_output, #
|
711 |
-
sources_output_html, #
|
712 |
-
audio_player, # Audio data
|
713 |
-
search_btn # Button state
|
714 |
]
|
715 |
|
716 |
-
# Create a wrapper to adapt the async generator for Gradio's streaming updates
|
717 |
async def stream_interaction_updates(query, history, voice_display_name):
|
|
|
|
|
|
|
718 |
try:
|
719 |
-
|
720 |
-
|
721 |
-
|
|
|
|
|
722 |
except Exception as e:
|
723 |
print(f"[Gradio Stream] Error during interaction: {e}")
|
724 |
print(traceback.format_exc())
|
725 |
-
#
|
726 |
-
error_history = history + [{"role":"user", "content":query}, {"role":"assistant", "content":f"*
|
727 |
-
|
728 |
error_history,
|
729 |
f"An error occurred: {e}",
|
730 |
"<div class='error'>Request failed.</div>",
|
731 |
None,
|
732 |
-
gr.Button(value="Search", interactive=True)
|
733 |
)
|
734 |
-
|
735 |
-
|
736 |
-
# We need to yield the final state *plus* the cleared input
|
737 |
-
# This requires adding search_input to the outputs list for the event triggers
|
738 |
-
# For now, let's not clear it automatically to avoid complexity.
|
739 |
-
# yield (*final_state_tuple, gr.Textbox(value="")) # Example if clearing input
|
740 |
-
print("[Gradio Stream] Interaction stream finished.")
|
741 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
742 |
|
743 |
-
|
|
|
744 |
search_btn.click(
|
745 |
fn=stream_interaction_updates,
|
746 |
inputs=event_inputs,
|
@@ -752,10 +770,15 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(pri
|
|
752 |
outputs=event_outputs
|
753 |
)
|
754 |
|
|
|
755 |
if __name__ == "__main__":
|
756 |
print("Starting Gradio application...")
|
|
|
|
|
757 |
demo.queue(max_size=20).launch(
|
758 |
debug=True,
|
759 |
-
share=True,
|
760 |
-
# server_name="0.0.0.0" #
|
761 |
-
|
|
|
|
|
|
1 |
+
# --- Imports ---
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
4 |
from duckduckgo_search import DDGS
|
5 |
import time
|
6 |
import torch
|
|
|
16 |
import warnings
|
17 |
import traceback # For detailed error logging
|
18 |
import re # For text cleaning
|
19 |
+
import shutil # For checking sudo/file operations
|
20 |
import html # For escaping HTML
|
21 |
+
import sys # For sys.path manipulation
|
22 |
|
23 |
# --- Configuration ---
|
24 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
|
|
28 |
MAX_NEW_TOKENS = 300
|
29 |
TEMPERATURE = 0.7
|
30 |
TOP_P = 0.95
|
31 |
+
KOKORO_PATH = 'Kokoro-82M' # Relative path to TTS model directory
|
32 |
|
33 |
# --- Initialization ---
|
34 |
+
# Thread Pool Executor for blocking tasks
|
35 |
+
executor = ThreadPoolExecutor(max_workers=os.cpu_count() or 4)
|
36 |
|
37 |
# Suppress specific warnings
|
38 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
|
|
41 |
# --- LLM Initialization ---
|
42 |
llm_model: Optional[AutoModelForCausalLM] = None
|
43 |
llm_tokenizer: Optional[AutoTokenizer] = None
|
44 |
+
llm_device = "cpu"
|
45 |
|
46 |
try:
|
47 |
+
print("[LLM Init] Initializing Language Model...")
