File size: 19,299 Bytes
66b2688 6fd8b9a 4914bcc d3d0026 4914bcc 27ba035 442160d 2de4294 ce51f85 b4f594e 27ba035 b4f594e 442160d 27ba035 b4f594e 27ba035 b4f594e 27ba035 b4f594e 27ba035 b4f594e 27ba035 b4f594e 27ba035 b4f594e 27ba035 2de4294 b5667be b4f594e 442160d 27ba035 2de4294 d591776 4c43f1c d591776 e526a3d d591776 a874bbb e526a3d a874bbb e526a3d a874bbb 311b6bb a874bbb e526a3d a874bbb e526a3d 4914bcc df988c2 4914bcc df988c2 4914bcc df988c2 b4f594e 4914bcc df988c2 4914bcc df988c2 4914bcc b4f594e 4914bcc df988c2 b4f594e df988c2 66b2688 b4f594e a2224a3 577309f ded266c 2de4294 d837fdd a874bbb 311b6bb b4f594e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
import streamlit as st
import pandas as pd
import json
import xml.etree.ElementTree as ET
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
# Inject custom CSS to style the buttons
st.markdown("""
<style>
.stButton>button {
background-color: #4CAF50;
color: white;
width: 100%;
}
</style>
""", unsafe_allow_html=True)
# Initialize page navigation state
if 'page' not in st.session_state:
st.session_state.page = "home" # Default page is "home"
# ----------------- Home Page -----------------
def home_page():
st.title(":green[Lifecycle of a Machine Learning Project]")
st.markdown("Click on a stage to learn more about it.")
# Buttons for various stages of the ML project lifecycle
if st.button(":blue[π Data Collection]"):
st.session_state.page = "data_collection"
if st.button(":blue[π Problem Statement]"):
st.markdown("### Problem Statement\nIdentify the problem you want to solve and set clear objectives and success criteria.")
if st.button(":blue[π οΈ Simple EDA]"):
st.markdown("### Simple EDA\nPerform exploratory data analysis to understand data distributions and relationships.")
if st.button(":blue[π§Ή Data Pre-Processing]"):
st.markdown("### Data Pre-Processing\nConvert raw data into cleaned data.")
if st.button(":blue[π Exploratory Data Analysis (EDA)]"):
st.markdown("### Exploratory Data Analysis (EDA)\nVisualize and analyze the data to understand its distributions and relationships.")
if st.button(":blue[ποΈ Feature Engineering]"):
st.markdown("### Feature Engineering\nCreate new features from existing data.")
if st.button(":blue[π€ Model Training]"):
st.markdown("### Model Training\nTrain the model using the training data and optimize its parameters.")
if st.button(":blue[π§ Model Testing]"):
st.markdown("### Model Testing\nAssess the model's performance using various metrics and cross-validation techniques.")
if st.button(":blue[π Model Deployment]"):
st.markdown("### Model Deployment\nIntegrate the trained model into a production environment and monitor its performance.")
if st.button(":blue[π Monitoring]"):
st.markdown("### Monitoring\nPeriodically retrain the model with new data and update features as needed.")
# ----------------- Data Collection Page -----------------
def data_collection_page():
st.title(":red[Data Collection]")
st.markdown("### Data Collection\nThis page discusses the process of Data Collection.")
st.markdown("Types of Data: **Structured**, **Unstructured**, **Semi-Structured**")
if st.button(":blue[π Structured Data]"):
st.session_state.page = "structured_data"
if st.button(":blue[π· Unstructured Data]"):
st.session_state.page = "unstructured_data"
if st.button(":blue[ποΈ Semi-Structured Data]"):
st.session_state.page = "semi_structured_data"
if st.button("Back to Home"):
st.session_state.page = "home"
# ----------------- Structured Data Page -----------------
def structured_data_page():
st.title(":blue[Structured Data]")
st.markdown("""
Structured data is highly organized and typically stored in tables like spreadsheets or databases. It is easy to search and analyze.
""")
st.markdown("### Examples: Excel files")
if st.button(":green[π Excel]"):
st.session_state.page = "excel"
if st.button("Back to Data Collection"):
st.session_state.page = "data_collection"
# ----------------- Excel Data Page -----------------
def excel_page():
st.title(":green[Excel Data Format]")
st.write("### What is Excel?")
st.write("Excel is a spreadsheet tool for storing data in tabular format with rows and columns. Common file extensions: .xls, .xlsx.")
st.write("### How to Read Excel Files")
st.code("""
import pandas as pd
# Read an Excel file
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
print(df)
""", language='python')
st.write("### Issues Encountered")
st.write("""
- **File not found**: Incorrect file path.
