sagar007 commited on
Commit
d64ad42
·
verified ·
1 Parent(s): 12a0d68

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -168
app.py CHANGED
@@ -1,102 +1,94 @@
1
  import gradio as gr
2
  import spaces # Required for ZeroGPU
3
- from transformers import pipeline, AutoTokenizer
4
  from duckduckgo_search import DDGS
5
  from datetime import datetime
 
6
 
7
  # Initialize a lightweight text generation model on CPU
8
- generator = pipeline("text-generation", model="distilgpt2", device=-1) # -1 ensures CPU by default
9
- tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") # For better token handling
10
 
11
  # Web search function (CPU-based)
12
- def get_web_results(query: str, max_results: int = 5) -> list:
13
- """Fetch web results synchronously for Zero GPU compatibility, focusing on high-quality sources."""
14
  try:
15
  with DDGS() as ddgs:
16
  results = list(ddgs.text(query, max_results=max_results))
17
- # Filter for high-quality, relevant results (e.g., educational, authoritative sites)
18
- filtered_results = [
19
- {"title": r.get("title", "No Title"), "snippet": r["body"], "url": r["href"]}
20
- for r in results
21
- if any(domain in r["href"] for domain in ["geeksforgeeks.org", "realpython.com", "coursera.org", "udemy.com", "stackexchange.com"])
22
- or "edu" in r["href"]
23
- ]
24
- return filtered_results if filtered_results else results # Fall back to all results if no high-quality ones found
25
  except Exception as e:
26
  return [{"title": "Error", "snippet": f"Failed to fetch results: {str(e)}", "url": "#"}]
27
 
28
- # Format prompt for the AI model to generate high-quality, structured answers
 
29
  def format_prompt(query: str, web_results: list) -> str:
30
- """Create a detailed prompt with web context to guide the model toward high-quality answers."""
31
- current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S IST")
32
- context = "\n".join([f"- {r['title']}: {r['snippet']}" for r in web_results])
33
- return f"""Current Time: {current_time}
 
 
 
 
34
  Query: {query}
35
- Web Context (High-Quality Sources):
36
  {context}
37
- Provide a detailed, step-by-step answer in markdown format with clear headings (e.g., #, ##), bullet points, and citations [1], [2], etc. Ensure the answer is structured, relevant, and visually appealing, addressing the user's intent comprehensively. If the query is informational (e.g., 'what,' 'how,' 'why'), offer in-depth insights, examples, and practical advice. If no high-quality answer is possible, state, 'I couldn’t find sufficient high-quality information to provide a detailed answer, but here’s what I found:' followed by a summary of web results."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- # GPU-decorated answer generation for high-quality output
40
- @spaces.GPU(duration=180) # Increased duration for more detailed generation
41
- def generate_answer(prompt: str) -> str:
42
- """Generate a detailed, high-quality research answer using GPU."""
43
- # Tokenize and truncate prompt to fit within limits
44
- tokenized_prompt = tokenizer(prompt, truncation=True, max_length=200, return_tensors="pt")
45
- input_ids = tokenized_prompt["input_ids"]
46
-
47
- # Generate response with more tokens and better sampling for quality
48
- response = generator(
49
- prompt,
50
- max_new_tokens=400, # Increased for more detailed output
51
- num_return_sequences=1,
52
- truncation=True,
53
- do_sample=True,
54
- temperature=0.7, # Controlled randomness for coherent, detailed output
55
- top_p=0.9, # Focus on top probabilities for quality
56
- top_k=50 # Limit to top 50 tokens for better coherence
57
- )[0]["generated_text"]
58
-
59
- answer_start = response.find("Provide a detailed") + len("Provide a detailed, step-by-step answer in markdown format with clear headings (e.g., #, ##), bullet points, and citations [1], [2], etc. Ensure the answer is structured, relevant, and visually appealing, addressing the user's intent comprehensively. If the query is informational (e.g., 'what,' 'how,' 'why'), offer in-depth insights, examples, and practical advice. If no high-quality answer is possible, state, 'I couldn’t find sufficient high-quality information to provide a detailed answer, but here’s what I found:' followed by a summary of web results.")
60
- return response[answer_start:].strip() if answer_start > -1 else "I couldn’t find sufficient high-quality information to provide a detailed answer, but here’s what I found:\n\n" + "\n".join([f"- {r['title']}: {r['snippet']}" for r in get_web_results(query, max_results=3)])
61
 
