Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
Browse files- pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py +143 -143
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
CHANGED
@@ -78,17 +78,11 @@ def structured_data_page():
|
|
78 |
st.markdown("""
|
79 |
Structured data is highly organized and typically stored in tables like spreadsheets or databases. It is easy to search and analyze.
|
80 |
""")
|
81 |
-
st.markdown("### Examples: Excel files
|
82 |
|
83 |
if st.button(":green[π Excel]"):
|
84 |
st.session_state.page = "excel"
|
85 |
|
86 |
-
if st.button(":green[π CSV]"):
|
87 |
-
st.session_state.page = "csv"
|
88 |
-
|
89 |
-
if st.button(":green[ποΈ JSON]"):
|
90 |
-
st.session_state.page = "json"
|
91 |
-
|
92 |
if st.button("Back to Data Collection"):
|
93 |
st.session_state.page = "data_collection"
|
94 |
|
@@ -137,95 +131,6 @@ print(excel_file.sheet_names)
|
|
137 |
if st.button("Back to Structured Data"):
|
138 |
st.session_state.page = "structured_data"
|
139 |
|
140 |
-
# ----------------- CSV Data Page -----------------
|
141 |
-
def csv_page():
|
142 |
-
st.title(":green[CSV Data Format]")
|
143 |
-
|
144 |
-
st.write("### What is CSV?")
|
145 |
-
st.write("""
|
146 |
-
CSV (Comma-Separated Values) files store tabular data in plain text, where each line is a data record and columns are separated by commas.
|
147 |
-
""")
|
148 |
-
|
149 |
-
st.write("### Reading CSV Files")
|
150 |
-
st.code("""
|
151 |
-
import pandas as pd
|
152 |
-
|
153 |
-
# Read a CSV file
|
154 |
-
df = pd.read_csv('data.csv')
|
155 |
-
print(df)
|
156 |
-
""", language='python')
|
157 |
-
|
158 |
-
st.write("### Error Handling for CSV Files")
|
159 |
-
st.code("""
|
160 |
-
import pandas as pd
|
161 |
-
|
162 |
-
try:
|
163 |
-
df = pd.read_csv('data.csv', encoding='utf-8', delimiter=',')
|
164 |
-
print("CSV File Loaded Successfully!")
|
165 |
-
print(df)
|
166 |
-
except FileNotFoundError:
|
167 |
-
print("Error: File not found. Please check the file path.")
|
168 |
-
except pd.errors.ParserError:
|
169 |
-
print("Error: The file is not a valid CSV format.")
|
170 |
-
except UnicodeDecodeError:
|
171 |
-
print("Error: Encoding issue. Try specifying a different encoding like 'latin1' or 'utf-8'.")
|
172 |
-
""", language='python')
|
173 |
-
|
174 |
-
st.markdown('[Jupyter Notebook](https://huggingface.co/spaces/ronakreddy18/Zerotoheroinmachinelearning/blob/main/pages/CSV_HANDLING_GUIDE.ipynb)')
|
175 |
-
|
176 |
-
if st.button("Back to Structured Data"):
|
177 |
-
st.session_state.page = "structured_data"
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
# ----------------- JSON Data Page -----------------
|
184 |
-
|
185 |
-
def json_page():
|
186 |
-
st.title(":green[JSON Data Format]")
|
187 |
-
|
188 |
-
st.write("### What is JSON?")
|
189 |
-
st.write("""
|
190 |
-
JSON (JavaScript Object Notation) is a lightweight data-interchange format that's easy for humans to read and write, and easy for machines to parse and generate. JSON is often used in APIs, configuration files, and data transfer applications.
|
191 |
-
""")
|
192 |
-
|
193 |
-
st.write("### Reading JSON Files")
|
194 |
-
st.code("""
|
195 |
-
import json
|
196 |
-
# Read a JSON file
|
197 |
-
with open('data.json', 'r') as file:
|
198 |
-
data = json.load(file)
|
199 |
-
print(data)
|
200 |
-
""", language='python')
|
201 |
-
|
202 |
-
st.write("### Writing JSON Files")
|
203 |
-
st.code("""
|
204 |
-
import json
|
205 |
-
# Write data to JSON file
|
206 |
-
data = {
|
207 |
-
"name": "Alice",
|
208 |
-
"age": 25,
|
209 |
-
"skills": ["Python", "Machine Learning"]
|
210 |
-
}
|
211 |
-
with open('data.json', 'w') as file:
|
212 |
-
json.dump(data, file, indent=4)
|
213 |
-
""", language='python')
|
214 |
-
|
215 |
-
st.markdown("### Tips for Handling JSON Files")
|
216 |
-
st.write("""
|
217 |
-
- JSON files can be nested, so you might need to navigate through dictionaries and lists.
