Spaces:
Build error
Build error
Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
Browse files
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
CHANGED
|
@@ -72,6 +72,7 @@ def data_collection_page():
|
|
| 72 |
if st.button("Back to Home"):
|
| 73 |
st.session_state.page = "home"
|
| 74 |
|
|
|
|
| 75 |
# ----------------- Structured Data Page -----------------
|
| 76 |
def structured_data_page():
|
| 77 |
st.title(":blue[Structured Data]")
|
|
@@ -80,13 +81,13 @@ def structured_data_page():
|
|
| 80 |
""")
|
| 81 |
st.markdown("### Examples: Excel files, CSV files, JSON files")
|
| 82 |
|
| 83 |
-
if st.button(":green[
|
| 84 |
st.session_state.page = "excel"
|
| 85 |
|
| 86 |
-
if st.button(":green[
|
| 87 |
st.session_state.page = "csv"
|
| 88 |
|
| 89 |
-
if st.button(":green[
|
| 90 |
st.session_state.page = "json"
|
| 91 |
|
| 92 |
if st.button("Back to Data Collection"):
|
|
@@ -152,6 +153,22 @@ df = pd.read_csv('data.csv')
|
|
| 152 |
print(df)
|
| 153 |
""", language='python')
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/your_csv_guide_link")
|
| 156 |
|
| 157 |
if st.button("Back to Structured Data"):
|
|
@@ -178,7 +195,188 @@ with open('data.json', 'r') as file:
|
|
| 178 |
st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/your_json_guide_link")
|
| 179 |
|
| 180 |
if st.button("Back to Structured Data"):
|
| 181 |
-
st.session_state.page = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
# ----------------- Router -----------------
|
| 184 |
def router():
|
|
@@ -192,8 +390,11 @@ def router():
|
|
| 192 |
excel_page()
|
| 193 |
elif st.session_state.page == "csv":
|
| 194 |
csv_page()
|
| 195 |
-
elif st.session_state.page == "
|
| 196 |
-
|
|
|
|
|
|
|
| 197 |
|
| 198 |
# Run the router function
|
| 199 |
-
|
|
|
|
|
|
| 72 |
if st.button("Back to Home"):
|
| 73 |
st.session_state.page = "home"
|
| 74 |
|
| 75 |
+
|
| 76 |
# ----------------- Structured Data Page -----------------
|
| 77 |
def structured_data_page():
|
| 78 |
st.title(":blue[Structured Data]")
|
|
|
|
| 81 |
""")
|
| 82 |
st.markdown("### Examples: Excel files, CSV files, JSON files")
|
| 83 |
|
| 84 |
+
if st.button(":green[\ud83d\udcca Excel]"):
|
| 85 |
st.session_state.page = "excel"
|
| 86 |
|
| 87 |
+
if st.button(":green[\ud83d\udcc4 CSV]"):
|
| 88 |
st.session_state.page = "csv"
|
| 89 |
|
| 90 |
+
if st.button(":green[\ud83d\udd39 JSON]"):
|
| 91 |
st.session_state.page = "json"
|
| 92 |
|
| 93 |
if st.button("Back to Data Collection"):
|
|
|
|
| 153 |
print(df)
|
| 154 |
""", language='python')
|
| 155 |
|
| 156 |
+
st.write("### Error Handling for CSV Files")
|
| 157 |
+
st.code("""
|
| 158 |
+
import pandas as pd
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
df = pd.read_csv('data.csv', encoding='utf-8', delimiter=',')
|
| 162 |
+
print("CSV File Loaded Successfully!")
|
| 163 |
+
print(df)
|
| 164 |
+
except FileNotFoundError:
|
| 165 |
+
print("Error: File not found. Please check the file path.")
|
| 166 |
+
except pd.errors.ParserError:
|
| 167 |
+
print("Error: The file is not a valid CSV format.")
|
| 168 |
+
except UnicodeDecodeError:
|
| 169 |
+
print("Error: Encoding issue. Try specifying a different encoding like 'latin1' or 'utf-8'.")
|
| 170 |
+
""", language='python')
|
| 171 |
+
|
| 172 |
st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/your_csv_guide_link")
|
| 173 |
|
| 174 |
if st.button("Back to Structured Data"):
|
|
|
|
| 195 |
st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/your_json_guide_link")
|
| 196 |
|
| 197 |
if st.button("Back to Structured Data"):
|
| 198 |
+
st.session_state.page = "structured
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
# ----------------- Unstructured Data Page -----------------
|
| 202 |
+
def unstructured_data_page():
|
| 203 |
+
st.title(":blue[Unstructured Data]")
|
| 204 |
+
|
| 205 |
+
st.markdown("""
|
| 206 |
+
**Unstructured data** does not have a predefined format. It consists of various data types like text, images, videos, and audio files.
