ronakreddy18 commited on
Commit
ef08f33
·
verified ·
1 Parent(s): 39c3457

Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py

Browse files
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py CHANGED
@@ -1,307 +1,3 @@
1
- VAMSHI VARDHAN REDDY
2
- ronakreddy_18
3
- Online
4
-
5
- VAMSHI VARDHAN REDDY — 12/11/2024 11:37 AM
6
- Mandali Jayasree — 12/11/2024 11:37 AM
7
- ,Brand,Color,Storage,Rating,Screen_size,Battery,Price,Rating_cat,Price_cat
8
- 0,realme,Gold,64,4.6,6.7,5000,10999,high,Affordable
9
- 1,realme,Black,64,4.3,6.7,5000,10999,high,Affordable
10
- 2,vivo,Blue,128,4.4,6.6,5000,13999,high,Affordable
11
- 3,vivo,Black,128,4.4,6.6,5000,13999,high,Affordable
12
- 4,vivo,Blue,128,4.3,6.6,5000,15999,high,Affordable... (1 KB left)
13
- Expand
14
- phones_.csv
15
- 51 KB
16
- show_id,type,title,director,cast,country,date_added,release_year,rating,duration,listed_in,description
17
- s1,Movie,Dick Johnson Is Dead,Kirsten Johnson,,United States,"September 25, 2021",2020,PG-13,90 min,Documentaries,"As her father nears the end of his life, filmmaker Kirsten Johnson stages his death in inventive and comical ways to help them both face the inevitable."
18
- s2,TV Show,Blood & Water,,"Ama Qamata, Khosi Ngema, Gail Mabalane, Thabang Molaba, Dillon Windvogel, Natasha Thahane, Arno Greeff, Xolile Tshabalala, Getmore Sithole, Cindy Mahlangu, Ryle De Morny, Greteli Fincham, Sello Maake Ka-Ncube, Odwa Gwanya, Mekaila Mathys, Sandi Schultz, Duane Williams, Shamilla Miller, Patrick Mofokeng",South Africa,"September 24, 2021",2021,TV-MA,2 Seasons,"International TV Shows, TV Dramas, TV Mysteries","After crossing paths at a party, a Cape Town teen sets out to prove whether a private-school swimming star is her sister who was abducted at birth."
19
- s3,TV Show,Ganglands,Julien Leclercq,"Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabiha Akkari, Sofia Lesaffre, Salim Kechiouche, Noureddine Farihi, Geert Van Rampelberg, Bakary Diombera",,"September 24, 2021",2021,TV-MA,1 Season,"Crime TV Shows, International TV Shows, TV Action & Adventure","To protect his family from a powerful drug lord, skilled thief Mehdi and his expert team of robbers are pulled into a violent and deadly turf war."
20
- s4,TV Show,Jailbirds New Orleans,,,,"September 24, 2021",2021,TV-MA,1 Season,"Docuseries, Reality TV","Feuds, flirtations and toilet talk go down among the incarcerated women at the Orleans Justice Center in New Orleans on this gritty reality series."
21
- s5,TV Show,Kota Factory,,"Mayur More, Jitendra Kumar, Ranjan Raj, Alam Khan, Ahsaas Channa, Revathi Pillai, Urvi Singh, Arun Kumar",India,"September 24, 2021",2021,TV-MA,2 Seasons,"International TV Shows, Romantic TV Shows, TV Comedies","In a city of coaching centers known to train India’s finest collegiate minds, an earnest but unexceptional student and his friends navigate campus life."
