Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
Browse files
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
CHANGED
@@ -132,44 +132,38 @@ print(excel_file.sheet_names)
|
|
132 |
st.session_state.page = "structured_data"
|
133 |
|
134 |
# ----------------- Unstructured Data Page -----------------
|
|
|
|
|
|
|
|
|
|
|
135 |
def unstructured_data_page():
|
136 |
st.title(":blue[Unstructured Data]")
|
137 |
|
138 |
st.markdown("""
|
139 |
-
|
140 |
Examples include:
|
141 |
-
- Text documents (e.g., .txt, .docx)
|
142 |
- Images (e.g., .jpg, .png)
|
143 |
- Videos (e.g., .mp4, .avi)
|
144 |
-
- Audio files (e.g., .mp3, .wav)
|
145 |
- Social media posts
|
146 |
""")
|
147 |
|
148 |
-
|
149 |
-
st.markdown("""
|
150 |
-
Text data can be analyzed using Natural Language Processing (NLP) techniques.
|
151 |
-
""")
|
152 |
-
st.code("""
|
153 |
-
# Reading text data
|
154 |
-
with open('sample.txt', 'r') as file:
|
155 |
-
text = file.read()
|
156 |
-
print(text)
|
157 |
-
|
158 |
-
# Basic text processing using NLTK
|
159 |
-
import nltk
|
160 |
-
from nltk.tokenize import word_tokenize
|
161 |
-
|
162 |
-
nltk.download('punkt')
|
163 |
-
tokens = word_tokenize(text)
|
164 |
-
print(tokens)
|
165 |
-
""", language='python')
|
166 |
-
|
167 |
st.header("🖼️ Handling Image Data")
|
168 |
st.markdown("""
|
169 |
-
Image data can be processed using libraries like OpenCV and PIL (Pillow).
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
""")
|
|
|
171 |
st.code("""
|
172 |
from PIL import Image
|
|
|
|
|
173 |
|
174 |
# Open an image file
|
175 |
image = Image.open('sample_image.jpg')
|
@@ -178,64 +172,61 @@ image.show()
|
|
178 |
# Convert image to grayscale
|
179 |
gray_image = image.convert('L')
|
180 |
gray_image.show()
|
181 |
-
""", language='python')
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
""")
|
187 |
-
st.code("""
|
188 |
-
import cv2
|
189 |
|
190 |
-
#
|
191 |
-
|
|
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
break
|
197 |
-
cv2.imshow('Frame', frame)
|
198 |
-
if cv2.waitKey(25) & 0xFF == ord('q'):
|
199 |
-
break
|
200 |
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
203 |
""", language='python')
|
204 |
|
205 |
-
st.header("🔊 Handling Audio Data")
|
206 |
st.markdown("""
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
208 |
""")
|
209 |
-
st.code("""
|
210 |
-
import librosa
|
211 |
-
import librosa.display
|
212 |
-
import matplotlib.pyplot as plt
|
213 |
-
|
214 |
-
# Load audio file
|
215 |
-
y, sr = librosa.load('sample_audio.mp3')
|
216 |
-
librosa.display.waveshow(y, sr=sr)
|
217 |
-
plt.title('Waveform')
|
218 |
-
plt.show()
|
219 |
-
""", language='python')
|
220 |
|
|
|
221 |
st.markdown("### Challenges with Unstructured Data")
|
222 |
st.write("""
|
223 |
-
-
|
224 |
-
-
|
225 |
-
-
|
226 |
""")
|
227 |
|
228 |
st.markdown("### Solutions")
|
229 |
st.write("""
|
230 |
-
-
|
231 |
-
-
|
232 |
-
-
|
233 |
""")
|
234 |
|
235 |
-
#
|
|
|
|
|
|
|
|
|
236 |
if st.button("Back to Data Collection"):
|
237 |
st.session_state.page = "data_collection"
|
238 |
|
|
|
|
|
|
|
239 |
# ----------------- Semi-Structured Data Page -----------------
|
240 |
def semi_structured_data_page():
|
241 |
st.title(":orange[Semi-Structured Data]")
|
|
|
132 |
st.session_state.page = "structured_data"
|
133 |
|
134 |
# ----------------- Unstructured Data Page -----------------
|
135 |
+
|
136 |
+
from PIL import Image
|
137 |
+
import numpy as np
|
138 |
+
import matplotlib.pyplot as plt
|
139 |
+
|
140 |
def unstructured_data_page():
|
141 |
st.title(":blue[Unstructured Data]")
|
142 |
|
143 |
st.markdown("""
|
144 |
+
*Unstructured data* does not have a predefined format. It consists of various data types like text, images, videos, and audio files.
