Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
import spaces #
|
4 |
from duckduckgo_search import DDGS
|
5 |
import time
|
6 |
import torch
|
@@ -8,64 +8,76 @@ from datetime import datetime
|
|
8 |
import os
|
9 |
import subprocess
|
10 |
import numpy as np
|
11 |
-
from typing import List, Dict, Tuple, Any
|
12 |
from functools import lru_cache
|
13 |
import asyncio
|
14 |
import threading
|
15 |
from concurrent.futures import ThreadPoolExecutor
|
16 |
import warnings
|
17 |
import traceback # For detailed error logging
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
# Suppress another common warning with torch.compile backend
|
22 |
-
# warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
|
23 |
|
24 |
# --- Configuration ---
|
25 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
26 |
MAX_SEARCH_RESULTS = 5
|
27 |
TTS_SAMPLE_RATE = 24000
|
28 |
MAX_TTS_CHARS = 1000 # Max characters for a single TTS chunk
|
29 |
-
|
30 |
-
MAX_NEW_TOKENS = 300 # Increased slightly
|
31 |
TEMPERATURE = 0.7
|
32 |
TOP_P = 0.95
|
33 |
KOKORO_PATH = 'Kokoro-82M' # Path to TTS model directory
|
34 |
|
35 |
# --- Initialization ---
|
36 |
-
# Use a ThreadPoolExecutor for
|
37 |
-
executor = ThreadPoolExecutor(max_workers=4)
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
43 |
-
tokenizer.pad_token = tokenizer.eos_token
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
MODEL_NAME,
|
53 |
device_map=device_map,
|
54 |
-
|
55 |
-
low_cpu_mem_usage=True, # Important for faster loading
|
56 |
torch_dtype=torch_dtype,
|
57 |
-
# attn_implementation="flash_attention_2" # Optional:
|
58 |
)
|
59 |
-
print(f"
|
60 |
-
#
|
61 |
-
model.eval()
|
62 |
|
63 |
except Exception as e:
|
64 |
print(f"FATAL: Error initializing LLM model: {str(e)}")
|
65 |
print(traceback.format_exc())
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
-
|
|
|
69 |
VOICE_CHOICES = {
|
70 |
'🇺🇸 Female (Default)': 'af',
|
71 |
'🇺🇸 Bella': 'af_bella',
|
@@ -73,204 +85,181 @@ VOICE_CHOICES = {
|
|
73 |
'🇺🇸 Nicole': 'af_nicole'
|
74 |
}
|
75 |
TTS_ENABLED = False
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
# Check privileges for apt-get
|
84 |
can_sudo = shutil.which('sudo') is not None
|
|
|
85 |
|
86 |
try:
|
87 |
-
#
|
88 |
if not os.path.exists(KOKORO_PATH):
|
89 |
-
print("Cloning
|
90 |
-
# Install git-lfs if not present (might need sudo/apt)
|
91 |
try:
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
clone_cmd = ['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', KOKORO_PATH]
|
98 |
-
result = subprocess.run(clone_cmd, check=True, capture_output=True, text=True)
|
99 |
-
print("Kokoro cloned successfully.")
|
100 |
-
# print(result.stdout) # Can be verbose
|
101 |
-
# Optionally pull LFS files again (sometimes clone doesn't get them all)
|
102 |
try:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
except (FileNotFoundError, subprocess.CalledProcessError) as lfs_pull_err:
|
108 |
-
print(f"Warning: git lfs pull failed: {lfs_pull_err}")
|
109 |
-
|
110 |
else:
|
111 |
-
print(f"{KOKORO_PATH}
|
112 |
-
|
113 |
-
# Install espeak (essential for phonemization)
|
114 |
-
print("Attempting to install espeak-ng or espeak...")
|
115 |
-
apt_update_cmd = ['apt-get', 'update', '-qq']
|
116 |
-
install_cmd_ng = ['apt-get', 'install', '-y', '-qq', 'espeak-ng']
|
117 |
-
install_cmd_legacy = ['apt-get', 'install', '-y', '-qq', 'espeak']
|
118 |
-
|
119 |
-
if can_sudo:
|
120 |
-
apt_update_cmd.insert(0, 'sudo')
|
121 |
-
install_cmd_ng.insert(0, 'sudo')
|
122 |
-
install_cmd_legacy.insert(0, 'sudo')
|
123 |
|
|
|
|
|
124 |
try:
|
125 |
-
|
126 |
-
|
127 |
-
print(
|
128 |
-
|
129 |
-
print("espeak-ng
|
130 |
-
except (FileNotFoundError, subprocess.CalledProcessError) as ng_err:
|
131 |
-
print(f"espeak-ng installation failed ({ng_err}), trying espeak...")
|
132 |
try:
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
# Set up Kokoro TTS
|
141 |
if os.path.exists(KOKORO_PATH):
|
142 |
-
|
143 |
if KOKORO_PATH not in sys.path:
|
144 |
sys.path.append(KOKORO_PATH)
|
|
|
145 |
try:
|
146 |
from models import build_model
|
147 |
-
from kokoro import generate as generate_tts_internal
|
148 |
|
149 |
-
# Make
|
150 |
-
globals()['build_model'] = build_model
|
151 |
globals()['generate_tts_internal'] = generate_tts_internal
|
152 |
|
153 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
154 |
-
print(f"Loading TTS model onto device: {device}")
|
155 |
model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth')
|
156 |
-
|
157 |
if not os.path.exists(model_file):
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
TTS_MODEL = build_model(model_file, device)
|
170 |
-
print("TTS model loaded.")
|
171 |
-
|
172 |
-
# Preload voices
|
173 |
for voice_name, voice_id in VOICE_CHOICES.items():
|
174 |
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
|
175 |
if os.path.exists(voice_file_path):
|
176 |
try:
|
177 |
-
print(f"Loading voice: {voice_id} ({voice_name})")
|
178 |
-
#
|
179 |
-
|
|
|
180 |
except Exception as e:
|
181 |
-
print(f"Warning:
|
182 |
else:
|
183 |
-
print(f"Info: Voice file {voice_file_path}
|
184 |
|
185 |
-
if
|
186 |
-
print("ERROR: No voicepacks could be loaded. TTS disabled.")
|
|
|
187 |
return
|
188 |
|
189 |
-
# Ensure default 'af' is loaded if possible, even if not explicitly in choices sometimes
|
190 |
-
if 'af' not in VOICEPACKS:
|
191 |
-
voice_file_path = os.path.join(KOKORO_PATH, 'voices', 'af.pt')
|
192 |
-
if os.path.exists(voice_file_path):
|
193 |
-
try:
|
194 |
-
print(f"Loading fallback default voice: af")
|
195 |
-
VOICEPACKS['af'] = torch.load(voice_file_path, map_location=device)
|
196 |
-
except Exception as e:
|
197 |
-
print(f"Warning: Could not load fallback default voice 'af': {str(e)}")
|
198 |
-
|
199 |
TTS_ENABLED = True
|
200 |
-
print("TTS
|
201 |
|
202 |
except ImportError as ie:
|
203 |
-
print(f"ERROR:
|
204 |
-
except Exception as
|
205 |
-
print(f"ERROR:
|
206 |
print(traceback.format_exc())
|
207 |
-
|
|
|
|
|
|
|
208 |
else:
|
209 |
-
print(f"ERROR: {KOKORO_PATH} directory not found. TTS disabled.")
|
210 |
-
|
211 |
-
print(f"ERROR: A subprocess command failed during TTS setup: {spe}")
|
212 |
-
print(f"Command: {' '.join(spe.cmd)}")
|
213 |
-
if spe.stderr: print(f"Stderr: {spe.stderr.strip()}")
|
214 |
-
print("TTS setup failed.")
|
215 |
except Exception as e:
|
216 |
-
print(f"ERROR:
|
217 |
print(traceback.format_exc())
|
|
|
218 |
TTS_ENABLED = False
|
|
|
|
|
219 |
|
220 |
-
# Start TTS setup in a
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
tts_thread.start()
|
225 |
|
226 |
-
|
|
|
227 |
|
228 |
@lru_cache(maxsize=128)
|
229 |
-
def
|
230 |
-
"""
|
231 |
-
print(f"[Web Search] Searching
|
232 |
try:
|
233 |
-
# Use DDGS context manager for cleanup
|
234 |
with DDGS() as ddgs:
|
235 |
-
|
236 |
-
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y')) # Limit to past year
|
237 |
print(f"[Web Search] Found {len(results)} results.")
