reab5555 commited on
Commit
2da6e51
·
verified ·
1 Parent(s): 3414f18

Update video_processing.py

Browse files
Files changed (1) hide show
  1. video_processing.py +68 -0
video_processing.py CHANGED
@@ -24,6 +24,74 @@ mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.9, 0.9, 0.9], min_fac
24
  mp_face_mesh = mp.solutions.face_mesh
25
  face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.8)
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
28
  start_time = time.time()
29
  output_folder = "output"
 
24
  mp_face_mesh = mp.solutions.face_mesh
25
  face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.8)
26
 
27
+
28
+ def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
29
+ os.makedirs(output_folder, exist_ok=True)
30
+ clip = VideoFileClip(video_path)
31
+ original_fps = clip.fps
32
+ duration = clip.duration
33
+ total_frames = int(duration * original_fps)
34
+ step = max(1, original_fps / desired_fps)
35
+ total_frames_to_extract = int(total_frames / step)
36
+
37
+ frame_count = 0
38
+ for t in np.arange(0, duration, step / original_fps):
39
+ frame = clip.get_frame(t)
40
+ cv2.imwrite(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
41
+ frame_count += 1
42
+ if progress_callback:
43
+ progress = min(100, (frame_count / total_frames_to_extract) * 100)
44
+ progress_callback(progress, f"Extracting frame")
45
+ if frame_count >= total_frames_to_extract:
46
+ break
47
+ clip.close()
48
+ return frame_count, original_fps
49
+
50
+
51
+ def process_frames(frames_folder, aligned_faces_folder, frame_count, progress):
52
+ embeddings_by_frame = {}
53
+ posture_scores_by_frame = {}
54
+ posture_landmarks_by_frame = {}
55
+ facial_landmarks_by_frame = {}
56
+ aligned_face_paths = []
57
+ frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
58
+
59
+ for i, frame_file in enumerate(frame_files):
60
+ frame_num = int(frame_file.split('_')[1].split('.')[0])
61
+ frame_path = os.path.join(frames_folder, frame_file)
62
+ frame = cv2.imread(frame_path)
63
+
64
+ if frame is not None:
65
+ posture_score, posture_landmarks = calculate_posture_score(frame)
66
+ posture_scores_by_frame[frame_num] = posture_score
67
+ posture_landmarks_by_frame[frame_num] = posture_landmarks
68
+
69
+ boxes, probs = mtcnn.detect(frame)
70
+
71
+ if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
72
+ x1, y1, x2, y2 = [int(b) for b in boxes[0]]
73
+ face = frame[y1:y2, x1:x2]
74
+ if face.size > 0:
75
+ face_rgb = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
76
+ results = face_mesh.process(face_rgb)
77
+ if results.multi_face_landmarks:
78
+ facial_landmarks_by_frame[frame_num] = results.multi_face_landmarks[0]
79
+ if is_frontal_face(results.multi_face_landmarks[0].landmark):
80
+ aligned_face = face
81
+
82
+ if aligned_face is not None:
83
+ aligned_face_resized = cv2.resize(aligned_face, (160, 160))
84
+ output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
85
+ cv2.imwrite(output_path, aligned_face_resized)
86
+ aligned_face_paths.append(output_path)
87
+ embedding = get_face_embedding(aligned_face_resized)
88
+ embeddings_by_frame[frame_num] = embedding
89
+
90
+ progress((i + 1) / len(frame_files), f"Processing frame {i + 1} of {len(frame_files)}")
91
+
92
+ return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths, facial_landmarks_by_frame
93
+
94
+
95
  def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
96
  start_time = time.time()
97
  output_folder = "output"