reab5555 commited on
Commit
07bcae5
·
verified ·
1 Parent(s): afa8431

Update video_processing.py

Browse files
Files changed (1) hide show
  1. video_processing.py +349 -347
video_processing.py CHANGED
@@ -1,347 +1,349 @@
1
- import os
2
- import cv2
3
- import numpy as np
4
- from moviepy.editor import VideoFileClip
5
- import tempfile
6
- import time
7
- from PIL import Image, ImageDraw, ImageFont
8
- import math
9
- from face_analysis import get_face_embedding, cluster_faces, organize_faces_by_person
10
- from pose_analysis import calculate_posture_score, draw_pose_landmarks
11
- from anomaly_detection import anomaly_detection
12
- from visualization import plot_mse, plot_mse_histogram, plot_mse_heatmap
13
- from utils import frame_to_timecode, parse_transcription, get_sentences_before_anomalies
14
- from transcribe import transcribe
15
- import pandas as pd
16
- from facenet_pytorch import MTCNN
17
- import torch
18
- import mediapipe as mp
19
-
20
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
- mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=80)
22
-
23
- mp_face_mesh = mp.solutions.face_mesh
24
- face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.7)
25
-
26
- mp_pose = mp.solutions.pose
27
- pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.7, min_tracking_confidence=0.7)
28
-
29
- def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
30
- os.makedirs(output_folder, exist_ok=True)
31
- clip = VideoFileClip(video_path)
32
- original_fps = clip.fps
33
- duration = clip.duration
34
- total_frames = int(duration * original_fps)
35
- step = max(1, original_fps / desired_fps)
36
- total_frames_to_extract = int(total_frames / step)
37
-
38
- frame_count = 0
39
- for t in np.arange(0, duration, step / original_fps):
40
- frame = clip.get_frame(t)
41
- cv2.imwrite(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
42
- frame_count += 1
43
- if progress_callback:
44
- progress = min(100, (frame_count / total_frames_to_extract) * 100)
45
- progress_callback(progress, f"Extracting frame")
46
- if frame_count >= total_frames_to_extract:
47
- break
48
- clip.close()
49
- return frame_count, original_fps
50
-
51
- def process_frames(frames_folder, aligned_faces_folder, frame_count, progress):
52
- embeddings_by_frame = {}
53
- posture_scores_by_frame = {}
54
- posture_landmarks_by_frame = {}
55
- aligned_face_paths = []
56
- frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
57
-
58
- for i, frame_file in enumerate(frame_files):
59
- frame_num = int(frame_file.split('_')[1].split('.')[0])
60
- frame_path = os.path.join(frames_folder, frame_file)
61
- frame = cv2.imread(frame_path)
62
-
63
- if frame is not None:
64
- posture_score, posture_landmarks = calculate_posture_score(frame)
65
- posture_scores_by_frame[frame_num] = posture_score
66
- posture_landmarks_by_frame[frame_num] = posture_landmarks
67
-
68
- boxes, probs = mtcnn.detect(frame)
69
-
70
- if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
71
- x1, y1, x2, y2 = [int(b) for b in boxes[0]]
72
- face = frame[y1:y2, x1:x2]
73
- if face.size > 0:
74
- results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
75
- if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark):
76
- aligned_face = face
77
-
78
- if aligned_face is not None:
79
- aligned_face_resized = cv2.resize(aligned_face, (160, 160))
80
- output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
81
- cv2.imwrite(output_path, aligned_face_resized)
82
- aligned_face_paths.append(output_path)
83
- embedding = get_face_embedding(aligned_face_resized)
84
- embeddings_by_frame[frame_num] = embedding
85
-
86
- progress((i + 1) / len(frame_files), f"Processing frame {i + 1} of {len(frame_files)}")
87
-
88
- return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths
89
-
90
- def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
91
- start_time = time.time()
92
- output_folder = "output"
93
- os.makedirs(output_folder, exist_ok=True)
94
-
95
- GRAPH_COLORS = {
96
- 'facial_embeddings': 'navy',
97
- 'body_posture': 'purple'
98
- }
99
-
100
- with tempfile.TemporaryDirectory() as temp_dir:
101
- aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
102
- organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
103
- os.makedirs(aligned_faces_folder, exist_ok=True)
104
- os.makedirs(organized_faces_folder, exist_ok=True)
105
-
106
- clip = VideoFileClip(video_path)
107
- video_duration = clip.duration
108
- clip.close()
109
-
110
- progress(0, "Starting frame extraction")
111
- frames_folder = os.path.join(temp_dir, 'extracted_frames')
112
-
113
- def extraction_progress(percent, message):
114
- progress(percent / 100, f"Extracting frames")
115
-
116
- frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)
117
-
118
- progress(1, "Frame extraction complete")
119
- progress(0.3, "Processing frames")
120
- embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths = process_frames(
121
- frames_folder, aligned_faces_folder,
122
- frame_count,
123
- progress)
124
-
125
- if not aligned_face_paths:
126
- raise ValueError("No faces were extracted from the video.")
