Spaces:
Build error
Build error
Update pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
Browse files
pages/LIFE_CYCLE_OF_MACHINE_LEARNING.py
CHANGED
|
@@ -78,11 +78,17 @@ def structured_data_page():
|
|
| 78 |
st.markdown("""
|
| 79 |
Structured data is highly organized and typically stored in tables like spreadsheets or databases. It is easy to search and analyze.
|
| 80 |
""")
|
| 81 |
-
st.markdown("### Examples: Excel files, CSV files")
|
| 82 |
|
| 83 |
if st.button(":green[📊 Excel]"):
|
| 84 |
st.session_state.page = "excel"
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
if st.button("Back to Data Collection"):
|
| 87 |
st.session_state.page = "data_collection"
|
| 88 |
|
|
@@ -125,204 +131,54 @@ excel_file = pd.ExcelFile('data.xlsx')
|
|
| 125 |
print(excel_file.sheet_names)
|
| 126 |
""", language='python')
|
| 127 |
|
| 128 |
-
|
| 129 |
-
# with open("excel_handling_guide.ipynb", "rb") as file:
|
| 130 |
-
# st.download_button(
|
| 131 |
-
# label="Download Jupyter Notebook",
|
| 132 |
-
# data = file,
|
| 133 |
-
# file_name="excel_handling_guide.ipynb",
|
| 134 |
-
# mime="application/octet-stream")
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
#test
|
| 138 |
-
# with open("excel_handling_guide.ipynb", "rb") as file:
|
| 139 |
-
# st.download_button("Download Jupyter Notebook",file)
|
| 140 |
-
|
| 141 |
-
#test-2
|
| 142 |
-
st.link_button("Jupyter Notebook","https://colab.research.google.com/drive/1ZTKWTknL-4IQ9QbAfcyKzIP-_lNxmz2P?usp=sharing")
|
| 143 |
|
| 144 |
if st.button("Back to Structured Data"):
|
| 145 |
st.session_state.page = "structured_data"
|
| 146 |
|
| 147 |
-
# -----------------
|
| 148 |
-
def
|
| 149 |
-
st.title(":
|
| 150 |
-
|
| 151 |
-
st.markdown("""
|
| 152 |
-
**Unstructured data** does not have a predefined format. It consists of various data types like text, images, videos, and audio files.
|
| 153 |
-
Examples include:
|
| 154 |
-
- Text documents (e.g., .txt, .docx)
|
| 155 |
-
- Images (e.g., .jpg, .png)
|
| 156 |
-
- Videos (e.g., .mp4, .avi)
|
| 157 |
-
- Audio files (e.g., .mp3, .wav)
|
| 158 |
-
- Social media posts
|
| 159 |
-
""")
|
| 160 |
|
| 161 |
-
st.
|
| 162 |
-
st.
|
| 163 |
-
Text data can be analyzed using Natural Language Processing (NLP) techniques.
|
| 164 |
-
""")
|
| 165 |
-
st.code("""
|
| 166 |
-
# Reading text data
|
| 167 |
-
with open('sample.txt', 'r') as file:
|
| 168 |
-
text = file.read()
|
| 169 |
-
print(text)
|
| 170 |
-
|
| 171 |
-
# Basic text processing using NLTK
|
| 172 |
-
import nltk
|
| 173 |
-
from nltk.tokenize import word_tokenize
|
| 174 |
-
|
| 175 |
-
nltk.download('punkt')
|
| 176 |
-
tokens = word_tokenize(text)
|
| 177 |
-
print(tokens)
|
| 178 |
-
""", language='python')
|
| 179 |
|
| 180 |
-
st.
|
| 181 |
-
st.markdown("""
|
| 182 |
-
Image data can be processed using libraries like OpenCV and PIL (Pillow).
|
| 183 |
-
""")
|
| 184 |
st.code("""
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
# Open an image file
|
| 188 |
-
image = Image.open('sample_image.jpg')
|
| 189 |
-
image.show()
|
| 190 |
|
| 191 |
-
#
|
| 192 |
-
|
| 193 |
-
|
| 194 |
""", language='python')
|
| 195 |
|
| 196 |
-
st.
|
| 197 |
-
st.markdown("""
|
| 198 |
-
Videos can be processed frame by frame using OpenCV.
|
| 199 |
-
""")
|
| 200 |
-
st.code("""
|
| 201 |
-
import cv2
|
| 202 |
-
|
| 203 |
-
# Capture video
|
| 204 |
-
video = cv2.VideoCapture('sample_video.mp4')
|
| 205 |
-
|
| 206 |
-
while video.isOpened():
|
| 207 |
-
ret, frame = video.read()
|
| 208 |
-
if not ret:
|
| 209 |
-
break
|
| 210 |
-
cv2.imshow('Frame', frame)
|
| 211 |
-
if cv2.waitKey(25) & 0xFF == ord('q'):
|
| 212 |
-
break
|
| 213 |
-
|
| 214 |
-
video.release()
|
| 215 |
-
cv2.destroyAllWindows()
|
| 216 |
-
""", language='python')
|
| 217 |
|
| 218 |
-
st.
