Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,102 +1,94 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces # Required for ZeroGPU
|
3 |
-
from transformers import pipeline
|
4 |
from duckduckgo_search import DDGS
|
5 |
from datetime import datetime
|
|
|
6 |
|
7 |
# Initialize a lightweight text generation model on CPU
|
8 |
-
generator = pipeline("text-generation", model="distilgpt2", device=-1) # -1 ensures CPU
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") # For better token handling
|
10 |
|
11 |
# Web search function (CPU-based)
|
12 |
-
def get_web_results(query: str, max_results: int =
|
13 |
-
"""Fetch web results synchronously for Zero GPU compatibility
|
14 |
try:
|
15 |
with DDGS() as ddgs:
|
16 |
results = list(ddgs.text(query, max_results=max_results))
|
17 |
-
|
18 |
-
filtered_results = [
|
19 |
-
{"title": r.get("title", "No Title"), "snippet": r["body"], "url": r["href"]}
|
20 |
-
for r in results
|
21 |
-
if any(domain in r["href"] for domain in ["geeksforgeeks.org", "realpython.com", "coursera.org", "udemy.com", "stackexchange.com"])
|
22 |
-
or "edu" in r["href"]
|
23 |
-
]
|
24 |
-
return filtered_results if filtered_results else results # Fall back to all results if no high-quality ones found
|
25 |
except Exception as e:
|
26 |
return [{"title": "Error", "snippet": f"Failed to fetch results: {str(e)}", "url": "#"}]
|
27 |
|
28 |
-
|
|
|
29 |
def format_prompt(query: str, web_results: list) -> str:
|
30 |
-
"""Create a
|
31 |
-
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S
|
32 |
-
context = "
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
Query: {query}
|
35 |
-
Web Context
|
36 |
{context}
|
37 |
-
Provide a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
@spaces.GPU(duration=180) # Increased duration for more detailed generation
|
41 |
-
def generate_answer(prompt: str) -> str:
|
42 |
-
"""Generate a detailed, high-quality research answer using GPU."""
|
43 |
-
# Tokenize and truncate prompt to fit within limits
|
44 |
-
tokenized_prompt = tokenizer(prompt, truncation=True, max_length=200, return_tensors="pt")
|
45 |
-
input_ids = tokenized_prompt["input_ids"]
|
46 |
-
|
47 |
-
# Generate response with more tokens and better sampling for quality
|
48 |
-
response = generator(
|
49 |
-
prompt,
|
50 |
-
max_new_tokens=400, # Increased for more detailed output
|
51 |
-
num_return_sequences=1,
|
52 |
-
truncation=True,
|
53 |
-
do_sample=True,
|
54 |
-
temperature=0.7, # Controlled randomness for coherent, detailed output
|
55 |
-
top_p=0.9, # Focus on top probabilities for quality
|
56 |
-
top_k=50 # Limit to top 50 tokens for better coherence
|
57 |
-
)[0]["generated_text"]
|
58 |
-
|
59 |
-
answer_start = response.find("Provide a detailed") + len("Provide a detailed, step-by-step answer in markdown format with clear headings (e.g., #, ##), bullet points, and citations [1], [2], etc. Ensure the answer is structured, relevant, and visually appealing, addressing the user's intent comprehensively. If the query is informational (e.g., 'what,' 'how,' 'why'), offer in-depth insights, examples, and practical advice. If no high-quality answer is possible, state, 'I couldn’t find sufficient high-quality information to provide a detailed answer, but here’s what I found:' followed by a summary of web results.")