22
- Expand
23
- Netflix.csv
24
- 40 KB
25
- order_id,customer_id,order_date
26
- 1,1,2023-05-01
27
- 2,2,2023-05-02
28
- 3,3,2023-05-03
29
- 4,1,2023-05-04
30
- 5,2,2023-05-05
31
- Expand
32
- Orders.csv
33
- 1 KB
34
- product_id,product_name,price
35
- 1,"Product A",10
36
- 2,"Product B",15
37
- 3,"Product C",20
38
- 4,"Product D",25
39
- 5,"Product E",30
40
- Expand
41
- products.csv
42
- 1 KB
43
- order_id,product_id,quantity
44
- 1,1,2
45
- 1,2,1
46
- 2,2,1
47
- 2,3,3
48
- 3,1,1
49
- Expand
50
- Order_items.csv
51
- 1 KB
52
- customer_id,first_name,last_name,email
53
- 1,John,Doe,[email protected]
54
- 2,Jane,Smith,[email protected]
55
- 3,Bob,Johnson,[email protected]
56
- 4,Alice,Brown,[email protected]
57
- 5,Charlie,Davis,[email protected]
58
- Expand
59
- Customers.csv
60
- 1 KB
61
- Mandali Jayasree — 12/11/2024 2:51 PM
62
- import streamlit as st
63
-
64
- # page navigation
65
- if 'page' not in st.session_state:
66
- st.session_state.page = "home" # Default page is "home"
67
- Expand
68
- message.txt
69
- 4 KB
70
- VAMSHI VARDHAN REDDY — 12/11/2024 3:21 PM
71
- import streamlit as st
72
-
73
- # Inject custom CSS to style the buttons
74
- st.markdown("""
75
- <style>
76
- .stButton>button {
77
- Expand
78
- message.txt
79
- 11 KB
80
- VAMSHI VARDHAN REDDY — 12/11/2024 5:34 PM
81
- import streamlit as st
82
- import pandas as pd
83
- import json
84
- import xml.etree.ElementTree as ET
85
-
86
- # Inject custom CSS to style the buttons
87
- Expand
88
- message.txt
89
- 11 KB
90
- Mandali Jayasree — 12/11/2024 5:36 PM
91
- Hey
92
- Change chesava
93
- Aipoyindha
94
- VAMSHI VARDHAN REDDY — 12/11/2024 5:40 PM
95
- Done
96
- Ayipoyindi
97
- Mandali Jayasree — 12/11/2024 5:43 PM
98
- Em change chesaru
99
- Motham change cheyyala malli
100
- Intiki vellaka msg chestha okasari cheppu naku
101
- VAMSHI VARDHAN REDDY — 12/11/2024 5:44 PM
102
- Ok
103
- Chepta
104
- Mandali Jayasree — 12/11/2024 6:40 PM
105
- Vamshi
106
- Ela cheyyali cheppu
107
- Mandali Jayasree — 12/11/2024 7:32 PM
108
- Chesesa aipoyindhi
109
- VAMSHI VARDHAN REDDY — 12/11/2024 7:36 PM
110
- Okk
111
- Mandali Jayasree — 12/11/2024 7:40 PM
112
- Writing and reading excel anthe chesa inka em cheyyaledhu
113
- VAMSHI VARDHAN REDDY — 12/11/2024 7:42 PM
114
- ??
115
- Ochindha ga aipudu ayitey motam
116
- Mandali Jayasree — 12/11/2024 7:45 PM
117
- Haa
118
- VAMSHI VARDHAN REDDY — Yesterday at 2:50 PM
119
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:106.0) Gecko/20100101Firefox/106.0',
120
- 'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp./;q= 0.8',
121
- 'Accept-Language': 'en-US,en;q=0.5',
122
- #'Accept-Encoding': 'gzip, deflate, br',
123
- 'DNT': '1',
124
- 'Connection': 'keep-alive',
125
- 'Upgrade-Insecure-Requests': '1',
126
- 'Sec-Fetch-Dest': 'document',
127
- 'Sec-Fetch-Mode': 'navigate',
128
- 'Sec-Fetch-Site': 'none',
129
- 'Sec-Fetch-User': '?1',
130
- }
131
- VAMSHI VARDHAN REDDY — Today at 2:44 PM
132
- What is an Image in Machine Learning?
133
- Data Representation:
134
- An image is represented as a matrix (2D) or tensor (3D) of pixel values, where each pixel contains information about color and intensity (e.g., RGB values).
135
-
136
- Input for Models:
137
- Images serve as input data for machine learning models, particularly in computer vision tasks like classification, segmentation, and object detection.
