Spaces:
Runtime error
Runtime error
File size: 16,198 Bytes
07bcae5 0ae8956 82a9df1 931d60e 07bcae5 890d748 b9aee76 07bcae5 7cb75b2 07bcae5 2da6e51 783453f 7cb75b2 91ab9c7 783453f 91ab9c7 783453f aedcfdf 783453f 7cb75b2 783453f 7cb75b2 aedcfdf 6e235e7 aedcfdf 6e235e7 783453f 7e57ca3 783453f 07bcae5 6e235e7 07bcae5 6e235e7 07bcae5 6e235e7 07bcae5 6e235e7 07bcae5 4b68039 34e892d 6e235e7 07bcae5 34e892d 6e235e7 07bcae5 4b68039 07bcae5 34e892d 07bcae5 24a4384 cdca32f 892ea6a a80d5f3 50833e2 cdca32f 07bcae5 50833e2 07bcae5 2bf5356 7dcd172 50833e2 07bcae5 50833e2 cdca32f 50833e2 cdca32f d72f1a7 50833e2 d72f1a7 50833e2 d72f1a7 50833e2 d72f1a7 50833e2 d72f1a7 cdca32f 50833e2 cdca32f 50833e2 d72f1a7 cdca32f bc0cbbf 57f57c1 c4f1aa3 50833e2 07bcae5 890d748 07bcae5 10f371d 07bcae5 6e235e7 07bcae5 cdca32f 07bcae5 cdca32f 07bcae5 cdca32f 07bcae5 cdca32f 07bcae5 6e235e7 d72f1a7 51a0b51 3fa5059 07bcae5 3723697 6e235e7 07bcae5 6e235e7 07bcae5 aedcfdf 07bcae5 aedcfdf 07bcae5 aedcfdf 07bcae5 aedcfdf 07bcae5 af91dd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import os
import cv2
import numpy as np
from moviepy.editor import VideoFileClip
import tempfile
import time
from PIL import Image, ImageDraw, ImageFont
import math
from face_analysis import get_face_embedding, cluster_faces, organize_faces_by_person
from pose_analysis import pose, calculate_posture_score, draw_pose_landmarks
from voice_analysis import get_speaker_embeddings, align_voice_embeddings, extract_audio_from_video, diarize_speakers
from anomaly_detection import anomaly_detection
from visualization import plot_mse, plot_mse_histogram, plot_mse_heatmap, plot_stacked_mse_heatmaps
from utils import frame_to_timecode
import pandas as pd
from facenet_pytorch import MTCNN
import torch
import mediapipe as mp
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.98, 0.98, 0.98], min_face_size=200, post_process=False)
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
os.makedirs(output_folder, exist_ok=True)
clip = VideoFileClip(video_path)
original_fps = clip.fps
duration = clip.duration
total_frames = int(duration * original_fps)
step = max(1, original_fps / desired_fps)
total_frames_to_extract = int(total_frames / step)
frame_count = 0
for t in np.arange(0, duration, step / original_fps):
frame = clip.get_frame(t)
cv2.imwrite(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
frame_count += 1
if progress_callback:
progress = min(100, (frame_count / total_frames_to_extract) * 100)
progress_callback(progress, f"Extracting frame")
if frame_count >= total_frames_to_extract:
break
clip.close()
return frame_count, original_fps
def is_frontal_face(face, landmarks):
if landmarks is None:
return False
left_eye = landmarks[0]
right_eye = landmarks[1]
nose = landmarks[2]
eye_angle = np.degrees(np.arctan2(right_eye[1] - left_eye[1], right_eye[0] - left_eye[0]))
eye_center = ((left_eye[0] + right_eye[0]) / 2, (left_eye[1] + right_eye[1]) / 2)
nose_deviation = abs(nose[0] - eye_center[0]) / face.shape[1]
return abs(eye_angle) < 10 and nose_deviation < 0.1
def process_frames(frames_folder, faces_folder, frame_count, progress):
embeddings_by_frame = {}
posture_scores_by_frame = {}
posture_landmarks_by_frame = {}
face_paths = []
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
for i, frame_file in enumerate(frame_files):
frame_num = int(frame_file.split('_')[1].split('.')[0])
frame_path = os.path.join(frames_folder, frame_file)
frame = cv2.cvtColor(cv2.imread(frame_path), cv2.COLOR_BGR2RGB)
if frame is not None:
posture_score, posture_landmarks = calculate_posture_score(frame)
posture_scores_by_frame[frame_num] = posture_score
posture_landmarks_by_frame[frame_num] = posture_landmarks
boxes, probs, landmarks = mtcnn.detect(frame, landmarks=True)
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
face = frame[y1:y2, x1:x2]
if face.size > 0 and is_frontal_face(face, landmarks[0]):
face_resized = cv2.resize(face, (160, 160))
output_path = os.path.join(faces_folder, f"frame_{frame_num}_face.jpg")
cv2.imwrite(output_path, cv2.cvtColor(face_resized, cv2.COLOR_RGB2BGR))
face_paths.append(output_path)
embedding = get_face_embedding(face_resized)
embeddings_by_frame[frame_num] = embedding
progress((i + 1) / len(frame_files), f"Processing frame {i + 1} of {len(frame_files)}")