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
})
|
246 |
-
return formatted_results
|
247 |
except Exception as e:
|
248 |
print(f"[Web Search] Error: {e}")
|
249 |
print(traceback.format_exc())
|
250 |
return []
|
251 |
|
252 |
-
def
|
253 |
-
"""
|
254 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
|
|
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
else:
|
263 |
-
context_str = "No web context available."
|
264 |
-
|
265 |
-
# Clear instructions for the model
|
266 |
-
prompt = f"""You are a helpful AI assistant. Your task is to answer the user's query based *only* on the provided web search context.
|
267 |
-
Follow these instructions carefully:
|
268 |
-
1. Synthesize the information from the context to provide a comprehensive answer.
|
269 |
-
2. Cite the sources used in your answer using bracket notation with the source ID, like [1], [2], etc.
|
270 |
-
3. If multiple sources support a point, you can cite them together, e.g., [1][3].
|
271 |
-
4. Do *not* add information that is not present in the context.
|
272 |
-
5. If the context does not contain relevant information to answer the query, clearly state that you cannot answer based on the provided context.
|
273 |
-
6. Format the answer clearly using markdown.
|
274 |
|
275 |
Current Time: {current_time}
|
276 |
|
@@ -282,24 +271,17 @@ Web Context:
|
|
282 |
User Query: {query}
|
283 |
|
284 |
Answer:"""
|
285 |
-
# print(f"--- Formatted Prompt ---\n{prompt[:1000]}...\n--- End Prompt ---") # Debugging: Print start of prompt
|
286 |
-
return prompt
|
287 |
|
288 |
-
def
|
289 |
-
"""
|
290 |
if not web_results:
|
291 |
return "<div class='no-sources'>No sources found for this query.</div>"
|
292 |
-
|
293 |
-
sources_html = "<div class='sources-container'>"
|
294 |
for res in web_results:
|
295 |
-
|
|
|
296 |
url = res.get("url", "#")
|
297 |
-
|
298 |
-
# Basic HTML escaping for snippet and title
|
299 |
-
title_safe = gr. gradio.utils.escape_html(title)
|
300 |
-
snippet_safe = gr. gradio.utils.escape_html(snippet[:150] + ("..." if len(snippet) > 150 else ""))
|
301 |
-
|
302 |
-
sources_html += f"""
|
303 |
<div class='source-item'>
|
304 |
<div class='source-number'>[{res['id']}]</div>
|
305 |
<div class='source-content'>
|
@@ -308,154 +290,130 @@ def format_sources(web_results: List[Dict[str, str]]) -> str:
|
|
308 |
</div>
|
309 |
</div>
|
310 |
"""
|
311 |
-
|
312 |
-
return sources_html
|
313 |
|
314 |
-
|
|
|
|
|
|
|
315 |
|
316 |
-
|
317 |
-
async def generate_answer(prompt: str) -> str:
|
318 |
-
"""Generate answer using the DeepSeek model (Async Wrapper)."""
|
319 |
-
print(f"[LLM Generate] Generating answer for prompt (length {len(prompt)})...")
|
320 |
start_time = time.time()
|
321 |
try:
|
322 |
-
|
323 |
-
inputs = tokenizer(
|
324 |
prompt,
|
325 |
return_tensors="pt",
|
326 |
padding=True,
|
327 |
truncation=True,
|
328 |
-
max_length=1024, #
|
329 |
return_attention_mask=True
|
330 |
-
).to(
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
attention_mask=inputs.attention_mask,
|
339 |
max_new_tokens=MAX_NEW_TOKENS,
|
340 |
temperature=TEMPERATURE,
|
341 |
top_p=TOP_P,
|
342 |
-
pad_token_id=
|
343 |
-
eos_token_id=
|
344 |
do_sample=True,
|
345 |
num_return_sequences=1
|
346 |
)
|
347 |
|
348 |
-
# Decode only
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
#
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
answer_part = full_output[len(prompt_decoded):].strip()
|
363 |
-
# Check if the marker is now at the beginning
|
364 |
-
if answer_part.startswith(answer_marker):
|
365 |
-
answer_part = answer_part[len(answer_marker):].strip()
|
366 |
-
else:
|
367 |
-
print("[LLM Generate] Warning: 'Answer:' marker not found and prompt prefix mismatch. Using full output.")
|
368 |
-
answer_part = full_output # Use full output as last resort
|
369 |
|
370 |
end_time = time.time()
|
371 |
-
print(f"[LLM Generate]
|
372 |
-
return answer_part
|
373 |
|
374 |
except Exception as e:
|
375 |
print(f"[LLM Generate] Error: {e}")
|
376 |
print(traceback.format_exc())
|
377 |
-
return f"Error
|
378 |
-
|
379 |
-
# NOTE: @spaces.GPU decorator is REMOVED because it's incompatible with async def
|
380 |
-
async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndarray] | None:
|
381 |
-
"""Generate speech from text using Kokoro TTS model (Async Wrapper)."""
|
382 |
-
global TTS_MODEL, TTS_ENABLED, VOICEPACKS
|
383 |
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
print("[TTS Generate] Skipping: TTS generation function not found.")
|
389 |
return None
|
390 |
if not text or not text.strip():
|
391 |
-
print("[TTS Generate] Skipping: Empty text
|
392 |
return None
|
393 |
|
394 |
-
print(f"[TTS Generate] Requesting speech
|
395 |
start_time = time.time()
|
396 |
|
397 |
try:
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
if 'af' not in VOICEPACKS:
|
406 |
-
print("[TTS Generate] Error: Default voice 'af' also not available. Cannot generate audio.")
|
407 |
return None
|
408 |
-
print("[TTS Generate] Using default voice 'af'.")
|
409 |
-
|
410 |
-
# Clean the text (simple cleaning)
|
411 |
-
# Remove markdown citations like [1], [2][3] etc.
|
412 |
-
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text)
|
413 |
-
# Remove other common markdown artifacts
|
414 |
-
clean_text = clean_text.replace('*', '').replace('#', '').replace('`', '')
|
415 |
-
# Remove excessive whitespace
|
416 |
-
clean_text = ' '.join(clean_text.split())
|
417 |
-
|
418 |
-
if not clean_text.strip():
|
419 |
-
print("[TTS Generate] Skipping: Text is empty after cleaning.")
|
420 |
-
return None
|
421 |
|
422 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
if len(clean_text) > MAX_TTS_CHARS:
|
424 |
-
print(f"[TTS Generate]
|
425 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
clean_text = clean_text[:cut_off+1]
|
430 |
-
clean_text += "..." # Indicate truncation
|
431 |
|
432 |
print(f"[TTS Generate] Generating audio for: '{clean_text[:100]}...'")