138
-
139
- High-Dimensional Data:
140
- Images are typically high-dimensional, meaning a single image can have thousands or millions of pixel values, requiring dimensionality reduction or feature extraction techniques.
141
-
142
- Preprocessing and Augmentation:
143
- Machine learning models often require image preprocessing (e.g., resizing, normalization) and data augmentation (e.g., rotations, flips) to improve performance and generalization.
144
- -----------
145
- intro
146
- Introduction to Image
147
- An image is a two-dimensional visual representation of an object, scene, person, or concept. It can be captured, created, or stored using various technologies like cameras, scanners, or computer graphics software. Images play a crucial role in how humans and machines interpret the world visually.
148
-
149
- Images are made up of small individual units called pixels (short for picture elements). Each pixel carries information about brightness and color. When viewed together, these pixels form the complete visual.
150
-
151
- Types of Images
152
- Raster Images (Bitmap):
153
- Composed of a grid of pixels, common formats include JPEG, PNG, and GIF.
154
-
155
- Vector Images:
156
- Defined mathematically (using lines, curves, and shapes), common format is SVG.
157
-
158
- 3D Images:
159
- Represent objects in three dimensions, used in modeling and rendering.
160
-
161
- Image Representation
162
- Grayscale Image: Contains shades of gray, with each pixel having a single intensity value (0 for black to 255 for white).
163
- Color Image: Typically represented in the RGB (Red, Green, Blue) color space, where each pixel has three values corresponding to red, green, and blue intensity.
164
- Applications of Images
165
- Photography & Visual Media: Capturing moments and storytelling.
166
- Medical Imaging: X-rays, MRIs for diagnostics.
167
- Machine Learning & AI: Tasks like image classification, object detection, and facial recognition.
168
- Remote Sensing: Satellite imagery for geographic studies.
169
- Graphic Design & Art: Creative visual works for marketing and design.
170
- Images are a key medium for communication, analysis, and automation, making them fundamental in various fields.
171
- -------------
172
- Color Spaces in Machine Learning
173
- Definition:
174
- A color space is a mathematical model that defines how colors are represented. In machine learning, different color spaces can be used to preprocess and analyze image data for tasks like classification, segmentation, or object detection.
175
-
176
- Common Types:
177
-
178
- RGB (Red, Green, Blue): The most common color space for digital images; each pixel is represented by a combination of red, green, and blue values.
179
- HSV (Hue, Saturation, Value): Separates color (hue) from intensity (value), useful for color-based segmentation.
180
- CMYK (Cyan, Magenta, Yellow, Black): Used for printing applications.
181
- LAB (Lightness, A, B): Designed for perceptual uniformity, useful for color correction tasks.
182
- Use Cases:
183
-
184
- RGB: Best for display and general-purpose image analysis.
185
- HSV: Helpful for tasks where color intensity and shade variations need to be separated, such as object tracking.
186
- LAB: Preferred when color consistency and accuracy are critical.
187
- Color Space Conversion:
188
- Images can be converted between different color spaces to make preprocessing or analysis easier. For example, converting from RGB to HSV for color-based object detection or segmentation.
189
-
190
- Impact on Machine Learning:
191
- Choosing the right color space can enhance model performance, especially in tasks like:
192
-
193
- Image Classification (e.g., using RGB).
194
- Color Segmentation (e.g., using HSV).
195
- Edge Detection and Enhancement (e.g., using grayscale or LAB).
196
- Different color spaces provide flexibility in handling various challenges in computer vision tasks.
197
- VAMSHI VARDHAN REDDY — Today at 2:56 PM
198
- import streamlit as st
199
- import pandas as pd
200
- import json
201
- import xml.etree.ElementTree as ET
202
- from PIL import Image
203
- import numpy as np
204
- import matplotlib.pyplot as plt
205
-
206
- # Inject custom CSS to style the buttons
207
- st.markdown("""
208
- <style>
209
- .stButton>button {
210
- background-color: #4CAF50;
211
- color: white;
212
- width: 100%;
213
- }
214
- </style>
215
- """, unsafe_allow_html=True)
216
-
217
- # Initialize page navigation state
218
- if 'page' not in st.session_state:
219
- st.session_state.page = "home" # Default page is "home"
220
-
221
- # ----------------- Home Page -----------------
222
- def home_page():
223
- st.title(":green[Lifecycle of a Machine Learning Project]")
224
- st.markdown("Click on a stage to learn more about it.")