|
48 |
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
49 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
50 |
|
51 |
if torch.cuda.is_available():
|
52 |
llm_device = "cuda"
|
53 |
torch_dtype = torch.float16
|
54 |
+
device_map = "auto"
|
55 |
+
print(f"[LLM Init] CUDA detected. Loading model with device_map='{device_map}', dtype={torch_dtype}")
|
56 |
else:
|
57 |
llm_device = "cpu"
|
58 |
+
torch_dtype = torch.float32
|
59 |
device_map = {"": "cpu"}
|
60 |
+
print(f"[LLM Init] CUDA not found. Loading model on CPU with dtype={torch_dtype}")
|
61 |
|
62 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
63 |
MODEL_NAME,
|
64 |
device_map=device_map,
|
65 |
low_cpu_mem_usage=True,
|
66 |
torch_dtype=torch_dtype,
|
67 |
+
# attn_implementation="flash_attention_2" # Optional
|
68 |
)
|
69 |
+
# Get the actual device map if using 'auto'
|
70 |
+
effective_device_map = llm_model.hf_device_map if hasattr(llm_model, 'hf_device_map') else device_map
|
71 |
+
print(f"[LLM Init] LLM loaded successfully. Device map: {effective_device_map}")
|
72 |
+
llm_model.eval()
|
73 |
|
74 |
except Exception as e:
|
75 |
+
print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}")
|
76 |
print(traceback.format_exc())
|
|
|
77 |
llm_model = None
|
78 |
llm_tokenizer = None
|
79 |
+
print("[LLM Init] LLM features will be unavailable.")
|
80 |
|
81 |
|
82 |
# --- TTS Initialization ---
|
|
|
87 |
'🇺🇸 Nicole': 'af_nicole'
|
88 |
}
|
89 |
TTS_ENABLED = False
|
90 |
+
tts_model: Optional[Any] = None
|
91 |
+
voicepacks: Dict[str, Any] = {}
|
92 |
+
tts_device = "cpu"
|
93 |
|
94 |
+
# Helper for running subprocesses
|
95 |
+
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None, timeout: int = 300) -> subprocess.CompletedProcess:
|
96 |
+
"""Runs a subprocess command, captures output, and handles errors."""
|
|
|
|
|
97 |
print(f"Running command: {' '.join(cmd)}")
|
98 |
try:
|
99 |
+
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
|
100 |
+
# Only print output details if check failed or for specific successful commands
|
101 |
+
if not check or result.returncode != 0:
|
102 |
+
if result.stdout: print(f" Stdout: {result.stdout.strip()}")
|
103 |
+
if result.stderr: print(f" Stderr: {result.stderr.strip()}")
|
104 |
+
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
|
105 |
+
print(f" Command successful.") # Concise success message
|
106 |
return result
|
107 |
except FileNotFoundError:
|
108 |
+
print(f" Error: Command not found - {cmd[0]}")
|
109 |
+
raise
|
110 |
+
except subprocess.TimeoutExpired:
|
111 |
+
print(f" Error: Command timed out - {' '.join(cmd)}")
|
112 |
raise
|
113 |
except subprocess.CalledProcessError as e:
|
114 |
+
print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})")
|
115 |
+
if e.stdout: print(f" Stdout: {e.stdout.strip()}")
|
116 |
+
if e.stderr: print(f" Stderr: {e.stderr.strip()}")
|
117 |
raise
|
118 |
|
119 |
+
# TTS Setup Task (runs in background thread)
|
120 |
def setup_tts_task():
|
121 |
"""Initializes Kokoro TTS model and dependencies."""
|
122 |
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
123 |
print("[TTS Setup] Starting background initialization...")
|
124 |
|
|
|
125 |
tts_device = "cuda" if torch.cuda.is_available() else "cpu"
|
126 |
print(f"[TTS Setup] Target device: {tts_device}")
|
127 |
|
128 |
can_sudo = shutil.which('sudo') is not None
|
129 |
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
130 |
+
absolute_kokoro_path = os.path.abspath(KOKORO_PATH) # Use absolute path
|
131 |
|
132 |
try:
|
133 |
# 1. Clone Kokoro Repo if needed
|
134 |
+
if not os.path.exists(absolute_kokoro_path):
|
135 |
+
print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...")
|
136 |
try:
|
137 |
_run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
|
138 |
except Exception as lfs_err:
|
139 |
+
print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}. Continuing...")
|
140 |
+
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path])
|
141 |
try:
|
142 |
print("[TTS Setup] Running git lfs pull...")
|
143 |
+
_run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
|
144 |
except Exception as lfs_pull_err:
|
145 |
print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
|
146 |
else:
|
147 |
+
print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.")