|
| 207 |
+
Examples include:
|
| 208 |
+
- Text documents (e.g., .txt, .docx)
|
| 209 |
+
- Images (e.g., .jpg, .png)
|
| 210 |
+
- Videos (e.g., .mp4, .avi)
|
| 211 |
+
- Audio files (e.g., .mp3, .wav)
|
| 212 |
+
- Social media posts
|
| 213 |
+
""")
|
| 214 |
+
|
| 215 |
+
st.header("π Handling Text Data")
|
| 216 |
+
st.markdown("""
|
| 217 |
+
Text data can be analyzed using Natural Language Processing (NLP) techniques.
|
| 218 |
+
""")
|
| 219 |
+
st.code("""
|
| 220 |
+
# Reading text data
|
| 221 |
+
with open('sample.txt', 'r') as file:
|
| 222 |
+
text = file.read()
|
| 223 |
+
print(text)
|
| 224 |
+
|
| 225 |
+
# Basic text processing using NLTK
|
| 226 |
+
import nltk
|
| 227 |
+
from nltk.tokenize import word_tokenize
|
| 228 |
+
|
| 229 |
+
nltk.download('punkt')
|
| 230 |
+
tokens = word_tokenize(text)
|
| 231 |
+
print(tokens)
|
| 232 |
+
""", language='python')
|
| 233 |
+
|
| 234 |
+
st.header("πΌοΈ Handling Image Data")
|
| 235 |
+
st.markdown("""
|
| 236 |
+
Image data can be processed using libraries like OpenCV and PIL (Pillow).
|
| 237 |
+
""")
|
| 238 |
+
st.code("""
|
| 239 |
+
from PIL import Image
|
| 240 |
+
|
| 241 |
+
# Open an image file
|
| 242 |
+
image = Image.open('sample_image.jpg')
|
| 243 |
+
image.show()
|
| 244 |
+
|
| 245 |
+
# Convert image to grayscale
|
| 246 |
+
gray_image = image.convert('L')
|
| 247 |
+
gray_image.show()
|
| 248 |
+
""", language='python')
|
| 249 |
+
|
| 250 |
+
st.header("π₯ Handling Video Data")
|
| 251 |
+
st.markdown("""
|
| 252 |
+
Videos can be processed frame by frame using OpenCV.
|
| 253 |
+
""")
|
| 254 |
+
st.code("""
|
| 255 |
+
import cv2
|
| 256 |
+
|
| 257 |
+
# Capture video
|
| 258 |
+
video = cv2.VideoCapture('sample_video.mp4')
|
| 259 |
+
|
| 260 |
+
while video.isOpened():
|
| 261 |
+
ret, frame = video.read()
|
| 262 |
+
if not ret:
|
| 263 |
+
break
|
| 264 |
+
cv2.imshow('Frame', frame)
|
| 265 |
+
if cv2.waitKey(25) & 0xFF == ord('q'):
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
video.release()
|
| 269 |
+
cv2.destroyAllWindows()
|
| 270 |
+
""", language='python')
|
| 271 |
+
|
| 272 |
+
st.header("π Handling Audio Data")
|
| 273 |
+
st.markdown("""
|
| 274 |
+
Audio data can be handled using libraries like librosa.
|
| 275 |
+
""")
|
| 276 |
+
st.code("""
|
| 277 |
+
import librosa
|
| 278 |
+
import librosa.display
|
| 279 |
+
import matplotlib.pyplot as plt
|
| 280 |
+
|
| 281 |
+
# Load audio file
|
| 282 |
+
y, sr = librosa.load('sample_audio.mp3')
|
| 283 |
+
librosa.display.waveshow(y, sr=sr)
|
| 284 |
+
plt.title('Waveform')
|
| 285 |
+
plt.show()
|
| 286 |
+
""", language='python')
|
| 287 |
+
|
| 288 |
+
st.markdown("### Challenges with Unstructured Data")
|
| 289 |
+
st.write("""
|
| 290 |
+
- **Noise and Inconsistency**: Data is often incomplete or noisy.
|
| 291 |
+
- **Storage Requirements**: Large size and variability in data types.
|
| 292 |
+
- **Processing Time**: Analyzing unstructured data is computationally expensive.
|
| 293 |
+
""")
|
| 294 |
+
|
| 295 |
+
st.markdown("### Solutions")
|
| 296 |
+
st.write("""
|
| 297 |
+
- **Data Cleaning**: Preprocess data to remove noise.
|
| 298 |
+
- **Efficient Storage**: Use NoSQL databases (e.g., MongoDB) or cloud storage.
|
| 299 |
+
- **Parallel Processing**: Utilize frameworks like Apache Spark.