127
-
128
- progress(0.6, "Clustering faces")
129
- embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
130
- clusters = cluster_faces(embeddings)
131
- num_clusters = len(set(clusters))
132
-
133
- progress(0.7, "Organizing faces")
134
- organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
135
-
136
- progress(0.8, "Saving person data")
137
- df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps,
138
- original_fps, temp_dir, video_duration)
139
-
140
- df['Seconds'] = df['Timecode'].apply(
141
- lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
142
-
143
- progress(0.85, "Getting face samples")
144
- face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
145
-
146
- progress(0.9, "Performing anomaly detection")
147
- embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
148
-
149
- X_embeddings = df[embedding_columns].values
150
-
151
- try:
152
- X_posture = np.array([posture_scores_by_frame.get(frame, None) for frame in df['Frame']])
153
- X_posture = X_posture[X_posture != None].reshape(-1, 1)
154
-
155
- if len(X_posture) == 0:
156
- raise ValueError("No valid posture data found")
157
-
158
- mse_embeddings, mse_posture = anomaly_detection(X_embeddings, X_posture)
159
-
160
- progress(0.95, "Generating plots")
161
- mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features",
162
- color=GRAPH_COLORS['facial_embeddings'],
163
- anomaly_threshold=anomaly_threshold)
164
-
165
- mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Features",
166
- anomaly_threshold, color=GRAPH_COLORS['facial_embeddings'])
167
-
168
- mse_plot_posture, anomaly_frames_posture = plot_mse(df, mse_posture, "Body Posture",
169
- color=GRAPH_COLORS['body_posture'],
170
- anomaly_threshold=anomaly_threshold)
171
-
172
- mse_histogram_posture = plot_mse_histogram(mse_posture, "MSE Distribution: Body Posture",
173
- anomaly_threshold, color=GRAPH_COLORS['body_posture'])
174
-
175
- mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df)
176
-
177
- mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df)
178
-
179
- except Exception as e:
180
- print(f"Error details: {str(e)}")
181
- import traceback
182
- traceback.print_exc()
183
- return (f"Error in video processing: {str(e)}",) + (None,) * 14
184
-
185
- # Add transcription
186
- progress(0.96, "Transcribing video")
187
- transcription_output = transcribe(video_path, transcribe_to_text=True, transcribe_to_srt=False,
188
- target_language='en')
189
-
190
- # Parse the transcription output to get sentences and their timecodes
191
- sentences_with_timecodes = parse_transcription(transcription_output, video_duration)
192
-
193
- # Get anomaly timecodes
194
- anomaly_timecodes_features = [df[df['Frame'] == frame]['Timecode'].iloc[0] for frame in
195
- anomaly_frames_embeddings]
196
- anomaly_timecodes_posture = [df[df['Frame'] == frame]['Timecode'].iloc[0] for frame in anomaly_frames_posture]
197
-
198
- anomaly_sentences_features = get_sentences_before_anomalies(sentences_with_timecodes,
199
- anomaly_timecodes_features)
200
- anomaly_sentences_posture = get_sentences_before_anomalies(sentences_with_timecodes,
201
- anomaly_timecodes_posture)
202
- progress(1.0, "Preparing results")
203
- results = f"Number of persons detected: {num_clusters}\n\n"
204
- results += "Breakdown:\n"
205
- for cluster_id in range(num_clusters):
206
- face_count = len([c for c in clusters if c == cluster_id])
207
- results += f"Person {cluster_id + 1}: {face_count} face frames\n"