|
148 |
+
# Optional: Run git pull and lfs pull to update if needed
|
149 |
+
# try:
|
150 |
+
# print("[TTS Setup] Updating existing repo...")
|
151 |
+
# _run_subprocess(['git', 'pull'], cwd=absolute_kokoro_path)
|
152 |
+
# _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
|
153 |
+
# except Exception as update_err:
|
154 |
+
# print(f"[TTS Setup] Warning: Failed to update repo: {update_err}")
|
155 |
|
156 |
# 2. Install espeak dependency
|
157 |
print("[TTS Setup] Checking/Installing espeak...")
|
158 |
try:
|
159 |
+
# Run update quietly first
|
160 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
|
161 |
+
# Try installing espeak-ng
|
162 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
|
163 |
print("[TTS Setup] espeak-ng installed or already present.")
|
164 |
except Exception:
|
165 |
+
print("[TTS Setup] espeak-ng installation failed, trying espeak...")
|
166 |
try:
|
167 |
+
# Fallback to legacy espeak
|
168 |
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak'])
|
169 |
print("[TTS Setup] espeak installed or already present.")
|
170 |
except Exception as espeak_err:
|
171 |
print(f"[TTS Setup] ERROR: Failed to install both espeak-ng and espeak: {espeak_err}. TTS disabled.")
|
172 |
+
return # Cannot proceed
|
173 |
|
174 |
# 3. Load Kokoro Model and Voices
|
175 |
+
sys_path_updated = False
|
176 |
+
if os.path.exists(absolute_kokoro_path):
|
177 |
+
print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}")
|
178 |
+
try:
|
179 |
+
dir_contents = os.listdir(absolute_kokoro_path)
|
180 |
+
print(f"[TTS Setup] Contents: {dir_contents}")
|
181 |
+
if 'models.py' not in dir_contents or 'kokoro.py' not in dir_contents:
|
182 |
+
print("[TTS Setup] Warning: Core Kokoro python files ('models.py', 'kokoro.py') might be missing!")
|
183 |
+
except OSError as list_err:
|
184 |
+
print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}")
|
185 |
+
|
186 |
+
# Add path temporarily for import
|
187 |
+
if absolute_kokoro_path not in sys.path:
|
188 |
+
sys.path.insert(0, absolute_kokoro_path) # Add to beginning
|
189 |
sys_path_updated = True
|
190 |
+
print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.")
|
191 |
+
|
192 |
try:
|
193 |
+
print("[TTS Setup] Attempting to import Kokoro modules...")
|
194 |
from models import build_model
|
195 |
from kokoro import generate as generate_tts_internal
|
196 |
+
print("[TTS Setup] Kokoro modules imported successfully.")
|
197 |
|
198 |
+
# Make functions globally accessible IF NEEDED (alternative: pass them around)
|
199 |
+
globals()['build_model'] = build_model
|
200 |
globals()['generate_tts_internal'] = generate_tts_internal
|
201 |
|
202 |
+
model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth')
|
203 |
if not os.path.exists(model_file):
|
204 |
print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.")
|
205 |
return
|
206 |
|
207 |
print(f"[TTS Setup] Loading TTS model from {model_file} onto {tts_device}...")
|
208 |
tts_model = build_model(model_file, tts_device)
|
209 |
+
tts_model.eval()
|
210 |
print("[TTS Setup] TTS model loaded.")
|
211 |
|
212 |
# Load voices
|
213 |
loaded_voices = 0
|
214 |
for voice_name, voice_id in VOICE_CHOICES.items():
|
215 |
+
voice_file_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt')
|
216 |
if os.path.exists(voice_file_path):
|
217 |
try:
|
218 |
print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name})")
|
|
|
219 |
voicepacks[voice_id] = torch.load(voice_file_path, map_location=tts_device)
|
220 |
loaded_voices += 1
|
221 |
except Exception as e:
|
222 |
print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
|
223 |
else:
|
224 |
+
print(f"[TTS Setup] Info: Voice file {voice_file_path} not found.")