|
| 219 |
-
|
| 220 |
-
Audio data can be handled using libraries like librosa.
|
| 221 |
-
""")
|
| 222 |
-
st.code("""
|
| 223 |
-
import librosa
|
| 224 |
-
import librosa.display
|
| 225 |
-
import matplotlib.pyplot as plt
|
| 226 |
-
|
| 227 |
-
# Load audio file
|
| 228 |
-
y, sr = librosa.load('sample_audio.mp3')
|
| 229 |
-
librosa.display.waveshow(y, sr=sr)
|
| 230 |
-
plt.title('Waveform')
|
| 231 |
-
plt.show()
|
| 232 |
-
""", language='python')
|
| 233 |
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
- **Storage Requirements**: Large size and variability in data types.
|
| 238 |
-
- **Processing Time**: Analyzing unstructured data is computationally expensive.
|
| 239 |
-
""")
|
| 240 |
|
| 241 |
-
st.
|
| 242 |
st.write("""
|
| 243 |
-
|
| 244 |
-
- **Efficient Storage**: Use NoSQL databases (e.g., MongoDB) or cloud storage.
|
| 245 |
-
- **Parallel Processing**: Utilize frameworks like Apache Spark.
|
| 246 |
-
""")
|
| 247 |
-
|
| 248 |
-
# Back to Data Collection
|
| 249 |
-
if st.button("Back to Data Collection"):
|
| 250 |
-
st.session_state.page = "data_collection"
|
| 251 |
-
|
| 252 |
-
# ----------------- Semi-Structured Data Page -----------------
|
| 253 |
-
def semi_structured_data_page():
|
| 254 |
-
st.title(":blue[Semi-Structured Data]")
|
| 255 |
-
|
| 256 |
-
st.markdown("""
|
| 257 |
-
**Semi-structured data** does not conform strictly to a tabular structure but contains tags or markers to separate elements. Examples include:
|
| 258 |
-
- JSON (JavaScript Object Notation) files
|
| 259 |
-
- XML (Extensible Markup Language) files
|
| 260 |
-
- YAML (Yet Another Markup Language)
|
| 261 |
""")
|
| 262 |
|
| 263 |
-
st.header("🔹 JSON Data")
|
| 264 |
-
st.markdown("""
|
| 265 |
-
JSON is a popular format for storing and exchanging data.
|
| 266 |
-
""")
|
| 267 |
st.code("""
|
| 268 |
-
|
| 269 |
-
data = '''
|
| 270 |
-
{
|
| 271 |
-
"name": "Alice",
|
| 272 |
-
"age": 25,
|
| 273 |
-
"skills": ["Python", "Machine Learning"]
|
| 274 |
-
}
|
| 275 |
-
'''
|
| 276 |
-
|
| 277 |
-
# Parse JSON
|
| 278 |
-
parsed_data = json.loads(data)
|
| 279 |
-
print(parsed_data['name']) # Output: Alice
|
| 280 |
-
""", language='python')
|
| 281 |
|
| 282 |
-
|
| 283 |
-
st.code("""
|
| 284 |
-
# Reading a JSON file
|
| 285 |
with open('data.json', 'r') as file:
|
| 286 |
data = json.load(file)
|
| 287 |
print(data)
|
| 288 |
""", language='python')
|
| 289 |
|
| 290 |
-
st.
|
| 291 |
-
st.markdown("""
|
| 292 |
-
XML is a markup language that defines a set of rules for encoding documents.
|
| 293 |
-
""")
|
| 294 |
-
st.code("""
|
| 295 |
-
import xml.etree.ElementTree as ET
|
| 296 |
-
|
| 297 |
-
# Sample XML data
|
| 298 |
-
xml_data = '''
|
| 299 |
-
<person>
|
| 300 |
-
<name>Bob</name>
|
| 301 |
-
<age>30</age>
|
| 302 |
-
<city>New York</city>
|
| 303 |
-
</person>
|
| 304 |
-
'''
|
| 305 |
-
|
| 306 |
-
# Parse XML
|
| 307 |
-
root = ET.fromstring(xml_data)
|
| 308 |
-
print(root.find('name').text) # Output: Bob
|
| 309 |
-
""", language='python')
|
| 310 |
-
|
| 311 |
-
st.markdown("### Challenges with Semi-Structured Data")
|
| 312 |
-
st.write("""
|
| 313 |
-
- **Complex Parsing**: Requires specialized parsers.