62
- # Format sources for display with enhanced styling
 
63
  def format_sources(web_results: list) -> str:
64
- """Create a styled HTML list of sources with better visuals for high-quality presentation."""
65
  if not web_results:
66
- return "<div class='no-sources'>No sources available</div>"
67
-
68
  sources_html = "<div class='sources-list'>"
69
  for i, res in enumerate(web_results, 1):
70
  sources_html += f"""
71
- <div class='source-item'>
72
  <span class='source-number'>[{i}]</span>
73
- <a href='{res['url']}' target='_blank' class='source-link'>{res['title']}</a>
74
- <p class='source-snippet'>{res['snippet'][:150]}...</p>
75
  </div>
76
  """
77
  sources_html += "</div>"
78
  return sources_html
79
 
80
- # Main processing function
81
  def process_deep_research(query: str, history: list):
82
- """Handle the deep research process for any query with high-quality output."""
83
- if not history:
84
- history = []
85
-
86
  # Fetch web results (CPU)
87
  web_results = get_web_results(query)
88
- sources_html = format_sources(web_results)
89
 
90
- # Generate answer (GPU via @spaces.GPU)
91
  prompt = format_prompt(query, web_results)
92
- answer = generate_answer(prompt)
93
-
94
- # Convert history to messages format (role/content)
95
- new_history = history + [{"role": "user", "content": query}, {"role": "assistant", "content": answer}]
96
-
 
 
97
  return answer, sources_html, new_history
98
 
99
- # Enhanced CSS for a polished, visually appealing UI
 
 
100
  css = """
101
  body {
102
  font-family: 'Arial', sans-serif;
@@ -104,165 +96,104 @@ body {
104
  color: #ffffff;
105
  }
106
  .gradio-container {
107
- max-width: 1200px;
108
  margin: 0 auto;
109
- padding: 20px;
110
  }
111
  .header {
112
  text-align: center;
113
- padding: 20px;
114
  background: linear-gradient(135deg, #2c3e50, #3498db);
115
- border-radius: 12px;
116
- margin-bottom: 20px;
117
- box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
118
  }
119
- .header h1 { font-size: 2.5em; margin: 0; color: #ffffff; text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.5); }
120
- .header p { color: #bdc3c7; font-size: 1.1em; }
121
  .search-box {
122
  background: #2c2c2c;
123
- padding: 15px;
124
- border-radius: 12px;
125
- box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
126
- margin-bottom: 20px;
127
  }
128
  .search-box input {
129
- background: #3a3a3e !important;
130
  color: #ffffff !important;
131
  border: none !important;
132
- border-radius: 8px !important;
133
- padding: 10px;
134
- font-size: 1em;
135
  }
136
  .search-box button {
137
  background: #3498db !important;
138
  border: none !important;
139
- border-radius: 8px !important;
140
- padding: 10px 20px;
141
- font-size: 1em;
142
- transition: background 0.3s;
143
  }
144
- .search-box button:hover { background: #2980b9 !important; }
145
  .results-container {
146
- margin-top: 20px;
147
  display: flex;
148
- gap: 20px;
 