|
433 |
gen_func = globals()['generate_tts_internal']
|
|
|
434 |
|
435 |
-
# Run
|
|
|
436 |
audio_data, _ = await asyncio.get_event_loop().run_in_executor(
|
437 |
executor,
|
438 |
gen_func,
|
439 |
-
|
440 |
-
clean_text,
|
441 |
-
|
442 |
-
'afr'
|
443 |
)
|
444 |
|
445 |
if isinstance(audio_data, torch.Tensor):
|
446 |
-
# Move tensor to CPU before converting to numpy if it's not already
|
447 |
audio_np = audio_data.detach().cpu().numpy()
|
448 |
elif isinstance(audio_data, np.ndarray):
|
449 |
audio_np = audio_data
|
450 |
else:
|
451 |
-
print("[TTS Generate] Warning: Unexpected audio data type
|
452 |
return None
|
453 |
|
|
|
|
|
|
|
454 |
end_time = time.time()
|
455 |
-
print(f"[TTS Generate] Audio generated
|
456 |
-
# Ensure it's 1D array
|
457 |
-
if audio_np.ndim > 1:
|
458 |
-
audio_np = audio_np.flatten()
|
459 |
return (TTS_SAMPLE_RATE, audio_np)
|
460 |
|
461 |
except Exception as e:
|
@@ -463,108 +421,111 @@ async def generate_speech(text: str, voice_id: str = 'af') -> Tuple[int, np.ndar
|
|
463 |
print(traceback.format_exc())
|
464 |
return None
|
465 |
|
466 |
-
|
467 |
-
def get_voice_id(voice_display_name: str) -> str:
|
468 |
"""Maps the user-friendly voice name to the internal voice ID."""
|
469 |
-
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af'
|
|
|
|
|
|
|
470 |
|
471 |
-
#
|
472 |
-
|
473 |
|
474 |
-
async def
|
475 |
-
|
476 |
-
|
|
|
|
|
|
|
|
|
477 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
478 |
|
479 |
if not query or not query.strip():
|
480 |
print("Empty query received.")
|
481 |
-
yield
|
482 |
-
|
483 |
-
)
|
484 |
return
|
485 |
|
486 |
-
|
487 |
-
|
488 |
-
|
|
|
489 |
|
490 |
-
# 1. Initial
|
491 |
yield (
|
492 |
-
"*Searching the web...*",
|
493 |
-
"<div class='searching'><span>Searching the web...</span></div>", # Added span for CSS animation
|
494 |
-
gr.Button(value="Searching...", interactive=False), # Disable button
|
495 |
current_history,
|
496 |
-
|
|
|
|
|
|
|
497 |
)
|
498 |
|
499 |
-
# 2. Perform Web Search (
|
500 |
-
|
501 |
-
|
502 |
-
|
|
|
503 |
|
504 |
-
# Update state:
|
|
|
505 |
yield (
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
)
|
512 |
|
513 |
-
# 3. Generate Answer (
|
514 |
-
|
515 |
-
final_answer = await
|
516 |
|
517 |
-
# Update history with the final answer
|
518 |
-
current_history[-1][
|
519 |
|
520 |
-
# Update state:
|
521 |
yield (
|
522 |
-
|
|
|
523 |
sources_html,
|
524 |
-
|
525 |
-
|
526 |
-
None
|
527 |
)
|
528 |
|
529 |
-
# 4. Generate Speech (
|
530 |
-
|
531 |
-
|
532 |
-
if not
|
533 |
-
|
534 |
-
|
535 |
-
elif tts_thread.is_alive():
|
536 |
-
print("[TTS Status] TTS is still initializing in the background.")
|
537 |
-
tts_message = "\n\n*(TTS is still initializing, audio may be delayed or unavailable)*"
|
538 |
-
elif TTS_ENABLED:
|
539 |
-
voice_id = get_voice_id(selected_voice_display_name)
|
540 |
-
# Only generate audio if the answer generation was successful
|
541 |
-
if not final_answer.startswith("Error"):
|
542 |
-
audio = await generate_speech(final_answer, voice_id) # This is already async
|
543 |
-
if audio is None:
|
544 |
-
print(f"[TTS Status] Audio generation failed for voice '{voice_id}'.")
|
545 |
-
tts_message = f"\n\n*(Audio generation failed)*"
|
546 |
-
else:
|
547 |
-
print("[TTS Status] Audio generated successfully.")
|
548 |
else:
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
555 |
yield (
|
556 |
-
|
|
|
557 |
sources_html,
|
558 |
-
|
559 |
-
|
560 |
-
audio
|
561 |
)
|
562 |
|
563 |
|
564 |
-
# --- Gradio
|
565 |
-
# (CSS remains the same
|
566 |
css = """
|
567 |
-
/* ... [Your existing refined CSS] ... */
|
|
|
|
|
568 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
569 |
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
570 |
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
@@ -589,20 +550,19 @@ css = """
|
|
589 |
.sources-container { margin-top: 0; }
|
590 |
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; }
|
591 |
.source-item:last-child { border-bottom: none; }
|
592 |
-
/* .source-item:hover { background-color: #f9fafb; } */
|
593 |
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
594 |
.source-content { flex: 1; min-width: 0;} /* Allow content to shrink */
|
595 |
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
596 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
597 |
-
.source-date { color: #6b7280; font-size: 0.8em; margin-left: 8px; }
|
598 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
599 |
-
.chat-history { max-height: 400px; overflow-y: auto;
|
|
|
600 |
.chat-history::-webkit-scrollbar { width: 6px; }
|
601 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
602 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
603 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
604 |
-
|
605 |
-
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin:
|
606 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
607 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
608 |
.markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; }
|
@@ -619,7 +579,7 @@ css = """
|
|
619 |
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
620 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
621 |
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
|
622 |
-
.accordion > .label-wrap { padding: 10px 15px !important; }
|
623 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
624 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
625 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
@@ -632,7 +592,7 @@ css = """
|
|
632 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
633 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
634 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
635 |
-
/* Dark Mode Styles */
|
636 |
.dark .gradio-container { background-color: #111827 !important; }
|
637 |
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
638 |
.dark #header h3 { color: #9ca3af; }
|
@@ -654,7 +614,7 @@ css = """
|
|
654 |
.dark .source-title { color: #60a5fa; }
|
655 |
.dark .source-title:hover { color: #93c5fd; }
|
656 |
.dark .source-snippet { color: #d1d5db; }
|
657 |
-
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;}
|
658 |
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
|
659 |
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
|
660 |
.dark .examples-container { background: #374151; border-color: #4b5563; }
|
@@ -671,11 +631,11 @@ css = """
|
|
671 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
672 |
.dark .markdown-content th { background: #374151 !important; }
|
673 |
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
|
674 |
-
.dark .accordion > .label-wrap { color: #d1d5db !important; }
|
675 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
676 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
677 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
678 |
-
.dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; }
|
679 |
.dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; }
|
680 |
.dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; }
|
681 |
.dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; }
