Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
Browse files
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
CHANGED
@@ -78,11 +78,17 @@ def structured_data_page():
|
|
78 |
st.markdown("""
|
79 |
Structured data is highly organized and typically stored in tables like spreadsheets or databases. It is easy to search and analyze.
|
80 |
""")
|
81 |
-
st.markdown("### Examples: Excel files, CSV files")
|
82 |
|
83 |
if st.button(":green[📊 Excel]"):
|
84 |
st.session_state.page = "excel"
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
if st.button("Back to Data Collection"):
|
87 |
st.session_state.page = "data_collection"
|
88 |
|
@@ -125,204 +131,54 @@ excel_file = pd.ExcelFile('data.xlsx')
|
|
125 |
print(excel_file.sheet_names)
|
126 |
""", language='python')
|
127 |
|
128 |
-
|
129 |
-
# with open("excel_handling_guide.ipynb", "rb") as file:
|
130 |
-
# st.download_button(
|
131 |
-
# label="Download Jupyter Notebook",
|
132 |
-
# data = file,
|
133 |
-
# file_name="excel_handling_guide.ipynb",
|
134 |
-
# mime="application/octet-stream")
|
135 |
-
|
136 |
-
|
137 |
-
#test
|
138 |
-
# with open("excel_handling_guide.ipynb", "rb") as file:
|
139 |
-
# st.download_button("Download Jupyter Notebook",file)
|
140 |
-
|
141 |
-
#test-2
|
142 |
-
st.link_button("Jupyter Notebook","https://colab.research.google.com/drive/1ZTKWTknL-4IQ9QbAfcyKzIP-_lNxmz2P?usp=sharing")
|
143 |
|
144 |
if st.button("Back to Structured Data"):
|
145 |
st.session_state.page = "structured_data"
|
146 |
|
147 |
-
# -----------------
|
148 |
-
def
|
149 |
-
st.title(":
|
150 |
-
|
151 |
-
st.markdown("""
|
152 |
-
**Unstructured data** does not have a predefined format. It consists of various data types like text, images, videos, and audio files.
|
153 |
-
Examples include:
|
154 |
-
- Text documents (e.g., .txt, .docx)
|
155 |
-
- Images (e.g., .jpg, .png)
|
156 |
-
- Videos (e.g., .mp4, .avi)
|
157 |
-
- Audio files (e.g., .mp3, .wav)
|
158 |
-
- Social media posts
|
159 |
-
""")
|
160 |
|
161 |
-
st.
|
162 |
-
st.
|
163 |
-
Text data can be analyzed using Natural Language Processing (NLP) techniques.
|
164 |
-
""")
|
165 |
-
st.code("""
|
166 |
-
# Reading text data
|
167 |
-
with open('sample.txt', 'r') as file:
|
168 |
-
text = file.read()
|
169 |
-
print(text)
|
170 |
-
|
171 |
-
# Basic text processing using NLTK
|
172 |
-
import nltk
|
173 |
-
from nltk.tokenize import word_tokenize
|
174 |
-
|
175 |
-
nltk.download('punkt')
|
176 |
-
tokens = word_tokenize(text)
|
177 |
-
print(tokens)
|
178 |
-
""", language='python')
|
179 |
|
180 |
-
st.
|
181 |
-
st.markdown("""
|
182 |
-
Image data can be processed using libraries like OpenCV and PIL (Pillow).
|
183 |
-
""")
|
184 |
st.code("""
|
185 |
-
|
186 |
-
|
187 |
-
# Open an image file
|
188 |
-
image = Image.open('sample_image.jpg')
|
189 |
-
image.show()
|
190 |
|
191 |
-
#
|
192 |
-
|
193 |
-
|
194 |
""", language='python')
|
195 |
|
196 |
-
st.
|
197 |
-
st.markdown("""
|
198 |
-
Videos can be processed frame by frame using OpenCV.
|
199 |
-
""")
|
200 |
-
st.code("""
|
201 |
-
import cv2
|
202 |
-
|
203 |
-
# Capture video
|
204 |
-
video = cv2.VideoCapture('sample_video.mp4')
|
205 |
-
|
206 |
-
while video.isOpened():
|
207 |
-
ret, frame = video.read()
|
208 |
-
if not ret:
|
209 |
-
break
|
210 |
-
cv2.imshow('Frame', frame)
|
211 |
-
if cv2.waitKey(25) & 0xFF == ord('q'):
|
212 |
-
break
|
213 |
-
|
214 |
-
video.release()
|
215 |
-
cv2.destroyAllWindows()
|
216 |
-
""", language='python')
|
217 |
|
218 |
-
st.