- **Sheet name error**: Specified sheet doesn't exist.
- **Missing libraries**: openpyxl or xlrd might be missing.
""")
st.write("### Solutions to These Issues")
st.code("""
# Install required libraries
# pip install openpyxl xlrd
# Handle missing file
try:
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
except FileNotFoundError:
print("File not found. Check the file path.")
# List available sheet names
excel_file = pd.ExcelFile('data.xlsx')
print(excel_file.sheet_names)
""", language='python')
st.markdown('[Jupyter Notebook](https://colab.research.google.com/drive/1Dv68m9hcRzXsLRlRit0uZc-8CB8U6VV3?usp=sharing)')
if st.button("Back to Structured Data"):
st.session_state.page = "structured_data"
# ----------------- Unstructured Data Page -----------------
def unstructured_data_page():
st.title(":blue[Unstructured Data]")
st.markdown("""
*Unstructured data* does not have a predefined format. It consists of various data types like text, images, videos, and audio files.
Examples include:
- Images (e.g., .jpg, .png)
- Videos (e.g., .mp4, .avi)
- Social media posts
""")
# Button to Navigate to Introduction to Image
if st.button("Introduction to Image"):
st.session_state.page = "introduction_to_image"
# ----------------- Introduction to Image -----------------
def introduction_to_image_page():
st.header("πΌοΈ What is Image")
st.markdown("""
An image is a two-dimensional visual representation of objects, people, scenes, or concepts. It can be captured using devices like cameras, scanners, or created digitally. Images are composed of individual units called pixels, which contain information about brightness and color.
Types of Images:
- **Raster Images (Bitmap)**: Composed of a grid of pixels. Common formats include:
- JPEG
- PNG
- GIF
- **Vector Images**: Defined by mathematical equations and geometric shapes like lines and curves. Common format:
- SVG (Scalable Vector Graphics)
- **3D Images**: Represent objects or scenes in three dimensions, often used for rendering and modeling.
Image Representation:
- **Grayscale Image**: Each pixel has a single intensity value, typically ranging from 0 (black) to 255 (white), representing different shades of gray.
- **Color Image**: Usually represented in the RGB color space, where each pixel consists of three values indicating the intensity of Red, Green, and Blue.
Applications of Images:
- **Photography & Visual Media**: Capturing moments and storytelling.
- **Medical Imaging**: Diagnosing conditions using X-rays, MRIs, etc.
- **Machine Learning & AI**: Tasks like image classification, object detection, and facial recognition.
- **Remote Sensing**: Analyzing geographic and environmental data using satellite imagery.
- **Graphic Design & Art**: Creating creative visual content for marketing and design.
""")
st.code("""
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
# Open an image file
image = Image.open('sample_image.jpg')
image.show()
# Convert image to grayscale
gray_image = image.convert('L')
gray_image.show()
# Resize the image
resized_image = image.resize((200, 200))
resized_image.show()
# Rotate the image by 90 degrees
rotated_image = image.rotate(90)
rotated_image.show()
# Convert the image to a NumPy array and display its shape
image_array = np.array(image)
print(image_array.shape)
# Display the image array as a plot
plt.imshow(image)
plt.title("Original Image")
plt.axis('off')
plt.show()
""", language='python')
st.header("Color Spaces in Machine Learning")
st.markdown("""
A color space is a mathematical model for representing colors. In machine learning, different color spaces can be used for preprocessing and analyzing image data, depending on the task.
Common Color Spaces:
- **RGB (Red, Green, Blue)**: The most common color space for digital images. Each pixel is represented by a combination of three values corresponding to the red, green, and blue channels.
- **Use Cases**: Image classification, general-purpose image analysis.
- **HSV (Hue, Saturation, Value)**: Separates color information (hue) from intensity (value), making it useful for tasks where distinguishing between color variations and intensity is important.
- **Use Cases**: Color-based object detection, image segmentation, color tracking.
- **CMYK (Cyan, Magenta, Yellow, Black)**: Primarily used for printing, not commonly used in machine learning, but useful for preparing images for printers.
- **Use Cases**: Printing applications.
- **LAB (Lightness, A, B)**: Designed to be perceptually uniform, meaning that the perceptual difference between colors is consistent across the space.
- **Use Cases**: Color correction, image processing tasks requiring color consistency.
