Spaces:
Runtime error
Runtime error
File size: 8,192 Bytes
4ec5ed1 8c2c44d 49fcff6 4ec5ed1 8c2c44d 4ec5ed1 c411d80 260a06d 4ec5ed1 7769db5 4ec5ed1 7769db5 0f146ca 8c2c44d c411d80 49fcff6 8c2c44d 49fcff6 c411d80 49fcff6 c411d80 49fcff6 c411d80 49fcff6 8c2c44d 49fcff6 8c2c44d 260a06d 8c2c44d 49fcff6 8c2c44d 0f146ca 8c2c44d 4ec5ed1 8c2c44d 4ec5ed1 8c2c44d 4ec5ed1 8c2c44d 4ec5ed1 8c2c44d 4ec5ed1 0f146ca 4ec5ed1 8c2c44d 4ec5ed1 8c2c44d 4ec5ed1 8c2c44d 4ec5ed1 0f146ca 4ec5ed1 0f146ca 4ec5ed1 8c2c44d 0f146ca 8c2c44d 0f146ca 8c2c44d 0f146ca 8c2c44d 7b4a700 49fcff6 7769db5 0f146ca 7b4a700 0f146ca 7b4a700 8c2c44d 7b4a700 8c2c44d 0f146ca 7b4a700 7769db5 0f146ca 8c2c44d 0f146ca 8c2c44d 7769db5 0f146ca 7769db5 0f146ca 7769db5 0f146ca 7769db5 8c2c44d 0f146ca 8c2c44d 0f146ca 8c2c44d 0f146ca 8c2c44d 0f146ca 8c2c44d 0f146ca 8c2c44d 0f146ca 8c2c44d 7769db5 8c2c44d 7769db5 7b4a700 4ec5ed1 260a06d 4ec5ed1 7b4a700 0f146ca 4ec5ed1 7b4a700 4ec5ed1 c3d42ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import re
from camel_tools.tokenizers.word import simple_word_tokenize
from camel_tools.ner import NERecognizer
import nltk
import torch
from collections import Counter
from transformers import pipeline, AutoModel, AutoTokenizer
import PyPDF2
import gradio as gr
import openai
# تعيين التوكن الخاص بـ OpenAI
openai.api_key = "sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU"
# تحميل وتفعيل الأدوات المطلوبة
nltk.download('punkt')
# التحقق من توفر GPU واستخدامه
device = 0 if torch.cuda.is_available() else -1
# تحميل نماذج التحليل اللغوي
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base")
arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base")
arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator")
arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator")
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
# دالة لتحليل النص باستخدام camel_tools
def camel_ner_analysis(text):
ner = NERecognizer.pretrained()
tokens = simple_word_tokenize(text)
entities = ner.predict(tokens)
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
for token, tag in zip(tokens, entities):
if tag in entity_dict:
entity_dict[tag].append((token, tag))
return entity_dict
# دالة لتحليل المشاعر
def analyze_sentiments(text):
sentiments = analyzer(text)
return sentiments
# دالة لتجزئة النص إلى جمل
def nltk_extract_sentences(text):
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
return sentences
# دالة لاستخراج الاقتباسات من النص
def nltk_extract_quotes(text):
quotes = []
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
for sentence in sentences:
if '"' in sentence or '«' in sentence or '»' in sentence:
quotes.append(sentence)
return quotes
# دالة لعد الرموز في النص
def count_tokens(text):
tokens = simple_word_tokenize(text)
return len(tokens)
# دالة لاستخراج النص من ملفات PDF
def extract_pdf_text(file_path):
with open(file_path, "rb") as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text()
return text
# دالة لاستخراج المشاهد من النص
def extract_scenes(text):
scenes = re.split(r'داخلي|خارجي', text)
scenes = [scene.strip() for scene in scenes if scene.strip()]
return scenes
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
def extract_scene_details(scene):
details = {}
location_match = re.search(r'(داخلي|خارجي)', scene)
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
if location_match:
details['location'] = location_match.group()
if time_match:
details['time'] = time_match.group()
return details