|
60 |
-
return response[answer_start:].strip() if answer_start > -1 else "I couldn’t find sufficient high-quality information to provide a detailed answer, but here’s what I found:\n\n" + "\n".join([f"- {r['title']}: {r['snippet']}" for r in get_web_results(query, max_results=3)])
|
61 |
|
62 |
-
|
|
|
63 |
def format_sources(web_results: list) -> str:
|
64 |
-
"""Create
|
65 |
if not web_results:
|
66 |
-
return "<div
|
67 |
-
|
68 |
sources_html = "<div class='sources-list'>"
|
69 |
for i, res in enumerate(web_results, 1):
|
70 |
sources_html += f"""
|
71 |
-
<div class='source-item'>
|
72 |
<span class='source-number'>[{i}]</span>
|
73 |
-
<a href='{res['url']}' target='_blank'
|
74 |
-
<p class='source-snippet'>{res['snippet'][:150]}...</p>
|
75 |
</div>
|
76 |
"""
|
77 |
sources_html += "</div>"
|
78 |
return sources_html
|
79 |
|
80 |
-
# Main processing function
|
81 |
def process_deep_research(query: str, history: list):
|
82 |
-
"""Handle the deep research process
|
83 |
-
|
84 |
-
history = []
|
85 |
-
|
86 |
# Fetch web results (CPU)
|
87 |
web_results = get_web_results(query)
|
88 |
-
sources_html = format_sources(web_results)
|
89 |
|
90 |
-
# Generate answer (GPU
|
91 |
prompt = format_prompt(query, web_results)
|
92 |
-
answer = generate_answer(prompt)
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
97 |
return answer, sources_html, new_history
|
98 |
|
99 |
-
|
|
|
|
|
100 |
css = """
|
101 |
body {
|
102 |
font-family: 'Arial', sans-serif;
|
@@ -104,165 +96,104 @@ body {
|
|
104 |
color: #ffffff;
|
105 |
}
|
106 |
.gradio-container {
|
107 |
-
max-width:
|
108 |
margin: 0 auto;
|
109 |
-
padding:
|
110 |
}
|
111 |
.header {
|
112 |
text-align: center;
|
113 |
-
padding:
|
114 |
background: linear-gradient(135deg, #2c3e50, #3498db);
|
115 |
-
border-radius:
|
116 |
-
margin-bottom:
|
117 |
-
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
|
118 |
}
|
119 |
-
.header h1 { font-size:
|
120 |
-
.header p { color: #bdc3c7; font-size:
|
121 |
.search-box {
|
122 |
background: #2c2c2c;
|
123 |
-
padding:
|
124 |
-
border-radius:
|
125 |
-
box-shadow: 0
|
126 |
-
margin-bottom: 20px;
|
127 |
}
|
128 |
.search-box input {
|
129 |
-
background: #
|
130 |
color: #ffffff !important;
|
131 |
border: none !important;
|
132 |
-
border-radius:
|
133 |
-
padding: 10px;
|
134 |
-
font-size: 1em;
|
135 |
}
|
136 |
.search-box button {
|
137 |
background: #3498db !important;
|
138 |
border: none !important;
|
139 |
-
border-radius:
|
140 |
-
padding: 10px 20px;
|
141 |
-
font-size: 1em;
|
142 |
-
transition: background 0.3s;
|
143 |
}
|
144 |
-
.search-box button:hover { background: #2980b9 !important; }
|
145 |
.results-container {
|
146 |
-
margin-top:
|
147 |
display: flex;
|
148 |
-
|
|
|
149 |
}
|
150 |
.answer-box {
|
151 |
-
flex: 2;
|
152 |
background: #2c2c2c;
|
153 |
-
padding:
|
154 |
-
border-radius:
|
155 |
-
box-shadow: 0
|
156 |
-
overflow-y: auto;
|
157 |
-
max-height: 600px;
|
158 |
-
}
|
159 |
-
.answer-box .markdown {
|
160 |
-
color: #ecf0f1;
|
161 |
-
line-height: 1.6;
|
162 |
-
}
|
163 |
-
.answer-box .markdown h1 {
|
164 |
-
color: #ffffff;
|
165 |
-
border-bottom: 2px solid #3498db;
|
166 |
-
padding-bottom: 10px;
|
167 |
-
}
|
168 |
-
.answer-box .markdown h2 {
|
169 |
-
color: #a8b5c3;
|
170 |
-
margin-top: 20px;
|
171 |
-
}
|
172 |
-
.answer-box .markdown ul {
|
173 |
-
list-style-type: none;
|
174 |
-
padding-left: 20px;
|