|
145 |
Examples include:
|
|
|
146 |
- Images (e.g., .jpg, .png)
|
147 |
- Videos (e.g., .mp4, .avi)
|
|
|
148 |
- Social media posts
|
149 |
""")
|
150 |
|
151 |
+
### Handling Image Data Section
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
st.header("🖼️ Handling Image Data")
|
153 |
st.markdown("""
|
154 |
+
Image data can be processed using libraries like OpenCV and PIL (Pillow). Images often need to be preprocessed for tasks like analysis, classification, or feature extraction. Common operations include:
|
155 |
+
- **Reading and displaying images**
|
156 |
+
- **Converting to grayscale**
|
157 |
+
- **Resizing and cropping**
|
158 |
+
- **Rotating and flipping**
|
159 |
+
- **Applying filters**
|
160 |
+
- **Edge detection and other transformations**
|
161 |
""")
|
162 |
+
|
163 |
st.code("""
|
164 |
from PIL import Image
|
165 |
+
import numpy as np
|
166 |
+
import matplotlib.pyplot as plt
|
167 |
|
168 |
# Open an image file
|
169 |
image = Image.open('sample_image.jpg')
|
|
|
172 |
# Convert image to grayscale
|
173 |
gray_image = image.convert('L')
|
174 |
gray_image.show()
|
|
|
175 |
|
176 |
+
# Resize the image
|
177 |
+
resized_image = image.resize((200, 200))
|
178 |
+
resized_image.show()
|
|
|
|
|
|
|
179 |
|
180 |
+
# Rotate the image by 90 degrees
|
181 |
+
rotated_image = image.rotate(90)
|
182 |
+
rotated_image.show()
|
183 |
|
184 |
+
# Convert the image to a NumPy array and display its shape
|
185 |
+
image_array = np.array(image)
|
186 |
+
print(image_array.shape)
|
|
|
|
|
|
|
|
|
187 |
|
188 |
+
# Display the image array as a plot
|
189 |
+
plt.imshow(image)
|
190 |
+
plt.title("Original Image")
|
191 |
+
plt.axis('off')
|
192 |
+
plt.show()
|
193 |
""", language='python')
|
194 |
|
|
|
195 |
st.markdown("""
|
196 |
+
**Common Image Processing Techniques:**
|
197 |
+
- **Resizing**: Adjust the dimensions of an image for uniformity in models.
|
198 |
+
- **Cropping**: Extract a region of interest (ROI) from an image.
|
199 |
+
- **Grayscale Conversion**: Simplify image data by reducing it to a single channel.
|
200 |
+
- **Rotation/Flipping**: Perform augmentations to increase the dataset for model training.
|
201 |
+
- **Edge Detection**: Identify edges in images using filters like the Sobel or Canny filters.
|
202 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
### Challenges and Solutions Section
|
205 |
st.markdown("### Challenges with Unstructured Data")
|
206 |
st.write("""
|
207 |
+
- *Noise and Inconsistency*: Data is often incomplete or noisy.
|
208 |
+
- *Storage Requirements*: Large size and variability in data types.
|
209 |
+
- *Processing Time*: Analyzing unstructured data is computationally expensive.
|
210 |
""")
|
211 |
|
212 |
st.markdown("### Solutions")
|
213 |
st.write("""
|
214 |
+
- *Data Cleaning*: Preprocess data to remove noise.
|
215 |
+
- *Efficient Storage*: Use NoSQL databases (e.g., MongoDB) or cloud storage.
|
216 |
+
- *Parallel Processing*: Utilize frameworks like Apache Spark.
|
217 |
""")
|
218 |
|
219 |
+
# Button to Navigate to Introduction to Image
|
220 |
+
if st.button("Introduction to Image"):
|
221 |
+
st.session_state.page = "introduction_to_image"
|
222 |
+
|
223 |
+
# Navigation Button
|
224 |
if st.button("Back to Data Collection"):
|
225 |
st.session_state.page = "data_collection"
|
226 |
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
# ----------------- Semi-Structured Data Page -----------------
|
231 |
def semi_structured_data_page():
|
232 |
st.title(":orange[Semi-Structured Data]")
|