208
-
209
- end_time = time.time()
210
- execution_time = end_time - start_time
211
-
212
- def add_timecode_to_image(image, timecode):
213
- img_pil = Image.fromarray(image)
214
- draw = ImageDraw.Draw(img_pil)
215
- font = ImageFont.truetype("arial.ttf", 15)
216
- draw.text((10, 10), timecode, (255, 0, 0), font=font)
217
- return np.array(img_pil)
218
-
219
- anomaly_faces_embeddings = []
220
- for frame in anomaly_frames_embeddings:
221
- face_path = os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg")
222
- if os.path.exists(face_path):
223
- face_img = cv2.imread(face_path)
224
- if face_img is not None:
225
- face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
226
- timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
227
- face_img_with_timecode = add_timecode_to_image(face_img, timecode)
228
- anomaly_faces_embeddings.append(face_img_with_timecode)
229
-
230
- anomaly_frames_posture_images = []
231
- for frame in anomaly_frames_posture:
232
- frame_path = os.path.join(frames_folder, f"frame_{frame:04d}.jpg")
233
- if os.path.exists(frame_path):
234
- frame_img = cv2.imread(frame_path)
235
- if frame_img is not None:
236
- frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
237
- pose_results = pose.process(frame_img)
238
- if pose_results.pose_landmarks:
239
- frame_img = draw_pose_landmarks(frame_img, pose_results.pose_landmarks)
240
- timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
241
- frame_img_with_timecode = add_timecode_to_image(frame_img, timecode)
242
- anomaly_frames_posture_images.append(frame_img_with_timecode)
243
-
244
- return (
245
- execution_time,
246
- results,
247
- df,
248
- mse_embeddings,
249
- mse_posture,
250
- mse_plot_embeddings,
251
- mse_histogram_embeddings,
252
- mse_plot_posture,
253
- mse_histogram_posture,
254
- mse_heatmap_embeddings,
255
- mse_heatmap_posture,
256
- face_samples["most_frequent"],
257
- face_samples["others"],
258
- anomaly_faces_embeddings,
259
- anomaly_frames_posture_images,
260
- aligned_faces_folder,
261
- frames_folder,
262
- anomaly_sentences_features,
263
- anomaly_sentences_posture
264
- )
265
-
266
- def is_frontal_face(landmarks, threshold=40):
267
- nose_tip = landmarks[4]
268
- left_chin = landmarks[234]
269
- right_chin = landmarks[454]
270
- nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y]
271
- nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y]
272
- dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1]
273
- magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2)
274
- magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2)
275
- cos_angle = dot_product / (magnitude_left * magnitude_right)
276
- angle = math.acos(cos_angle)
277
- angle_degrees = math.degrees(angle)
278
- return abs(180 - angle_degrees) < threshold
279
-
280
- def save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration):
281
- person_data = {}
282
-
283
- for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
284
- if cluster not in person_data:
285
- person_data[cluster] = []
286
- person_data[cluster].append((frame_num, embedding))
287
-
288
- largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
289
-
290
- data = person_data[largest_cluster]
291
- data.sort(key=lambda x: x[0])
292
- frames, embeddings = zip(*data)
293
-
294
- embeddings_array = np.array(embeddings)
295
- np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
296
-
297
- total_frames = max(frames)
