Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
Browse files
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
CHANGED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
# Page navigation state
|
4 |
+
if 'page' not in st.session_state:
|
5 |
+
st.session_state.page = "home" # Default page is "home"
|
6 |
+
|
7 |
+
# ----------------- Home Page -----------------
|
8 |
+
def home_page():
|
9 |
+
st.title(":green[Lifecycle of a Machine Learning Project]")
|
10 |
+
st.markdown("Click on a stage to learn more about it.")
|
11 |
+
|
12 |
+
# Button for Data Collection (Redirects to 'data_collection' page)
|
13 |
+
if st.button(":orange[π Data Collection]"):
|
14 |
+
st.session_state.page = "data_collection"
|
15 |
+
|
16 |
+
# Buttons for other stages with brief explanations
|
17 |
+
if st.button(":blue[π Problem Statement]"):
|
18 |
+
st.markdown("### Problem Statement\nIdentify the problem you want to solve and set clear objectives and success criteria.")
|
19 |
+
|
20 |
+
if st.button(":blue[π οΈ Simple EDA]"):
|
21 |
+
st.markdown("### Simple EDA\nPerform exploratory data analysis to understand data distributions and relationships.")
|
22 |
+
|
23 |
+
if st.button(":blue[Data Pre-Processing]"):
|
24 |
+
st.markdown("### Data Pre-Processing\nConvert raw data into cleaned data.")
|
25 |
+
|
26 |
+
if st.button(":blue[π Exploratory Data Analysis (EDA)]"):
|
27 |
+
st.markdown("### Exploratory Data Analysis (EDA)\nVisualize and analyze the data to understand its distributions and relationships.")
|
28 |
+
|
29 |
+
if st.button(":blue[ποΈ Feature Engineering]"):
|
30 |
+
st.markdown("### Feature Engineering\nCreate new features from existing data.")
|
31 |
+
|
32 |
+
if st.button(":blue[π€ Model Training]"):
|
33 |
+
st.markdown("### Model Training\nTrain the model using the training data and optimize its parameters.")
|
34 |
+
|
35 |
+
if st.button(":blue[π§ Model Testing]"):
|
36 |
+
st.markdown("### Model Testing\nAssess the model's performance using various metrics and cross-validation techniques.")
|
37 |
+
|
38 |
+
if st.button(":blue[π Model Deployment]"):
|
39 |
+
st.markdown("### Model Deployment\nIntegrate the trained model into a production environment and monitor its performance.")
|
40 |
+
|
41 |
+
if st.button(":blue[π Monitoring]"):
|
42 |
+
st.markdown("### Monitoring\nPeriodically retrain the model with new data and update features as needed.")
|
43 |
+
|
44 |
+
# ----------------- Data Collection Page -----------------
|
45 |
+
def data_collection_page():
|
46 |
+
st.title(":red[Data Collection]")
|
47 |
+
st.markdown("### Data Collection\nThis page discusses the process of Data Collection.")
|
48 |
+
st.markdown("Types of Data: **Structured**, **Unstructured**, **Semi-Structured**")
|
49 |
+
|
50 |
+
# Button for Structured Data
|
51 |
+
if st.button(":blue[π Structured Data]"):
|
52 |
+
st.session_state.page = "structured_data"
|
53 |
+
|
54 |
+
# Button for Unstructured Data
|
55 |
+
if st.button(":blue[π· Unstructured Data]"):
|
56 |
+
st.session_state.page = "unstructured_data"
|
57 |
+
|
58 |
+
# Button for Semi-Structured Data
|
59 |
+
if st.button(":blue[ποΈ Semi-Structured Data]"):
|
60 |
+
st.session_state.page = "semi_structured_data"
|
61 |
+
|
62 |
+
# Back to Home button
|
63 |
+
if st.button("Back to Home"):
|
64 |
+
st.session_state.page = "home"
|
65 |
+
|
66 |
+
# ----------------- Structured Data Page -----------------
|
67 |
+
def structured_data_page():
|
68 |
+
st.title(":blue[Structured Data]")
|
69 |
+
st.markdown("""
|
70 |
+
Structured data is highly organized and typically stored in tables like spreadsheets or databases. It is easy to search and analyze.
|
71 |
+
""")
|
72 |
+
st.markdown("### Examples: Excel files, CSV files")
|
73 |
+
|
74 |
+
# Button for Excel Details
|
75 |
+
if st.button(":green[π Excel]"):
|
76 |
+
st.session_state.page = "excel"
|
77 |
+
|
78 |
+
# Back to Data Collection
|
79 |
+
if st.button("Back to Data Collection"):
|
80 |
+
st.session_state.page = "data_collection"
|
81 |
+
|
82 |
+
# ----------------- Excel Data Page -----------------
|
83 |
+
def excel_page():
|
84 |
+
st.title(":green[Excel Data Format]")
|
85 |
+
|
86 |
+
# 4a. What it is
|
87 |
+
st.write("### What is Excel?")