149
  }
150
  .answer-box {
151
- flex: 2;
152
  background: #2c2c2c;
153
- padding: 20px;
154
- border-radius: 12px;
155
- box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
156
- overflow-y: auto;
157
- max-height: 600px;
158
- }
159
- .answer-box .markdown {
160
- color: #ecf0f1;
161
- line-height: 1.6;
162
- }
163
- .answer-box .markdown h1 {
164
- color: #ffffff;
165
- border-bottom: 2px solid #3498db;
166
- padding-bottom: 10px;
167
- }
168
- .answer-box .markdown h2 {
169
- color: #a8b5c3;
170
- margin-top: 20px;
171
- }
172
- .answer-box .markdown ul {
173
- list-style-type: none;
174
- padding-left: 20px;
175
- }
176
- .answer-box .markdown ul li::before {
177
- content: "•";
178
- color: #3498db;
179
- display: inline-block;
180
- width: 1em;
181
- margin-left: -1em;
182
  }
183
- .answer-box .markdown a { color: #60a5fa; text-decoration: underline; }
184
  .sources-list {
185
- flex: 1;
186
  background: #2c2c2c;
187
- padding: 15px;
188
- border-radius: 12px;
189
- box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
190
- max-height: 600px;
191
- overflow-y: auto;
192
- }
193
- .no-sources { color: #a8a9ab; font-style: italic; }
194
- .source-item {
195
- margin-bottom: 15px;
196
  padding: 10px;
197
- background: #3a3a3e;
198
  border-radius: 8px;
199
- transition: background 0.2s;
200
  }
201
- .source-item:hover { background: #4a4b4e; }
202
- .source-number { color: #3498db; font-weight: bold; margin-right: 10px; }
203
- .source-link { color: #60a5fa; font-weight: 500; display: block; margin-bottom: 5px; }
204
- .source-snippet { color: #e5e7eb; font-size: 0.9em; line-height: 1.4; }
205
  .history-box {
206
- margin-top: 20px;
207
  background: #2c2c2c;
208
- padding: 15px;
209
- border-radius: 12px;
210
- max-height: 300px;
211
- overflow-y: auto;
212
- box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
213
  }
 
214
  """
215
 
216
  # Gradio app setup with Blocks
217
  with gr.Blocks(title="Deep Research Engine - ZeroGPU", css=css) as demo:
218
- history_state = gr.State([])
219
-
220
  # Header
221
  with gr.Column(elem_classes="header"):
222
  gr.Markdown("# Deep Research Engine")
223
- gr.Markdown("Your gateway to in-depth, high-quality research for any query with real-time web insights.")
224
 
225
  # Search input and button
226
  with gr.Row(elem_classes="search-box"):
227
- search_input = gr.Textbox(label="", placeholder="Ask anything (e.g., 'What are the latest AI trends in 2025?')", lines=2)
228
  search_btn = gr.Button("Research", variant="primary")
229
 
230
- # Results layout
231
- with gr.Row(elem_classes="results-container"):
232
- with gr.Column():
233
- answer_output = gr.Markdown(label="Research Findings", elem_classes="answer-box")
234
- with gr.Column():
235
- sources_output = gr.HTML(label="Sources", elem_classes="sources-list")
236
 
237
- # Chat history (using messages format)
238
- with gr.Row():
239
- history_display = gr.Chatbot(label="History", elem_classes="history-box", type="messages")
240
 
241
- # Event handling
242
- def handle_search(query, history):
243
- answer, sources, new_history = process_deep_research(query, history)
244
- return answer, sources, new_history
245
 
246
  search_btn.click(
247
  fn=handle_search,
248
- inputs=[search_input, history_state],
249
- outputs=[answer_output, sources_output, history_display]
250
- ).then(
251
- fn=lambda x: x,
252
- inputs=[history_display],
253
- outputs=[history_state]
254
  )
255
-
256
  search_input.submit(
257
  fn=handle_search,
258
- inputs=[search_input, history_state],
259
- outputs=[answer_output, sources_output, history_display]
260
- ).then(
261
- fn=lambda x: x,
262
- inputs=[history_display],
263
- outputs=[history_state]
264
  )
265
 
 
266
  # Launch the app
267
  if __name__ == "__main__":
268
  demo.launch()
 