175 |
-
}
|
176 |
-
.answer-box .markdown ul li::before {
|
177 |
-
content: "•";
|
178 |
-
color: #3498db;
|
179 |
-
display: inline-block;
|
180 |
-
width: 1em;
|
181 |
-
margin-left: -1em;
|
182 |
}
|
183 |
-
.answer-box .markdown
|
184 |
.sources-list {
|
185 |
-
flex: 1;
|
186 |
background: #2c2c2c;
|
187 |
-
padding: 15px;
|
188 |
-
border-radius: 12px;
|
189 |
-
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
|
190 |
-
max-height: 600px;
|
191 |
-
overflow-y: auto;
|
192 |
-
}
|
193 |
-
.no-sources { color: #a8a9ab; font-style: italic; }
|
194 |
-
.source-item {
|
195 |
-
margin-bottom: 15px;
|
196 |
padding: 10px;
|
197 |
-
background: #3a3a3e;
|
198 |
border-radius: 8px;
|
199 |
-
|
200 |
}
|
201 |
-
.source-item
|
202 |
-
.source-number { color: #3498db; font-weight: bold; margin-right:
|
203 |
-
.source-
|
204 |
-
.source-
|
205 |
.history-box {
|
206 |
-
margin-top:
|
207 |
background: #2c2c2c;
|
208 |
-
padding:
|
209 |
-
border-radius:
|
210 |
-
|
211 |
-
overflow-y: auto;
|
212 |
-
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
|
213 |
}
|
|
|
214 |
"""
|
215 |
|
216 |
# Gradio app setup with Blocks
|
217 |
with gr.Blocks(title="Deep Research Engine - ZeroGPU", css=css) as demo:
|
218 |
-
history_state = gr.State([])
|
219 |
-
|
220 |
# Header
|
221 |
with gr.Column(elem_classes="header"):
|
222 |
gr.Markdown("# Deep Research Engine")
|
223 |
-
gr.Markdown("
|
224 |
|
225 |
# Search input and button
|
226 |
with gr.Row(elem_classes="search-box"):
|
227 |
-
search_input = gr.Textbox(label="", placeholder="Ask anything
|
228 |
search_btn = gr.Button("Research", variant="primary")
|
229 |
|
230 |
-
# Results layout
|
231 |
-
|
232 |
-
with gr.Column():
|
233 |
-
answer_output = gr.Markdown(label="Research Findings", elem_classes="answer-box")
|
234 |
-
with gr.Column():
|
235 |
-
sources_output = gr.HTML(label="Sources", elem_classes="sources-list")
|
236 |
|
237 |
-
# Chat history (using messages format)
|
238 |
-
with gr.Row():
|
239 |
-
history_display = gr.Chatbot(label="History", elem_classes="history-box", type="messages")
|
240 |
|
241 |
-
# Event handling
|
242 |
-
def handle_search(query,
|
243 |
-
answer, sources, new_history = process_deep_research(query,
|
244 |
-
return
|
245 |
|
246 |
search_btn.click(
|
247 |
fn=handle_search,
|
248 |
-
inputs=[search_input,
|
249 |
-
outputs=[
|
250 |
-
).then(
|
251 |
-
fn=lambda x: x,
|
252 |
-
inputs=[history_display],
|
253 |
-
outputs=[history_state]
|
254 |
)
|
255 |
-
|
256 |
search_input.submit(
|
257 |
fn=handle_search,
|
258 |
-
inputs=[search_input,
|
259 |
-
outputs=[
|
260 |
-
).then(
|
261 |
-
fn=lambda x: x,
|
262 |
-
inputs=[history_display],
|
263 |
-
outputs=[history_state]
|
264 |
)
|
265 |
|
|
|
266 |
# Launch the app
|
267 |
if __name__ == "__main__":
|
268 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import spaces # Required for ZeroGPU
|
3 |
+
from transformers import pipeline
|
4 |
from duckduckgo_search import DDGS
|
5 |
from datetime import datetime
|
6 |
+
import re # Added for regular expressions
|
7 |
|
8 |
# Initialize a lightweight text generation model on CPU
|
9 |
+
generator = pipeline("text-generation", model="distilgpt2", device=-1) # -1 ensures CPU
|
|
|
10 |
|
11 |
# Web search function (CPU-based)
|
12 |
+
def get_web_results(query: str, max_results: int = 3) -> list:
|
13 |
+
"""Fetch web results synchronously for Zero GPU compatibility."""
