reab5555 commited on
Commit
34e892d
·
verified ·
1 Parent(s): 88ae781

Update video_processing.py

Browse files
Files changed (1) hide show
  1. video_processing.py +8 -6
video_processing.py CHANGED
@@ -133,20 +133,20 @@ def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
133
  clusters = cluster_faces(embeddings)
134
  num_clusters = len(set(clusters))
135
 
136
- progress(0.7, "Organizing faces")
137
  organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
138
 
139
- progress(0.8, "Saving person data")
140
  df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps,
141
  original_fps, temp_dir, video_duration)
142
 
143
  df['Seconds'] = df['Timecode'].apply(
144
  lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
145
 
146
- progress(0.85, "Getting face samples")
147
  face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
148
 
149
- progress(0.9, "Performing anomaly detection")
150
  embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
151
 
152
  X_embeddings = df[embedding_columns].values
@@ -160,7 +160,7 @@ def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
160
 
161
  mse_embeddings, mse_posture = anomaly_detection(X_embeddings, X_posture)
162
 
163
- progress(0.95, "Generating plots")
164
  mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features",
165
  color=GRAPH_COLORS['facial_embeddings'],
166
  anomaly_threshold=anomaly_threshold)
@@ -179,9 +179,11 @@ def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
179
 
180
  mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df)
181
 
 
 
182
  # Create video with heatmap
183
  heatmap_video_path = os.path.join(output_folder, "video_with_heatmap.mp4")
184
- create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, heatmap_video_path)
185
 
186
  except Exception as e:
187
  print(f"Error details: {str(e)}")
 
133
  clusters = cluster_faces(embeddings)
134
  num_clusters = len(set(clusters))
135
 
136
+ progress(0.65, "Organizing faces")
137
  organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
138
 
139
+ progress(0.7, "Saving person data")
140
  df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps,
141
  original_fps, temp_dir, video_duration)
142
 
143
  df['Seconds'] = df['Timecode'].apply(
144
  lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
145
 
146
+ progress(0.75, "Getting face samples")
147
  face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
148
 
149
+ progress(0.8, "Performing anomaly detection")
150
  embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
151
 
152
  X_embeddings = df[embedding_columns].values
 
160
 
161
  mse_embeddings, mse_posture = anomaly_detection(X_embeddings, X_posture)
162
 
163
+ progress(0.85, "Generating graphs")
164
  mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features",
165
  color=GRAPH_COLORS['facial_embeddings'],
166
  anomaly_threshold=anomaly_threshold)
 
179
 
180
  mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df)
181
 
182
+ progress(0.9, "Generating video with heatmap")
183
+
184
  # Create video with heatmap
185
  heatmap_video_path = os.path.join(output_folder, "video_with_heatmap.mp4")
186
+ create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, output_path, desired_fps)
187
 
188
  except Exception as e:
189
  print(f"Error details: {str(e)}")