|
218 |
-
- If the structure is complex, you can use libraries like `json_normalize()` in pandas to flatten the JSON into a more tabular format for easier analysis.
|
219 |
-
- JSON supports both strings and numbers, and other types like arrays and booleans, making it versatile for various data types.
|
220 |
-
""")
|
221 |
-
|
222 |
-
st.markdown('[Jupyter Notebook](https://huggingface.co/spaces/ronakreddy18/Zerotoheroinmachinelearning/blob/main/pages/json_file__handling.ipynb)')
|
223 |
-
|
224 |
-
if st.button("Back to Structured Data"):
|
225 |
-
st.session_state.page = "structured_data"
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
# ----------------- Unstructured Data Page -----------------
|
230 |
def unstructured_data_page():
|
231 |
st.title(":blue[Unstructured Data]")
|
@@ -333,78 +238,171 @@ plt.show()
|
|
333 |
|
334 |
# ----------------- Semi-Structured Data Page -----------------
|
335 |
def semi_structured_data_page():
|
336 |
-
st.title(":
|
337 |
-
|
338 |
st.markdown("""
|
339 |
-
|
340 |
-
- JSON
|
341 |
-
- XML
|
342 |
-
- YAML (Yet Another Markup Language)
|
343 |
""")
|
344 |
|
345 |
-
st.
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
""")
|
|
|
|
|
349 |
st.code("""
|
350 |
-
|
351 |
-
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
"name": "Alice",
|
354 |
"age": 25,
|
355 |
"skills": ["Python", "Machine Learning"]
|
356 |
}
|
357 |
-
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
|
359 |
-
#
|
360 |
-
|
361 |
-
print(
|
362 |
""", language='python')
|
363 |
|
364 |
-
st.
|
365 |
st.code("""
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
""", language='python')
|
371 |
|
372 |
-
st.
|
373 |
-
|
374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
""")
|
|
|
|
|
376 |
st.code("""
|
377 |
import xml.etree.ElementTree as ET
|
378 |
|
379 |
-
#
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
'''
|
387 |
-
|
388 |
-
# Parse XML
|
389 |
-
root = ET.fromstring(xml_data)
|
390 |
-
print(root.find('name').text) # Output: Bob
|
391 |
""", language='python')
|
392 |
|
393 |
-
st.
|
394 |
-
st.
|
395 |
-
|
396 |
-
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
|
399 |
-
st.
|
400 |
st.write("""
|
401 |
-
- **
|
402 |
-
- **
|
|
|
403 |
""")
|
404 |
|
405 |
-
|
406 |
-
|
407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
|
409 |
# Main control to call appropriate page
|
410 |
if st.session_state.page == "home":
|
@@ -423,3 +421,5 @@ elif st.session_state.page == "unstructured_data":
|
|
423 |
unstructured_data_page()
|
424 |
elif st.session_state.page == "semi_structured_data":
|
425 |
semi_structured_data_page()
|
|
|
|
|
|
78 |
st.markdown("""
|
79 |
Structured data is highly organized and typically stored in tables like spreadsheets or databases. It is easy to search and analyze.