|
88 |
+
st.write("Excel is a spreadsheet tool for storing data in tabular format with rows and columns. Common file extensions: `.xls`, `.xlsx`.")
|
89 |
+
|
90 |
+
# 4b. How to read Excel files
|
91 |
+
st.write("### How to Read Excel Files")
|
92 |
+
st.code("""
|
93 |
+
import pandas as pd
|
94 |
+
|
95 |
+
# Read an Excel file
|
96 |
+
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
|
97 |
+
print(df)
|
98 |
+
""", language='python')
|
99 |
+
|
100 |
+
# 4c. Issues encountered
|
101 |
+
st.write("### Issues Encountered")
|
102 |
+
st.write("""
|
103 |
+
- **File not found**: Incorrect file path.
|
104 |
+
- **Sheet name error**: Specified sheet doesn't exist.
|
105 |
+
- **Missing libraries**: `openpyxl` or `xlrd` might be missing.
|
106 |
+
""")
|
107 |
+
|
108 |
+
# 4d. Solutions
|
109 |
+
st.write("### Solutions to These Issues")
|
110 |
+
st.code("""
|
111 |
+
# Install required libraries
|
112 |
+
# pip install openpyxl xlrd
|
113 |
+
|
114 |
+
# Handle missing file
|
115 |
+
try:
|
116 |
+
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')
|
117 |
+
except FileNotFoundError:
|
118 |
+
print("File not found. Check the file path.")
|
119 |
+
|
120 |
+
# List available sheet names
|
121 |
+
excel_file = pd.ExcelFile('data.xlsx')
|
122 |
+
print(excel_file.sheet_names)
|
123 |
+
""", language='python')
|
124 |
+
|
125 |
+
# Download Button for Jupyter Notebook
|
126 |
+
with open("excel_handling_guide.ipynb", "rb") as file:
|
127 |
+
st.download_button(
|
128 |
+
label="Download Jupyter Notebook",
|
129 |
+
data=file,
|
130 |
+
file_name="excel_handling_guide.ipynb",
|
131 |
+
mime="application/octet-stream"
|
132 |
+
)
|
133 |
+
|
134 |
+
# Back to Structured Data
|
135 |
+
if st.button("Back to Structured Data"):
|
136 |
+
st.session_state.page = "structured_data"
|
137 |
+
|
138 |
+
# ----------------- Unstructured Data Page -----------------
|
139 |
+
def unstructured_data_page():
|
140 |
+
st.title(":blue[Unstructured Data]")
|
141 |
+
st.markdown("""
|
142 |
+
Unstructured data does not have a predefined format. Examples include text documents, images, videos, and audio files.
|
143 |
+
""")
|
144 |
+
|
145 |
+
# Back to Data Collection
|
146 |
+
if st.button("Back to Data Collection"):
|
147 |
+
st.session_state.page = "data_collection"
|
148 |
+
|
149 |
+
# ----------------- Semi-Structured Data Page -----------------
|
150 |
+
def semi_structured_data_page():
|
151 |
+
st.title(":blue[Semi-Structured Data]")
|
152 |
+
st.markdown("""
|
153 |
+
Semi-structured data has some organizational properties but doesn't fit into strict tables. Examples: JSON, XML files.
|
154 |
+
""")
|
155 |
+
|
156 |
+
# Back to Data Collection
|
157 |
+
if st.button("Back to Data Collection"):
|
158 |
+
st.session_state.page = "data_collection"
|
159 |
+
|
160 |
+
# ----------------- Router -----------------
|
161 |
+
def router():
|
162 |
+
if st.session_state.page == "home":
|
163 |
+
home_page()
|
164 |
+
elif st.session_state.page == "data_collection":
|
165 |
+
data_collection_page()
|
166 |
+
elif st.session_state.page == "structured_data":
|
167 |
+
structured_data_page()
|
168 |
+
elif st.session_state.page == "excel":
|
169 |
+
excel_page()
|
170 |
+
elif st.session_state.page == "unstructured_data":
|
171 |
+
unstructured_data_page()
|
172 |
+
elif st.session_state.page == "semi_structured_data":
|
173 |
+
semi_structured_data_page()
|
174 |
+
|
175 |
+
# Run the router function
|
176 |
+
if __name__ == "__main__":
|
177 |
+
router()
|
178 |
+
|
179 |
+
|