|
@@ -684,146 +644,118 @@ css = """
|
|
684 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
685 |
"""
|
686 |
|
|
|
|
|
687 |
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
688 |
-
#
|
689 |
-
|
690 |
|
691 |
-
with gr.Column(): # Main container
|
692 |
-
# Header
|
693 |
with gr.Column(elem_id="header"):
|
694 |
gr.Markdown("# 🔍 AI Search Assistant")
|
695 |
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
696 |
|
697 |
-
# Search
|
698 |
with gr.Column(elem_classes="search-container"):
|
699 |
-
with gr.Row(elem_classes="search-box", equal_height=False):
|
700 |
-
search_input = gr.Textbox(
|
701 |
-
|
702 |
-
|
703 |
-
scale=5, # Takes more horizontal space
|
704 |
-
container=False, # Important for direct styling within Row
|
705 |
-
elem_classes="gradio-textbox"
|
706 |
-
)
|
707 |
-
voice_select = gr.Dropdown(
|
708 |
-
choices=list(VOICE_CHOICES.keys()),
|
709 |
-
value=list(VOICE_CHOICES.keys())[0], # Default voice display name
|
710 |
-
label="", # Visually hidden label
|
711 |
-
scale=1, # Takes less space
|
712 |
-
min_width=180, # Fixed width for dropdown
|
713 |
-
container=False, # Important
|
714 |
-
elem_classes="voice-selector gradio-dropdown"
|
715 |
-
)
|
716 |
-
search_btn = gr.Button(
|
717 |
-
"Search",
|
718 |
-
variant="primary",
|
719 |
-
scale=0, # Minimal width needed for text
|
720 |
-
min_width=100,
|
721 |
-
elem_classes="gradio-button"
|
722 |
-
)
|
723 |
|
724 |
-
# Results
|
725 |
with gr.Row(elem_classes="results-container", equal_height=False):
|
726 |
-
# Left Column: Answer
|
727 |
-
with gr.Column(scale=3):
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
label="Conversation",
|
742 |
-
bubble_full_width=True, # Bubbles take full width
|
743 |
-
height=400,
|
744 |
-
elem_classes="chat-history"
|
745 |
-
)
|
746 |
|
747 |
# Right Column: Sources
|
748 |
-
with gr.Column(scale=2):
|
749 |
-
|
750 |
gr.Markdown("### Sources")
|
751 |
-
|
752 |
|
753 |
-
#
|
754 |
with gr.Row(elem_classes="examples-container"):
|
|
|
755 |
gr.Examples(
|
756 |
examples=[
|
757 |
"Latest news about renewable energy",
|
758 |
-
"Explain
|
759 |
-
"
|
760 |
"Compare Python and JavaScript for web development",
|
761 |
-
"Summarize the main points of the Paris Agreement
|
762 |
],
|
763 |
-
inputs=search_input,
|
764 |
label="Try these examples:",
|
765 |
-
elem_classes="gradio-examples" # Add class for potential styling
|
766 |
)
|
767 |
|
768 |
-
# --- Event Handling ---
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
outputs["button"] = btn_state # Can be a gr.Button update dict or object
|
788 |
-
outputs["history"] = hist_display
|
789 |
-
outputs["audio"] = aud_out
|
790 |
-
# Yield the current state of all outputs
|
791 |
-
yield outputs["answer"], outputs["sources"], outputs["button"], outputs["history"], outputs["audio"]
|
792 |
-
except Exception as e:
|
793 |
-
print(f"[Interaction] Error: {e}")
|
794 |
print(traceback.format_exc())
|
795 |
-
|
796 |
-
|
797 |
-
final_error_history = history + [[query, f"*Error: {error_message}*"]] if query else history
|
798 |
yield (
|
799 |
-
|
800 |
-
"
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
805 |
|
806 |
-
# Connect the handle_interaction function to the button click and input submit events
|
807 |
-
outputs_list = [answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
808 |
-
inputs_list = [search_input, chat_history, voice_select] # Pass the dropdown component itself
|
809 |
|
|
|
810 |
search_btn.click(
|
811 |
-
fn=
|
812 |
-
inputs=
|
813 |
-
outputs=
|
814 |
)
|
815 |
-
|
816 |
search_input.submit(
|
817 |
-
fn=
|
818 |
-
inputs=
|
819 |
-
outputs=
|
820 |
)
|
821 |
|
822 |
if __name__ == "__main__":
|
823 |
print("Starting Gradio application...")
|
824 |
-
# Launch the app with queuing enabled for handling multiple users
|
825 |
demo.queue(max_size=20).launch(
|
826 |
-
debug=True,
|
827 |
-
share=True,
|
828 |
-
# server_name="0.0.0.0" # Bind to all interfaces
|
829 |
)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
# import spaces # Removed as @spaces.GPU is not used with async
|
4 |
from duckduckgo_search import DDGS
|
5 |
import time
|
6 |
import torch
|
|
|
8 |
import os
|
9 |
import subprocess
|
10 |
import numpy as np
|
11 |
+
from typing import List, Dict, Tuple, Any, Optional, Union
|
12 |
from functools import lru_cache
|
13 |
import asyncio
|
14 |
import threading
|
15 |
from concurrent.futures import ThreadPoolExecutor
|
16 |
import warnings
|
17 |
import traceback # For detailed error logging
|
18 |
+
import re # For text cleaning
|
19 |
+
import shutil # For checking sudo
|
20 |
+
import html # For escaping HTML
|
|
|
|
|
21 |
|
22 |
# --- Configuration ---
|
23 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
24 |
MAX_SEARCH_RESULTS = 5
|
25 |
TTS_SAMPLE_RATE = 24000
|
26 |
MAX_TTS_CHARS = 1000 # Max characters for a single TTS chunk
|
27 |
+
MAX_NEW_TOKENS = 300
|
|
|
28 |
TEMPERATURE = 0.7
|
29 |
TOP_P = 0.95
|
30 |
KOKORO_PATH = 'Kokoro-82M' # Path to TTS model directory
|
31 |
|
32 |
# --- Initialization ---
|
33 |
+
# Use a ThreadPoolExecutor for blocking I/O or CPU-bound tasks
|
34 |
+
executor = ThreadPoolExecutor(max_workers=os.cpu_count() or 4) # Use available cores
|
35 |
|
36 |
+
# Suppress specific warnings
|
37 |
+
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
38 |
+
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
|
|
|
|
|
39 |
|
40 |
+
# --- LLM Initialization ---
|
41 |
+
llm_model: Optional[AutoModelForCausalLM] = None
|
42 |
+
llm_tokenizer: Optional[AutoTokenizer] = None
|
43 |
+
llm_device = "cpu" # Default device
|
44 |
+
|
45 |
+
try:
|
46 |
+
print("Initializing LLM...")
|
47 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
48 |
+
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
49 |
+
|
50 |
+
if torch.cuda.is_available():
|
51 |
+
llm_device = "cuda"
|
52 |
+
torch_dtype = torch.float16
|
53 |
+
device_map = "auto" # Let accelerate handle distribution
|
54 |
+
print(f"CUDA detected. Loading model with device_map='{device_map}', dtype={torch_dtype}")
|
55 |
+
else:
|
56 |
+
llm_device = "cpu"
|
57 |
+
torch_dtype = torch.float32 # float32 for CPU
|
58 |
+
device_map = {"": "cpu"}
|
59 |
+
print(f"CUDA not found. Loading model on CPU with dtype={torch_dtype}")
|
60 |
|
61 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
62 |
MODEL_NAME,
|
63 |
device_map=device_map,
|
64 |
+
low_cpu_mem_usage=True,
|
|
|
65 |
torch_dtype=torch_dtype,
|
66 |
+
# attn_implementation="flash_attention_2" # Optional: Uncomment if flash-attn is installed and compatible GPU
|
67 |
)
|
68 |
+
print(f"LLM loaded successfully. Device map: {llm_model.hf_device_map if hasattr(llm_model, 'hf_device_map') else 'N/A'}")
|
69 |
+
llm_model.eval() # Set to evaluation mode
|
|
|
70 |
|
71 |
except Exception as e:
|
72 |
print(f"FATAL: Error initializing LLM model: {str(e)}")
|
73 |
print(traceback.format_exc())
|
74 |
+
# Depending on environment, you might exit or just disable LLM features
|
75 |
+
llm_model = None
|
76 |
+
llm_tokenizer = None
|
77 |
+
print("LLM features will be unavailable.")