|
| 314 |
-
- **Nested Data**: Can be deeply nested, making it harder to process.
|
| 315 |
-
""")
|
| 316 |
|
| 317 |
-
st.
|
| 318 |
-
|
| 319 |
-
- **Libraries**: Use libraries like json, xml.etree.ElementTree, and yaml for parsing.
|
| 320 |
-
- **Validation**: Validate data formats to avoid parsing errors.
|
| 321 |
-
""")
|
| 322 |
-
|
| 323 |
-
# Back to Data Collection
|
| 324 |
-
if st.button("Back to Data Collection"):
|
| 325 |
-
st.session_state.page = "data_collection"
|
| 326 |
|
| 327 |
# ----------------- Router -----------------
|
| 328 |
def router():
|
|
@@ -334,11 +190,10 @@ def router():
|
|
| 334 |
structured_data_page()
|
| 335 |
elif st.session_state.page == "excel":
|
| 336 |
excel_page()
|
| 337 |
-
elif st.session_state.page == "
|
| 338 |
-
|
| 339 |
-
elif st.session_state.page == "
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
# Run
|
| 343 |
-
|
| 344 |
-
router()
|
|
|
|
| 78 |
st.markdown("""
|
| 79 |
Structured data is highly organized and typically stored in tables like spreadsheets or databases. It is easy to search and analyze.
|
| 80 |
""")
|
| 81 |
+
st.markdown("### Examples: Excel files, CSV files, JSON files")
|
| 82 |
|
| 83 |
if st.button(":green[📊 Excel]"):
|
| 84 |
st.session_state.page = "excel"
|
| 85 |
|
| 86 |
+
if st.button(":green[📄 CSV]"):
|
| 87 |
+
st.session_state.page = "csv"
|
| 88 |
+
|
| 89 |
+
if st.button(":green[🔹 JSON]"):
|
| 90 |
+
st.session_state.page = "json"
|
| 91 |
+
|
| 92 |
if st.button("Back to Data Collection"):
|
| 93 |
st.session_state.page = "data_collection"
|
| 94 |
|
|
|
|
| 131 |
print(excel_file.sheet_names)
|
| 132 |
""", language='python')
|
| 133 |
|
| 134 |
+
st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/1ZTKWTknL-4IQ9QbAfcyKzIP-_lNxmz2P?usp=sharing")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
if st.button("Back to Structured Data"):
|
| 137 |
st.session_state.page = "structured_data"
|
| 138 |
|
| 139 |
+
# ----------------- CSV Data Page -----------------
|
| 140 |
+
def csv_page():
|
| 141 |
+
st.title(":green[CSV Data Format]")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
+
st.write("### What is CSV?")
|
| 144 |
+
st.write("CSV (Comma-Separated Values) files store tabular data in plain text, where each line is a data record and columns are separated by commas.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
st.write("### How to Read CSV Files")
|
|
|
|
|
|
|
|
|
|
| 147 |
st.code("""
|
| 148 |
+
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
# Read a CSV file
|
| 151 |
+
df = pd.read_csv('data.csv')
|
| 152 |
+
print(df)
|
| 153 |
""", language='python')
|
| 154 |
|
| 155 |
+
st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/your_csv_guide_link")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
+
if st.button("Back to Structured Data"):
|
| 158 |
+
st.session_state.page = "structured_data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
+
# ----------------- JSON Data Page -----------------
|
| 161 |
+
def json_page():
|
| 162 |
+
st.title(":green[JSON Data Format]")
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
+
st.write("### What is JSON?")
|
| 165 |
st.write("""
|
| 166 |
+
JSON (JavaScript Object Notation) is a lightweight data-interchange format.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
""")
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
st.code("""
|
| 170 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
+
# Read a JSON file
|
|
|
|
|
|
|
| 173 |
with open('data.json', 'r') as file:
|
| 174 |
data = json.load(file)
|
| 175 |
print(data)
|
| 176 |
""", language='python')
|
| 177 |
|
| 178 |
+
st.link_button("Jupyter Notebook", "https://colab.research.google.com/drive/your_json_guide_link")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
if st.button("Back to Structured Data"):
|
| 181 |
+
st.session_state.page = "structured_data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
# ----------------- Router -----------------
|
| 184 |
def router():
|
|
|
|
| 190 |
structured_data_page()
|
| 191 |
elif st.session_state.page == "excel":
|
| 192 |
excel_page()
|
| 193 |
+
elif st.session_state.page == "csv":
|
| 194 |
+
csv_page()
|
| 195 |
+
elif st.session_state.page == "json":
|
| 196 |
+
json_page()
|
| 197 |
+
|
| 198 |
+
# Run the router function
|
| 199 |
+
router()
|
|
|