reab5555 commited on
Commit
afa8431
·
verified ·
1 Parent(s): 295d1f0

Update transcribe.py

Browse files
Files changed (1) hide show
  1. transcribe.py +84 -83
transcribe.py CHANGED
@@ -1,84 +1,85 @@
1
- import os
2
-
3
- import numpy as np
4
- import torch
5
- from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperFeatureExtractor
6
- from moviepy.editor import VideoFileClip, AudioFileClip
7
- import nltk
8
- nltk.download('punkt', quiet=True)
9
- from nltk.tokenize import sent_tokenize
10
-
11
-
12
- def transcribe(video_file, transcribe_to_text=True, transcribe_to_srt=True, target_language='en'):
13
- device = "cuda:0" if torch.cuda.is_available() else "cpu"
14
- torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
15
-
16
- model_id = "openai/whisper-large-v3"
17
- model = AutoModelForSpeechSeq2Seq.from_pretrained(
18
- model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
19
- )
20
- model.to(device)
21
-
22
- processor = AutoProcessor.from_pretrained(model_id)
23
- feature_extractor = WhisperFeatureExtractor.from_pretrained(model_id)
24
-
25
- video = VideoFileClip(video_file)
26
- audio = video.audio
27
- duration = audio.duration
28
- chunk_duration = 60
29
- n_chunks = int(np.ceil(duration / chunk_duration))
30
-
31
- full_transcription = ""
32
- for i in range(n_chunks):
33
- start_time = i * chunk_duration
34
- end_time = min((i + 1) * chunk_duration, duration)
35
-
36
- audio_chunk = audio.subclip(start_time, end_time)
37
- temp_file_path = f"temp_audio_chunk_{i}.wav"
38
- audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le')
39
-
40
- sound_array = AudioFileClip(temp_file_path).to_soundarray(fps=16000)
41
- if sound_array.ndim > 1:
42
- sound_array = np.mean(sound_array, axis=1)
43
-
44
- input_features = feature_extractor(sound_array, sampling_rate=16000, return_tensors="pt").input_features
45
- input_features = input_features.to(device=device, dtype=torch_dtype)
46
-
47
- with torch.no_grad():
48
- if target_language:
49
- model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=target_language,
50
- task="transcribe")
51
- generated_ids = model.generate(input_features, max_length=448)
52
- transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
53
-
54
- full_transcription += transcription + " "
55
- os.remove(temp_file_path)
56
- print(f"Processed chunk {i + 1}/{n_chunks}")
57
-
58
- # Split the transcription into sentences
59
- sentences = sent_tokenize(full_transcription.strip())
60
-
61
- # Estimate time for each sentence based on its length relative to the total transcription
62
- total_chars = sum(len(s) for s in sentences)
63
- sentence_times = []
64
- current_time = 0
65
- for sentence in sentences:
66
- sentence_duration = (len(sentence) / total_chars) * duration
67
- sentence_times.append((current_time, current_time + sentence_duration))
68
- current_time += sentence_duration
69
-
70
- output = ""
71
- if transcribe_to_text:
72
- output += "Text Transcription:\n" + full_transcription + "\n\n"
73
-
74
- if transcribe_to_srt:
75
- output += "SRT Transcription:\n"
76
- for i, (sentence, (start, end)) in enumerate(zip(sentences, sentence_times), 1):
77
- output += f"{i}\n{format_time(start)} --> {format_time(end)}\n{sentence}\n\n"
78
-
79
- return output
80
-
81
- def format_time(seconds):
82
- m, s = divmod(seconds, 60)
83
- h, m = divmod(m, 60)
 
84
  return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',')
 
1
+ import os
2
+
3
+ import numpy as np
4
+ import torch
5
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperFeatureExtractor
6
+ from moviepy.editor import VideoFileClip, AudioFileClip
7
+ import nltk
8
+ nltk.download('punkt', quiet=True)
9
+ from nltk.tokenize import sent_tokenize
10
+
11
+ @spaces.GPU(duration=300)
12
+
13
+ def transcribe(video_file, transcribe_to_text=True, transcribe_to_srt=True, target_language='en'):
14
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
15
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
16
+
17
+ model_id = "openai/whisper-large-v3"
18
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
19
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
20
+ )
21
+ model.to(device)
22
+
23
+ processor = AutoProcessor.from_pretrained(model_id)
24
+ feature_extractor = WhisperFeatureExtractor.from_pretrained(model_id)
25
+
26
+ video = VideoFileClip(video_file)
27
+ audio = video.audio
28
+ duration = audio.duration
29
+ chunk_duration = 60
30
+ n_chunks = int(np.ceil(duration / chunk_duration))
31
+
32
+ full_transcription = ""
33
+ for i in range(n_chunks):
34
+ start_time = i * chunk_duration
35
+ end_time = min((i + 1) * chunk_duration, duration)
36
+
37
+ audio_chunk = audio.subclip(start_time, end_time)
38
+ temp_file_path = f"temp_audio_chunk_{i}.wav"
39
+ audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le')
40
+
41
+ sound_array = AudioFileClip(temp_file_path).to_soundarray(fps=16000)
42
+ if sound_array.ndim > 1:
43
+ sound_array = np.mean(sound_array, axis=1)
44
+
45
+ input_features = feature_extractor(sound_array, sampling_rate=16000, return_tensors="pt").input_features
46
+ input_features = input_features.to(device=device, dtype=torch_dtype)
47
+
48
+ with torch.no_grad():
49
+ if target_language:
50
+ model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=target_language,
51
+ task="transcribe")
52
+ generated_ids = model.generate(input_features, max_length=448)
53
+ transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
54
+
55
+ full_transcription += transcription + " "
56
+ os.remove(temp_file_path)
57
+ print(f"Processed chunk {i + 1}/{n_chunks}")
58
+
59
+ # Split the transcription into sentences
60
+ sentences = sent_tokenize(full_transcription.strip())
61
+
62
+ # Estimate time for each sentence based on its length relative to the total transcription
63
+ total_chars = sum(len(s) for s in sentences)
64
+ sentence_times = []
65
+ current_time = 0
66
+ for sentence in sentences:
67
+ sentence_duration = (len(sentence) / total_chars) * duration
68
+ sentence_times.append((current_time, current_time + sentence_duration))
69
+ current_time += sentence_duration
70
+
71
+ output = ""
72
+ if transcribe_to_text:
73
+ output += "Text Transcription:\n" + full_transcription + "\n\n"
74
+
75
+ if transcribe_to_srt:
76
+ output += "SRT Transcription:\n"
77
+ for i, (sentence, (start, end)) in enumerate(zip(sentences, sentence_times), 1):
78
+ output += f"{i}\n{format_time(start)} --> {format_time(end)}\n{sentence}\n\n"
79
+
80
+ return output
81
+
82
+ def format_time(seconds):
83
+ m, s = divmod(seconds, 60)
84
+ h, m = divmod(m, 60)
85
  return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',')