|
80 |
""")
|
81 |
+
st.markdown("### Examples: Excel files")
|
82 |
|
83 |
if st.button(":green[π Excel]"):
|
84 |
st.session_state.page = "excel"
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
if st.button("Back to Data Collection"):
|
87 |
st.session_state.page = "data_collection"
|
88 |
|
|
|
131 |
if st.button("Back to Structured Data"):
|
132 |
st.session_state.page = "structured_data"
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
# ----------------- Unstructured Data Page -----------------
|
135 |
def unstructured_data_page():
|
136 |
st.title(":blue[Unstructured Data]")
|
|
|
238 |
|
239 |
# ----------------- Semi-Structured Data Page -----------------
|
240 |
def semi_structured_data_page():
|
241 |
+
st.title(":orange[Semi-Structured Data]")
|
|
|
242 |
st.markdown("""
|
243 |
+
Semi-structured data does not follow the rigid structure of relational databases but still has some organizational properties. Examples include:
|
244 |
+
- JSON files
|
245 |
+
- XML files
|
|
|
246 |
""")
|
247 |
|
248 |
+
if st.button(":green[πΎ JSON]"):
|
249 |
+
st.session_state.page = "json"
|
250 |
+
|
251 |
+
if st.button(":green[π CSV]"):
|
252 |
+
st.session_state.page = "csv"
|
253 |
+
|
254 |
+
if st.button(":green[π XML]"):
|
255 |
+
st.session_state.page = "xml"
|
256 |
+
|
257 |
+
if st.button("Back to Data Collection"):
|
258 |
+
st.session_state.page = "data_collection"
|
259 |
+
|
260 |
+
# ----------------- JSON Data Page -----------------
|
261 |
+
def json_page():
|
262 |
+
st.title(":green[JSON Data Format]")
|
263 |
+
|
264 |
+
st.write("### What is JSON?")
|
265 |
+
st.write("""
|
266 |
+
JSON (JavaScript Object Notation) is a lightweight data-interchange format that's easy for humans to read and write, and easy for machines to parse and generate. JSON is often used in APIs, configuration files, and data transfer applications.
|
267 |
""")
|
268 |
+
|
269 |
+
st.write("### Reading JSON Files")
|
270 |
st.code("""
|
271 |
+
import json
|
272 |
+
# Read a JSON file
|
273 |
+
with open('data.json', 'r') as file:
|
274 |
+
data = json.load(file)
|
275 |
+
print(data)
|
276 |
+
""", language='python')
|
277 |
+
|
278 |
+
st.write("### Writing JSON Files")
|
279 |
+
st.code("""
|
280 |
+
import json
|
281 |
+
# Write data to JSON file
|
282 |
+
data = {
|
283 |
"name": "Alice",
|
284 |
"age": 25,
|
285 |
"skills": ["Python", "Machine Learning"]
|
286 |
}
|
287 |
+
with open('data.json', 'w') as file:
|
288 |
+
json.dump(data, file, indent=4)
|
289 |
+
""", language='python')
|
290 |
+
|
291 |
+
st.markdown("### Tips for Handling JSON Files")
|
292 |
+
st.write("""
|
293 |
+
- JSON files can be nested, so you might need to navigate through dictionaries and lists.
|
294 |
+
- If the structure is complex, you can use libraries like json_normalize() in pandas to flatten the JSON into a more tabular format for easier analysis.
|
295 |
+
- JSON supports both strings and numbers, and other types like arrays and booleans, making it versatile for various data types.
|
296 |
+
""")
|
297 |
+
|
298 |
+
st.markdown('[Jupyter Notebook](https://huggingface.co/spaces/ronakreddy18/Zerotoheroinmachinelearning/blob/main/pages/json_file__handling.ipynb)')
|
299 |
+
|
300 |
+
if st.button("Back to Semi-Structured Data"):
|
301 |
+
st.session_state.page = "semi_structured_data"
|
302 |
+
|
303 |
+
# ----------------- CSV Data Page -----------------
|
304 |
+
def csv_page():
|
305 |
+
st.title(":green[CSV Data Format]")
|
306 |
+
|
307 |
+
st.write("### What is CSV?")
|
308 |
+
st.write("""
|
309 |
+
CSV (Comma-Separated Values) files store tabular data in plain text, where each line is a data record and columns are separated by commas.
|
310 |
+
""")
|
311 |
+
|
312 |
+
st.write("### Reading CSV Files")
|
313 |
+
st.code("""
|
314 |
+
import pandas as pd
|
315 |
|
316 |
+
# Read a CSV file
|
317 |
+
df = pd.read_csv('data.csv')
|
318 |
+
print(df)
|
319 |
""", language='python')
|
320 |
|
321 |
+
st.write("### Error Handling for CSV Files")
|
322 |
st.code("""
|
323 |
+
import pandas as pd
|
324 |
+
|
325 |
+
try:
|
326 |
+
df = pd.read_csv('data.csv', encoding='utf-8', delimiter=',')
|
327 |
+
print("CSV File Loaded Successfully!")