298
- timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
299
-
300
- df_data = {
301
- 'Frame': frames,
302
- 'Timecode': timecodes,
303
- 'Embedding_Index': range(len(embeddings))
304
- }
305
-
306
- for i in range(len(embeddings[0])):
307
- df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
308
-
309
- df = pd.DataFrame(df_data)
310
-
311
- return df, largest_cluster
312
-
313
- def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=100):
314
- face_samples = {"most_frequent": [], "others": []}
315
- for cluster_folder in sorted(os.listdir(organized_faces_folder)):
316
- if cluster_folder.startswith("person_"):
317
- person_folder = os.path.join(organized_faces_folder, cluster_folder)
318
- face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')])
319
- if face_files:
320
- cluster_id = int(cluster_folder.split('_')[1])
321
- if cluster_id == largest_cluster:
322
- for i, sample in enumerate(face_files[:max_samples]):
323
- face_path = os.path.join(person_folder, sample)
324
- output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
325
- face_img = cv2.imread(face_path)
326
- if face_img is not None:
327
- small_face = cv2.resize(face_img, (160, 160))
328
- cv2.imwrite(output_path, small_face)
329
- face_samples["most_frequent"].append(output_path)
330
- if len(face_samples["most_frequent"]) >= max_samples:
331
- break
332
- else:
333
- remaining_samples = max_samples - len(face_samples["others"])
334
- if remaining_samples > 0:
335
- for i, sample in enumerate(face_files[:remaining_samples]):
336
- face_path = os.path.join(person_folder, sample)
337
- output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
338
- face_img = cv2.imread(face_path)
339
- if face_img is not None:
340
- small_face = cv2.resize(face_img, (160, 160))
341
- cv2.imwrite(output_path, small_face)
342
- face_samples["others"].append(output_path)
343
- if len(face_samples["others"]) >= max_samples:
344
- break
345
- return face_samples
346
-
347
-
 
 
 
1
+ import os
2
+ import cv2
3
+ import numpy as np
4
+ from moviepy.editor import VideoFileClip
5
+ import tempfile
6
+ import time
7
+ from PIL import Image, ImageDraw, ImageFont
8
+ import math
9
+ from face_analysis import get_face_embedding, cluster_faces, organize_faces_by_person
10
+ from pose_analysis import calculate_posture_score, draw_pose_landmarks
11
+ from anomaly_detection import anomaly_detection
12
+ from visualization import plot_mse, plot_mse_histogram, plot_mse_heatmap
13
+ from utils import frame_to_timecode, parse_transcription, get_sentences_before_anomalies
14
+ from transcribe import transcribe
15
+ import pandas as pd
16
+ from facenet_pytorch import MTCNN
17
+ import torch
18
+ import mediapipe as mp
19
+
20
+ @spaces.GPU(duration=300)
21
+
22
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
+ mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=80)
24
+
25
+ mp_face_mesh = mp.solutions.face_mesh
26
+ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.7)
27
+
28
+ mp_pose = mp.solutions.pose
29
+ pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.7, min_tracking_confidence=0.7)
30
+
31
+ def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
32
+ os.makedirs(output_folder, exist_ok=True)
33
+ clip = VideoFileClip(video_path)
34
+ original_fps = clip.fps
35
+ duration = clip.duration
36
+ total_frames = int(duration * original_fps)
37
+ step = max(1, original_fps / desired_fps)
38
+ total_frames_to_extract = int(total_frames / step)