|
219 |
-
|
220 |
-
Audio data can be handled using libraries like librosa.
|
221 |
-
""")
|
222 |
-
st.code("""
|
223 |
-
import librosa
|
224 |
-
import librosa.display
|
225 |
-
import matplotlib.pyplot as plt
|
226 |
-
|
227 |
-
# Load audio file
|
228 |
-
y, sr = librosa.load('sample_audio.mp3')
|
229 |
-
librosa.display.waveshow(y, sr=sr)
|
230 |
-
plt.title('Waveform')
|
231 |
-
plt.show()
|
232 |
-
""", language='python')
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
- **Storage Requirements**: Large size and variability in data types.
|
238 |
-
- **Processing Time**: Analyzing unstructured data is computationally expensive.
|
239 |
-
""")
|
240 |
|
241 |
-
st.
|
242 |
st.write("""
|
243 |
-
|
244 |
-
- **Efficient Storage**: Use NoSQL databases (e.g., MongoDB) or cloud storage.
|
245 |
-
- **Parallel Processing**: Utilize frameworks like Apache Spark.
|
246 |
-
""")
|
247 |
-
|
248 |
-
# Back to Data Collection
|
249 |
-
if st.button("Back to Data Collection"):
|
250 |
-
st.session_state.page = "data_collection"
|
251 |
-
|
252 |
-
# ----------------- Semi-Structured Data Page -----------------
|
253 |
-
def semi_structured_data_page():
|
254 |
-
st.title(":blue[Semi-Structured Data]")
|
255 |
-
|
256 |
-
st.markdown("""
|
257 |
-
**Semi-structured data** does not conform strictly to a tabular structure but contains tags or markers to separate elements. Examples include:
|
258 |
-
- JSON (JavaScript Object Notation) files
|
259 |
-
- XML (Extensible Markup Language) files
|
260 |
-
- YAML (Yet Another Markup Language)
|
261 |
""")
|
262 |
|
263 |
-
st.header("🔹 JSON Data")
|
264 |
-
st.markdown("""
|
265 |
-
JSON is a popular format for storing and exchanging data.
|
266 |
-
""")
|
267 |
st.code("""
|
268 |
-
|
269 |
-
data = '''
|
270 |
-
{
|
271 |
-
"name": "Alice",
|
272 |
-
"age": 25,
|
273 |
-
"skills": ["Python", "Machine Learning"]
|
274 |
-
}
|
275 |
-
'''
|
276 |
-
|
277 |
-
# Parse JSON
|
278 |
-
parsed_data = json.loads(data)
|
279 |
-
print(parsed_data['name']) # Output: Alice
|
280 |
-
""", language='python')
|
281 |
|
282 |
-
|
283 |
-
st.code("""
|
284 |
-
# Reading a JSON file
|
285 |
with open('data.json', 'r') as file:
|
286 |
data = json.load(file)
|
287 |
print(data)
|
288 |
""", language='python')
|
289 |
|
290 |
-
st.
|
291 |
-
st.markdown("""
|
292 |
-
XML is a markup language that defines a set of rules for encoding documents.
|
293 |
-
""")
|
294 |
-
st.code("""
|
295 |
-
import xml.etree.ElementTree as ET
|
296 |
-
|
297 |
-
# Sample XML data
|
298 |
-
xml_data = '''
|
299 |
-
<person>
|
300 |
-
<name>Bob</name>
|
301 |
-
<age>30</age>
|
302 |
-
<city>New York</city>
|
303 |
-
</person>
|
304 |
-
'''
|
305 |
-
|
306 |
-
# Parse XML
|
307 |
-
root = ET.fromstring(xml_data)
|
308 |
-
print(root.find('name').text) # Output: Bob
|
309 |
-
""", language='python')
|
310 |
-
|
311 |
-
st.markdown("### Challenges with Semi-Structured Data")
|
312 |
-
st.write("""
|
313 |
-
- **Complex Parsing**: Requires specialized parsers.
|
314 |
-
- **Nested Data**: Can be deeply nested, making it harder to process.
