Update transcribe.py
Browse files- transcribe.py +84 -83
transcribe.py
CHANGED
@@ -1,84 +1,85 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperFeatureExtractor
|
6 |
-
from moviepy.editor import VideoFileClip, AudioFileClip
|
7 |
-
import nltk
|
8 |
-
nltk.download('punkt', quiet=True)
|
9 |
-
from nltk.tokenize import sent_tokenize
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
input_features =
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
current_time
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
84 |
return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',')
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperFeatureExtractor
|
6 |
+
from moviepy.editor import VideoFileClip, AudioFileClip
|
7 |
+
import nltk
|
8 |
+
nltk.download('punkt', quiet=True)
|
9 |
+
from nltk.tokenize import sent_tokenize
|
10 |
+
|
11 |
+
@spaces.GPU(duration=300)
|
12 |
+
|
13 |
+
def transcribe(video_file, transcribe_to_text=True, transcribe_to_srt=True, target_language='en'):
|
14 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
15 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
16 |
+
|
17 |
+
model_id = "openai/whisper-large-v3"
|
18 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
19 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
20 |
+
)
|
21 |
+
model.to(device)
|
22 |
+
|
23 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
24 |
+
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_id)
|
25 |
+
|
26 |
+
video = VideoFileClip(video_file)
|
27 |
+
audio = video.audio
|
28 |
+
duration = audio.duration
|
29 |
+
chunk_duration = 60
|
30 |
+
n_chunks = int(np.ceil(duration / chunk_duration))
|
31 |
+
|
32 |
+
full_transcription = ""
|
33 |
+
for i in range(n_chunks):
|
34 |
+
start_time = i * chunk_duration
|
35 |
+
end_time = min((i + 1) * chunk_duration, duration)
|
36 |
+
|
37 |
+
audio_chunk = audio.subclip(start_time, end_time)
|
38 |
+
temp_file_path = f"temp_audio_chunk_{i}.wav"
|
39 |
+
audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le')
|
40 |
+
|
41 |
+
sound_array = AudioFileClip(temp_file_path).to_soundarray(fps=16000)
|
42 |
+
if sound_array.ndim > 1:
|
43 |
+
sound_array = np.mean(sound_array, axis=1)
|
44 |
+
|
45 |
+
input_features = feature_extractor(sound_array, sampling_rate=16000, return_tensors="pt").input_features
|
46 |
+
input_features = input_features.to(device=device, dtype=torch_dtype)
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
if target_language:
|
50 |
+
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=target_language,
|
51 |
+
task="transcribe")
|
52 |
+
generated_ids = model.generate(input_features, max_length=448)
|
53 |
+
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
54 |
+
|
55 |
+
full_transcription += transcription + " "
|
56 |
+
os.remove(temp_file_path)
|
57 |
+
print(f"Processed chunk {i + 1}/{n_chunks}")
|
58 |
+
|
59 |
+
# Split the transcription into sentences
|
60 |
+
sentences = sent_tokenize(full_transcription.strip())
|
61 |
+
|
62 |
+
# Estimate time for each sentence based on its length relative to the total transcription
|
63 |
+
total_chars = sum(len(s) for s in sentences)
|
64 |
+
sentence_times = []
|
65 |
+
current_time = 0
|
66 |
+
for sentence in sentences:
|
67 |
+
sentence_duration = (len(sentence) / total_chars) * duration
|
68 |
+
sentence_times.append((current_time, current_time + sentence_duration))
|
69 |
+
current_time += sentence_duration
|
70 |
+
|
71 |
+
output = ""
|
72 |
+
if transcribe_to_text:
|
73 |
+
output += "Text Transcription:\n" + full_transcription + "\n\n"
|
74 |
+
|
75 |
+
if transcribe_to_srt:
|
76 |
+
output += "SRT Transcription:\n"
|
77 |
+
for i, (sentence, (start, end)) in enumerate(zip(sentences, sentence_times), 1):
|
78 |
+
output += f"{i}\n{format_time(start)} --> {format_time(end)}\n{sentence}\n\n"
|
79 |
+
|
80 |
+
return output
|
81 |
+
|
82 |
+
def format_time(seconds):
|
83 |
+
m, s = divmod(seconds, 60)
|
84 |
+
h, m = divmod(m, 60)
|
85 |
return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',')
|