|
78 |
|
79 |
+
|
80 |
+
# --- TTS Initialization ---
|
81 |
VOICE_CHOICES = {
|
82 |
'🇺🇸 Female (Default)': 'af',
|
83 |
'🇺🇸 Bella': 'af_bella',
|
|
|
85 |
'🇺🇸 Nicole': 'af_nicole'
|
86 |
}
|
87 |
TTS_ENABLED = False
|
88 |
+
tts_model: Optional[Any] = None # Define type more specifically if Kokoro provides it
|
89 |
+
voicepacks: Dict[str, Any] = {} # Cache voice packs
|
90 |
+
tts_device = "cpu" # Default device for TTS model
|
91 |
+
|
92 |
+
# Use a lock for thread-safe access during initialization if needed, though Thread ensures sequential execution
|
93 |
+
# tts_init_lock = threading.Lock()
|
94 |
|
95 |
+
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None) -> subprocess.CompletedProcess:
|
96 |
+
"""Helper to run subprocess and capture output."""
|
97 |
+
print(f"Running command: {' '.join(cmd)}")
|
98 |
+
try:
|
99 |
+
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd)
|
100 |
+
if result.stdout: print(f"Stdout: {result.stdout.strip()}")
|
101 |
+
if result.stderr: print(f"Stderr: {result.stderr.strip()}")
|
102 |
+
return result
|
103 |
+
except FileNotFoundError:
|
104 |
+
print(f"Error: Command not found - {cmd[0]}")
|
105 |
+
raise
|
106 |
+
except subprocess.CalledProcessError as e:
|
107 |
+
print(f"Error running command: {' '.join(e.cmd)}")
|
108 |
+
if e.stdout: print(f"Stdout: {e.stdout.strip()}")
|
109 |
+
if e.stderr: print(f"Stderr: {e.stderr.strip()}")
|
110 |
+
raise
|
111 |
+
|
112 |
+
def setup_tts_task():
|
113 |
+
"""Initializes Kokoro TTS model and dependencies."""
|
114 |
+
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
115 |
+
print("[TTS Setup] Starting background initialization...")
|
116 |
+
|
117 |
+
# Determine TTS device
|
118 |
+
tts_device = "cuda" if torch.cuda.is_available() else "cpu"
|
119 |
+
print(f"[TTS Setup] Target device: {tts_device}")
|
120 |
|
|
|
121 |
can_sudo = shutil.which('sudo') is not None
|
122 |
+
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
123 |
|
124 |
try:
|
125 |
+
# 1. Clone Kokoro Repo if needed
|
126 |
if not os.path.exists(KOKORO_PATH):
|
127 |
+
print(f"[TTS Setup] Cloning repository to {KOKORO_PATH}...")
|
|
|
128 |
try:
|
129 |
+
_run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
|
130 |
+
except Exception as lfs_err:
|
131 |
+
print(f"[TTS Setup] Warning: git lfs install command failed: {lfs_err}. Continuing clone...")
|
132 |
+
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', KOKORO_PATH])
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
try:
|
134 |
+
print("[TTS Setup] Running git lfs pull...")
|
135 |
+
_run_subprocess(['git', 'lfs', 'pull'], cwd=KOKORO_PATH)
|
136 |
+
except Exception as lfs_pull_err:
|
137 |
+
print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
|
|
|
|
|
|
|
138 |
else:
|
139 |
+
print(f"[TTS Setup] Directory {KOKORO_PATH} already exists.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
# 2. Install espeak dependency
|
142 |
+
print("[TTS Setup] Checking/Installing espeak...")
|
143 |
try:
|
144 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
|
145 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
|
146 |
+
print("[TTS Setup] espeak-ng installed or already present.")
|
147 |
+
except Exception:
|
148 |
+
print("[TTS Setup] espeak-ng failed, trying espeak...")
|
|
|
|
|
149 |
try:
|
150 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak'])
|
151 |
+
print("[TTS Setup] espeak installed or already present.")
|
152 |
+
except Exception as espeak_err:
|
153 |
+
print(f"[TTS Setup] ERROR: Failed to install both espeak-ng and espeak: {espeak_err}. TTS disabled.")
|
154 |
+
return # Critical dependency missing
|
155 |
+
|
156 |
+
# 3. Load Kokoro Model and Voices
|
|
|
157 |
if os.path.exists(KOKORO_PATH):
|
158 |
+
sys_path_updated = False
|
159 |
if KOKORO_PATH not in sys.path:
|
160 |
sys.path.append(KOKORO_PATH)
|
161 |
+
sys_path_updated = True
|
162 |
try:
|
163 |
from models import build_model
|
164 |
+
from kokoro import generate as generate_tts_internal
|
165 |
|
166 |
+
globals()['build_model'] = build_model # Make available globally
|
|
|
167 |
globals()['generate_tts_internal'] = generate_tts_internal
|
168 |
|
|
|
|
|
169 |
model_file = os.path.join(KOKORO_PATH, 'kokoro-v0_19.pth')
|
|
|
170 |
if not os.path.exists(model_file):
|
171 |
+
print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.")
|
172 |
+
return
|
173 |
+
|
174 |
+
print(f"[TTS Setup] Loading TTS model from {model_file} onto {tts_device}...")
|
175 |
+
tts_model = build_model(model_file, tts_device)
|
176 |
+
tts_model.eval() # Set to eval mode
|
177 |
+
print("[TTS Setup] TTS model loaded.")
|
178 |
+
|
179 |
+
# Load voices
|
180 |
+
loaded_voices = 0
|
|
|
|
|
|
|
|
|
|
|
181 |
for voice_name, voice_id in VOICE_CHOICES.items():
|
182 |
voice_file_path = os.path.join(KOKORO_PATH, 'voices', f'{voice_id}.pt')
|
183 |
if os.path.exists(voice_file_path):
|
184 |
try:
|
185 |
+
print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name})")
|
186 |
+
# map_location ensures it loads to the correct device
|
187 |
+
voicepacks[voice_id] = torch.load(voice_file_path, map_location=tts_device)
|
188 |
+
loaded_voices += 1
|
189 |
except Exception as e:
|
190 |
+
print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
|
191 |
else:
|
192 |
+
print(f"[TTS Setup] Info: Voice file {voice_file_path} not found, skipping.")
|
193 |
|
194 |
+
if loaded_voices == 0:
|
195 |
+
print("[TTS Setup] ERROR: No voicepacks could be loaded. TTS disabled.")
|
196 |
+
tts_model = None # Unload model if no voices
|
197 |
return
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
TTS_ENABLED = True
|
200 |
+
print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
|
201 |
|
202 |
except ImportError as ie:
|
203 |
+
print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}. Check clone and path. TTS disabled.")
|
204 |
+
except Exception as load_err:
|
205 |
+
print(f"[TTS Setup] ERROR: Failed loading TTS model/voices: {load_err}. TTS disabled.")
|
206 |
print(traceback.format_exc())
|
207 |
+
finally:
|
208 |
+
# Clean up sys.path if modified
|
209 |
+
if sys_path_updated and KOKORO_PATH in sys.path:
|
210 |
+
sys.path.remove(KOKORO_PATH)
|
211 |
else:
|
212 |
+
print(f"[TTS Setup] ERROR: {KOKORO_PATH} directory not found. TTS disabled.")
