Update video_processing.py
Browse files- video_processing.py +45 -0
video_processing.py
CHANGED
@@ -46,6 +46,51 @@ def extract_frames(video_path, output_folder, desired_fps, progress_callback=Non
|
|
46 |
clip.close()
|
47 |
return frame_count, original_fps
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
|
50 |
start_time = time.time()
|
51 |
output_folder = "output"
|
|
|
46 |
clip.close()
|
47 |
return frame_count, original_fps
|
48 |
|
49 |
+
|
50 |
+
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress):
|
51 |
+
embeddings_by_frame = {}
|
52 |
+
posture_scores_by_frame = {}
|
53 |
+
posture_landmarks_by_frame = {}
|
54 |
+
facial_landmarks_by_frame = {}
|
55 |
+
aligned_face_paths = []
|
56 |
+
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
|
57 |
+
|
58 |
+
for i, frame_file in enumerate(frame_files):
|
59 |
+
frame_num = int(frame_file.split('_')[1].split('.')[0])
|
60 |
+
frame_path = os.path.join(frames_folder, frame_file)
|
61 |
+
frame = cv2.imread(frame_path)
|
62 |
+
|
63 |
+
if frame is not None:
|
64 |
+
posture_score, posture_landmarks = calculate_posture_score(frame)
|
65 |
+
posture_scores_by_frame[frame_num] = posture_score
|
66 |
+
posture_landmarks_by_frame[frame_num] = posture_landmarks
|
67 |
+
|
68 |
+
boxes, probs = mtcnn.detect(frame)
|
69 |
+
|
70 |
+
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
|
71 |
+
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
|
72 |
+
face = frame[y1:y2, x1:x2]
|
73 |
+
if face.size > 0:
|
74 |
+
face_rgb = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
75 |
+
results = face_mesh.process(face_rgb)
|
76 |
+
if results.multi_face_landmarks:
|
77 |
+
facial_landmarks_by_frame[frame_num] = results.multi_face_landmarks[0]
|
78 |
+
if is_frontal_face(results.multi_face_landmarks[0].landmark):
|
79 |
+
aligned_face = face
|
80 |
+
|
81 |
+
if aligned_face is not None:
|
82 |
+
aligned_face_resized = cv2.resize(aligned_face, (160, 160))
|
83 |
+
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
|
84 |
+
cv2.imwrite(output_path, aligned_face_resized)
|
85 |
+
aligned_face_paths.append(output_path)
|
86 |
+
embedding = get_face_embedding(aligned_face_resized)
|
87 |
+
embeddings_by_frame[frame_num] = embedding
|
88 |
+
|
89 |
+
progress((i + 1) / len(frame_files), f"Processing frame {i + 1} of {len(frame_files)}")
|
90 |
+
|
91 |
+
return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths, facial_landmarks_by_frame
|
92 |
+
|
93 |
+
|
94 |
def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
|
95 |
start_time = time.time()
|
96 |
output_folder = "output"
|