|
14 |
try:
|
15 |
with DDGS() as ddgs:
|
16 |
results = list(ddgs.text(query, max_results=max_results))
|
17 |
+
return [{"title": r.get("title", "No Title"), "snippet": r["body"], "url": r["href"]} for r in results]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
except Exception as e:
|
19 |
return [{"title": "Error", "snippet": f"Failed to fetch results: {str(e)}", "url": "#"}]
|
20 |
|
21 |
+
|
22 |
+
# Format prompt for the AI model (CPU-based) - IMPROVED
|
23 |
def format_prompt(query: str, web_results: list) -> str:
|
24 |
+
"""Create a concise prompt with web context, explicitly instructing citation."""
|
25 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
26 |
+
context = ""
|
27 |
+
for i, r in enumerate(web_results, 1): # Start index at 1 for citations
|
28 |
+
context += f"- [{i}] {r['title']}: {r['snippet']}\n"
|
29 |
+
|
30 |
+
return f"""
|
31 |
+
Time: {current_time}
|
32 |
Query: {query}
|
33 |
+
Web Context:
|
34 |
{context}
|
35 |
+
Provide a concise answer in markdown format. Cite relevant sources using the bracketed numbers provided (e.g., [1], [2]). Focus on direct answers. If the context doesn't contain the answer, say that the information wasn't found in the provided sources.
|
36 |
+
""".strip()
|
37 |
+
|
38 |
+
|
39 |
+
# GPU-decorated answer generation - IMPROVED
|
40 |
+
@spaces.GPU(duration=120) # Allow up to 120 seconds of GPU time
|
41 |
+
def generate_answer(prompt: str, web_results: list) -> str:
|
42 |
+
"""Generate and post-process the research answer."""
|
43 |
+
response = generator(prompt, max_new_tokens=150, num_return_sequences=1, truncation=True, return_full_text=False)[0]["generated_text"]
|
44 |
+
|
45 |
+
# Basic post-processing (can be expanded):
|
46 |
+
response = response.strip()
|
47 |
+
|
48 |
+
# Replace citation placeholders *if* they exist in the web_results.
|
49 |
+
for i in range(1, len(web_results) + 1):
|
50 |
+
response = response.replace(f"[{i}]", f"[^{i}^](#{i})") #Markdown link to source
|
51 |
|
52 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
|
55 |
+
# Format sources for display (CPU-based) - IMPROVED
|
56 |
def format_sources(web_results: list) -> str:
|
57 |
+
"""Create an HTML list of sources with anchors."""
|
58 |
if not web_results:
|
59 |
+
return "<div>No sources available</div>"
|
|
|
60 |
sources_html = "<div class='sources-list'>"
|
61 |
for i, res in enumerate(web_results, 1):
|
62 |
sources_html += f"""
|
63 |
+
<div class='source-item' id='{i}'>
|
64 |
<span class='source-number'>[{i}]</span>
|
65 |
+
<a href='{res['url']}' target='_blank'>{res['title']}</a>: {res['snippet'][:100]}...
|
|
|
66 |
</div>
|
67 |
"""
|
68 |
sources_html += "</div>"
|
69 |
return sources_html
|
70 |
|
71 |
+
# Main processing function - IMPROVED
|
72 |
def process_deep_research(query: str, history: list):
|
73 |
+
"""Handle the deep research process, including history updates."""