|
225 |
|
226 |
if loaded_voices == 0:
|
227 |
print("[TTS Setup] ERROR: No voicepacks could be loaded. TTS disabled.")
|
228 |
+
tts_model = None # Free memory if no voices
|
229 |
return
|
230 |
|
231 |
TTS_ENABLED = True
|
232 |
print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
|
233 |
|
234 |
+
# Catch the specific import error
|
235 |
except ImportError as ie:
|
236 |
+
print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}.")
|
237 |
+
print(f" Please ensure '{absolute_kokoro_path}' contains 'models.py' and 'kokoro.py'.")
|
238 |
+
print(traceback.format_exc())
|
239 |
except Exception as load_err:
|
240 |
+
print(f"[TTS Setup] ERROR: Exception during TTS model/voice loading: {load_err}. TTS disabled.")
|
241 |
print(traceback.format_exc())
|
242 |
finally:
|
243 |
+
# *** Crucial: Clean up sys.path ***
|
244 |
+
if sys_path_updated:
|
245 |
+
try:
|
246 |
+
if sys.path[0] == absolute_kokoro_path:
|
247 |
+
sys.path.pop(0)
|
248 |
+
print(f"[TTS Setup] Removed {absolute_kokoro_path} from sys.path.")
|
249 |
+
else:
|
250 |
+
# It might have been removed elsewhere, or wasn't at index 0
|
251 |
+
if absolute_kokoro_path in sys.path:
|
252 |
+
sys.path.remove(absolute_kokoro_path)
|
253 |
+
print(f"[TTS Setup] Removed {absolute_kokoro_path} from sys.path (was not index 0).")
|
254 |
+
except Exception as cleanup_err:
|
255 |
+
print(f"[TTS Setup] Warning: Error removing path from sys.path: {cleanup_err}")
|
256 |
else:
|
257 |
+
print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")
|
258 |
|
259 |
except Exception as e:
|
260 |
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
|
261 |
print(traceback.format_exc())
|
262 |
+
TTS_ENABLED = False # Ensure disabled on any top-level error
|
|
|
263 |
tts_model = None
|
264 |
voicepacks.clear()
|
265 |
|
266 |
+
# Start TTS setup in background
|
267 |
print("Starting TTS setup thread...")
|
268 |
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
269 |
tts_setup_thread.start()
|
270 |
|
271 |
|
272 |
+
# --- Core Logic Functions ---
|
273 |
|
274 |
@lru_cache(maxsize=128)
|
275 |
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
|
|
288 |
return formatted
|
289 |
except Exception as e:
|
290 |
print(f"[Web Search] Error: {e}")
|
291 |
+
# Avoid printing full traceback repeatedly for common network errors maybe
|
292 |
return []
|
293 |
|
294 |
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
295 |
"""Formats the prompt for the LLM, including context and instructions."""
|
296 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
297 |
context_str = "\n\n".join(
|
298 |
+
[f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]
|
299 |
) if context else "No relevant web context found."
|
300 |
|
301 |
+
# Using a clear, structured prompt
|
302 |
+
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
+
CONTEXT:
|
305 |
---
|
306 |
{context_str}
|
307 |
---
|
308 |
|
309 |
+
USER: {html.escape(query)}
|
310 |
|
311 |
+
ASSISTANT:""" # Using ASSISTANT: marker might help some models
|
312 |
|
313 |
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
314 |
"""Formats search results into HTML for display."""
|
|
|
318 |
for res in web_results:
|
319 |
title_safe = html.escape(res.get("title", "Source"))
|
320 |
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
|
321 |
+
url = html.escape(res.get("url", "#")) # Escape URL too
|
322 |
items_html += f"""
|
323 |
<div class='source-item'>
|
324 |
<div class='source-number'>[{res['id']}]</div>
|
|
|
333 |
async def generate_llm_answer(prompt: str) -> str:
|
334 |
"""Generates answer using the loaded LLM (Async Wrapper)."""
|
335 |
if not llm_model or not llm_tokenizer:
|
336 |
+
print("[LLM Generate] LLM model or tokenizer not available.")
|
337 |
+
return "Error: Language Model is not available."