|
| 300 |
+
""")
|
| 301 |
+
|
| 302 |
+
# Back to Data Collection
|
| 303 |
+
if st.button("Back to Data Collection"):
|
| 304 |
+
st.session_state.page = "data_collection"
|
| 305 |
+
|
| 306 |
+
# ----------------- Semi-Structured Data Page -----------------
|
| 307 |
+
def semi_structured_data_page():
|
| 308 |
+
st.title(":blue[Semi-Structured Data]")
|
| 309 |
+
|
| 310 |
+
st.markdown("""
|
| 311 |
+
**Semi-structured data** does not conform strictly to a tabular structure but contains tags or markers to separate elements. Examples include:
|
| 312 |
+
- JSON (JavaScript Object Notation) files
|
| 313 |
+
- XML (Extensible Markup Language) files
|
| 314 |
+
- YAML (Yet Another Markup Language)
|
| 315 |
+
""")
|
| 316 |
+
|
| 317 |
+
st.header("πΉ JSON Data")
|
| 318 |
+
st.markdown("""
|
| 319 |
+
JSON is a popular format for storing and exchanging data.
|
| 320 |
+
""")
|
| 321 |
+
st.code("""
|
| 322 |
+
# Sample JSON data
|
| 323 |
+
data = '''
|
| 324 |
+
{
|
| 325 |
+
"name": "Alice",
|
| 326 |
+
"age": 25,
|
| 327 |
+
"skills": ["Python", "Machine Learning"]
|
| 328 |
+
}
|
| 329 |
+
'''
|
| 330 |
+
|
| 331 |
+
# Parse JSON
|
| 332 |
+
parsed_data = json.loads(data)
|
| 333 |
+
print(parsed_data['name']) # Output: Alice
|
| 334 |
+
""", language='python')
|
| 335 |
+
|
| 336 |
+
st.header("πΉ Reading JSON Files")
|
| 337 |
+
st.code("""
|
| 338 |
+
# Reading a JSON file
|
| 339 |
+
with open('data.json', 'r') as file:
|
| 340 |
+
data = json.load(file)
|
| 341 |
+
print(data)
|
| 342 |
+
""", language='python')
|
| 343 |
+
|
| 344 |
+
st.header("πΉ XML Data")
|
| 345 |
+
st.markdown("""
|
| 346 |
+
XML is a markup language that defines a set of rules for encoding documents.
|
| 347 |
+
""")
|
| 348 |
+
st.code("""
|
| 349 |
+
import xml.etree.ElementTree as ET
|
| 350 |
+
|
| 351 |
+
# Sample XML data
|
| 352 |
+
xml_data = '''
|
| 353 |
+
<person>
|
| 354 |
+
<name>Bob</name>
|
| 355 |
+
<age>30</age>
|
| 356 |
+
<city>New York</city>
|
| 357 |
+
</person>
|
| 358 |
+
'''
|
| 359 |
+
|
| 360 |
+
# Parse XML
|
| 361 |
+
root = ET.fromstring(xml_data)
|
| 362 |
+
print(root.find('name').text) # Output: Bob
|
| 363 |
+
""", language='python')
|
| 364 |
+
|
| 365 |
+
st.markdown("### Challenges with Semi-Structured Data")
|
| 366 |
+
st.write("""
|
| 367 |
+
- **Complex Parsing**: Requires specialized parsers.
|
| 368 |
+
- **Nested Data**: Can be deeply nested, making it harder to process.
|
| 369 |
+
""")
|
| 370 |
+
|
| 371 |
+
st.markdown("### Solutions")
|
| 372 |
+
st.write("""
|
| 373 |
+
- **Libraries**: Use libraries like json, xml.etree.ElementTree, and yaml for parsing.
|
| 374 |
+
- **Validation**: Validate data formats to avoid parsing errors.
|
| 375 |
+
""")
|
| 376 |
+
|
| 377 |
+
# Back to Data Collection
|
| 378 |
+
if st.button("Back to Data Collection"):
|
| 379 |
+
st.session_state.page = "data_collection"
|
| 380 |
|
| 381 |
# ----------------- Router -----------------
|
| 382 |
def router():
|
|
|
|
| 390 |
excel_page()
|
| 391 |
elif st.session_state.page == "csv":
|
| 392 |
csv_page()
|
| 393 |
+
elif st.session_state.page == "unstructured_data":
|
| 394 |
+
unstructured_data_page()
|
| 395 |
+
elif st.session_state.page == "semi_structured_data":
|
| 396 |
+
semi_structured_data_page()
|
| 397 |
|
| 398 |
# Run the router function
|
| 399 |
+
if __name__ == "__main__":
|
| 400 |
+
router()
|