|
213 |
+
|
|
|
|
|
|
|
|
|
214 |
except Exception as e:
|
215 |
+
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
|
216 |
print(traceback.format_exc())
|
217 |
+
# Ensure TTS is marked as disabled
|
218 |
TTS_ENABLED = False
|
219 |
+
tts_model = None
|
220 |
+
voicepacks.clear()
|
221 |
|
222 |
+
# Start TTS setup in a background thread
|
223 |
+
print("Starting TTS setup thread...")
|
224 |
+
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
225 |
+
tts_setup_thread.start()
|
|
|
226 |
|
227 |
+
|
228 |
+
# --- Core Functions ---
|
229 |
|
230 |
@lru_cache(maxsize=128)
|
231 |
+
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
232 |
+
"""Synchronous web search function with caching."""
|
233 |
+
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
|
234 |
try:
|
|
|
235 |
with DDGS() as ddgs:
|
236 |
+
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
|
|
|
237 |
print(f"[Web Search] Found {len(results)} results.")
|
238 |
+
formatted = [{
|
239 |
+
"id": i + 1,
|
240 |
+
"title": res.get("title", "No Title"),
|
241 |
+
"snippet": res.get("body", "No Snippet"),
|
242 |
+
"url": res.get("href", "#"),
|
243 |
+
} for i, res in enumerate(results)]
|
244 |
+
return formatted
|
|
|
|
|
245 |
except Exception as e:
|
246 |
print(f"[Web Search] Error: {e}")
|
247 |
print(traceback.format_exc())
|
248 |
return []
|
249 |
|
250 |
+
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
251 |
+
"""Formats the prompt for the LLM, including context and instructions."""
|
252 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
253 |
+
context_str = "\n\n".join(
|
254 |
+
[f"[{res['id']}] {res['title']}\n{res['snippet']}" for res in context]
|
255 |
+
) if context else "No relevant web context found."
|
256 |
|
257 |
+
return f"""You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context.
|
258 |
+
Instructions:
|
259 |
+
- Synthesize information from the context to answer concisely.
|
260 |
+
- Cite sources using bracket notation like [1], [2], etc., corresponding to the context IDs.
|
261 |
+
- If the context is insufficient, state that clearly. Do not add external information.
|
262 |
+
- Use markdown for formatting.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
Current Time: {current_time}
|
265 |
|
|
|
271 |
User Query: {query}
|
272 |
|
273 |
Answer:"""
|
|
|
|
|
274 |
|
275 |
+
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
276 |
+
"""Formats search results into HTML for display."""
|
277 |
if not web_results:
|
278 |
return "<div class='no-sources'>No sources found for this query.</div>"
|
279 |
+
items_html = ""
|
|
|
280 |
for res in web_results:
|
281 |
+
title_safe = html.escape(res.get("title", "Source"))
|
282 |
+
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
|
283 |
url = res.get("url", "#")
|
284 |
+
items_html += f"""
|
|
|
|
|
|
|
|
|
|
|
285 |
<div class='source-item'>
|
286 |
<div class='source-number'>[{res['id']}]</div>
|
287 |
<div class='source-content'>
|
|
|
290 |
</div>
|
291 |
</div>
|
292 |
"""
|
293 |
+
return f"<div class='sources-container'>{items_html}</div>"
|
|
|
294 |
|
295 |
+
async def generate_llm_answer(prompt: str) -> str:
|
296 |
+
"""Generates answer using the loaded LLM (Async Wrapper)."""
|
297 |
+
if not llm_model or not llm_tokenizer:
|
298 |
+
return "Error: LLM model is not available."
|
299 |
|
300 |
+
print(f"[LLM Generate] Requesting generation (prompt length {len(prompt)})...")
|
|
|
|
|
|
|
301 |
start_time = time.time()
|
302 |
try:
|
303 |
+
inputs = llm_tokenizer(
|
|
|
304 |
prompt,
|
305 |
return_tensors="pt",
|
306 |
padding=True,
|
307 |
truncation=True,
|
308 |
+
max_length=1024, # Consider model's actual max length
|
309 |
return_attention_mask=True
|
310 |
+
).to(llm_model.device) # Ensure inputs are on the same device as model parts
|
311 |
+
|
312 |
+
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
313 |
+
# Run blocking model.generate in the executor thread pool
|
314 |
+
outputs = await asyncio.get_event_loop().run_in_executor(
|
315 |
+
executor,
|
316 |
+
llm_model.generate,
|
317 |
+
inputs.input_ids,
|
318 |
attention_mask=inputs.attention_mask,
|
319 |
max_new_tokens=MAX_NEW_TOKENS,
|
320 |
temperature=TEMPERATURE,
|
321 |
top_p=TOP_P,
|
322 |
+
pad_token_id=llm_tokenizer.eos_token_id,
|
323 |
+
eos_token_id=llm_tokenizer.eos_token_id,
|
324 |
do_sample=True,
|
325 |
num_return_sequences=1
|
326 |
)
|
327 |
|
328 |
+
# Decode only newly generated tokens relative to input
|
329 |
+
output_ids = outputs[0][inputs.input_ids.shape[1]:]
|
330 |
+
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
331 |
+
|
332 |
+
# Handle potential empty generation
|
333 |
+
if not answer_part:
|
334 |
+
# Sometimes the split method above is needed if the model includes the prompt
|
335 |
+
full_output = llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
336 |
+
answer_marker = "Answer:"
|
337 |
+
marker_index = full_output.rfind(answer_marker)
|
338 |
+
if marker_index != -1:
|
339 |
+
answer_part = full_output[marker_index + len(answer_marker):].strip()
|
340 |
+
else:
|
341 |
+
answer_part = "*Model generated an empty response.*" # Fallback message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
end_time = time.time()
|
344 |
+
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
|
345 |
+
return answer_part
|
346 |
|
347 |
except Exception as e:
|
348 |
print(f"[LLM Generate] Error: {e}")
|
349 |
print(traceback.format_exc())
|
350 |
+
return f"Error during answer generation: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
+
async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
|
353 |
+
"""Generates speech using the loaded TTS model (Async Wrapper)."""
|
354 |
+
if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals():
|
355 |
+
print("[TTS Generate] Skipping: TTS not ready.")
|
|
|
356 |
return None
|
357 |
if not text or not text.strip():
|
358 |
+
print("[TTS Generate] Skipping: Empty text.")
|
359 |
return None
|
360 |
|
361 |
+
print(f"[TTS Generate] Requesting speech (length {len(text)}, voice '{voice_id}')...")
|
362 |
start_time = time.time()
|
363 |
|
364 |
try:
|
365 |
+
# Verify voicepack availability
|
366 |
+
actual_voice_id = voice_id
|
367 |
+
if voice_id not in voicepacks:
|
368 |
+
print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying default 'af'.")
|
369 |
+
actual_voice_id = 'af'
|
370 |
+
if 'af' not in voicepacks:
|
371 |
+
print("[TTS Generate] Error: Default voice 'af' also not available.")
|
|
|
|
|
372 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
|
374 |
+
# Clean text for TTS
|
375 |
+
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text) # Remove citations like [1], [2][3]
|
376 |
+
clean_text = re.sub(r'[\*\#\`]', '', clean_text) # Remove markdown symbols
|
377 |
+
clean_text = ' '.join(clean_text.split()) # Normalize whitespace
|
378 |
+
|
379 |
+
if not clean_text: return None # Skip if empty after cleaning
|
380 |
+
|
381 |
+
# Truncate if necessary
|
382 |
if len(clean_text) > MAX_TTS_CHARS:
|
383 |
+
print(f"[TTS Generate] Truncating text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
384 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
385 |
+
last_punct = max(clean_text.rfind(p) for p in '.?! ')
|
386 |
+
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
387 |
+
clean_text += "..."