|
328 |
+
print(df)
|
329 |
+
except FileNotFoundError:
|
330 |
+
print("Error: File not found. Please check the file path.")
|
331 |
+
except pd.errors.ParserError:
|
332 |
+
print("Error: The file is not a valid CSV format.")
|
333 |
+
except UnicodeDecodeError:
|
334 |
+
print("Error: Encoding issue. Try specifying a different encoding like 'latin1' or 'utf-8'.")
|
335 |
""", language='python')
|
336 |
|
337 |
+
st.markdown('[Jupyter Notebook](https://huggingface.co/spaces/ronakreddy18/Zerotoheroinmachinelearning/blob/main/pages/CSV_HANDLING_GUIDE.ipynb)')
|
338 |
+
|
339 |
+
if st.button("Back to Semi-Structured Data"):
|
340 |
+
st.session_state.page = "semi_structured_data"
|
341 |
+
|
342 |
+
# ----------------- XML Data Page -----------------
|
343 |
+
def xml_page():
|
344 |
+
st.title(":green[XML Data Format]")
|
345 |
+
|
346 |
+
st.write("### What is XML?")
|
347 |
+
st.write("""
|
348 |
+
XML (Extensible Markup Language) is a markup language used for storing and exchanging structured data. It uses a hierarchical structure with tags to define elements.
|
349 |
""")
|
350 |
+
|
351 |
+
st.write("### Reading XML Files")
|
352 |
st.code("""
|
353 |
import xml.etree.ElementTree as ET
|
354 |
|
355 |
+
# Load and parse an XML file
|
356 |
+
tree = ET.parse('data.xml')
|
357 |
+
root = tree.getroot()
|
358 |
+
|
359 |
+
# Access elements
|
360 |
+
for child in root:
|
361 |
+
print(child.tag, child.text)
|
|
|
|
|
|
|
|
|
|
|
362 |
""", language='python')
|
363 |
|
364 |
+
st.write("### Sample XML Data")
|
365 |
+
st.code("""
|
366 |
+
<company>
|
367 |
+
<employee>
|
368 |
+
<name>John Doe</name>
|
369 |
+
<role>Developer</role>
|
370 |
+
</employee>
|
371 |
+
<employee>
|
372 |
+
<name>Jane Smith</name>
|
373 |
+
<role>Manager</role>
|
374 |
+
</employee>
|
375 |
+
</company>
|
376 |
+
""", language='xml')
|
377 |
|
378 |
+
st.write("### Issues Encountered")
|
379 |
st.write("""
|
380 |
+
- **File not found**: The specified XML file path is incorrect.
|
381 |
+
- **Malformed XML**: The XML structure has syntax errors.
|
382 |
+
- **XPath Errors**: Incorrect XPath expressions when querying data.
|
383 |
""")
|
384 |
|
385 |
+
st.write("### Solutions to These Issues")
|
386 |
+
st.code("""
|
387 |
+
# Handle missing file
|
388 |
+
try:
|
389 |
+
tree = ET.parse('data.xml')
|
390 |
+
except FileNotFoundError:
|
391 |
+
print("File not found. Check the file path.")
|
392 |
+
|
393 |
+
# Validate XML structure
|
394 |
+
try:
|
395 |
+
root = ET.fromstring(xml_data)
|
396 |
+
except ET.ParseError:
|
397 |
+
print("Malformed XML.")
|
398 |
+
""", language='python')
|
399 |
+
|
400 |
+
st.markdown('[Jupyter Notebook](https://colab.research.google.com/drive/1Dv68m9hcRzXsLRlRit0uZc-8CB8U6VV3?usp=sharing)')
|
401 |
+
|
402 |
+
|
403 |
+
# Back to Semi-Structured Data
|
404 |
+
if st.button("Back to Semi-Structured Data"):
|
405 |
+
st.session_state.page = "semi_structured_data"
|
406 |
|
407 |
# Main control to call appropriate page
|
408 |
if st.session_state.page == "home":
|
|
|
421 |
unstructured_data_page()
|
422 |
elif st.session_state.page == "semi_structured_data":
|
423 |
semi_structured_data_page()
|
424 |
+
elif st.session_state.page == "xml":
|
425 |
+
xml_page()
|