|
338 |
|
339 |
print(f"[LLM Generate] Requesting generation (prompt length {len(prompt)})...")
|
340 |
start_time = time.time()
|
|
|
344 |
return_tensors="pt",
|
345 |
padding=True,
|
346 |
truncation=True,
|
347 |
+
max_length=1024, # Adjust based on model limits
|
348 |
return_attention_mask=True
|
349 |
+
).to(llm_model.device)
|
350 |
|
351 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
|
|
352 |
outputs = await asyncio.get_event_loop().run_in_executor(
|
353 |
executor,
|
354 |
llm_model.generate,
|
|
|
363 |
num_return_sequences=1
|
364 |
)
|
365 |
|
366 |
+
# Decode only newly generated tokens
|
367 |
output_ids = outputs[0][inputs.input_ids.shape[1]:]
|
368 |
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
369 |
|
|
|
370 |
if not answer_part:
|
371 |
+
answer_part = "*Model generated an empty response.*"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
end_time = time.time()
|
374 |
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
|
|
|
377 |
except Exception as e:
|
378 |
print(f"[LLM Generate] Error: {e}")
|
379 |
print(traceback.format_exc())
|
380 |
+
return f"Error during answer generation: Check logs for details." # User-friendly error
|
381 |
|
382 |
async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
|
383 |
"""Generates speech using the loaded TTS model (Async Wrapper)."""
|
384 |
if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals():
|
385 |
print("[TTS Generate] Skipping: TTS not ready.")
|
386 |
return None
|
387 |
+
if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model generated"):
|
388 |
+
print("[TTS Generate] Skipping: Invalid or empty text.")
|
389 |
return None
|
390 |
|
391 |
print(f"[TTS Generate] Requesting speech (length {len(text)}, voice '{voice_id}')...")
|
392 |
start_time = time.time()
|
393 |
|
394 |
try:
|
|
|
395 |
actual_voice_id = voice_id
|
396 |
if voice_id not in voicepacks:
|
397 |
print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying default 'af'.")
|
|
|
400 |
print("[TTS Generate] Error: Default voice 'af' also not available.")
|
401 |
return None
|
402 |
|
403 |
+
# Clean text more thoroughly for TTS
|
404 |
+
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text) # Remove citations [1], [2][3]
|
405 |
+
clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL) # Remove code blocks
|
406 |
+
clean_text = re.sub(r'`[^`]*`', '', clean_text) # Remove inline code
|
407 |
+
clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE) # Remove list markers/blockquotes at line start
|
408 |
+
clean_text = re.sub(r'[\*#_]', '', clean_text) # Remove remaining markdown emphasis/headers
|
409 |
+
clean_text = html.unescape(clean_text) # Decode HTML entities
|
410 |
clean_text = ' '.join(clean_text.split()) # Normalize whitespace
|
411 |
|
412 |
+
if not clean_text:
|
413 |
+
print("[TTS Generate] Skipping: Text empty after cleaning.")
|
414 |
+
return None
|
415 |
|
|
|
416 |
if len(clean_text) > MAX_TTS_CHARS:
|
417 |
+
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
418 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
419 |
+
last_punct = max(clean_text.rfind(p) for p in '.?!; ') # Find reasonable cut-off
|
420 |
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
421 |
clean_text += "..."
|
422 |
|
|
|
424 |
gen_func = globals()['generate_tts_internal']
|
425 |
voice_pack_data = voicepacks[actual_voice_id]
|
426 |
|
427 |
+
# Execute in thread pool
|
428 |
+
# Verify the expected language code ('afr', 'eng', etc.) for Kokoro
|
429 |
audio_data, _ = await asyncio.get_event_loop().run_in_executor(
|
430 |
+
executor, gen_func, tts_model, clean_text, voice_pack_data, 'afr'
|
|
|
|
|
|
|
|
|
|
|
431 |
)
|
432 |
|
433 |
+
# Process output
|
434 |
if isinstance(audio_data, torch.Tensor):
|
435 |
audio_np = audio_data.detach().cpu().numpy()
|
436 |
elif isinstance(audio_data, np.ndarray):
|
|
|
439 |
print("[TTS Generate] Warning: Unexpected audio data type.")
