Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ openai.api_key = "sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU"
|
|
17 |
nltk.download('punkt')
|
18 |
|
19 |
# التحقق من توفر GPU واستخدامه
|
20 |
-
device = 0
|
21 |
|
22 |
# تحميل نماذج التحليل اللغوي
|
23 |
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
|
@@ -42,7 +42,7 @@ def camel_ner_analysis(text):
|
|
42 |
entities = ner.predict(tokens)
|
43 |
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
44 |
for token, tag in zip(tokens, entities):
|
45 |
-
|
46 |
entity_dict[tag].append((token, tag))
|
47 |
return entity_dict
|
48 |
|
@@ -61,7 +61,7 @@ def nltk_extract_quotes(text):
|
|
61 |
quotes = []
|
62 |
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
|
63 |
for sentence in sentences:
|
64 |
-
|
65 |
quotes.append(sentence)
|
66 |
return quotes
|
67 |
|
@@ -72,10 +72,10 @@ def count_tokens(text):
|
|
72 |
|
73 |
# دالة لاستخراج النص من ملفات PDF
|
74 |
def extract_pdf_text(file_path):
|
75 |
-
|
76 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
77 |
text = ""
|
78 |
-
|
79 |
page = pdf_reader.pages[page_num]
|
80 |
text += page.extract_text()
|
81 |
return text
|
@@ -83,7 +83,7 @@ def extract_pdf_text(file_path):
|
|
83 |
# دالة لاستخراج المشاهد من النص
|
84 |
def extract_scenes(text):
|
85 |
scenes = re.split(r'داخلي|خارجي', text)
|
86 |
-
scenes = [scene.strip() for scene in scenes
|
87 |
return scenes
|
88 |
|
89 |
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
|
@@ -92,9 +92,9 @@ def extract_scene_details(scene):
|
|
92 |
location_match = re.search(r'(داخلي|خارجي)', scene)
|
93 |
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
|
94 |
|
95 |
-
|
96 |
details['location'] = location_match.group()
|
97 |
-
|
98 |
details['time'] = time_match.group()
|
99 |
|
100 |
return details
|
@@ -125,11 +125,11 @@ def analyze_and_complete(file_paths):
|
|
125 |
results = []
|
126 |
output_directory = os.getenv("SPACE_DIR", "/app/output")
|
127 |
|
128 |
-
|
129 |
-
|
130 |
text = extract_pdf_text(file_path)
|
131 |
else:
|
132 |
-
|
133 |
text = file.read()
|
134 |
|
135 |
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
|
@@ -145,40 +145,40 @@ def analyze_and_complete(file_paths):
|
|
145 |
character_frequency = extract_character_frequency(camel_entities)
|
146 |
dialogues = extract_dialogues(text)
|
147 |
|
148 |
-
scene_details = [extract_scene_details(scene)
|
149 |
|
150 |
# حفظ النتائج إلى ملفات
|
151 |
-
|
152 |
file.write(str(camel_entities))
|
153 |
|
154 |
-
|
155 |
file.write(str(sentiments))
|
156 |
|
157 |
-
|
158 |
file.write("\n".join(sentences))
|
159 |
|
160 |
-
|
161 |
file.write("\n".join(quotes))
|
162 |
|
163 |
-
|
164 |
file.write(str(token_count))
|
165 |
|
166 |
-
|
167 |
file.write("\n".join(scenes))
|
168 |
|
169 |
-
|
170 |
file.write(str(scene_details))
|
171 |
|
172 |
-
|
173 |
file.write(str(ages))
|
174 |
|
175 |
-
|
176 |
file.write(str(character_descriptions))
|
177 |
|
178 |
-
|
179 |
file.write(str(character_frequency))
|
180 |
|
181 |
-
|
182 |
file.write(str(dialogues))
|
183 |
|
184 |
results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
|
@@ -189,7 +189,7 @@ def analyze_and_complete(file_paths):
|
|
189 |
interface = gr.Interface(
|
190 |
fn=analyze_and_complete,
|
191 |
inputs=gr.File(file_count="multiple", type="filepath"),
|
192 |
-
outputs=gr.
|
193 |
title="Movie Script Analyzer and Completer",
|
194 |
description="Upload text, PDF, or DOCX files to analyze and complete the movie script."