return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, face_paths
def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
start_time = time.time()
output_folder = "output"
os.makedirs(output_folder, exist_ok=True)
with tempfile.TemporaryDirectory() as temp_dir:
faces_folder = os.path.join(temp_dir, 'faces')
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
os.makedirs(faces_folder, exist_ok=True)
os.makedirs(organized_faces_folder, exist_ok=True)
clip = VideoFileClip(video_path)
video_duration = clip.duration
clip.close()
progress(0, "Starting frame extraction")
frames_folder = os.path.join(temp_dir, 'extracted_frames')
def extraction_progress(percent, message):
progress(percent / 100, f"Extracting frames")
frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)
progress(1, "Frame extraction complete")
progress(0.3, "Processing frames")
embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, face_paths = process_frames(
frames_folder, faces_folder,
frame_count,
progress)
if not face_paths:
raise ValueError("No faces were extracted from the video.")
progress(0.6, "Clustering faces")
embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
clusters = cluster_faces(embeddings)
num_clusters = len(set(clusters))
# Adding the 'Cluster' column to the DataFrame
cluster_by_frame = {frame_num: cluster for frame_num, cluster in zip(embeddings_by_frame.keys(), clusters)}
progress(0.65, "Organizing faces")
organize_faces_by_person(embeddings_by_frame, clusters, faces_folder, organized_faces_folder)
progress(0.7, "Saving person data")
df, largest_cluster = save_person_data(embeddings_by_frame, clusters, desired_fps,
original_fps, temp_dir, video_duration)
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
df['Cluster'] = df['Frame'].map(cluster_by_frame)
progress(0.75, "Getting face samples")
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
progress(0.8, "Performing voice analysis")
audio_path = extract_audio_from_video(video_path)
diarization, most_frequent_speaker = diarize_speakers(audio_path)
voice_embeddings, audio_duration = get_speaker_embeddings(audio_path, diarization, most_frequent_speaker)
aligned_voice_embeddings = align_voice_embeddings(voice_embeddings, frame_count, original_fps, audio_duration)
progress(0.85, "Performing anomaly detection")
embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
X_embeddings = df[embedding_columns].values
X_posture = np.array([posture_scores_by_frame.get(frame, None) for frame in df['Frame']])
X_posture = X_posture[X_posture != None].reshape(-1, 1)
X_voice = np.array(aligned_voice_embeddings)
if len(X_voice) > len(X_embeddings):
X_voice = X_voice[:len(X_embeddings)]
elif len(X_voice) < len(X_embeddings):
padding = np.zeros((len(X_embeddings) - len(X_voice), X_voice.shape[1]))
X_voice = np.vstack((X_voice, padding))
try:
if len(X_posture) == 0:
raise ValueError("No valid posture data found")
mse_embeddings, mse_posture, mse_voice = anomaly_detection(X_embeddings, X_posture, X_voice)
progress(0.9, "Generating graphs")
mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features",
color='navy',
anomaly_threshold=anomaly_threshold)
mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Features",
anomaly_threshold, color='navy')
mse_plot_posture, anomaly_frames_posture = plot_mse(df, mse_posture, "Body Posture",
color='purple',
anomaly_threshold=anomaly_threshold)
mse_histogram_posture = plot_mse_histogram(mse_posture, "MSE Distribution: Body Posture",
anomaly_threshold, color='purple')
mse_plot_voice, anomaly_frames_voice = plot_mse(df, mse_voice, "Voice",
color='green',
anomaly_threshold=anomaly_threshold)
mse_histogram_voice = plot_mse_histogram(mse_voice, "MSE Distribution: Voice",
anomaly_threshold, color='green')
mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df)
mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df)
mse_heatmap_voice = plot_mse_heatmap(mse_voice, "Voice MSE Heatmap", df)
stacked_heatmap = plot_stacked_mse_heatmaps(mse_embeddings, mse_posture, mse_voice, df, "Combined MSE Heatmaps")
progress(0.95, "Finishing generating graphs")
except Exception as e:
print(f"Error details: {str(e)}")
import traceback
traceback.print_exc()
return (f"Error in video processing: {str(e)}",) + (None,) * 26
progress(1.0, "Preparing results")