|
440 |
return None
|
441 |
|
442 |
+
audio_np = audio_np.flatten().astype(np.float32) # Ensure 1D float32
|
|
|
443 |
|
444 |
end_time = time.time()
|
445 |
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
|
|
|
456 |
|
457 |
|
458 |
# --- Gradio Interaction Logic ---
|
459 |
+
ChatHistoryType = List[Dict[str, Optional[str]]] # Allow None for content during streaming
|
|
|
|
|
460 |
|
461 |
async def handle_interaction(
|
462 |
query: str,
|
|
|
465 |
):
|
466 |
"""Main async generator function to handle user queries and update Gradio UI."""
|
467 |
print(f"\n--- Handling Query ---")
|
468 |
+
query = query.strip() # Clean input query
|
469 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
470 |
|
471 |
+
if not query:
|
472 |
print("Empty query received.")
|
473 |
+
yield history, "*Please enter a non-empty query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
|
|
|
474 |
return
|
475 |
|
476 |
+
# Use 'messages' format: List of {'role': 'user'/'assistant', 'content': '...'}
|
477 |
+
current_history: ChatHistoryType = history + [{"role": "user", "content": query}]
|
478 |
# Add placeholder for assistant response
|
479 |
+
current_history.append({"role": "assistant", "content": None}) # Content starts as None
|
480 |
+
|
481 |
+
# Define states to yield
|
482 |
+
chatbot_state = current_history
|
483 |
+
status_state = "*Searching...*"
|
484 |
+
sources_state = "<div class='searching'><span>Searching the web...</span></div>"
|
485 |
+
audio_state = None
|
486 |
+
button_state = gr.Button(value="Searching...", interactive=False)
|
487 |
|
488 |
# 1. Initial State: Searching
|
489 |
+
current_history[-1]["content"] = status_state # Update placeholder
|
490 |
+
yield chatbot_state, status_state, sources_state, audio_state, button_state
|
|
|
|
|
|
|
|
|
|
|
491 |
|
492 |
# 2. Perform Web Search (in executor)
|
493 |
web_results = await asyncio.get_event_loop().run_in_executor(
|
494 |
executor, get_web_results_sync, query
|
495 |
)
|
496 |
+
sources_state = format_sources_html(web_results)
|
497 |
|
498 |
# Update state: Generating Answer
|
499 |
+
status_state = "*Generating answer...*"
|
500 |
+
button_state = gr.Button(value="Generating...", interactive=False)
|
501 |
+
current_history[-1]["content"] = status_state # Update placeholder
|
502 |
+
yield chatbot_state, status_state, sources_state, audio_state, button_state
|
|
|
|
|
|
|
|
|
503 |
|
504 |
# 3. Generate LLM Answer (async)
|
505 |
llm_prompt = format_llm_prompt(query, web_results)
|
506 |
final_answer = await generate_llm_answer(llm_prompt)
|
507 |
+
status_state = final_answer # Now status holds the actual answer
|
508 |
|
509 |
+
# Update assistant message in history fully
|
510 |
current_history[-1]["content"] = final_answer
|
511 |
|
512 |
# Update state: Generating Audio (if applicable)
|
513 |
+
button_state = gr.Button(value="Audio...", interactive=False) if TTS_ENABLED else gr.Button(value="Search", interactive=True)
|
514 |
+
yield chatbot_state, status_state, sources_state, audio_state, button_state
|
|
|
|
|
|
|
|
|
|
|
515 |
|
516 |
# 4. Generate TTS Speech (async)
|
|
|
517 |
tts_status_message = ""
|
518 |
if not TTS_ENABLED:
|
519 |
if tts_setup_thread.is_alive():
|
520 |
tts_status_message = "\n\n*(TTS initializing...)*"
|
521 |
else:
|
522 |
+
# Check if setup failed vs just disabled
|
523 |
+
# This info isn't easily available here, assume failed/disabled
|
524 |
+
tts_status_message = "\n\n*(TTS unavailable)*"
|
525 |
+
else:
|
526 |
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
527 |
+
audio_state = await generate_tts_speech(final_answer, voice_id) # Returns (rate, data) or None
|
528 |
+
if audio_state is None and not final_answer.startswith("Error"): # Don't show TTS fail if LLM failed
|
529 |
tts_status_message = "\n\n*(Audio generation failed)*"
|
530 |
|
531 |
# 5. Final State: Show all results
|
532 |
final_answer_with_status = final_answer + tts_status_message
|
533 |
+
status_state = final_answer_with_status # Update status display
|
534 |
+
current_history[-1]["content"] = final_answer_with_status # Update history *again* with status msg
|
535 |
+
|
536 |
+
button_state = gr.Button(value="Search", interactive=True) # Re-enable button
|
537 |
|
538 |
print("--- Query Handling Complete ---")
|
539 |
+
yield chatbot_state, status_state, sources_state, audio_state, button_state
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
|
541 |
|
542 |
# --- Gradio UI Definition ---
|
543 |
+
# (CSS from previous response)
|
544 |
css = """
|
545 |
+
/* ... [Your existing refined CSS] ... */
|
|
|
|
|
546 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
547 |
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
548 |
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
|
|
559 |
.search-box button:hover { background: #1d4ed8 !important; }
|
560 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
561 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
562 |
+