|
195 |
)
|
|
|
17 |
nltk.download('punkt')
|
18 |
|
19 |
# التحقق من توفر GPU واستخدامه
|
20 |
+
device = 0 if torch.cuda.is_available() else -1
|
21 |
|
22 |
# تحميل نماذج التحليل اللغوي
|
23 |
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
|
|
|
42 |
entities = ner.predict(tokens)
|
43 |
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
|
44 |
for token, tag in zip(tokens, entities):
|
45 |
+
if tag in entity_dict:
|
46 |
entity_dict[tag].append((token, tag))
|
47 |
return entity_dict
|
48 |
|
|
|
61 |
quotes = []
|
62 |
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
|
63 |
for sentence in sentences:
|
64 |
+
if '"' in sentence or '«' in sentence or '»' in sentence:
|
65 |
quotes.append(sentence)
|
66 |
return quotes
|
67 |
|
|
|
72 |
|
73 |
# دالة لاستخراج النص من ملفات PDF
|
74 |
def extract_pdf_text(file_path):
|
75 |
+
with open(file_path, "rb") as pdf_file:
|
76 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
77 |
text = ""
|
78 |
+
for page_num in range(len(pdf_reader.pages)):
|
79 |
page = pdf_reader.pages[page_num]
|
80 |
text += page.extract_text()
|
81 |
return text
|
|
|
83 |
# دالة لاستخراج المشاهد من النص
|
84 |
def extract_scenes(text):
|
85 |
scenes = re.split(r'داخلي|خارجي', text)
|
86 |
+
scenes = [scene.strip() for scene in scenes if scene.strip()]
|
87 |
return scenes
|
88 |
|
89 |
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
|
|
|
92 |
location_match = re.search(r'(داخلي|خارجي)', scene)
|
93 |
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
|
94 |
|
95 |
+
if location_match:
|
96 |
details['location'] = location_match.group()
|
97 |
+
if time_match:
|
98 |
details['time'] = time_match.group()
|
99 |
|
100 |
return details
|
|
|
125 |
results = []
|
126 |
output_directory = os.getenv("SPACE_DIR", "/app/output")
|
127 |
|
128 |
+
for file_path in file_paths:
|
129 |
+
if file_path.endswith(".pdf"):
|
130 |
text = extract_pdf_text(file_path)
|
131 |
else:
|
132 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
133 |
text = file.read()
|
134 |
|
135 |
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
|
|
|
145 |
character_frequency = extract_character_frequency(camel_entities)
|
146 |
dialogues = extract_dialogues(text)
|
147 |
|
148 |
+
scene_details = [extract_scene_details(scene) for scene in scenes]
|
149 |
|
150 |
# حفظ النتائج إلى ملفات
|
151 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_entities.txt"), "w", encoding="utf-8") as file:
|
152 |
file.write(str(camel_entities))
|
153 |
|
154 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_sentiments.txt"), "w", encoding="utf-8") as file:
|
155 |
file.write(str(sentiments))
|
156 |
|
157 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") as file:
|
158 |
file.write("\n".join(sentences))
|
159 |
|
160 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_quotes.txt"), "w", encoding="utf-8") as file:
|
161 |
file.write("\n".join(quotes))
|
162 |
|
163 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") as file:
|
164 |
file.write(str(token_count))
|
165 |
|
166 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_scenes.txt"), "w", encoding="utf-8") as file:
|
167 |
file.write("\n".join(scenes))
|
168 |
|
169 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_scene_details.txt"), "w", encoding="utf-8") as file:
|
170 |
file.write(str(scene_details))
|
171 |
|
172 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_ages.txt"), "w", encoding="utf-8") as file:
|
173 |
file.write(str(ages))
|
174 |
|
175 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_character_descriptions.txt"), "w", encoding="utf-8") as file:
|
176 |
file.write(str(character_descriptions))
|
177 |
|
178 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_character_frequency.txt"), "w", encoding="utf-8") as file:
|
179 |
file.write(str(character_frequency))
|
180 |
|
181 |
+
with open(os.path.join(output_directory, f"{filename_prefix}_dialogues.txt"), "w", encoding="utf-8") as file:
|
182 |
file.write(str(dialogues))
|
183 |
|
184 |
results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
|
|
|
189 |
interface = gr.Interface(
|
190 |
fn=analyze_and_complete,
|
191 |
inputs=gr.File(file_count="multiple", type="filepath"),
|
192 |
+
outputs=gr.JSON(),
|
193 |
title="Movie Script Analyzer and Completer",
|
194 |
description="Upload text, PDF, or DOCX files to analyze and complete the movie script."
|
195 |
)
|