""")
# Button to Navigate to Operations Using OpenCV
if st.button("Operations Using OpenCV"):
st.session_state.page = "operations_using_opencv"
# Navigation Button
if st.button("Back to Data Collection"):
st.session_state.page = "data_collection"
# ---------- OPERATIONS USING OPENCV --------------------------------
def operations_using_opencv_page():
# Header and description for cv2.imread
st.header("ποΈ Reading an Image with cv2.imread()")
st.markdown("""
**`cv2.imread()` - Read an Image**
**Purpose:** Load an image from a file and convert it to a NumPy array.
**Syntax:**
```python
image = cv2.imread(filename, flags)
```
**Common Flags:**
- `cv2.IMREAD_COLOR` (default, loads a color image).
- `cv2.IMREAD_GRAYSCALE` (loads the image in grayscale).
- `cv2.IMREAD_UNCHANGED` (loads the image as is, with alpha transparency if available).
**Return:**
- A NumPy array representing the image.
- Returns `None` if the image cannot be loaded.
**Example:**
```python
import cv2
image = cv2.imread('image.jpg', cv2.IMREAD_COLOR)
```
""")
# Header and description for cv2.imshow
st.header("πΌοΈ Displaying an Image with cv2.imshow()")
st.markdown("""
**`cv2.imshow()` - Display an Image**
**Purpose:** Show an image in a window.
**Syntax:**
```python
cv2.imshow(window_name, image)
```
**Requirements:**
- Call `cv2.waitKey()` to keep the window open until a key is pressed.
- Call `cv2.destroyAllWindows()` to close the window(s).
**Behavior:**
- Displays the image in a resizable window.
- The image must be a NumPy array.
**Example:**
```python
import cv2
cv2.imshow('Image Window', image)
cv2.waitKey(0) # Wait for a key press
cv2.destroyAllWindows() # Close the window
```
""")
# Header and description for cv2.imwrite
st.header("πΎ Saving an Image with cv2.imwrite()")
st.markdown("""
**`cv2.imwrite()` - Write/Save an Image**
**Purpose:** Save an image to a file.
**Syntax:**
```python
cv2.imwrite(filename, image)
```
**File Format:**
Determined by the file extension (`.jpg`, `.png`, etc.).
**Return:**
- `True` if the image is saved successfully, `False` otherwise.
**Optional Parameters:**
- **JPEG Quality:** `cv2.IMWRITE_JPEG_QUALITY` (0 to 100, default is 95).
- **PNG Compression:** `cv2.IMWRITE_PNG_COMPRESSION` (0 to 9, default is 3).
**Example:**
```python
import cv2
cv2.imwrite('output.jpg', image)
```
""")
##Navigation Button
if st.button("Conversion of Images"):
st.session_state.page = "Conversion_of_Images"
##------------CONVERSION OF IMAGE-----------------
def Conversion_of_Images_page():
# Header for Image Conversion
st.header("π Converting Images Between Different Color Spaces")
st.markdown("""
**OpenCV supports many color spaces for image processing.**
**Common Conversions:**
- **BGR to Grayscale:** Converts a color image to grayscale.
- **BGR to RGB:** Converts from OpenCV's default BGR format to the standard RGB format.
- **BGR to HSV:** Converts the image to the HSV (Hue, Saturation, Value) color space.
**Examples of Conversions:**
```python
import cv2
# Load the image
image = cv2.imread('image.jpg')
# Convert BGR to Grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Convert BGR to RGB
rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Convert BGR to HSV
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
```
**Why Convert Color Spaces?**
- **Grayscale:** Useful for reducing image complexity in tasks like edge detection.
- **RGB:** Standard format for visualization in libraries like `matplotlib`.
- **HSV:** Useful for color-based segmentation, as it separates color information from brightness.
""")
# Header for Splitting Channels
st.header("πΉ Splitting Color Channels in an Image")
st.markdown("""
**Splitting an image into its individual color channels (B, G, R) allows you to analyze or modify each channel independently.**
**Syntax:**
```python
b, g, r = cv2.split(image)
```
**Example:**
```python
import cv2
# Load the image
image = cv2.imread('image.jpg')
# Split the image into Blue, Green, and Red channels
blue_channel, green_channel, red_channel = cv2.split(image)
# Display the channels separately (Optional)
cv2.imshow('Blue Channel', blue_channel)
cv2.imshow('Green Channel', green_channel)
cv2.imshow('Red Channel', red_channel)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
**Explanation:**
- The `cv2.split()` function returns the Blue, Green, and Red channels as separate images (grayscale format).