225
-
226
- # Buttons for various stages of the ML project lifecycle
227
- if st.button(":blue[📊 Data Collection]"):
228
- st.session_state.page = "data_collection"
229
-
230
- if st.button(":blue[🌟 Problem Statement]"):
231
- st.markdown("### Problem Statement\nIdentify the problem you want to solve and set clear objectives and success criteria.")
232
-
233
- if st.button(":blue[🛠️ Simple EDA]"):
234
- st.markdown("### Simple EDA\nPerform exploratory data analysis to understand data distributions and relationships.")
235
-
236
- if st.button(":blue[🧹 Data Pre-Processing]"):
237
- st.markdown("### Data Pre-Processing\nConvert raw data into cleaned data.")
238
-
239
- if st.button(":blue[📈 Exploratory Data Analysis (EDA)]"):
240
- st.markdown("### Exploratory Data Analysis (EDA)\nVisualize and analyze the data to understand its distributions and relationships.")
241
-
242
- if st.button(":blue[🏋️ Feature Engineering]"):
243
- st.markdown("### Feature Engineering\nCreate new features from existing data.")
244
-
245
- if st.button(":blue[🤖 Model Training]"):
246
- st.markdown("### Model Training\nTrain the model using the training data and optimize its parameters.")
247
-
248
- if st.button(":blue[🔧 Model Testing]"):
249
- st.markdown("### Model Testing\nAssess the model's performance using various metrics and cross-validation techniques.")
250
-
251
- if st.button(":blue[🚀 Model Deployment]"):
252
- st.markdown("### Model Deployment\nIntegrate the trained model into a production environment and monitor its performance.")
253
-
254
- if st.button(":blue[📝 Monitoring]"):
255
- st.markdown("### Monitoring\nPeriodically retrain the model with new data and update features as needed.")
256
-
257
- # ----------------- Data Collection Page -----------------
258
- def data_collection_page():
259
- st.title(":red[Data Collection]")
260
- st.markdown("### Data Collection\nThis page discusses the process of Data Collection.")
261
- st.markdown("Types of Data: **Structured**, **Unstructured**, **Semi-Structured**")
262
-
263
- if st.button(":blue[🌟 Structured Data]"):
264
- st.session_state.page = "structured_data"
265
-
266
- if st.button(":blue[📷 Unstructured Data]"):
267
- st.session_state.page = "unstructured_data"
268
-
269
- if st.button(":blue[🗃️ Semi-Structured Data]"):
270
- st.session_state.page = "semi_structured_data"
271
-
272
- if st.button("Back to Home"):
273
- st.session_state.page = "home"
274
-
275
- # ----------------- Structured Data Page -----------------
276
- def structured_data_page():
277
- st.title(":blue[Structured Data]")
278
- st.markdown("""
279
- Structured data is highly organized and typically stored in tables like spreadsheets or databases. It is easy to search and analyze.
280
- """)
281
- st.markdown("### Examples: Excel files")
282
-
283
- if st.button(":green[📊 Excel]"):
284
- st.session_state.page = "excel"
285
-
286
- if st.button("Back to Data Collection"):
287
- st.session_state.page = "data_collection"
288
-
289
- # ----------------- Excel Data Page -----------------
290
- def excel_page():
291
- st.title(":green[Excel Data Format]")
292
-
293
- st.write("### What is Excel?")
294
- st.write("Excel is a spreadsheet tool for storing data in tabular format with rows and columns. Common file extensions: .xls, .xlsx.")
295
-
296
- st.write("### How to Read Excel Files")
297
- st.code("""
298
- ... (314 lines left)
299
- Collapse
300
- message.txt
301
- 14 KB
302
- 
303
- Mandali Jayasree
304
- mandalijayasree
305
  import streamlit as st
306
  import pandas as pd
307
  import json
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import pandas as pd
3
  import json