|
|
|
|
|
388 |
|
389 |
print(f"[TTS Generate] Generating audio for: '{clean_text[:100]}...'")
|
390 |
gen_func = globals()['generate_tts_internal']
|
391 |
+
voice_pack_data = voicepacks[actual_voice_id]
|
392 |
|
393 |
+
# Run blocking TTS generation in the executor thread pool
|
394 |
+
# Assuming 'afr' is the correct language code for Kokoro's default voices
|
395 |
audio_data, _ = await asyncio.get_event_loop().run_in_executor(
|
396 |
executor,
|
397 |
gen_func,
|
398 |
+
tts_model, # The loaded model object
|
399 |
+
clean_text, # The cleaned text string
|
400 |
+
voice_pack_data,# The loaded voice pack tensor/dict
|
401 |
+
'afr' # Language code (verify this is correct)
|
402 |
)
|
403 |
|
404 |
if isinstance(audio_data, torch.Tensor):
|
|
|
405 |
audio_np = audio_data.detach().cpu().numpy()
|
406 |
elif isinstance(audio_data, np.ndarray):
|
407 |
audio_np = audio_data
|
408 |
else:
|
409 |
+
print("[TTS Generate] Warning: Unexpected audio data type.")
|
410 |
return None
|
411 |
|
412 |
+
# Ensure audio is 1D float32
|
413 |
+
audio_np = audio_np.flatten().astype(np.float32)
|
414 |
+
|
415 |
end_time = time.time()
|
416 |
+
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
|
|
|
|
|
|
|
417 |
return (TTS_SAMPLE_RATE, audio_np)
|
418 |
|
419 |
except Exception as e:
|
|
|
421 |
print(traceback.format_exc())
|
422 |
return None
|
423 |
|
424 |
+
def get_voice_id_from_display(voice_display_name: str) -> str:
|
|
|
425 |
"""Maps the user-friendly voice name to the internal voice ID."""
|
426 |
+
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af'
|
427 |
+
|
428 |
+
|
429 |
+
# --- Gradio Interaction Logic ---
|
430 |
|
431 |
+
# Define type for chat history using the 'messages' format
|
432 |
+
ChatHistoryType = List[Dict[str, str]]
|
433 |
|
434 |
+
async def handle_interaction(
|
435 |
+
query: str,
|
436 |
+
history: ChatHistoryType,
|
437 |
+
selected_voice_display_name: str
|
438 |
+
):
|
439 |
+
"""Main async generator function to handle user queries and update Gradio UI."""
|
440 |
+
print(f"\n--- Handling Query ---")
|
441 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
442 |
|
443 |
if not query or not query.strip():
|
444 |
print("Empty query received.")
|
445 |
+
# Need to yield the current state for all outputs
|
446 |
+
yield history, "*Please enter a query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
|
|
|
447 |
return
|
448 |
|
449 |
+
# Append user message to history
|
450 |
+
current_history = history + [{"role": "user", "content": query}]
|
451 |
+
# Add placeholder for assistant response
|
452 |
+
current_history.append({"role": "assistant", "content": "*Searching...*"})
|
453 |
|
454 |
+
# 1. Initial State: Searching
|
455 |
yield (
|
|
|
|
|
|
|
456 |
current_history,
|
457 |
+
"*Searching the web...*", # Update answer area
|
458 |
+
"<div class='searching'><span>Searching the web...</span></div>", # Update sources area
|
459 |
+
None, # No audio yet
|
460 |
+
gr.Button(value="Searching...", interactive=False) # Update button state
|
461 |
)
|
462 |
|
463 |
+
# 2. Perform Web Search (in executor)
|
464 |
+
web_results = await asyncio.get_event_loop().run_in_executor(
|
465 |
+
executor, get_web_results_sync, query
|
466 |
+
)
|
467 |
+
sources_html = format_sources_html(web_results)
|
468 |
|
469 |
+
# Update state: Generating Answer
|
470 |
+
current_history[-1]["content"] = "*Generating answer...*" # Update assistant placeholder
|
471 |
yield (
|
472 |
+
current_history,
|
473 |
+
"*Generating answer...*", # Update answer area
|
474 |
+
sources_html, # Show sources
|
475 |
+
None,
|
476 |
+
gr.Button(value="Generating...", interactive=False)
|
477 |
)
|
478 |
|
479 |
+
# 3. Generate LLM Answer (async)
|
480 |
+
llm_prompt = format_llm_prompt(query, web_results)
|
481 |
+
final_answer = await generate_llm_answer(llm_prompt)
|
482 |
|
483 |
+
# Update assistant message in history with the final answer
|
484 |
+
current_history[-1]["content"] = final_answer
|
485 |
|
486 |
+
# Update state: Generating Audio (if applicable)
|
487 |
yield (
|
488 |
+
current_history,
|
489 |
+
final_answer, # Show final answer
|
490 |
sources_html,
|
491 |
+
None,
|
492 |
+
gr.Button(value="Audio...", interactive=False) if TTS_ENABLED else gr.Button(value="Search", interactive=True) # Enable search if TTS disabled
|
|
|
493 |
)
|
494 |
|
495 |
+
# 4. Generate TTS Speech (async)
|
496 |
+
audio_output_data = None
|
497 |
+
tts_status_message = ""
|
498 |
+
if not TTS_ENABLED:
|
499 |
+
if tts_setup_thread.is_alive():
|
500 |
+
tts_status_message = "\n\n*(TTS initializing...)*"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
501 |
else:
|
502 |
+
tts_status_message = "\n\n*(TTS disabled or failed)*"
|
503 |
+
elif final_answer and not final_answer.startswith("Error"):
|
504 |
+
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
505 |
+
audio_output_data = await generate_tts_speech(final_answer, voice_id)
|
506 |
+
if audio_output_data is None:
|
507 |
+
tts_status_message = "\n\n*(Audio generation failed)*"
|
508 |
+
|
509 |
+
# 5. Final State: Show all results
|
510 |
+
final_answer_with_status = final_answer + tts_status_message
|
511 |
+
current_history[-1]["content"] = final_answer_with_status # Update history with status msg too
|
512 |
+
|
513 |
+
print("--- Query Handling Complete ---")
|
514 |
yield (
|
515 |
+
current_history,
|
516 |
+
final_answer_with_status, # Show answer + TTS status
|
517 |
sources_html,
|
518 |
+
audio_output_data, # Output audio data (or None)
|
519 |
+
gr.Button(value="Search", interactive=True) # Re-enable button
|
|
|
520 |
)
|
521 |
|
522 |
|
523 |
+
# --- Gradio UI Definition ---
|
524 |
+
# (CSS remains largely the same - ensure it targets default Gradio classes if elem_classes was removed)
|
525 |
css = """
|
526 |
+
/* ... [Your existing refined CSS, but remove selectors using .gradio-examples if you were using it] ... */
|
527 |
+
/* Example: Style examples container via its parent or default class if needed */
|
528 |
+
/* .examples-container .gradio-examples { ... } */ /* This might still work depending on structure */
|
529 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
530 |
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
|
531 |
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
|
|
|
550 |
.sources-container { margin-top: 0; }
|
551 |
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; }
|
552 |
.source-item:last-child { border-bottom: none; }
|
|
|
553 |
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
554 |
.source-content { flex: 1; min-width: 0;} /* Allow content to shrink */
|
555 |
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
556 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
|
|
557 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
558 |
+
.chat-history { /* Style the chatbot container */ max-height: 400px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; margin-top: 1rem; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
|
559 |
+
.chat-history > div { padding: 1rem; } /* Add padding inside the chatbot display area */
|
560 |
.chat-history::-webkit-scrollbar { width: 6px; }
|
561 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
562 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
563 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
564 |
+
/* Default styling for example buttons (since elem_classes might not work) */
|
565 |
+