|
315 |
-
""")
|
316 |
|
317 |
-
st.
|
318 |
-
|
319 |
-
- **Libraries**: Use libraries like json, xml.etree.ElementTree, and yaml for parsing.
|
320 |
-
- **Validation**: Validate data formats to avoid parsing errors.
|
321 |
-
""")
|
322 |
-
|
323 |
-
# Back to Data Collection
|
324 |
-
if st.button("Back to Data Collection"):
|
325 |
-
st.session_state.page = "data_collection"
|
326 |
|
327 |
# ----------------- Router -----------------
|
328 |
def router():
|
@@ -334,11 +190,10 @@ def router():
|
|
334 |
structured_data_page()
|
335 |
elif st.session_state.page == "excel":
|
336 |
excel_page()
|
337 |
-
elif st.session_state.page == "
|
338 |
-
|
339 |
-
elif st.session_state.page == "
|
340 |
-
|
341 |
-
|
342 |
-
# Run
|
343 |
-
|
344 |
-
router()
|
|
|
78 |
st.markdown("""
|
79 |
Structured data is highly organized and typically stored in tables like spreadsheets or databases. It is easy to search and analyze.
|
80 |
""")
|
81 |
+
st.markdown("### Examples: Excel files, CSV files, JSON files")
|
82 |
|
83 |
if st.button(":green[📊 Excel]"):
|
84 |
st.session_state.page = "excel"
|
85 |
|
86 |
+
if st.button(":green[📄 CSV]"):
|
87 |
+
st.session_state.page = "csv"
|
88 |
+
|
89 |
+
if st.button(":green[🔹 JSON]"):
|
90 |
+
st.session_state.page = "json"
|
91 |
+
|
92 |
if st.button("Back to Data Collection"):
|
93 |
st.session_state.page = "data_collection"
|
94 |
|
|
|
131 |
print(excel_file.sheet_names)
|
132 |
""", language='python')
|
133 |
|
134 |
+
st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/1ZTKWTknL-4IQ9QbAfcyKzIP-_lNxmz2P?usp=sharing")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
if st.button("Back to Structured Data"):
|
137 |
st.session_state.page = "structured_data"
|
138 |
|
139 |
+
# ----------------- CSV Data Page -----------------
|
140 |
+
def csv_page():
|
141 |
+
st.title(":green[CSV Data Format]")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
st.write("### What is CSV?")
|
144 |
+
st.write("CSV (Comma-Separated Values) files store tabular data in plain text, where each line is a data record and columns are separated by commas.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
st.write("### How to Read CSV Files")
|
|
|
|
|
|
|
147 |
st.code("""
|
148 |
+
import pandas as pd
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
# Read a CSV file
|
151 |
+
df = pd.read_csv('data.csv')
|
152 |
+
print(df)
|
153 |
""", language='python')
|
154 |
|
155 |
+
st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/your_csv_guide_link")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
if st.button("Back to Structured Data"):
|
158 |
+
st.session_state.page = "structured_data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
# ----------------- JSON Data Page -----------------
|
161 |
+
def json_page():
|
162 |
+
st.title(":green[JSON Data Format]")
|
|
|
|
|
|
|
163 |
|
164 |
+
st.write("### What is JSON?")
|
165 |
st.write("""
|
166 |
+
JSON (JavaScript Object Notation) is a lightweight data-interchange format.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
""")
|
168 |
|
|
|
|
|
|
|
|
|
169 |
st.code("""
|
170 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
# Read a JSON file
|
|
|
|
|
173 |
with open('data.json', 'r') as file:
|
174 |
data = json.load(file)
|
175 |
print(data)
|
176 |
""", language='python')
|
177 |
|
178 |
+
st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/your_json_guide_link")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
if st.button("Back to Structured Data"):
|
181 |
+
st.session_state.page = "structured_data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
# ----------------- Router -----------------
|
184 |
def router():
|
|
|
190 |
structured_data_page()
|
191 |
elif st.session_state.page == "excel":
|
192 |
excel_page()
|
193 |
+
elif st.session_state.page == "csv":
|
194 |
+
csv_page()
|
195 |
+
elif st.session_state.page == "json":
|
196 |
+
json_page()
|
197 |
+
|
198 |
+
# Run the router function
|
199 |
+
router()
|
|