|
74 |
+
|
|
|
|
|
75 |
# Fetch web results (CPU)
|
76 |
web_results = get_web_results(query)
|
|
|
77 |
|
78 |
+
# Generate answer (GPU)
|
79 |
prompt = format_prompt(query, web_results)
|
80 |
+
answer = generate_answer(prompt, web_results)
|
81 |
+
|
82 |
+
sources_html = format_sources(web_results)
|
83 |
+
|
84 |
+
# Update history (using the Gradio Chatbot's expected format)
|
85 |
+
new_history = history + [[query, answer + "\n\n" + sources_html]]
|
86 |
+
|
87 |
return answer, sources_html, new_history
|
88 |
|
89 |
+
|
90 |
+
|
91 |
+
# Custom CSS - Slightly adjusted for better spacing
|
92 |
css = """
|
93 |
body {
|
94 |
font-family: 'Arial', sans-serif;
|
|
|
96 |
color: #ffffff;
|
97 |
}
|
98 |
.gradio-container {
|
99 |
+
max-width: 900px;
|
100 |
margin: 0 auto;
|
101 |
+
padding: 15px;
|
102 |
}
|
103 |
.header {
|
104 |
text-align: center;
|
105 |
+
padding: 15px;
|
106 |
background: linear-gradient(135deg, #2c3e50, #3498db);
|
107 |
+
border-radius: 8px;
|
108 |
+
margin-bottom: 15px;
|
|
|
109 |
}
|
110 |
+
.header h1 { font-size: 2em; margin: 0; color: #ffffff; }
|
111 |
+
.header p { color: #bdc3c7; font-size: 1em; }
|
112 |
.search-box {
|
113 |
background: #2c2c2c;
|
114 |
+
padding: 10px;
|
115 |
+
border-radius: 8px;
|
116 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
|
|
|
117 |
}
|
118 |
.search-box input {
|
119 |
+
background: #3a3a3a !important;
|
120 |
color: #ffffff !important;
|
121 |
border: none !important;
|
122 |
+
border-radius: 5px !important;
|
|
|
|
|
123 |
}
|
124 |
.search-box button {
|
125 |
background: #3498db !important;
|
126 |
border: none !important;
|
127 |
+
border-radius: 5px !important;
|
|
|
|
|
|
|
128 |
}
|
|
|
129 |
.results-container {
|
130 |
+
margin-top: 15px;
|
131 |
display: flex;
|
132 |
+
flex-direction: column; /* Stack answer and sources vertically */
|
133 |
+
gap: 15px;
|
134 |
}
|
135 |
.answer-box {
|
136 |
+
/* flex: 2; Removed flex property */
|
137 |
background: #2c2c2c;
|
138 |
+
padding: 15px;
|
139 |
+
border-radius: 8px;
|
140 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
}
|
142 |
+
.answer-box .markdown { color: #ecf0f1; line-height: 1.5; }
|
143 |
.sources-list {
|
144 |
+
/* flex: 1; Removed flex property */
|
145 |
background: #2c2c2c;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
padding: 10px;
|
|
|
147 |
border-radius: 8px;
|
148 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
|
149 |
}
|
150 |
+
.source-item { margin-bottom: 8px; }
|
151 |
+
.source-number { color: #3498db; font-weight: bold; margin-right: 5px; }
|
152 |
+
.source-item a { color: #3498db; text-decoration: none; }
|
153 |
+
.source-item a:hover { text-decoration: underline; }
|
154 |
.history-box {
|
155 |
+
margin-top: 15px;
|
156 |
background: #2c2c2c;
|
157 |
+
padding: 10px;
|
158 |
+
border-radius: 8px;
|
159 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
|
|
|
|
|
160 |
}
|
161 |
+
|
162 |
"""
|
163 |
|
164 |
# Gradio app setup with Blocks
|
165 |
with gr.Blocks(title="Deep Research Engine - ZeroGPU", css=css) as demo:
|
|
|
|
|
166 |
# Header
|
167 |
with gr.Column(elem_classes="header"):
|
168 |
gr.Markdown("# Deep Research Engine")
|
169 |
+
gr.Markdown("Fast, in-depth answers powered by web insights (ZeroGPU).")
|
170 |
|
171 |
# Search input and button
|
172 |
with gr.Row(elem_classes="search-box"):
|
173 |
+
search_input = gr.Textbox(label="", placeholder="Ask anything...", lines=2)
|
174 |
search_btn = gr.Button("Research", variant="primary")
|
175 |
|
176 |
+
# Results layout - Now using a single Chatbot component
|
177 |
+
history = gr.Chatbot(elem_classes="history-box", label="Research Results & History")
|
|
|
|
|
|
|
|
|
178 |
|
|
|
|
|
|
|
179 |
|
180 |
+
# Event handling - Simplified
|
181 |
+
def handle_search(query, history_data):
|
182 |
+
answer, sources, new_history = process_deep_research(query, history_data)
|
183 |
+
return new_history
|
184 |
|
185 |
search_btn.click(
|
186 |
fn=handle_search,
|
187 |
+
inputs=[search_input, history],
|
188 |
+
outputs=[history]
|
|
|
|
|
|
|
|
|
189 |
)
|
|
|
190 |
search_input.submit(
|
191 |
fn=handle_search,
|
192 |
+
inputs=[search_input, history],
|
193 |
+
outputs=[history]
|
|
|
|
|
|
|
|
|
194 |
)
|
195 |
|
196 |
+
|
197 |
# Launch the app
|
198 |
if __name__ == "__main__":
|
199 |
demo.launch()
|