# دالة لاستخراج أعمار الشخصيات
def extract_ages(text):
ages = re.findall(r'\b(\d{1,2})\s*(?:عام|سنة|سنوات)\s*(?:من العمر|عمره|عمرها)', text)
return ages
# دالة لاستخراج وصف الشخصيات
def extract_character_descriptions(text):
descriptions = re.findall(r'شخصية\s*(.*?)\s*:\s*وصف\s*(.*?)\s*(?:\.|،)', text, re.DOTALL)
return descriptions
# دالة لاستخراج تكرار الشخصيات
def extract_character_frequency(entities):
persons = [ent[0] for ent in entities['PERSON']]
frequency = Counter(persons)
return frequency
# دالة لاستخراج الحوارات وتحديد المتحدثين
def extract_dialogues(text):
dialogues = re.findall(r'(.*?)(?:\s*:\s*)(.*?)(?=\n|$)', text, re.DOTALL)
return dialogues
# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
def analyze_and_complete(file_paths):
results = []
output_directory = os.getenv("SPACE_DIR", "/app/output")
for file_path in file_paths:
if file_path.endswith(".pdf"):
text = extract_pdf_text(file_path)
else:
with open(file_path, "r", encoding="utf-8") as file:
text = file.read()
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
camel_entities = camel_ner_analysis(text)
sentiments = analyze_sentiments(text)
sentences = nltk_extract_sentences(text)
quotes = nltk_extract_quotes(text)
token_count = count_tokens(text)
scenes = extract_scenes(text)
ages = extract_ages(text)
character_descriptions = extract_character_descriptions(text)
character_frequency = extract_character_frequency(camel_entities)
dialogues = extract_dialogues(text)
scene_details = [extract_scene_details(scene) for scene in scenes]
# حفظ النتائج إلى ملفات
with open(os.path.join(output_directory, f"{filename_prefix}_entities.txt"), "w", encoding="utf-8") as file:
file.write(str(camel_entities))
with open(os.path.join(output_directory, f"{filename_prefix}_sentiments.txt"), "w", encoding="utf-8") as file:
file.write(str(sentiments))
with open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") as file:
file.write("\n".join(sentences))
with open(os.path.join(output_directory, f"{filename_prefix}_quotes.txt"), "w", encoding="utf-8") as file:
file.write("\n".join(quotes))
with open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") as file:
file.write(str(token_count))
with open(os.path.join(output_directory, f"{filename_prefix}_scenes.txt"), "w", encoding="utf-8") as file:
file.write("\n".join(scenes))
with open(os.path.join(output_directory, f"{filename_prefix}_scene_details.txt"), "w", encoding="utf-8") as file:
file.write(str(scene_details))
with open(os.path.join(output_directory, f"{filename_prefix}_ages.txt"), "w", encoding="utf-8") as file:
file.write(str(ages))
with open(os.path.join(output_directory, f"{filename_prefix}_character_descriptions.txt"), "w", encoding="utf-8") as file:
file.write(str(character_descriptions))
with open(os.path.join(output_directory, f"{filename_prefix}_character_frequency.txt"), "w", encoding="utf-8") as file:
file.write(str(character_frequency))
with open(os.path.join(output_directory, f"{filename_prefix}_dialogues.txt"), "w", encoding="utf-8") as file:
file.write(str(dialogues))
results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
return results
## تعريف واجهة Gradio
interface = gr.Interface(
fn=analyze_and_complete,
inputs=gr.File(file_count="multiple", type="filepath"),
outputs=gr.JSON(),
title="Movie Script Analyzer and Completer",
description="Upload text, PDF, or DOCX files to analyze and complete the movie script."
)
if __name__ == "__main__":
interface.launch()
|