ronakreddy18 commited on
Commit
442160d
·
verified ·
1 Parent(s): ef08f33

Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py

Browse files
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py CHANGED
@@ -147,44 +147,50 @@ def unstructured_data_page():
147
  - Social media posts
148
  """)
149
 
150
- ### Handling Image Data Section
 
 
 
 
 
 
151
  st.header("🖼️ Handling Image Data")
152
  st.markdown("""
153
  Image data can be processed using libraries like OpenCV and PIL (Pillow). Images often need to be preprocessed for tasks like analysis, classification, or feature extraction. Common operations include:
154
- - **Reading and displaying images**
155
- - **Converting to grayscale**
156
- - **Resizing and cropping**
157
- - **Rotating and flipping**
158
- - **Applying filters**
159
- - **Edge detection and other transformations**
160
- """)
 
161
 
162
  st.code("""
163
  from PIL import Image
164
  import numpy as np
165
  import matplotlib.pyplot as plt
166
 
167
- # Open an image file
168
  image = Image.open('sample_image.jpg')
169
  image.show()
170
 
171
- # Convert image to grayscale
172
  gray_image = image.convert('L')
173
  gray_image.show()
174
 
175
- # Resize the image
176
  resized_image = image.resize((200, 200))
177
  resized_image.show()
178
 
179
- # Rotate the image by 90 degrees
180
  rotated_image = image.rotate(90)
181
  rotated_image.show()
182
 
183
- # Convert the image to a NumPy array and display its shape
184
  image_array = np.array(image)
185
  print(image_array.shape)
186
-
187
- # Display the image array as a plot
188
  plt.imshow(image)
189
  plt.title("Original Image")
190
  plt.axis('off')
@@ -192,32 +198,31 @@ plt.show()
192
  """, language='python')
193
 
194
  st.markdown("""
195
- **Common Image Processing Techniques:**
196
- - **Resizing**: Adjust the dimensions of an image for uniformity in models.
197
- - **Cropping**: Extract a region of interest (ROI) from an image.
198
- - **Grayscale Conversion**: Simplify image data by reducing it to a single channel.
199
- - **Rotation/Flipping**: Perform augmentations to increase the dataset for model training.
200
- - **Edge Detection**: Identify edges in images using filters like the Sobel or Canny filters.
201
- """)
 
202
 
203
  ### Challenges and Solutions Section
204
  st.markdown("### Challenges with Unstructured Data")
205
  st.write("""
206
- - *Noise and Inconsistency*: Data is often incomplete or noisy.
207
- - *Storage Requirements*: Large size and variability in data types.
208
- - *Processing Time*: Analyzing unstructured data is computationally expensive.
209
- """)
 
210
 
211
  st.markdown("### Solutions")
212
  st.write("""
213
- - *Data Cleaning*: Preprocess data to remove noise.
214
- - *Efficient Storage*: Use NoSQL databases (e.g., MongoDB) or cloud storage.
215
- - *Parallel Processing*: Utilize frameworks like Apache Spark.
216
- """)
217
-
218
- # Button to Navigate to Introduction to Image
219
- if st.button("Introduction to Image"):
220
- st.session_state.page = "introduction_to_image"
221
 
222
  # Navigation Button
223
  if st.button("Back to Data Collection"):
 
147
  - Social media posts
148
  """)
149
 
150
+
151
+
152
+ # Button to Navigate to Introduction to Image
153
+ if st.button("Introduction to Image"):
154
+ st.session_state.page = "introduction_to_image"
155
+
156
+ ###Handling Image Data Section
157
  st.header("🖼️ Handling Image Data")
158
  st.markdown("""
159
  Image data can be processed using libraries like OpenCV and PIL (Pillow). Images often need to be preprocessed for tasks like analysis, classification, or feature extraction. Common operations include:
160
+
161
+ Reading and displaying images
162
+ Converting to grayscale
163
+ Resizing and cropping
164
+ Rotating and flipping
165
+ Applying filters
166
+ Edge detection and other transformations
167
+ """)
168
 
169
  st.code("""
170
  from PIL import Image
171
  import numpy as np
172
  import matplotlib.pyplot as plt
173
 
174
+ Open an image file
175
  image = Image.open('sample_image.jpg')
176
  image.show()
177
 
178
+ Convert image to grayscale
179
  gray_image = image.convert('L')
180
  gray_image.show()
181
 
182
+ Resize the image
183
  resized_image = image.resize((200, 200))
184
  resized_image.show()
185
 
186
+ Rotate the image by 90 degrees
187
  rotated_image = image.rotate(90)
188
  rotated_image.show()
189
 
190
+ Convert the image to a NumPy array and display its shape
191
  image_array = np.array(image)
192
  print(image_array.shape)
193
+ Display the image array as a plot
 
194
  plt.imshow(image)
195
  plt.title("Original Image")
196
  plt.axis('off')
 
198
  """, language='python')
199
 
200
  st.markdown("""
201
+ Common Image Processing Techniques:
202
+
203
+ Resizing: Adjust the dimensions of an image for uniformity in models.
204
+ Cropping: Extract a region of interest (ROI) from an image.
205
+ Grayscale Conversion: Simplify image data by reducing it to a single channel.
206
+ Rotation/Flipping: Perform augmentations to increase the dataset for model training.
207
+ Edge Detection: Identify edges in images using filters like the Sobel or Canny filters.
208
+ """)
209
 
210
  ### Challenges and Solutions Section
211
  st.markdown("### Challenges with Unstructured Data")
212
  st.write("""
213
+
214
+ Noise and Inconsistency: Data is often incomplete or noisy.
215
+ Storage Requirements: Large size and variability in data types.
216
+ Processing Time: Analyzing unstructured data is computationally expensive.
217
+ """)
218
 
219
  st.markdown("### Solutions")
220
  st.write("""
221
+
222
+ Data Cleaning: Preprocess data to remove noise.
223
+ Efficient Storage: Use NoSQL databases (e.g., MongoDB) or cloud storage.
224
+ Parallel Processing: Utilize frameworks like Apache Spark.
225
+ """)
 
 
 
226
 
227
  # Navigation Button
228
  if st.button("Back to Data Collection"):