.answer-box { /* Now used for status/interim text */ background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;}
|
563 |
+
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
|
564 |
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
565 |
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
566 |
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
|
|
|
572 |
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
573 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
574 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
575 |
+
.chat-history { /* Style the chatbot container */ max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; /* margin-top: 1rem; */ scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
|
576 |
.chat-history > div { padding: 1rem; } /* Add padding inside the chatbot display area */
|
577 |
.chat-history::-webkit-scrollbar { width: 6px; }
|
578 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
579 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
580 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
|
|
581 |
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; }
|
582 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
583 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
|
|
594 |
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
|
595 |
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
596 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
597 |
+
/* .accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; } */
|
598 |
+
/* .accordion > .label-wrap { padding: 10px 15px !important; } */
|
599 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
600 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
601 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
|
|
608 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
609 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
610 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
611 |
+
/* Dark Mode Styles */
|
612 |
.dark .gradio-container { background-color: #111827 !important; }
|
613 |
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
614 |
.dark #header h3 { color: #9ca3af; }
|
|
|
646 |
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
|
647 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
648 |
.dark .markdown-content th { background: #374151 !important; }
|
649 |
+
/* .dark .accordion { background: #374151 !important; border-color: #4b5563 !important; } */
|
650 |
+
/* .dark .accordion > .label-wrap { color: #d1d5db !important; } */
|
651 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
652 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
653 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
|
|
660 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
661 |
"""
|
662 |
|
|
|
|
|
663 |
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
664 |
+
# Use gr.State for chat history in 'messages' format
|
665 |
chat_history_state = gr.State([])
|
666 |
|
667 |
+
with gr.Column():
|
668 |
# Header
|
669 |
with gr.Column(elem_id="header"):
|
670 |
gr.Markdown("# 🔍 AI Search Assistant")
|
|
|
672 |
|
673 |
# Search Area
|
674 |
with gr.Column(elem_classes="search-container"):
|
675 |
+
with gr.Row(elem_classes="search-box"):
|
676 |
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
677 |
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
678 |
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
679 |
|
680 |
# Results Area
|
681 |
+
with gr.Row(elem_classes="results-container"):
|
682 |
+
# Left Column: Chatbot, Status, Audio
|
683 |
with gr.Column(scale=3):
|
|
|
684 |
chatbot_display = gr.Chatbot(
|
685 |
label="Conversation",
|
686 |
bubble_full_width=True,
|
687 |
+
height=500, # Adjusted height
|
688 |
elem_classes="chat-history",
|
689 |
+
type="messages", # IMPORTANT: Use 'messages' format
|
690 |
+
show_label=False,
|
691 |
+
avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png") # User/Assistant avatars
|
692 |
)
|
|
|
693 |
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
|
|
|
694 |
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
695 |
|
696 |
# Right Column: Sources
|
|
|
701 |
|
702 |
# Examples Area
|
703 |
with gr.Row(elem_classes="examples-container"):
|
|
|
704 |
gr.Examples(
|
705 |
examples=[
|
706 |
"Latest news about renewable energy",
|
|
|
711 |
],
|
712 |
inputs=search_input,
|
713 |
label="Try these examples:",
|
714 |
+
# elem_classes removed
|
715 |
)
|
716 |
|
717 |
# --- Event Handling Setup ---
|
|
|
718 |
event_inputs = [search_input, chat_history_state, voice_select]
|
719 |
event_outputs = [
|
720 |
+
chatbot_display, # Output 1: Updated chat history
|
721 |
+
answer_status_output, # Output 2: Status/final text
|
722 |
+
sources_output_html, # Output 3: Sources HTML
|
723 |
+
audio_player, # Output 4: Audio data
|
724 |
+
search_btn # Output 5: Button state
|
725 |
]
|
726 |
|
|
|
727 |
async def stream_interaction_updates(query, history, voice_display_name):
|
728 |
+
"""Wraps the async generator to handle streaming updates and errors."""
