Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
Browse files
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
CHANGED
@@ -147,44 +147,50 @@ def unstructured_data_page():
|
|
147 |
- Social media posts
|
148 |
""")
|
149 |
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
st.header("🖼️ Handling Image Data")
|
152 |
st.markdown("""
|
153 |
Image data can be processed using libraries like OpenCV and PIL (Pillow). Images often need to be preprocessed for tasks like analysis, classification, or feature extraction. Common operations include:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
161 |
|
162 |
st.code("""
|
163 |
from PIL import Image
|
164 |
import numpy as np
|
165 |
import matplotlib.pyplot as plt
|
166 |
|
167 |
-
|
168 |
image = Image.open('sample_image.jpg')
|
169 |
image.show()
|
170 |
|
171 |
-
|
172 |
gray_image = image.convert('L')
|
173 |
gray_image.show()
|
174 |
|
175 |
-
|
176 |
resized_image = image.resize((200, 200))
|
177 |
resized_image.show()
|
178 |
|
179 |
-
|
180 |
rotated_image = image.rotate(90)
|
181 |
rotated_image.show()
|
182 |
|
183 |
-
|
184 |
image_array = np.array(image)
|
185 |
print(image_array.shape)
|
186 |
-
|
187 |
-
# Display the image array as a plot
|
188 |
plt.imshow(image)
|
189 |
plt.title("Original Image")
|
190 |
plt.axis('off')
|
@@ -192,32 +198,31 @@ plt.show()
|
|
192 |
""", language='python')
|
193 |
|
194 |
st.markdown("""
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
202 |
|
203 |
### Challenges and Solutions Section
|
204 |
st.markdown("### Challenges with Unstructured Data")
|
205 |
st.write("""
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
210 |
|
211 |
st.markdown("### Solutions")
|
212 |
st.write("""
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
# Button to Navigate to Introduction to Image
|
219 |
-
if st.button("Introduction to Image"):
|
220 |
-
st.session_state.page = "introduction_to_image"
|
221 |
|
222 |
# Navigation Button
|
223 |
if st.button("Back to Data Collection"):
|
|
|
147 |
- Social media posts
|
148 |
""")
|
149 |
|
150 |
+
|
151 |
+
|
152 |
+
# Button to Navigate to Introduction to Image
|
153 |
+
if st.button("Introduction to Image"):
|
154 |
+
st.session_state.page = "introduction_to_image"
|
155 |
+
|
156 |
+
###Handling Image Data Section
|
157 |
st.header("🖼️ Handling Image Data")
|
158 |
st.markdown("""
|
159 |
Image data can be processed using libraries like OpenCV and PIL (Pillow). Images often need to be preprocessed for tasks like analysis, classification, or feature extraction. Common operations include:
|
160 |
+
|
161 |
+
Reading and displaying images
|
162 |
+
Converting to grayscale
|
163 |
+
Resizing and cropping
|
164 |
+
Rotating and flipping
|
165 |
+
Applying filters
|
166 |
+
Edge detection and other transformations
|
167 |
+
""")
|
168 |
|
169 |
st.code("""
|
170 |
from PIL import Image
|
171 |
import numpy as np
|
172 |
import matplotlib.pyplot as plt
|
173 |
|
174 |
+
Open an image file
|
175 |
image = Image.open('sample_image.jpg')
|
176 |
image.show()
|
177 |
|
178 |
+
Convert image to grayscale
|
179 |
gray_image = image.convert('L')
|
180 |
gray_image.show()
|
181 |
|
182 |
+
Resize the image
|
183 |
resized_image = image.resize((200, 200))
|
184 |
resized_image.show()
|
185 |
|
186 |
+
Rotate the image by 90 degrees
|
187 |
rotated_image = image.rotate(90)
|
188 |
rotated_image.show()
|
189 |
|
190 |
+
Convert the image to a NumPy array and display its shape
|
191 |
image_array = np.array(image)
|
192 |
print(image_array.shape)
|
193 |
+
Display the image array as a plot
|
|
|
194 |
plt.imshow(image)
|
195 |
plt.title("Original Image")
|
196 |
plt.axis('off')
|
|
|
198 |
""", language='python')
|
199 |
|
200 |
st.markdown("""
|
201 |
+
Common Image Processing Techniques:
|
202 |
+
|
203 |
+
Resizing: Adjust the dimensions of an image for uniformity in models.
|
204 |
+
Cropping: Extract a region of interest (ROI) from an image.
|
205 |
+
Grayscale Conversion: Simplify image data by reducing it to a single channel.
|
206 |
+
Rotation/Flipping: Perform augmentations to increase the dataset for model training.
|
207 |
+
Edge Detection: Identify edges in images using filters like the Sobel or Canny filters.
|
208 |
+
""")
|
209 |
|
210 |
### Challenges and Solutions Section
|
211 |
st.markdown("### Challenges with Unstructured Data")
|
212 |
st.write("""
|
213 |
+
|
214 |
+
Noise and Inconsistency: Data is often incomplete or noisy.
|
215 |
+
Storage Requirements: Large size and variability in data types.
|
216 |
+
Processing Time: Analyzing unstructured data is computationally expensive.
|
217 |
+
""")
|
218 |
|
219 |
st.markdown("### Solutions")
|
220 |
st.write("""
|
221 |
+
|
222 |
+
Data Cleaning: Preprocess data to remove noise.
|
223 |
+
Efficient Storage: Use NoSQL databases (e.g., MongoDB) or cloud storage.
|
224 |
+
Parallel Processing: Utilize frameworks like Apache Spark.
|
225 |
+
""")
|
|
|
|
|
|
|
226 |
|
227 |
# Navigation Button
|
228 |
if st.button("Back to Data Collection"):
|