reab5555 commited on
Commit
890d748
·
verified ·
1 Parent(s): f7d57b6

Update video_processing.py

Browse files
Files changed (1) hide show
  1. video_processing.py +2 -7
video_processing.py CHANGED
@@ -10,7 +10,7 @@ from face_analysis import get_face_embedding, cluster_faces, organize_faces_by_p
10
  from pose_analysis import pose, calculate_posture_score, draw_pose_landmarks
11
  from voice_analysis import get_speaker_embeddings, align_voice_embeddings, extract_audio_from_video, diarize_speakers
12
  from anomaly_detection import anomaly_detection
13
- from visualization import plot_mse, plot_mse_histogram, plot_mse_heatmap, plot_audio_waveform, plot_stacked_mse_heatmaps
14
  from utils import frame_to_timecode
15
  import pandas as pd
16
  from facenet_pytorch import MTCNN
@@ -197,9 +197,6 @@ def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
197
  mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df)
198
  mse_heatmap_voice = plot_mse_heatmap(mse_voice, "Voice MSE Heatmap", df)
199
 
200
- # Create audio waveform plot
201
- audio_waveform_plot = plot_audio_waveform(audio_path, "Audio Waveform")
202
-
203
  stacked_heatmap = plot_stacked_mse_heatmaps(mse_embeddings, mse_posture, mse_voice, df, "Combined MSE Heatmaps")
204
 
205
  progress(0.95, "Finishing generating graphs")
@@ -208,7 +205,7 @@ def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
208
  print(f"Error details: {str(e)}")
209
  import traceback
210
  traceback.print_exc()
211
- return (f"Error in video processing: {str(e)}",) + (None,) * 27
212
 
213
  progress(1.0, "Preparing results")
214
  results = f"Number of persons detected: {num_clusters}\n\n"
@@ -270,7 +267,6 @@ def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
270
  mse_heatmap_embeddings,
271
  mse_heatmap_posture,
272
  mse_heatmap_voice,
273
- audio_waveform_plot,
274
  face_samples["most_frequent"],
275
  anomaly_faces_embeddings,
276
  anomaly_frames_posture_images,
@@ -281,7 +277,6 @@ def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
281
  )
282
 
283
 
284
-
285
  def is_frontal_face(landmarks, threshold=60):
286
  nose_tip = landmarks[4]
287
  left_chin = landmarks[234]
 
10
  from pose_analysis import pose, calculate_posture_score, draw_pose_landmarks
11
  from voice_analysis import get_speaker_embeddings, align_voice_embeddings, extract_audio_from_video, diarize_speakers
12
  from anomaly_detection import anomaly_detection
13
+ from visualization import plot_mse, plot_mse_histogram, plot_mse_heatmap, plot_stacked_mse_heatmaps
14
  from utils import frame_to_timecode
15
  import pandas as pd
16
  from facenet_pytorch import MTCNN
 
197
  mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df)
198
  mse_heatmap_voice = plot_mse_heatmap(mse_voice, "Voice MSE Heatmap", df)
199
 
 
 
 
200
  stacked_heatmap = plot_stacked_mse_heatmaps(mse_embeddings, mse_posture, mse_voice, df, "Combined MSE Heatmaps")
201
 
202
  progress(0.95, "Finishing generating graphs")
 
205
  print(f"Error details: {str(e)}")
206
  import traceback
207
  traceback.print_exc()
208
+ return (f"Error in video processing: {str(e)}",) + (None,) * 26
209
 
210
  progress(1.0, "Preparing results")
211
  results = f"Number of persons detected: {num_clusters}\n\n"
 
267
  mse_heatmap_embeddings,
268
  mse_heatmap_posture,
269
  mse_heatmap_voice,
 
270
  face_samples["most_frequent"],
271
  anomaly_faces_embeddings,
272
  anomaly_frames_posture_images,
 
277
  )
278
 
279
 
 
280
  def is_frontal_face(landmarks, threshold=60):
281
  nose_tip = landmarks[4]
282
  left_chin = landmarks[234]