|
729 |
+
print("[Gradio Stream] Starting interaction...")
|
730 |
+
final_state_tuple = None # To store the last successful state
|
731 |
try:
|
732 |
+
async for state_update_tuple in handle_interaction(query, history, voice_display_name):
|
733 |
+
yield state_update_tuple # Yield the tuple for Gradio to update outputs
|
734 |
+
final_state_tuple = state_update_tuple # Keep track of the last state
|
735 |
+
print("[Gradio Stream] Interaction completed successfully.")
|
736 |
+
|
737 |
except Exception as e:
|
738 |
print(f"[Gradio Stream] Error during interaction: {e}")
|
739 |
print(traceback.format_exc())
|
740 |
+
# Construct error state to yield
|
741 |
+
error_history = history + [{"role":"user", "content":query}, {"role":"assistant", "content":f"*An error occurred. Please check logs.*"}]
|
742 |
+
error_state_tuple = (
|
743 |
error_history,
|
744 |
f"An error occurred: {e}",
|
745 |
"<div class='error'>Request failed.</div>",
|
746 |
None,
|
747 |
+
gr.Button(value="Search", interactive=True) # Ensure button is re-enabled
|
748 |
)
|
749 |
+
yield error_state_tuple # Yield the error state to UI
|
750 |
+
final_state_tuple = error_state_tuple # Store error state as last state
|
|
|
|
|
|
|
|
|
|
|
751 |
|
752 |
+
# Optionally clear input ONLY if the interaction finished (success or error)
|
753 |
+
# Requires adding search_input to event_outputs and handling the update dict
|
754 |
+
# Example (if search_input is the 6th output):
|
755 |
+
# if final_state_tuple:
|
756 |
+
# yield (*final_state_tuple, gr.Textbox(value=""))
|
757 |
+
# else: # Handle case where no state was ever yielded (e.g., immediate empty query return)
|
758 |
+
# yield (history, "*Please enter a query.*", "...", None, gr.Button(value="Search", interactive=True), gr.Textbox(value=""))
|
759 |
|
760 |
+
|
761 |
+
# Connect the streaming function
|
762 |
search_btn.click(
|
763 |
fn=stream_interaction_updates,
|
764 |
inputs=event_inputs,
|
|
|
770 |
outputs=event_outputs
|
771 |
)
|
772 |
|
773 |
+
# --- Main Execution ---
|
774 |
if __name__ == "__main__":
|
775 |
print("Starting Gradio application...")
|
776 |
+
# Optional: Wait a moment for TTS setup thread to start and potentially print messages
|
777 |
+
# time.sleep(1)
|
778 |
demo.queue(max_size=20).launch(
|
779 |
debug=True,
|
780 |
+
share=True, # Set to False if not running on Spaces or don't need public link
|
781 |
+
# server_name="0.0.0.0", # Uncomment to bind to all network interfaces
|
782 |
+
# server_port=7860 # Optional: Specify port
|
783 |
+
)
|
784 |
+
print("Gradio application stopped.")
|