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; }
|
566 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
567 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
568 |
.markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; }
|
|
|
579 |
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
580 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
581 |
.accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; }
|
582 |
+
.accordion > .label-wrap { padding: 10px 15px !important; }
|
583 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
584 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
585 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
|
|
592 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
593 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
594 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
595 |
+
/* Dark Mode Styles (Optional - keep if needed) */
|
596 |
.dark .gradio-container { background-color: #111827 !important; }
|
597 |
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
|
598 |
.dark #header h3 { color: #9ca3af; }
|
|
|
614 |
.dark .source-title { color: #60a5fa; }
|
615 |
.dark .source-title:hover { color: #93c5fd; }
|
616 |
.dark .source-snippet { color: #d1d5db; }
|
617 |
+
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;}
|
618 |
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
|
619 |
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
|
620 |
.dark .examples-container { background: #374151; border-color: #4b5563; }
|
|
|
631 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
632 |
.dark .markdown-content th { background: #374151 !important; }
|
633 |
.dark .accordion { background: #374151 !important; border-color: #4b5563 !important; }
|
634 |
+
.dark .accordion > .label-wrap { color: #d1d5db !important; }
|
635 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
636 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
637 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
638 |
+
.dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; }
|
639 |
.dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; }
|
640 |
.dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; }
|
641 |
.dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; }
|
|
|
644 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
645 |
"""
|
646 |
|
647 |
+
import sys # Needed for sys.path manipulation in TTS setup
|
648 |
+
|
649 |
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
650 |
+
# Use gr.State to store the chat history in the 'messages' format
|
651 |
+
chat_history_state = gr.State([])
|
652 |
|
653 |
+
with gr.Column(): # Main container
|
654 |
+
# Header
|
655 |
with gr.Column(elem_id="header"):
|
656 |
gr.Markdown("# 🔍 AI Search Assistant")
|
657 |
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
658 |
|
659 |
+
# Search Area
|
660 |
with gr.Column(elem_classes="search-container"):
|
661 |
+
with gr.Row(elem_classes="search-box", equal_height=False):
|
662 |
+
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
663 |
+
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
664 |
+
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
665 |
|
666 |
+
# Results Area
|
667 |
with gr.Row(elem_classes="results-container", equal_height=False):
|
668 |
+
# Left Column: Answer & History
|
669 |
+
with gr.Column(scale=3):
|
670 |
+
# Chatbot display (uses 'messages' format now)
|
671 |
+
chatbot_display = gr.Chatbot(
|
672 |
+
label="Conversation",
|
673 |
+
bubble_full_width=True,
|
674 |
+
height=500,
|
675 |
+
elem_classes="chat-history",
|
676 |
+
type="messages", # Use the recommended type
|
677 |
+
avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else None) # Optional: Add avatar for assistant
|
678 |
+
)
|
679 |
+
# Separate Markdown for status/intermediate answer
|
680 |
+
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
|
681 |
+
# Audio Output
|
682 |
+
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
|
|
|
|
|
|
|
|
|
|
683 |
|
684 |
# Right Column: Sources
|
685 |
+
with gr.Column(scale=2):
|
686 |
+
with gr.Column(elem_classes="sources-box"):
|
687 |
gr.Markdown("### Sources")
|
688 |
+
sources_output_html = gr.HTML(value="<div class='no-sources'>Sources will appear here.</div>")
|
689 |
|
690 |
+
# Examples Area
|
691 |
with gr.Row(elem_classes="examples-container"):
|
692 |
+
# REMOVED elem_classes from gr.Examples
|
693 |
gr.Examples(
|
694 |
examples=[
|
695 |
"Latest news about renewable energy",
|
696 |
+
"Explain Large Language Models (LLMs)",
|
697 |
+
"Symptoms and prevention tips for the flu",
|
698 |
"Compare Python and JavaScript for web development",
|
699 |
+
"Summarize the main points of the Paris Agreement",
|
700 |
],
|
701 |
+
inputs=search_input,
|
702 |
label="Try these examples:",
|
|
|
703 |
)
|
704 |
|
705 |
+
# --- Event Handling Setup ---
|
706 |
+
# Define the inputs and outputs for the Gradio event triggers
|
707 |
+
event_inputs = [search_input, chat_history_state, voice_select]
|
708 |
+
event_outputs = [
|
709 |
+
chatbot_display, # Updated chat history
|
710 |
+
answer_status_output, # Status or final answer text
|
711 |
+
sources_output_html, # Formatted sources
|
712 |
+
audio_player, # Audio data
|
713 |
+
search_btn # Button state (enabled/disabled)
|
714 |
+
]
|
715 |
+
|
716 |
+
# Create a wrapper to adapt the async generator for Gradio's streaming updates
|
717 |
+
async def stream_interaction_updates(query, history, voice_display_name):
|
718 |
+
try:
|
719 |
+
# Iterate through the states yielded by the handler
|
720 |
+
async for state_update in handle_interaction(query, history, voice_display_name):
|
721 |
+
yield state_update # Yield the tuple of output values
|
722 |
+
except Exception as e:
|
723 |
+
print(f"[Gradio Stream] Error during interaction: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
724 |
print(traceback.format_exc())
|
725 |
+
# Yield a final error state to the UI
|
726 |
+
error_history = history + [{"role":"user", "content":query}, {"role":"assistant", "content":f"*Error: {e}*"}]
|
|
|
727 |
yield (
|
728 |
+
error_history,
|
729 |
+
f"An error occurred: {e}",
|
730 |
+
"<div class='error'>Request failed.</div>",
|
731 |
+
None,
|
732 |
+
gr.Button(value="Search", interactive=True)
|
733 |
)
|
734 |
+
finally:
|
735 |
+
# Clear the text input after processing is complete (or errored out)
|
736 |
+
# We need to yield the final state *plus* the cleared input
|
737 |
+
# This requires adding search_input to the outputs list for the event triggers
|
738 |
+
# For now, let's not clear it automatically to avoid complexity.
|
739 |
+
# yield (*final_state_tuple, gr.Textbox(value="")) # Example if clearing input
|
740 |
+
print("[Gradio Stream] Interaction stream finished.")
|
741 |
|
|
|
|
|
|
|
742 |
|
743 |
+
# Connect the streaming function to the button click and input submit events
|
744 |
search_btn.click(
|
745 |
+
fn=stream_interaction_updates,
|
746 |
+
inputs=event_inputs,
|
747 |
+
outputs=event_outputs
|
748 |
)
|
|
|
749 |
search_input.submit(
|
750 |
+
fn=stream_interaction_updates,
|
751 |
+
inputs=event_inputs,
|
752 |
+
outputs=event_outputs
|
753 |
)
|
754 |
|
755 |
if __name__ == "__main__":
|
756 |
print("Starting Gradio application...")
|
|
|
757 |
demo.queue(max_size=20).launch(
|
758 |
+
debug=True,
|
759 |
+
share=True,
|
760 |
+
# server_name="0.0.0.0" # Optional: Bind to all interfaces
|
761 |
)
|