results = f"Number of persons detected: {num_clusters}\n\n"
results += "Breakdown:\n"
for cluster_id in range(num_clusters):
face_count = len([c for c in clusters if c == cluster_id])
results += f"Person {cluster_id + 1}: {face_count} face frames\n"
end_time = time.time()
execution_time = end_time - start_time
def add_timecode_to_image(image, timecode):
img_pil = Image.fromarray(image)
draw = ImageDraw.Draw(img_pil)
font = ImageFont.load_default()
draw.text((10, 10), timecode, (255, 0, 0), font=font)
return np.array(img_pil)
anomaly_faces_embeddings = []
for frame in anomaly_frames_embeddings:
face_path = os.path.join(faces_folder, f"frame_{frame}_face.jpg")
if os.path.exists(face_path):
face_img = cv2.imread(face_path)
if face_img is not None:
face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
face_img_with_timecode = add_timecode_to_image(face_img, timecode)
anomaly_faces_embeddings.append(face_img_with_timecode)
anomaly_frames_posture_images = []
for frame in anomaly_frames_posture:
frame_path = os.path.join(frames_folder, f"frame_{frame:04d}.jpg")
if os.path.exists(frame_path):
frame_img = cv2.imread(frame_path)
if frame_img is not None:
frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
pose_results = pose.process(frame_img)
if pose_results.pose_landmarks:
frame_img = draw_pose_landmarks(frame_img, pose_results.pose_landmarks)
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
frame_img_with_timecode = add_timecode_to_image(frame_img, timecode)
anomaly_frames_posture_images.append(frame_img_with_timecode)
return (
execution_time,
results,
df,
mse_embeddings,
mse_posture,
mse_voice,
mse_plot_embeddings,
mse_plot_posture,
mse_plot_voice,
mse_histogram_embeddings,
mse_histogram_posture,
mse_histogram_voice,
mse_heatmap_embeddings,
mse_heatmap_posture,
mse_heatmap_voice,
face_samples["most_frequent"],
anomaly_faces_embeddings,
anomaly_frames_posture_images,
faces_folder,
frames_folder,
stacked_heatmap
)
def save_person_data(embeddings_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration):
person_data = {}
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
if cluster not in person_data:
person_data[cluster] = []
person_data[cluster].append((frame_num, embedding))
largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
data = person_data[largest_cluster]
data.sort(key=lambda x: x[0])
frames, embeddings = zip(*data)
embeddings_array = np.array(embeddings)
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
total_frames = max(frames)
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
df_data = {
'Frame': frames,
'Timecode': timecodes,
'Embedding_Index': range(len(embeddings))
}
for i in range(len(embeddings[0])):
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
df = pd.DataFrame(df_data)
return df, largest_cluster
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=200):
face_samples = {"most_frequent": [], "others": []}
for cluster_folder in sorted(os.listdir(organized_faces_folder)):
if cluster_folder.startswith("person_"):
person_folder = os.path.join(organized_faces_folder, cluster_folder)
face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')])
if face_files:
cluster_id = int(cluster_folder.split('_')[1])
if cluster_id == largest_cluster:
for i, sample in enumerate(face_files[:max_samples]):
face_path = os.path.join(person_folder, sample)
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
face_img = cv2.cvtColor(cv2.imread(face_path), cv2.COLOR_BGR2RGB)
if face_img is not None:
small_face = cv2.resize(face_img, (160, 160))
cv2.imwrite(output_path, cv2.cvtColor(small_face, cv2.COLOR_RGB2BGR))
face_samples["most_frequent"].append(output_path)
if len(face_samples["most_frequent"]) >= max_samples:
break
else:
remaining_samples = max_samples - len(face_samples["others"])
if remaining_samples > 0:
for i, sample in enumerate(face_files[:remaining_samples]):
face_path = os.path.join(person_folder, sample)
output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
face_img = cv2.cvtColor(cv2.imread(face_path), cv2.COLOR_BGR2RGB)
if face_img is not None:
small_face = cv2.resize(face_img, (160, 160))
cv2.imwrite(output_path, cv2.cvtColor(small_face, cv2.COLOR_RGB2BGR))
face_samples["others"].append(output_path)
if len(face_samples["others"]) >= max_samples:
break
return face_samples |