1
  import gradio as gr
2
  import spaces # Required for ZeroGPU
3
+ from transformers import pipeline
4
  from duckduckgo_search import DDGS
5
  from datetime import datetime
6
+ import re # Added for regular expressions
7
 
8
  # Initialize a lightweight text generation model on CPU
9
+ generator = pipeline("text-generation", model="distilgpt2", device=-1) # -1 ensures CPU
 
10
 
11
  # Web search function (CPU-based)
12
+ def get_web_results(query: str, max_results: int = 3) -> list:
13
+ """Fetch web results synchronously for Zero GPU compatibility."""
14
  try:
15
  with DDGS() as ddgs:
16
  results = list(ddgs.text(query, max_results=max_results))
17
+ return [{"title": r.get("title", "No Title"), "snippet": r["body"], "url": r["href"]} for r in results]
 
 
 
 
 
 
 
18
  except Exception as e:
19
  return [{"title": "Error", "snippet": f"Failed to fetch results: {str(e)}", "url": "#"}]
20
 
21
+
22
+ # Format prompt for the AI model (CPU-based) - IMPROVED
23
  def format_prompt(query: str, web_results: list) -> str:
24
+ """Create a concise prompt with web context, explicitly instructing citation."""
25
+ current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
26
+ context = ""
27
+ for i, r in enumerate(web_results, 1): # Start index at 1 for citations
28
+ context += f"- [{i}] {r['title']}: {r['snippet']}\n"
29
+
30
+ return f"""
31
+ Time: {current_time}
32
  Query: {query}
33
+ Web Context:
34
  {context}
35
+ Provide a concise answer in markdown format. Cite relevant sources using the bracketed numbers provided (e.g., [1], [2]). Focus on direct answers. If the context doesn't contain the answer, say that the information wasn't found in the provided sources.
36
+ """.strip()
37
+
38
+
39
+ # GPU-decorated answer generation - IMPROVED
40
+ @spaces.GPU(duration=120) # Allow up to 120 seconds of GPU time
41
+ def generate_answer(prompt: str, web_results: list) -> str:
42
+ """Generate and post-process the research answer."""
43
+ response = generator(prompt, max_new_tokens=150, num_return_sequences=1, truncation=True, return_full_text=False)[0]["generated_text"]
44
+
45
+ # Basic post-processing (can be expanded):
46
+ response = response.strip()
47
+
48
+ # Replace citation placeholders *if* they exist in the web_results.
49
+ for i in range(1, len(web_results) + 1):
50
+ response = response.replace(f"[{i}]", f"[^{i}^](#{i})") #Markdown link to source
51
 
52
+ return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
+
55
+ # Format sources for display (CPU-based) - IMPROVED
56
  def format_sources(web_results: list) -> str:
57
+ """Create an HTML list of sources with anchors."""
58
  if not web_results:
59
+ return "<div>No sources available</div>"
 
60
  sources_html = "<div class='sources-list'>"
61
  for i, res in enumerate(web_results, 1):
62
  sources_html += f"""
63
+ <div class='source-item' id='{i}'>
64
  <span class='source-number'>[{i}]</span>
65
+ <a href='{res['url']}' target='_blank'>{res['title']}</a>: {res['snippet'][:100]}...
 
66
  </div>
67
  """
68
  sources_html += "</div>"
69
  return sources_html
70
 
71
+ # Main processing function - IMPROVED
72
  def process_deep_research(query: str, history: list):
73
+ """Handle the deep research process, including history updates."""
74
+
 
 
75
  # Fetch web results (CPU)
76
  web_results = get_web_results(query)
 
77
 
78
+ # Generate answer (GPU)
79
  prompt = format_prompt(query, web_results)
80
+ answer = generate_answer(prompt, web_results)
81
+
82
+ sources_html = format_sources(web_results)
83
+
84
+ # Update history (using the Gradio Chatbot's expected format)
85
+ new_history = history + [[query, answer + "\n\n" + sources_html]]
86
+
87
  return answer, sources_html, new_history
88
 