39
+
40
+ frame_count = 0
41
+ for t in np.arange(0, duration, step / original_fps):
42
+ frame = clip.get_frame(t)
43
+ cv2.imwrite(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
44
+ frame_count += 1
45
+ if progress_callback:
46
+ progress = min(100, (frame_count / total_frames_to_extract) * 100)
47
+ progress_callback(progress, f"Extracting frame")
48
+ if frame_count >= total_frames_to_extract:
49
+ break
50
+ clip.close()
51
+ return frame_count, original_fps
52
+
53
+ def process_frames(frames_folder, aligned_faces_folder, frame_count, progress):
54
+ embeddings_by_frame = {}
55
+ posture_scores_by_frame = {}
56
+ posture_landmarks_by_frame = {}
57
+ aligned_face_paths = []
58
+ frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
59
+
60
+ for i, frame_file in enumerate(frame_files):
61
+ frame_num = int(frame_file.split('_')[1].split('.')[0])
62
+ frame_path = os.path.join(frames_folder, frame_file)
63
+ frame = cv2.imread(frame_path)
64
+
65
+ if frame is not None:
66
+ posture_score, posture_landmarks = calculate_posture_score(frame)
67
+ posture_scores_by_frame[frame_num] = posture_score
68
+ posture_landmarks_by_frame[frame_num] = posture_landmarks
69
+
70
+ boxes, probs = mtcnn.detect(frame)
71
+
72
+ if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
73
+ x1, y1, x2, y2 = [int(b) for b in boxes[0]]
74
+ face = frame[y1:y2, x1:x2]
75
+ if face.size > 0:
76
+ results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB))
77
+ if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark):
78
+ aligned_face = face
79
+
80
+ if aligned_face is not None:
81
+ aligned_face_resized = cv2.resize(aligned_face, (160, 160))
82
+ output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
83
+ cv2.imwrite(output_path, aligned_face_resized)
84
+ aligned_face_paths.append(output_path)
85
+ embedding = get_face_embedding(aligned_face_resized)
86
+ embeddings_by_frame[frame_num] = embedding
87
+
88
+ progress((i + 1) / len(frame_files), f"Processing frame {i + 1} of {len(frame_files)}")
89
+
90
+ return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths
91
+
92
+ def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
93
+ start_time = time.time()
94
+ output_folder = "output"
95
+ os.makedirs(output_folder, exist_ok=True)
96
+
97
+ GRAPH_COLORS = {
98
+ 'facial_embeddings': 'navy',
99
+ 'body_posture': 'purple'
100
+ }
101
+
102
+ with tempfile.TemporaryDirectory() as temp_dir:
103
+ aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
104
+ organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
105
+ os.makedirs(aligned_faces_folder, exist_ok=True)
106
+ os.makedirs(organized_faces_folder, exist_ok=True)
107
+
108
+ clip = VideoFileClip(video_path)
109
+ video_duration = clip.duration
110
+ clip.close()
111
+
112
+ progress(0, "Starting frame extraction")
113
+ frames_folder = os.path.join(temp_dir, 'extracted_frames')
114
+
115
+ def extraction_progress(percent, message):
116
+ progress(percent / 100, f"Extracting frames")
117
+
118
+ frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)
119
+
120
+ progress(1, "Frame extraction complete")
121
+ progress(0.3, "Processing frames")
122
+ embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths = process_frames(
123
+ frames_folder, aligned_faces_folder,
124
+ frame_count,
125
+ progress)
126
+
127
+ if not aligned_face_paths:
128
+ raise ValueError("No faces were extracted from the video.")