""")
# Header for Merging Channels
st.header("πΉ Merging Color Channels in an Image")
st.markdown("""
**You can merge the individual channels back into a color image using `cv2.merge()`.**
**Syntax:**
```python
merged_image = cv2.merge((b, g, r))
```
**Example:**
```python
import cv2
# Load the image
image = cv2.imread('image.jpg')
# Split the image into channels
b, g, r = cv2.split(image)
# Merge the channels back into a color image
merged_image = cv2.merge((b, g, r))
# Display the merged image
cv2.imshow('Merged Image', merged_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
**Explanation:**
- The `cv2.merge()` function takes a tuple of channels `(b, g, r)` and combines them back into a single color image.
- You can manipulate the individual channels before merging to achieve different effects.
""")
# Header for Combining with Modifications
st.header("π¨ Modifying Channels Before Merging")
st.markdown("""
**You can modify each channel (e.g., increase brightness in the red channel) before merging them back together.**
**Example:**
```python
import cv2
# Load the image
image = cv2.imread('image.jpg')
# Split channels
b, g, r = cv2.split(image)
# Increase the intensity of the red channel
r = cv2.add(r, 50)
# Merge the modified channels
modified_image = cv2.merge((b, g, r))
# Display the modified image
cv2.imshow('Modified Image', modified_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
**Explanation:**
- In this example, `cv2.add(r, 50)` increases the intensity of the red channel by 50.
- After modification, the channels are merged back to create the final image.
""")
# Navigation Button
if st.button("Video capture and explanation"):
st.session_state.page = "Video capture and explanation"
# Navigation Button
if st.button("Back to Data Collection"):
st.session_state.page = "data_collection"
# ----------------- Semi-Structured Data Page -----------------
def semi_structured_data_page():
st.title(":orange[Semi-Structured Data]")
st.markdown("""
Semi-structured data does not follow the rigid structure of relational databases but still has some organizational properties. Examples include:
- JSON files
- XML files
""")
if st.button(":green[πΎ JSON]"):
st.session_state.page = "json"
if st.button(":green[π CSV]"):
st.session_state.page = "csv"
if st.button(":green[π XML]"):
st.session_state.page = "xml"
if st.button("Back to Data Collection"):
st.session_state.page = "data_collection"
# ----------------- JSON Data Page -----------------
def json_page():
st.title(":green[JSON Data Format]")
st.write("### What is JSON?")
st.write("""
JSON (JavaScript Object Notation) is a lightweight data-interchange format that's easy for humans to read and write, and easy for machines to parse and generate. JSON is often used in APIs, configuration files, and data transfer applications.
""")
st.write("### Reading JSON Files")
st.code("""
import json
# Read a JSON file
with open('data.json', 'r') as file:
data = json.load(file)
print(data)
""", language='python')
st.write("### Writing JSON Files")
st.code("""
import json
# Write data to JSON file
data = {
"name": "Alice",
"age": 25,
"skills": ["Python", "Machine Learning"]
}
with open('data.json', 'w') as file:
json.dump(data, file, indent=4)
""", language='python')
st.markdown("### Tips for Handling JSON Files")
st.write("""
- JSON files can be nested, so you might need to navigate through dictionaries and lists.
- If the structure is complex, you can use libraries like json_normalize() in pandas to flatten the JSON into a more tabular format for easier analysis.
- JSON supports both strings and numbers, and other types like arrays and booleans, making it versatile for various data types.
""")
st.markdown('[Jupyter Notebook](https://huggingface.co/transformers/notebooks.html)')
if st.button("Back to Semi-Structured Data"):
st.session_state.page = "semi_structured_data"
# ----------------- Main Execution -----------------
def main():
page = st.session_state.page
if page == "home":
home_page()
elif page == "data_collection":
data_collection_page()
elif page == "structured_data":
structured_data_page()
elif page == "excel":
excel_page()
elif page == "unstructured_data":
unstructured_data_page()
elif page == "semi_structured_data":
semi_structured_data_page()
elif page == "json":
json_page()
elif page == "introduction_to_image":
introduction_to_image_page()
elif page == "operations_using_opencv":
operations_using_opencv_page()
elif page == "Conversion_of_Images":
Conversion_of_Images_page()
elif page == "video_capture_page":
video_capture_page
if __name__ == "__main__":
main()
|