89
+
90
+
91
+ # Custom CSS - Slightly adjusted for better spacing
92
  css = """
93
  body {
94
  font-family: 'Arial', sans-serif;
 
96
  color: #ffffff;
97
  }
98
  .gradio-container {
99
+ max-width: 900px;
100
  margin: 0 auto;
101
+ padding: 15px;
102
  }
103
  .header {
104
  text-align: center;
105
+ padding: 15px;
106
  background: linear-gradient(135deg, #2c3e50, #3498db);
107
+ border-radius: 8px;
108
+ margin-bottom: 15px;
 
109
  }
110
+ .header h1 { font-size: 2em; margin: 0; color: #ffffff; }
111
+ .header p { color: #bdc3c7; font-size: 1em; }
112
  .search-box {
113
  background: #2c2c2c;
114
+ padding: 10px;
115
+ border-radius: 8px;
116
+ box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
 
117
  }
118
  .search-box input {
119
+ background: #3a3a3a !important;
120
  color: #ffffff !important;
121
  border: none !important;
122
+ border-radius: 5px !important;
 
 
123
  }
124
  .search-box button {
125
  background: #3498db !important;
126
  border: none !important;
127
+ border-radius: 5px !important;
 
 
 
128
  }
 
129
  .results-container {
130
+ margin-top: 15px;
131
  display: flex;
132
+ flex-direction: column; /* Stack answer and sources vertically */
133
+ gap: 15px;
134
  }
135
  .answer-box {
136
+ /* flex: 2; Removed flex property */
137
  background: #2c2c2c;
138
+ padding: 15px;
139
+ border-radius: 8px;
140
+ box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
  }
142
+ .answer-box .markdown { color: #ecf0f1; line-height: 1.5; }
143
  .sources-list {
144
+ /* flex: 1; Removed flex property */
145
  background: #2c2c2c;
 
 
 
 
 
 
 
 
 
146
  padding: 10px;
 
147
  border-radius: 8px;
148
+ box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
149
  }
150
+ .source-item { margin-bottom: 8px; }
151
+ .source-number { color: #3498db; font-weight: bold; margin-right: 5px; }
152
+ .source-item a { color: #3498db; text-decoration: none; }
153
+ .source-item a:hover { text-decoration: underline; }
154
  .history-box {
155
+ margin-top: 15px;
156
  background: #2c2c2c;
157
+ padding: 10px;
158
+ border-radius: 8px;
159
+ box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
 
 
160
  }
161
+
162
  """
163
 
164
  # Gradio app setup with Blocks
165
  with gr.Blocks(title="Deep Research Engine - ZeroGPU", css=css) as demo:
 
 
166
  # Header
167
  with gr.Column(elem_classes="header"):
168
  gr.Markdown("# Deep Research Engine")
169
+ gr.Markdown("Fast, in-depth answers powered by web insights (ZeroGPU).")
170
 
171
  # Search input and button
172
  with gr.Row(elem_classes="search-box"):
173
+ search_input = gr.Textbox(label="", placeholder="Ask anything...", lines=2)
174
  search_btn = gr.Button("Research", variant="primary")
175
 
176
+ # Results layout - Now using a single Chatbot component
177
+ history = gr.Chatbot(elem_classes="history-box", label="Research Results & History")
 
 
 
 
178
 
 
 
 
179
 
180
+ # Event handling - Simplified
181
+ def handle_search(query, history_data):
182
+ answer, sources, new_history = process_deep_research(query, history_data)
183
+ return new_history
184
 
185
  search_btn.click(
186
  fn=handle_search,
187
+ inputs=[search_input, history],
188
+ outputs=[history]
 
 
 
 
189
  )
 
190
  search_input.submit(
191
  fn=handle_search,
192
+ inputs=[search_input, history],
193
+ outputs=[history]
 
 
 
 
194
  )
195
 
196
+
197
  # Launch the app
198
  if __name__ == "__main__":
199
  demo.launch()