129
+
130
+ progress(0.6, "Clustering faces")
131
+ embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
132
+ clusters = cluster_faces(embeddings)
133
+ num_clusters = len(set(clusters))
134
+
135
+ progress(0.7, "Organizing faces")
136
+ organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
137
+
138
+ progress(0.8, "Saving person data")
139
+ df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps,
140
+ original_fps, temp_dir, video_duration)
141
+
142
+ df['Seconds'] = df['Timecode'].apply(
143
+ lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
144
+
145
+ progress(0.85, "Getting face samples")
146
+ face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
147
+
148
+ progress(0.9, "Performing anomaly detection")
149
+ embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
150
+
151
+ X_embeddings = df[embedding_columns].values
152
+
153
+ try:
154
+ X_posture = np.array([posture_scores_by_frame.get(frame, None) for frame in df['Frame']])
155
+ X_posture = X_posture[X_posture != None].reshape(-1, 1)
156
+
157
+ if len(X_posture) == 0:
158
+ raise ValueError("No valid posture data found")
159
+
160
+ mse_embeddings, mse_posture = anomaly_detection(X_embeddings, X_posture)
161
+
162
+ progress(0.95, "Generating plots")
163
+ mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features",
164
+ color=GRAPH_COLORS['facial_embeddings'],
165
+ anomaly_threshold=anomaly_threshold)
166
+
167
+ mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Features",
168
+ anomaly_threshold, color=GRAPH_COLORS['facial_embeddings'])
169
+
170
+ mse_plot_posture, anomaly_frames_posture = plot_mse(df, mse_posture, "Body Posture",
171
+ color=GRAPH_COLORS['body_posture'],
172
+ anomaly_threshold=anomaly_threshold)
173
+
174
+ mse_histogram_posture = plot_mse_histogram(mse_posture, "MSE Distribution: Body Posture",
175
+ anomaly_threshold, color=GRAPH_COLORS['body_posture'])
176
+
177
+ mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df)
178
+
179
+ mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df)
180
+
181
+ except Exception as e:
182
+ print(f"Error details: {str(e)}")
183
+ import traceback
184
+ traceback.print_exc()
185
+ return (f"Error in video processing: {str(e)}",) + (None,) * 14
186
+
187
+ # Add transcription
188
+ progress(0.96, "Transcribing video")
189
+ transcription_output = transcribe(video_path, transcribe_to_text=True, transcribe_to_srt=False,
190
+ target_language='en')
191
+
192
+ # Parse the transcription output to get sentences and their timecodes
193
+ sentences_with_timecodes = parse_transcription(transcription_output, video_duration)
194
+
195
+ # Get anomaly timecodes
196
+ anomaly_timecodes_features = [df[df['Frame'] == frame]['Timecode'].iloc[0] for frame in
197
+ anomaly_frames_embeddings]
198
+ anomaly_timecodes_posture = [df[df['Frame'] == frame]['Timecode'].iloc[0] for frame in anomaly_frames_posture]
199
+
200
+ anomaly_sentences_features = get_sentences_before_anomalies(sentences_with_timecodes,
201
+ anomaly_timecodes_features)
202
+ anomaly_sentences_posture = get_sentences_before_anomalies(sentences_with_timecodes,
203
+ anomaly_timecodes_posture)
204
+ progress(1.0, "Preparing results")
205
+ results = f"Number of persons detected: {num_clusters}\n\n"
206
+ results += "Breakdown:\n"
207
+ for cluster_id in range(num_clusters):
208
+ face_count = len([c for c in clusters if c == cluster_id])
209
+ results += f"Person {cluster_id + 1}: {face_count} face frames\n"
210
+
211
+ end_time = time.time()
212
+ execution_time = end_time - start_time
213
+
214
+ def add_timecode_to_image(image, timecode):
215
+ img_pil = Image.fromarray(image)
216
+ draw = ImageDraw.Draw(img_pil)
217
+ font = ImageFont.truetype("arial.ttf", 15)
218
+ draw.text((10, 10), timecode, (255, 0, 0), font=font)
219
+ return np.array(img_pil)
220
+
221
+ anomaly_faces_embeddings = []
222
+ for frame in anomaly_frames_embeddings:
223
+ face_path = os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg")
224
+ if os.path.exists(face_path):
225
+ face_img = cv2.imread(face_path)
226
+ if face_img is not None:
227
+ face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
228
+ timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
229
+ face_img_with_timecode = add_timecode_to_image(face_img, timecode)
230
+ anomaly_faces_embeddings.append(face_img_with_timecode)
231
+
232
+ anomaly_frames_posture_images = []
233
+ for frame in anomaly_frames_posture:
234
+ frame_path = os.path.join(frames_folder, f"frame_{frame:04d}.jpg")
235
+ if os.path.exists(frame_path):
236
+ frame_img = cv2.imread(frame_path)
237
+ if frame_img is not None:
238
+ frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
239
+ pose_results = pose.process(frame_img)
240
+ if pose_results.pose_landmarks:
241
+ frame_img = draw_pose_landmarks(frame_img, pose_results.pose_landmarks)
242
+ timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
243
+ frame_img_with_timecode = add_timecode_to_image(frame_img, timecode)
244
+ anomaly_frames_posture_images.append(frame_img_with_timecode)
245
+
246
+ return (
247
+ execution_time,
248
+ results,
249
+ df,
250
+ mse_embeddings,
251
+ mse_posture,
252
+ mse_plot_embeddings,
253
+ mse_histogram_embeddings,
254
+ mse_plot_posture,
255
+ mse_histogram_posture,
256
+ mse_heatmap_embeddings,
257
+ mse_heatmap_posture,
258
+ face_samples["most_frequent"],
259
+ face_samples["others"],
260
+ anomaly_faces_embeddings,
261
+ anomaly_frames_posture_images,
262
+ aligned_faces_folder,
263
+ frames_folder,
264
+ anomaly_sentences_features,
265
+ anomaly_sentences_posture
266
+ )
267
+
268
+ def is_frontal_face(landmarks, threshold=40):
269
+ nose_tip = landmarks[4]
270
+ left_chin = landmarks[234]
271
+ right_chin = landmarks[454]
272
+ nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y]
273
+ nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y]
274
+ dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1]
275
+ magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2)
276
+ magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2)
277
+ cos_angle = dot_product / (magnitude_left * magnitude_right)
278
+ angle = math.acos(cos_angle)
279
+ angle_degrees = math.degrees(angle)
280
+ return abs(180 - angle_degrees) < threshold
281
+
282
+ def save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration):
283
+ person_data = {}
284
+
285
+ for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
286
+ if cluster not in person_data:
287
+ person_data[cluster] = []
288
+ person_data[cluster].append((frame_num, embedding))
289
+
290
+ largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
291
+
292
+ data = person_data[largest_cluster]
293
+ data.sort(key=lambda x: x[0])
294
+ frames, embeddings = zip(*data)
295
+
296
+ embeddings_array = np.array(embeddings)
297
+ np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
298
+
299
+ total_frames = max(frames)
300
+ timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
301
+
302
+ df_data = {
303
+ 'Frame': frames,
304
+ 'Timecode': timecodes,
305
+ 'Embedding_Index': range(len(embeddings))
306
+ }
307
+
308
+ for i in range(len(embeddings[0])):
309
+ df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
310
+
311
+ df = pd.DataFrame(df_data)
312
+
313
+ return df, largest_cluster
314
+
315
+ def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=100):
316
+ face_samples = {"most_frequent": [], "others": []}
317
+ for cluster_folder in sorted(os.listdir(organized_faces_folder)):
318
+ if cluster_folder.startswith("person_"):
319
+ person_folder = os.path.join(organized_faces_folder, cluster_folder)
320
+ face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')])
321
+ if face_files:
322
+ cluster_id = int(cluster_folder.split('_')[1])
323
+ if cluster_id == largest_cluster:
324
+ for i, sample in enumerate(face_files[:max_samples]):
325
+ face_path = os.path.join(person_folder, sample)
326
+ output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
327
+ face_img = cv2.imread(face_path)
328
+ if face_img is not None:
329
+ small_face = cv2.resize(face_img, (160, 160))
330
+ cv2.imwrite(output_path, small_face)
331
+ face_samples["most_frequent"].append(output_path)
332
+ if len(face_samples["most_frequent"]) >= max_samples:
333
+ break
334
+ else:
335
+ remaining_samples = max_samples - len(face_samples["others"])
336
+ if remaining_samples > 0:
337
+ for i, sample in enumerate(face_files[:remaining_samples]):
338
+ face_path = os.path.join(person_folder, sample)
339
+ output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
340
+ face_img = cv2.imread(face_path)
341
+ if face_img is not None:
342
+ small_face = cv2.resize(face_img, (160, 160))
343
+ cv2.imwrite(output_path, small_face)
344
+ face_samples["others"].append(output_path)
345
+ if len(face_samples["others"]) >= max_samples:
346
+ break
347
+ return face_samples
348
+
349
+